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1. Introduction 

The purpose of this chapter is to analyze different lenses and fibers, in order to find the best 

solution for the compensation of the laser pulse dispersion. We generate a laser pulse which 

is captured by an image acquisition system. The system consists of a laser, an optical fiber 

and a CMOS senor. In figure 1, we use a confocal resonator to generate the laser pulse; then 

the generated light is focused into an optical fiber using a lens; the light is propagated 

through the fiber and at the output of the fiber the light is projected on a CMOS sensor. For 

the same system, we propose three different combinations in which different lenses and 

fibers are used in order to compensate the dispersion of a laser pulse at propagation through 

the image acquisition system. Laser generates Hermite Gaussian modes. We use the 

fundamental mode which is the Gaussian pulse. This pulse spreads at propagation through 

the free space. In order to avoid the spreading, we focus the pulse into an optical fiber using 

different lenses. Also the lenses suffer of chromatic dispersion. In order to decrease the effect 

of the chromatic dispersion, we design and analyze the functionality of a singlet, an 

achromatic doublet and an apochromat. At the output of the lens the pulse is focalized into 

an optical fiber. We take in consideration the step index fiber, the graded index fiber and self 

phase modulation fiber. The step index fiber suffers of intermodal dispersion, an alternative 

solution is to use the grade index fiber and the best solution is provided by the self phase 

modulation fiber. Finally, at the output of the fiber the light spreads on the CMOS sensor. 

During the functionality of the senor it introduces different temporal and spatial noises 

which degrade the quality of the pulse. Consequently, we have to reconstruct the image of 

the pulse using the Laplace, the amplitude and the bilateral filters. 

 

 

Fig. 1. A schematic of the image capture system 
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2. The laser modes 

In order to find the laser modes we consider a confocal resonator system like that in figure 1. 
The optical axis is noted with z, and the light propagates from left to right in report with the 
optical axis. The resonator is made by two concave mirrors of equal radii of curvature 

2

d
R   separated by a distance d, and one mirror is a partially refractive mirror 2M . We 

consider the middle of the resonator in the point 0
2 2

d d
z     . After certain calculus (Poon 

& Kim, 2006), the modes in the middle of the resonator can be express as: 

  
 2 2

0 2
0 00

22
( , , 0) exp m n

x y yx
x y z E H H

w ww


                    

 (1) 

where: 

0w is the waist of the beam,  

mH is the Hermite Gaussian polynomial, 

                                                              
2 2

1
m

m x x
m m

d
H x e e

dx

  . (2) 

We have the 2D solution represented in figure 2 (Toadere & Mastorakys 2009, 2010).    
 

 

Fig. 2. The fundamental Hermite Gaussian mode 00TEM  

Each set (m,n) corresponds to a particular transverse electromagnetic mode of the resonator. 

The electric (and magnetic) field of the electromagnetic wave is orthogonal in the middle of 

the resonator in point 0z  . The lowest-order Hermite polynomial 0H  is equal to unity; 

hence the mode corresponding to the set (0,0) is called the 00TEM mode and has a Gaussian 

radial profile. The laser output comprises a small fraction of the energy in the resonator that 

is coupled out through a partially refractive mirror. The width of the Gaussian beam 

monotonically increases in function of propagation on direction z, and reaches 2 times its 

original width at Rayleigh range. For a circular beam, this means that the mode area is 

doubled at this point (Poon & Banarje, 2001), (Poon & Kim, 2006). 

In this paper we consider that the laser generates a pulse with a Gaussian radial profile 

( 00TEM ). To avoid the spreading of the pulse, in the Rayleigh range at 20mm, we focus the 
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pulse in to a fiber using a lens. In order to attenuate the chromatic dispersion we use the 

singlet, the doublet, the apochromat, and the step fiber, the graded index fiber and the non 

linear index fiber.   

3. The optical system analysis 

When we work with optical components, the most important problem is that it is impossible 
to image a point object as a perfect point image. An optical system is made by a set of 
components (surfaces) through which the light passes. The optical sensor is analyzed in 
space by the point spread function (PSF) and in the spatial frequency by the modulation 
transfer function (MTF). These are the most important integrative criterions of imaging 
evaluation for the optical system. The PSF gives the 2D intensity distribution of the image of 
a point source. PSF gives the physically correct light distribution in the image plane 
including the effects of aberrations and diffraction. Errors are introduced by design 
(geometrical aberrations), optical and mechanical fabrication or alignment. MTF characterize 
the functionality of the optical system in spatial frequencies. Most optical systems are 
expected to perform a predetermined level of image integrity. A method to measure this 
quality level is the ability of the optical system to transfer various levels of details from the 
object to the image. This performance is measured in terms of contrast or modulation, and is 
related to the degradation of the image of a perfect source produced by a lens. MTF describe 
the image structure as a function of spatial frequency and is specified in lines per millimeter. 
It is obtained by Fourier transform of the image spatial distribution (Goodmann, 1996), 
(Yzuka, 2008).  
When an optical system process an image using incoherent light, then the function which  

describe the intensity in the image plane produced by a point in the object plane is called the 

impulse response function: 

                           , ,g x y H f x y                 (3) 

H is an operator representing a linear, position (or space) invariant system. The input object 
intensity pattern and the output image intensity pattern are related by a simple convolution 
equation: 

       , , ,g x y f H x y d d      




      ,      , , ,g x y f h x y d d     




    ,  (4) 

 and  are spatial frequencies (line/mm) which are defined as the rate of repetition of a 

particular pattern in unit distance. 

    , ,h x y H x y                 (5) 

is the impulse response of H; in optics, it is called the point spread function (PSF). The net 

PSF of the optical part of the image acquisition system is a convolution between the 

individual responses of the optical components: the lens, the fiber and the optical part of the 

CMOS: 

 lens fiber CMOSPSF PSF PSF PSF    .  (6) 
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We work with multiple convolutions, and we focus our attention on space analysis using 
the point spread function, which is specific to each component of the optical sensor. The 
optical fiber is analyzed from the spatial resolution point of view (Toadere & Mastorakis, 
2009, 2010).  
The PSF characterize the image analyses in space but also we can characterize the image in 
frequency using the optical transfer function (OTF) (Yzuka, 2008). The optical transfer 
function is the normalized autocorrelation of the transfer function and has the formula:  

        
 2

, , , ,
2 2 2 2

,
,

P x y P x y

H
P x y dxdy

   

 

         
   




. (7) 

The numerator represents the area of overlap of two pupil functions, one of which is 

displaced by ,
2 2

 
 and ,

2 2

 
  in directions x an y and the other in opposite directions  -x 

and -y. OTF is defined as the rapport between the area of the overlap of displace pupil 
function and complete area of the pupil function.  
The changes in contrast that happens when an image passes trough an optical system is 
expected to have a lot to do with the optical transfer function (Goodmann, 1996 ) (Yzuka, 
2008), (Toadere & Mastorakis, 2010). The definition of the modulation transfer function 
(MTF) is: 

 
contrast of output image

MTF
contrast of input image

     (8) 

which represent the ratio of the contrast of the output image to that of the input image.  
The relation between OTF and MTF is:                             

 MTF OTF .   (9) 

The modulation transfer function is identical to the absolute value of the optical transfer 
function. The net sensor MTF is a multiplication between the transfer functions of the 
individual components:  

 lens fiber CMOSMTF MTF MTF MTF   .  (10) 

In general, the contrast of any image which has propagated through an image acquisition 

system is worse then the contrast of the original input image.  

3.1 The PSF and MTF with aberrations 

When we work with real optical systems, which have aberrations, the point spread function 

the optical transfer function and the modulation transfer function suffers modifications due 

to a phase distortion term W(x,y) (Goodmann, 1996): 

  
 2

,

2 2 ,

1
,

x y

x
W x y

yx
f f

p d d

PSF FT p x y e
d A



 



 

    
  

     (11)     
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where: 

   is the wavelength, 

FT is the Fourier transform, 
d    is the distance from the aperture to the image plane, 

pA is the area of the aperture, 
W(x,y) is the aberration of the pupil, 
p(x,y)  is the pupil function, 

    
 2

,
, ,

x
W x y

P x y p x y e 


  .     (12) 

The optical transfer function is: 

    
  0, 0

,

x y

x y

f f

FT PSF
OTF f f

FT PSF  

      (13)                          

and the modulation transfer function is: 

    , ,x y x yMTF f f OTF f f .   (14) 

3.2 The monochromatic aberrations 

Aberrations are the failure of light rays emerging from a point object to form a perfect point 
image after passing through an optical system. Aberrations lead to blurring of the image, 
which is produced by the image-forming optical system. The wave front emerging from a 
real lens is complex because has error in the design, fabrication and lens assembly. 
Nevertheless, well made and carefully assembled lenses can possess certain inherent 
aberrations. To describe the primary monochromatic aberrations, of rotationally 
symmetrical optical systems, we specify the shape of the wave front emerging from the exit 
pupil. For each object point, there will be a quasi-spherical wave front converging toward 
the paraxial image point (Goodmann, 1996), (Kidger, 2001). 
 

 

Fig. 3. The wavefront aberrations 

In figure 3 the wave aberration function, W(x,y), is the distance, in optical path length, from 
the reference sphere to the wavefront in the exit pupil measured along the ray as a function 
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of the transverse coordinates (x,y) of the ray intersection with a reference sphere centered on 
the ideal image point.  
To specify the aberrations we use the Siedel field aberration formula: 

 
   

   

2 4 3
020 040 131

2 2 3
220 311

, cos

cos

W r W r W r W hr

W h r W h r higher order terms

 



   

  
    (15) 

where: 

klmW  are the wave aberration coefficients of the modes, 
 h  is the height of the object,  

2r                      is the defocus, 
4r                      is the spherical aberration, 

 3 coshr         is the coma, 

 2 2 2cosh r     is the astigmatism,   

2 2h r                  is the field curvature, 

 3 cosh r         is the distortion. 

This Seidel aberration formula represents orthogonal polynomials which have the next 
properties: field aberrations describe the wavefront for a single object point as a function of 
pupil coordinates (x,y) and field height h. The aberrations are described functionally as a 
linear combination of polynomials. Point aberrations depend only on pupil coordinates and 
each polynomial term represents a single aberration. The aberration polynomial may be 
extended to higher order; these aberrations presented in equation (15) are up to fourth 
order. (Kidger 2001). 
The Siedel aberrations for thin lenses can be express in function of bending and 
magnification (Geary, 2002), (Kidger, 2001). The bending can be express in function of the 
thin lens curvature:    

 1 2

1 2

c c
B

c c





.   (16)  

From the formula of the Lagrange invariant, the transverse magnification is given by:  

 
'

' '

y nu
m

y n u
   (17) 

and the magnification is: 

 1

1

m
M

m





.     (18)                          

Consequently, the Siedel aberrations are: 040W is the spherical aberration, 131W is the coma, 

222W the astigmatism, 220W the field curvature, 311W is the distortion, 020W is the axial color 

and 111W is the lateral color: 

 2 3 2 2
040 1 2 3 4

1
( ( ) )

16
aW y a a B a M a M    ,     (19) 
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 2 2
131 5 6

1
( )

4
aW y L a B a M


  ,      (20)               

 2
222

1

2
W L 


 ,       (21) 

 2
220

11

4

g

g

n
W L

n





 ,        (22)     

 311 0W  ,                 (23) 

 2
020

1

2
aW y


 
 ,     (24)                       

 111 0W      (25)                         

where: 

ay  is the aperture,  

   is the lens power, 

  is the Abbe number, 

gn are the glass refraction indices, 

a cL nu y   is the Lagrange invariant, 

1 2

1 2

c c
B

c c





 is the bending,  

1

1

m
M

m





  is the magnification, 

2

1
1

g

g

n
a

n

 
 
  

, 2 2

2

( 1)

g

g g

n
a

n n





, 

2

3

2( 1)

2

g

g

n
a

n





, 4

2

g

g

n
a

n



, 5

1

( 1)

g

g g

n
a

n n





, 6

2 1g

g

n
a

n


 . 

3.3 The correction of the aberrations 

In the paragraph 3.2, we presented the mathematical relations that are used in the optical 
design which implies Seidel aberrations (Kidger, 2004), (Toadere & Mastorakis, 2010). In 
order to optimize the defects produced by the aberrations we use the defect vector f which is 

a set of m functions if  that depend on a set on n variables. The function is of the type:    

 
2 tf f   .      (26) 

A is a ( )n m matrix of first derivatives: 

 
i

ij
j

f
A

x





        (27) 

and f are changes in the variables from the current design. The gradient g is a ( 1)n  vector 

given by: 
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 21

2
g     (28) 

its components are: 

 

2
1 2

1 22 ...

.

m
i m

i i i i

t

f f f
g f f f

x x x x

g A f

    
    
    



,    (29) 

Method of Least Squares: 

0( )tg A f As  , 

0
tg g A As  , 

 tC A A , 

0 0g Cs  . 

is a set of simultaneous linear equations known as the normal equations of least-squares. 
Providing that the matrix C is not singular, these equations can always be solved, and the 
formal solution s may be written: 

 1
0s C g  . (30) 

The basic idea of the damped least-squares is to start with the basic equation for the least 

squares condition. 0g is the gradient at the starting point and augment the diagonal of the 

matrix C by the addition or factoring of a damping coefficient. Modifications of the form 

iic p  for example, are called additive damping. In the case of additive damping, the 

equation for the damped least-squares solution reduces to: 

 
0 0g ps Cs   .   (31) 

As the damping factor p increases, the third term in the equation above becomes small and 
the solution vector becomes parallel to the gradient vector:     

 
0

1
 s g

p
  (32) 

3.4 The lens design 

Lens design refers to the calculation of lens construction parameters that will meet a set of 
performance requirements and constraints. Construction parameters include surface profile 
types and the parameters such as radius of curvature, thickness, semi diameter, glass type and 
optionally tilt and decenter. Before we proceed, we notice that the human eye can only 
distinguish aberrations up to the fourth or fifth order. When we design the lens we have to 
take in consideration the aberrations, the aberration correction and the design considerations.  
We design a singlet, a doublet and an apchromat. We are interested about resolution of 
these lenses configurations. A singlet has chromatic aberration; a doublet can focus two 
wavelengths and an apochromat can focus three wavelengths (Geary, 2002). Therefore, the 
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type of the lenses that are used in our analysis has significant impact on the shape and 
resolution of the pulse at the output of these lenses.     

3.4.1 The design of the singlet 

The singlet has the lens focal length 20mm and f/2 aperture. We use the glass BK 7, and we 

assume the object is at infinity (M = 1). The merit functions are the axial color and the coma 

(Kidger, 2001, 2004), (Toadere & Mastorakis, 2010). To solve this problem we must solve the 

equation system (figure 4): 

 
1 1

2
2 5 6

1
( )

2

f

f L a B a M

 



 



 
       (33) 

where: 

 is the power of the lens. 

 

 

Fig. 4. The log of the PSF for the singlet  

3.4.2 The design of an achromatic doublet 

The achromatic doublet has the focal length 23mm with an f/2 aperture. Assume the object is 

at infinity (M =1). We use the glasses BK 7 and SF 2. The merit functions are coma and 

spherical aberrations (Kidger 2001, 2003), (Geary, 2002). To solve this problem we must 

solve the equations system (figure 5): 

 

1 1 2

1 2
2

1 2

( )f

f

  
 
 

  

  


       (34) 

where: 

1 is the power of the first lens, 

2 is the power of the second lens, 

1v , 2v are the corresponding Abbe numbers. 
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Fig. 5. The log of the PSF for the achromatic doublet 

3.4.3 The design of an apochromat 
The apochromat has the lens focal length 20mm with an f/2 aperture. We use the glass F2, 
KZFSN5, FK51, and we assume the object is at infinity (M = 1). The merit functions are 
spherical aberration and the axial color (Kidger 2001, 2004), (Geary, 2002). To solve this 
problem we must solve the equation system (figure 6):    

 

1 1 2 3

2 1 2 3
1 2 3

31 2
3 1 2 3

1 2 3

1 1 1

f

f

PP P
f

   

  
  

  
  


   


              

     
                   

   (35) 

where: 

1 , 2 , 3  are the powers of the elements, 

1v , 2v , 3v  are the Abbe numbers, 

1P , 2P , 3P  are the partial dispersions. 
The first equation determines the power, the second equation the axial color and the third 
equation the longitudinal color. 
 

 

Fig. 6. The log of PSF for the apochromat 
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4. The optical fiber 

An optical fiber is a thin, flexible and transparent fiber that acts as a waveguide in order to 
transmit light between the two ends of the fiber. During the radiation propagation trough 
the optical fiber it suffers of material dispersion, modal dispersion and polarization 
dispersion. Happily there are different types of fibers which allow us to reduce the modal 
dispersion and the polarization dispersion. Material dispersion is a problem that can be 
solved only by the designer and the producer of the fiber. When we make the physical 
model of the refraction index of the fibers we take in consideration the modal dispersion 
and the polarization dispersion. Modal dispersion happens in multimode fibers. Usually, 
the waveguide effect is achieved using in the core of the fiber a refractive index that is 
slightly higher than the refraction index of the surrounding cladding.  
In order to reduce the effect of the modal dispersion, we analyze the functionality of the 
graded index fiber, the step index fiber and the fiber based on self caring effect. The step and 
graded index fibers use a linear refractive index and the fiber with self caring effect use a 
non linear refractive index. Polarization gives us information about linear and nonlinear 
comportment of the refractive index of the fibers. The polarization is deduced from the 
Maxwell equations. 

4.1 The Maxwell equations    

The Maxwell equations are (Mitsche, 2009), (Poon & Banarje, 2001), (Poon & Kim, 2006):  

 0D  


            (36) 

 0B  


              (37) 

 0

D
B

t
 

 



,                 (38) 

 
B

E
t


  




                 (39) 

and: 

 0D E P 
  

,              (40) 

  0B H M 
  

,                                            (41) 

 j E
 

                                 (42) 

where: 

E


  is the electric field strength ( /V m ), 

H


 is the magnetic field strength ( /A m ), 

D


 is dielectric displacement ( 2/As m ), 

B


  is the magnetic induction ( 2/Vs m ), 
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J


  is the current density ( 2/A m ), 

P


  is the polarization, 

M


 is the magnetization, 

σ is the conductivity. 
We rearrange the equation (39) using the equation (40): 

 
B

E
t

 
    

 


 ,    (43) 

   2E E B
t


      



  
, 

  2
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t

 
      
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.         (44) 

If E P
 

 and D E , it fallows that 0D E   
 

and the equation (44) becomes: 

 
2 2

2
0 0 02 2

E P
E

t t
   

  
 

 
.     (45) 

The polarization is express as (Mitsche, 2009), (Poon & Banarje, 2001), (Poon & Kim, 2006):  

 
      1 2 32 3

0 ....P E E E      
  

.   (46) 

4.2 The linear refractive index 

For the linear case we take from equation (46) only the linear term: 

 
 1

0P E 


.     (47) 

Using equation (47) we rewrite the equation (40): 

 
  1

0 1D E  
 

.    (48) 

In equation (48) the term inside the brackets represents the dielectric constant: 
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 

2
1

1
2

C
n i  


     
 

        (49) 

where: 
n   is the index of refraction, 
  is the coefficient of absorption. 

In equation (49) if 0   then: 

 
2n  .       (50) 

Having these conditions we insert the equation (47) in to equation (45) and we obtain the 
linear wave equation (Mitsche, 2009), (Poon & Banarje, 2001):  

 
2 2

2
2 2

n
E E

c t


 



 
,       (51) 

and equivalently for the magnetic field: 

 
2 2

2
2 2

n
H H

c t


 



 
.           (52) 

4.2.1 Optical propagation through the step index fiber 

Step-index fibers are optical fibers with the simplest possible refractive index profile: a 

constant refractive index 1n  in the core with some radius r, and another constant value 2n  

in the cladding (Mitsche, 2009): 

 1 2n n ,    (53) 

 2 1(1 )n n   ,      (54) 

where: 

1 2

1

n n

n


   is the fractional change in the index of refraction, 

1n  is the refractive index in the core, 

2n  is the refractive index in the cladding. 

By construction, this type of optical fiber has constant index of refraction in the core. This 
fact leads to the apparition of the modal dispersion during the propagation of the Gaussian 
pulse trough the step index fiber. At the output of the fiber the shape of the pulse is spread 
which produce intensity attenuation. Consequently, this type of optical fiber has modest 
performances. 

4.2.2 Optical propagation through the graded index fiber 

A graded-index fiber is an optical fiber whose core has a refractive index that decreases with 

increasing radial distance from the fiber axis. The index profile is very nearly parabolic. The 

advantage of the graded-index is the considerable decrease in modal dispersion ensuring a 

constant propagation velocity for all light rays (Mitsche, 2009): 
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  0( , ) 1 ,n x y n x y        (55) 

where: 

0n is the intrinsic refractive index of the medium, 
 n(x,y) is the medium index of refraction in the location (x,y), 

 ,x y  is the variation of n(x,y). 
In reference (Poon & Kim, 2006) is presented a beautiful demonstration in which a plane 

wave propagates trough a graded index fiber. After the plane wave is substitute in the wave 

equation, the equation is solved and the results are the Hermite Gaussian polynomials. Since 

we have total mathematical compatibility with the equation (1), the only concern should be 

related to the propagation trough the refractive index. Due to the periodic focusing by the 

graded index, the distribution of the Gaussian pulse does not deform during its propagation 

through the fiber. This means that the Gaussian spatial confining of the light wave is 

preserved as the light propagates through the fiber. Therefore, the fiber preserves the spatial 

resolution of the original Gaussian pulse.  

4.3 The nonlinear refractive index 

For the nonlinear case (Mitsche, 2009), (Poon & Banarje, 2001), (Poon & Kim, 2006) using the 

equation (46), the polarization is express taking in consideration the first nonlinear and non 

zero term:  

 
    1 3 3

0P E E   
 

    (56) 

the second term in the expression (46) vanishes due to the statistical glass structure. 

Using equation (50) we express the nonlinear term as: 

 
     1 3 32 2 21 linearn E E          ,      (57) 

 

 3 2
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E 


 
  
 
 

. (58) 

In this condition the refractive index is: 

 

   3 32 2

0 0 2
0

1 1
2linear

E E
n n n

n

 


 
    
 
 

     (59) 

where:  

0n  is the refractive index at zero intensity. 

We note the term: 

 
 3

2
02

n
n


 ,    (60) 
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 2
0 2n n n E  ,         (61) 

or: 

 0 2n n n I  ,  (62)   

where:     

0n  is the refractive index at zero intensity, 

2n  is the Kerr coefficient. 

4.3.1 Wave propagation in a nonlinear inhomogeneous medium  

The wave propagation in a nonlinear inhomogeneous medium (Poon & Kim, 2006) is 

governed by the combination of self phase modulation due to the Kerr effect and the group 

velocity dispersion which balance out each others and can lead to solitons (self sustaining 

pulses). The optical pulse propagates into a fiber whose index of refraction depends on the 

pulse intensity. The index of refraction is given by the equation (62). This type of fiber 

ensures the best propagation conditions. At the output of the fiber the pulse preserves its 

shape and also it is amplified in intensity.  

5. The CMOS sensor 

The image at the output of the optical fiber is projected on the image sensor. In this analysis 
we use a passive pixel complementary metal oxide semiconductor (PPS CMOS). We analyze 

the modulation transfer function (MTF) of the CMOS and the electrical part of the CMOS 
considering the photon shot noise and the fixed pattern noise (FPN). Finally, we use a 
Lapacian filter, an amplitude filter and a bilateral filter in order to reconstruct the noisy 
blurred image.  

5.1 The optical part of a PPS CMOS sensor 
The PPS CMOS image capture sensors it is a complex device which converts the focalized 
light in to numerical signal. CMOS image sensors consists of a m n array of pixels; each 
pixel contains: the photodetector that converts the incident light in to photocurrent, the 
circuits for reading out photocurrent; part of the readout circuits are in each pixel, the rest 
are placed at the periphery of the array. CMOS sensors integrate on the same chip the 
capture and processing of the signal (Holst & Lomheim, 2007).  

In our analyses we use a pixel made in 0.5 m  technologies. To model the sensor response 

as a linear space invariant system, we assume the n+/p-sub photodiode with very shallow 

junction depth, and therefore we can neglect generation in the isolated n+ regions and only 

consider generation in the depletion and p-type quasi-neutral regions. We assume a uniform 

depletion region. The parameters values of the pixel are: mz 4.5 , mLd 4 , 

10L m , 4w m , 550nm  . 1/2 inch CMOS with C optical interface is selected, i.e. 

its back working distance is 23  0.18 mm. The visual band optical system has 
60 field of 

view (FOV), f/number 2.5 (Toadere, 2010).   
In figure 7 we have the cross section of a pixel and we can see that it is part of a periodic 
structure of pixels. The picture presents a structure of a complex device compound from 
the lenses , the colors filters and the analog part responsible with the conversion from 
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photons to charges and then in to voltage.  Supplementary, not represented in the figure, 
we have conversion from analog signal to digital signal and numeric colors processing on 
the same chip. 
The photodiodes are semiconductor devices responsive with capture of photons. They 

absorb photons and convert them in to electrons. The collected photons increase the voltage 

across the photodiode, proportional with the incident photon flux. The photodiodes work 

by direct integration of the photocurrent and dark current. They should have appropriate 

FOV, fill factor, quantum efficiencies and pixel dimension for the sensitive array. A good 

light capture allows sensor to obtain a high dynamic range scene. 

 

 

Fig. 7. The view of the simplified pixel cross section  

z is the distance between pixel, 
w is the pixels width, 
L is the quasi neutral region,  

dL is the depletion length. 

5.1.1 The modulation transfer function of the CMOS image sensors 

The sharpness of a photographic imaging system or of a component of the system (the lens 

and the optical part of CMOS) is characterized by the MTF, also known as spatial frequency 

response. The optical part of the CMOS is characterized by its afferent MTF (Holst & 

Lomheim 2007). The contrast in an image can be characterized by the modulation: 

 max min

max min

s s
M

s s





    (63) 

where:  

maxs  and mins   are the maximum and minimum pixel values over the image.  
Note that 0 1M  . Let the input signal to an image sensor be a 1D sinusoidal 

monochromatic photon flux: 
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  0( , ) 1 cos(2 )F x f F fx          (64) 

for 0 Nyquistf f  . 

The sensor modulation transfer function is defined as: 

    
 

out

in

M f
MTF f

M f
    (65) 

from the definition of the input signal 1inM  . MTF is difficult to find analytically and is 

typically determined experimentally. For the beginning we made a 1D analysis for 

simplicity and at the end we generalize the results to 2D model, which we will use in our 

analyses. 
By making several simplifying assumptions, the sensor can be modeled as a 1D linear space-
invariant system with impulse response h(x) that is real, nonnegative, and even. In this case 
the transfer function (Toadere & Mastorakis, 2010): 

    H f F h x      (66) 

is real and even, and the signal at x is: 

      ,S x F x f h x  ,   (67) 

     0 1 cos(2 )S x F fx h x   , 

     0 0 cos(2 )S x F H H f fx    , 

therefore:        

    max 0 0S F H H f    ,    (68) 

    min 0 0S F H H f    ,       (69) 

and the sensor MTF is given by: 

    
 0

H f
MTF f

H
 .     (70) 

In figure 7 we have a 1-D doubly infinite image sensor. To model the sensor’s response as a 

linear space-invariant system, we assume n+/p-sub photodiode with very shallow junction 

depth, and therefore we can neglect generation in the isolated n+ regions and only consider 

generation in the depletion and p-type quasi-neutral regions. We assume a uniform 

depletion region (from   to  ). In figure 8, the monochromatic input photon flux  F x  to 

the pixel current  iph x  can be represented by the linear space invariant system.  iph x  is 

sampled at regular intervals z to get the pixels photocurrents. 
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Fig. 8. The process of photogeneration and integration 
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   (71) 

d(x) is the spatial impulse response corresponding to the conversion from photon flux to 

photocurrent density. We assume a square photodetector and the impulse response of the 

system is thus given by:  

     x
h x d x r


    
 

    (72) 

and its Fourier transform (transfer function) is given by: 

      2 sinH f D f c f                  (73) 

where: 

   0D n  , 

 n   is the spectral response. 

The spectral response is a fraction of the photon flux that contributes to photocurrents as a 

function of wave length. D(f) can be viewed as a generalized spectral response (function of 

spatial frequency as well as wavelength). 

After some calculus we get D(f) as: 

  
 

 2

1

1
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       

           

,       (74) 

      2 sinH f D f w c wf ,     (75) 

the modulation transfer functions for 
1

2
f

p
   is: 

    
   2

0

sin
0

fDH f
MTF f w c wf

H D
        (76) 
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0

fD

D
 is called the diffusion MTF and  sinc wf  is called the geometric MTF. 

Consequently, we have: 

 sinCMOS diffu geometricMTF MTF MTF  .  (77) 

But in our analyses we use 2D signals so we must generalize 1D case to 2D case. We know 

that we have square aperture with length w for each photodiode:  

    
 
,

,
0

x y

x y

H f f
MTF f f

H
 ,   (78) 

        , 2

0

, sin sin
x yf f

x y x y

D
MTF f f w c wf c wf

D
 ,        (79) 

where: 

xf is the spatial frequency on x direction, 

yf is the spatial frequency on y direction. 

Spatial frequency (lines/mm) is defined as the rate of repetition of a particular pattern in 
unit distance. It is indispensable in quantitatively describing the resolution power of a lens. 
The first level in a CMOS image sensor is a lens which focuses the light on each pixel 
photodiode. 
In figure 9 we have the graphical representation of the MTF(f) calculated in equation 
(79). 
 

 

Fig. 9. The log of the PSF for the CMOS sensor 

Diffusion MTF decreases with the wavelength. The reason is that the quasi-neutral region is 
the first region of absorption, and therefore photogenerated carriers due to lower 
wavelength photons (which are absorbed closer to the surface) experience more diffusion 
than those generated by higher wavelengths. 
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5.2 The electrical part of the PPS CMOS sensor 

The PPS CMOS image sensor consists of a n m  PPS array. They are based on 

photodiodes without internal amplification. In these devices each pixel consists of a 
photodiode and a transistor in order to connect it to a readout structure (figure 10.). Then, 
after addressing the pixel by opening the row-select transistor, the pixel is reset along the 
bit line. The readout is performed one row at a time. At the end of integration, charge is 
read out via the column charge to voltage amplifiers. The amplifiers and the photodiodes 
in the row are then reset before the next row readout commences. The main advantage of 
PPS is its small pixel size. In spite of the small pixel size capability and a large fill factor, 
they suffer from low sensitivity and high noise due to the large column’s capacitance with 
respect to the pixel’s one. Also during the signal propagation trough the bit configuration 
it suffers of temporal noises perturbations (Holst & Lomheim 2007), (Toadere & 
Mastorakis, 2010), (Toadere, 2010).  
 

 

Fig. 10. A schematic of a passive pixel sensor  

The pixel photodiode works by direct integration of the photocurrent and dark current on 

the photodiode condenser during the integration time. At the end of the integration time the 

condenser charge is read out by the next electronic block.                                                    

  int intt ph dcQ i i t  ,     (80) 

    phi q f d     ,     (81) 

where: 
191.6 10q C  is the electron charge, 

phi is the photodiode current, 

dci  is the dark current. 

Dark current dci  is the leakage current and it corresponds to the photocurrent under no 

illumination. It can not be accurately determined analytically or using simulation tools. 

Fluctuate with temperature and introduces unavoidable photon shot noise.  The photon shot 
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noise, dark current noise and thermal noise are signal dependent noises; reset and offset 

noises are signal independent noises. 

5.2.1 The electrical noises 

Image noise is a random, usually unwanted, variation in brightness or color information in 
an image. In a CMOS sensor image noise can originate in electronic noise that can be 
divided in temporal and FPN or in the unavoidable shot noise of an ideal photon detector. 
Image noise is most apparent in image regions with low signal level, such as shadow 
regions or underexposed images (Holst & Lomheim 2007).  
The photon shot noise is generated by fluctuations in static dc current flow through 
depletion regions of a pn junction, resulted after the photons to electrons conversion process. 
The diode also suffers of dark current noise. Thermal noise is generated by thermally 
induced motion of electrons in the resistive regions of a MOS transistor channel in strong 
inversion polarization. Some time the photon shot noise and thermal noise can be 
considered as white Gaussian noise. In addition we have the reset, read and FPN noises due 
to other components electronics. Noises represent an additive process (Toadere, 2010). 
Shot Noise is associated with the random arrival of photons at any detector. The lower the 
light levels the smaller the number of photons which reach our detector per unit of time.  
Consequently, there will not be continuous illumination but a bombardment by single 
photons and the image will appear granulose. The signal intensity, i.e. the number of 
arriving photons per unit of time, is stochastic and can be described by an average value and 
the appropriate fluctuations. The photon shot noise has the Poisson distribution:  

  ,
!

ke
P k

k




        (82) 

where: 

1k n  , n is a non-negative integer, 

  is a positive real number. 

The readout noise of a PPS CMOS is generated by the electronics and the analog-to-digital 

conversion. Readout noise is usually assumed to consist of independent and identically 

distributed random values; this is called white noise.  The noise is assumed to have the 

normal white Gaussian distribution with mean zero and a fixed standard deviation 

proportional to the amplitude of the noise. The analog to digital convertor produces 

quantization errors. Whose effect can be approximated by uniformly distributed white noise 

whose standard deviation is inversely proportional to the number of bits used.  

5.2.2 The fixed pattern noise 

In a perfect image sensor, each pixel should have the same output signal when the same 

input signal is applied, but in image sensors the output of each sensor is different. The FPN 

is defined as the pixel-to-pixel output variation under uniform illumination due to device 

and interconnect mismatches across the image sensor array. These variations cause two 

types of FPN: the offset FPN, which is independent of pixel signal, and the gain FPN or 

photo response non uniformity, which increases with signal level. Offset FPN is fixed from 

frame to frame but varies from one sensor array to another. The most serious additional 

source of FPN is the column FPN introduced by the column amplifiers. In general PPS has 
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FPN, because PPS has very large operational amplifier offset at each column. Such FPN can 

cause visually objectionable streaks in the image. Offset FPN caused by the readout devices 

can be reduced by correlated double sampling (CDS). Each pixel output is readout twice, 

once right after reset and a second time at the end of the integration. The sample after reset 

is then subtracted from the one after integration (figure 11).  

For a more detailed explanation, check out the paper by Abbas El Gammal (El Gamal et al. 
1998). In this paper we focus our attention in FPN effects on image quality and we do not 
compute the FPN, we accept the noises as they are presented in references.  
    

 
           a)                                                                b) 
Fig. 11. a) the FPN of the PPS without CDS, b) the FPN of the PPS with CDS 

5.2.3 The dynamic range 

Dynamic range is the ratio of the maximum to minimum values of a physical quantity. For a 

scene, the ratio is between the brightest and darkest part of the scene. The dynamic range of 

a real-world scene can be 100000:1. Digital cameras are incapable of capturing the entire 

dynamic ranges of scenes, and monitors are unable to accurately display what the human 

eye can see. The sensor dynamic range (DR) quantifies its ability to image scenes with wide 

spatial variations in illumination. It is defined as the ratio of a pixel’s largest nonsaturating 

photocurrent maxi to its smallest detectable photocurrent mini or the ratio between full-well 

capacity and the noise floor. The maximum amount of charge that can be accumulated on a 

photodiode capacitance is called full-well capacity. The initial and maximum voltages are 

resetV and maxV , they depend on the photodiode structures and operating conditions (Holst 

& Lomheim, 2007), (Toadere, 2010). The largest saturating photocurrent is determined by 

the well capacity and integration time intt  as:  

 
int

max
max dc

qQ
i i

t
         (83) 

the smallest detectable signal is set by the root mean square of the noise under dark 
conditions. DR can be expressed as: 

 max intmax
10 10

2 2
min int

20log 20log
( )

dc

dc read DNSU

qQ i ti
DR

i qt i q  


 

 
       (84) 
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where: 

maxQ  is the effective well capacity, 

2
read  is the readout circuit noise. 

2
DNSU is the offset FPN due to dark current variation, commonly referred to as DSNU (dark  

signal non-uniformity). 

5.2.4 The analog to digital conversion 

The analog to digital conversion is the last block of the analog signal processing circuits in 

the CMOS image sensor. In order to convert the analog signal in to digital signal we 

compute the: analog to digital curve, the voltage swing and the number of bits. The quality 

of the converted image is good and the image seams to be unaffected by the conversion 

(Holst & Lomheim, 2007), (Toadere, 2010). 

6. The image reconstruction 

In the process of radiation capture with our proposed image acquisition system, the input 

photon flux is deteriorated by the combined effects of the optical aberrations and electrical 

noises. The optics is responsible for colors fidelity and spatial resolution; the electronics 

introduce temporal and spatial electrical noises. At the output of the electrical part the 

image is corrupted by the optical blur and the combined effect of the FPN and the photon 

shot noise. In order to reduce the blur we use a Laplacian filter, to reduce the FPN we use a 

frequencies amplitude filter which block the spikes spectrum of the FPN. Finally we reject 

the remains noise using a bilateral filter.  

6.1 The Laplacian filter  

In order to correct the blur and to preserve the impression of depth, clarity and fine details 

we have to sharp the image using a Laplacian filter. A Laplacian filter is a 3x3 pixel mask: 

 

0 1 0

1 4 1

0 1 0

L

 
    
  

.       (85) 

To restore the blurred image we subtract the Laplacian image from the original image 

(Toadere, 2010), (Toadere & Mastorakis, 2010). 

6.2 The amplitude filter  

The FPN is introduced by the sensor’s column amplifiers and consists of vertical stripes with 

different amplitudes and periods. Such type of noise in the Fourier plane produces a set of 

spikes periodic orientate. A procedure to remove this kind of noise is to make a 

transmittance mask in Fourier 2D logarithm plane. The first step is to block the principal 

components of the noise pattern. This block can be done by placing a band stop filter 

 ,H u v  in the location of each spike. If  ,H u v  is constructed to block only components 

associated with the noise pattern, it fallows that the Fourier transform of the pattern is given 

by the relation (Yzuka, 2008), (Toadere, 2010), (Toadere & Mastorakis, 2010): 
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      , , log ,P u v H u v G u v        (86) 

 ,G u v  is Fourier transform of the corrupted image  ,g x y . 
After a particular filter has been set, the corresponding pattern in the spatial domain is  
obtained making the inverse Fourier transform: 

     , exp ,p x y F P u v    .     (87) 

6.3 The bilateral filter  

In order to reduce the remains noise, after the amplitude filter, we use a bilateral filter. It 

extends the concept of Gaussian smoothing by weighting the filter coefficients with their 

corresponding relative pixel intensities. Pixels that are very different in intensity from the 

central pixel are weighted less even though they may be in close proximity to the central 

pixel. This is effectively a convolution with a non-linear Gaussian filter, with weights based 

on pixel intensities. This is applied as two Gaussian filters at a localized pixel, one in the 

spatial domain, named the domain filter, and one in the intensity domain, named the range 

filter (Toadere, 2010), (Toadere & Mastorakis, 2010). 

7. The result of simulations 

All the blocks presented in this chapter are taken in consideration in our simulations. 
Although the CMOS sensor has the Bayer color sampling and interpolation, we did not take 
in consideration these blocks because we work with black and white images. The figure 12 
presents the propagation of the laser pulse through the singlet, the step index fiber and the 
CMOS sensor. The figure 13 presents the propagation of a laser pulse through the 
achromatic doublet, the graded index fiber and the CMOS sensor. The figure 14 presents the 
propagation of a laser pulse through the apochromat, the self phase modulation fiber and 
the CMOS sensor 
 

 
          a                          b                           c                          d                           e                           f 

Fig. 12. The image at the output of the a) laser resonator, b) singlet, c)  step fiber, d) optical 
part of the CMOS, e) electrical part of the CMOS, f) filtered image 

 

 
          a                          b                           c                          d                           e                           f 

Fig. 13. The image at the output of the a) laser resonator, b) achromatic doublet, c) graded 
index fiber, d) optical part of the CMOS,  e) electrical part of the CMOS, f) filtered image 
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         a                           b                          c                           d                           e                           f 

Fig. 14. The image at the output of the a) laser resonator, b) apochromat, c) self phase 
modulation fiber, d) optical part of the CMOS, e) electrical part of the CMOS, f) filtered 
image 

8. Conclusions 

In this paper we simulate the propagation of a Gaussian laser pulse through different image 
capture systems in order to find the best configuration that preserve the shape of the pulse 
during its propagations. We simulate the image characteristics at the output of each block 
from our different systems configurations. We simulate the functionality of the singlet, the 
achromatic doublet and the apochromat in order to reduce the chromatic dispersion. We 
simulate the functionality of the step index fiber, the graded index fiber and the self phase 
modulation fiber in order to reduce the modal dispersion. We simulate some properties of 
the CMOS sensor. The sensor suffers of different noises. The purpose of this paper was to 
put to work together, in the same system, optical and electrical components and to recover 
the degraded signal. In these types of complex systems, a controlled simulation 
environment can provide the engineer with useful guidance that improves the 
understanding of design considerations for individual parts and algorithms. 
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