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1. Introduction

A digital halfband filter (HBF) is, in its basic form with real-valued coefficients, a lowpass filter
with one passband and one stopband region of unity or zero desired transfer characteristic,
respectively, where both specified bands have the same bandwidth. The zero-phase frequency
response of a nonrecursive (FIR) halfband filter with its symmetric impulse response exhibits
an odd symmetry about the quarter sample rate (Ω = π

2 ) and half magnitude ( 1
2 ) point

[Schüssler & Steffen (1998)], where Ω = 2π f / fn represents the normalised (radian) frequency
and fn = 1/T the sampling rate. The same symmetry holds true for the squared magnitude
frequency response of minimum-phase (MP) recursive (IIR) halfband filters [Lutovac et al.
(2001); Schüssler & Steffen (2001)]. As a result of this symmetry property, the implementation
of a real HBF requires only a low computational load since, roughly, every other filter
coefficient is identical to zero [Bellanger (1989); Mitra & Kaiser (1993); Schüssler & Steffen
(2001)].
Due to their high efficiency, digital halfband filters are widely used as versatile building blocks
in digital signal processing applications. They are, for instance, encountered in front ends
of digital receivers and back ends of digital transmitters (software defined radio, modems,
CATV-systems, etc. [Göckler & Groth (2004); Göckler & Grotz (1994); Göckler & Eyssele
(1992); Renfors & Kupianen (1998)]), in decimators and interpolators for sample rate alteration
by a factor of two [Ansari & Liu (1983); Bellanger (1989); Bellanger et al. (1974); Gazsi
(1986); Valenzuela & Constantinides (1983)], in efficient multirate implementations of digital
filters [Bellanger et al. (1974); Fliege (1993); Göckler & Groth (2004)] (cf. Fig. 1), where
the input/output sampling rate fn is decimated by I cascaded HBF stages by a factor

of 2I to fd = 2−I · fn (zd = z2I

n ), in tree-structured filter banks for FDM de- and
remultiplexing (e.g. in satellite communications) according to Fig. 2 and [Danesfahani et al.
(1994); Göckler & Felbecker (2001); Göckler & Groth (2004); Göckler & Eyssele (1992)], etc. A
frequency-shifted (complex) halfband filter (CHBF), generally known as Hilbert-Transformer
(HT, cf. Fig. 3), is frequently used to derive an analytical bandpass signal from its real-valued
counterpart [Kollar et al. (1990); Kumar et al. (1994); Lutovac et al. (2001); Meerkötter & Ochs
(1998); Schüssler & Steffen (1998; 2001); Schüssler & Weith (1987)]. Finally, real IIR HBF or
spectral factors of real FIR HBF, respectively, are used in perfectly reconstructing sub-band
coder (cf. Fig. 4) and transmultiplexer filter banks [Fliege (1993); Göckler & Groth (2004);
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2 Will-be-set-by-IN-TECH

Fig. 1. Multirate filtering applying dyadic HBF decimators, a basic filter, and (transposed)
HBF interpolators

Fig. 2. FDM demultiplexer filter bank; LP/HP: lowpass/highpass directional filter block
based on HBF

Fig. 3. Decimating Hilbert-Transformer (a) and its transpose for interpolation by two (b)

Fig. 4. Two-channel conjugated quadrature mirror filter sub-band coder (SBC) filter bank,
where the filters F(z) are spectral factors of a linear-phase FIR HBF

Mitra & Kaiser (1993); Vaidyanathan (1993)], which may apply the discrete wavelet transform
[Damjanovic & Milic (2005); Damjanovic et al. (2005); Fliege (1993); Strang & Nguyen (1996)].
Digital linear-phase (LP) FIR and MP IIR HBF have thoroughly been investigated during the
last three decades starting in 1974 [Bellanger et al. (1974)] and 1969 [Gold & Rader (1969)],
respectively. An excellent survey of this evolution is presented in [Schüssler & Steffen
(1998)]. However, the majority of these investigations deal with the properties and the
design of HBF by applying allpass pairs [Regalia et al. (1988); Vaidyananthan et al. (1987)],
also comprising IIR HBF with approximately linear-phase response [Schüssler & Steffen
(1998; 2001); Schüssler & Weith (1987)]. Hence, only few publications on efficient structures
e.g. [Bellanger (1989); Bellanger et al. (1974); Lutovac et al. (2001); Man & Kleine (1988);
Milic (2009); Valenzuela & Constantinides (1983)], present elementary signal flow graphs
(SFG) with minimum computational load. Moreover, only real-valued HBF and complex
Hilbert-Transformers (HT) with a centre frequency of fc = fn/4 (Ωc = π

2 ) have been
considered in the past.
The goal of Section 2 of this contribution is to show the existence of a family of real and
complex HBF, where the latter are derived from the former ones by frequency translation,
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with their passbands (stopbands) centred at one point of an equidistant frequency grid

fc = c · fn

8
, c = 0, 1, 2, 3, 4, 5, 6, 7. (1)

In addition, it is shown that the complex HBF defined by (1) require roughly the same amount
of computation as their original real HBF prototype ( fc = f0 = 0). Especially, we present the
most efficient elementary SFG for sample rate alteration, their main application. The SFG will
be given for LP FIR [Göckler (1996b)] as well as for MP IIR HBF for real- and complex-valued
input and/or output signals, respectively. Detailed comparison of expenditure is included.
In Section 3 we combine two of those linear-phase FIR HBF investigated in Section 2
with different centre frequencies out of the set given by (2), to construct efficient SFG
of directional filters (DF) for separation of one input signal into two output signals
or for combination of two input signals to one output signal, respectively. These DF
are generally referred to as two-channel frequency demultiplexer (FDMUX) or frequency
multiplexer (FMUX) filter bank [Göckler & Eyssele (1992); Vaidyanathan & Nguyen (1987);
Valenzuela & Constantinides (1983)].
In Section 4 of this chapter we consider the application of the two-channel DF as a
building block of a multiple channel tree-structured FDMUX filter bank according to Fig.
2, typically applied for on-board processing in satellite communications [Danesfahani et al.
(1994); Göckler & Felbecker (2001); Göckler & Groth (2004); Göckler & Eyssele (1992)]. In case
of a great number of channels and/or challenging bandwidth requirements, implementation
of the front-end DF is crucial, which must be operated at (extremely) high sampling rates. To
cope with this issue, in Section 4 we present an approach to parallelise at least the front end of
the FDMUX filter bank according to Fig. 2.

2. Single halfband filters1

In this Section 2 of this chapter we recall the properties of the well-known HBF with real
coefficients (real HBF with centre frequencies fc ∈ { f0, f4} = {0, fn/2} according to (1)), and
investigate those of the complex HBF with their passbands (stopbands) centred at

fc = c · fn

8
, c = 1, 2, 3, 5, 6, 7 (2)

that require roughly the same amount of computation as their real HBF prototype ( fc = f0 =
0). In particular, we derive the most efficient elementary SFG for sample rate alteration. These
will be given both for LP FIR [Göckler (1996b)] and MP IIR HBF for real- and complex-valued
input and/or output signals, respectively. The expenditure of all eight versions of HBF
according to (1) is determined and thoroughly compared with each other.
The organisation of Section 2 is as follows: First, we recall the properties of both classes of
the afore-mentioned real HBF, the linear-phase (LP) FIR and the minimum-phase (MP) IIR
approaches. The efficient multirate implementations presented are based on the polyphase
decomposition of the filter transfer functions [Bellanger (1989); Göckler & Groth (2004); Mitra
(1998); Vaidyanathan (1993)]. Next, we present the corresponding results on complex HBF
(CHBF), the classical HT, by shifting a real HBF to a centre frequency according to (2) with
c ∈ {2,6}. Finally, complex offset HBF (COHBF) are derived by applying frequency shifts
according to (2) with c ∈ {1,3,5,7}, and their properties are investigated. Illustrative design
examples and implementations thereof are given.

1 Underlying original publication: Göckler & Damjanovic (2006b)
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2.1 Real halfband filters (RHBF)

In this subsection we recall the essentials of LP FIR and MP IIR lowpass HBF with real-valued
impulse responses h(k) = hk ←→ H(z), where H(z) represents the associated z-transform
transfer function. From such a lowpass (prototype) HBF a corresponding real highpass HBF
is readily derived by using the modulation property of the z-transform [Oppenheim & Schafer
(1989)]

zk
c h(k) ←→ H(

z
zc
) (3)

by setting in accordance with (1)

zc = z4 = ej2π f4/ fn = ejπ = −1 (4)

resulting in a frequency shift by f4 = fn/2 (Ω4 = π).

2.1.1 Linear-Phase (LP) FIR filters

Throughout this Section 2 we describe a real LP FIR (lowpass) filter by its non-causal impulse
response with its centre of symmetry located at the time or sample index k = 0 according to

h−k = hk ∀k (5)

where the associated frequency response H(ejΩ) ∈ R is zero-phase [Mitra & Kaiser (1993);
Oppenheim & Schafer (1989)].

Specification and properties

A real zero-phase (LP) lowpass HBF, also called Nyquist(2)filter [Mitra & Kaiser (1993)],
is specified in the frequency domain as shown in Fig. 5, for instance, for an equiripple
or constrained least squares design, respectively, allowing for a don’t care transition band
between passband and stopband [Mintzer (1982); Mitra & Kaiser (1993); Schüssler & Steffen
(1998)]. Passband and stopband constraints δp = δs = δ are identical, and for the cut-off
frequencies we have the relationship:

Ωp + Ωs = π. (6)

As a result, the zero-phase desired function D(ejΩ) ∈ R as well as the frequency response
H(ejΩ) ∈ R are centrosymmetric about D(ejπ/2) = H(ejπ/2) = 1

2 . From this frequency
domain symmetry property immediately follows

H(ejΩ) + H(ej(Ω−π)) = 1, (7)

indicating that this type of halfband filter is strictly complementary [Schüssler & Steffen
(1998)].
According to (5), a real zero-phase FIR HBF has a symmetric impulse response of odd length
N = n + 1 (denoted as type I filter in [Mitra & Kaiser (1993)]), where n represents the even
filter order. In case of a minimal (canonic) monorate filter implementation, n is identical to
the minimum number nmc of delay elements required for realisation, where nmc is known as
the McMillan degree [Vaidyanathan (1993)]. Due to the odd symmetry of the HBF zero-phase
frequency response about the transition region (don’t care band according to Fig. 5), roughly
every other coefficient of the impulse response is zero [Mintzer (1982); Schüssler & Steffen
(1998)], resulting in the additional filter length constraint:

N = n + 1 = 4i − 1, i ∈ N. (8)
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Fig. 5. Specification of a zero-phase FIR HBF; Ωp + Ωs = π

Hence, the non-causal impulse response of a real zero-phase FIR HBF is characterized by
[Bellanger et al. (1974); Göckler & Groth (2004); Mintzer (1982); Schüssler & Steffen (1998)]:

hk = h−k =

⎧

⎨

⎩

1
2 k = 0
0 k = 2l l = 1, 2, . . . , (n − 2)/4

h(k) k = 2l − 1 l = 1, 2, . . . , (n + 2)/4
(9)

giving rise to efficient implementations. Note that the name Nyquist(2)filter is justified
by the zero coefficients of the impulse response (9). Moreover, if an HBF is used as an
anti-imaging filter of an interpolator for upsampling by two, the coefficients (9) are scaled
by the upsampling factor of two replacing the central coefficient with h0 = 1 [Fliege (1993);
Göckler & Groth (2004); Mitra (1998)]. As a result, independently of the application this
coefficient does never contribute to the computational burden of the filter.

Design outline

Assuming an ideal lowpass desired function consistent with the specification of Fig. 5
with a cut-off frequency of Ωt = (Ωp + Ωs)/2 = π/2 and zero transition bandwidth,
and minimizing the integral squared error, yields the coefficients [Göckler & Groth (2004);
Parks & Burrus (1987)] in compliance with (9):

hk =
Ωt

π

sin(kΩt)

kΩt
=

1

2

sin(k π
2 )

k π
2

, |k| = 1, 2, . . . ,
n
2

. (10)

This least squares design is optimal for multirate HBF in conjunction with spectrally
white input signals since, e.g in case of decimation, the overall residual power aliased by
downsampling onto the usable signal spectrum is minimum [Göckler & Groth (2004)]. To
master the Gibbs’ phenomenon connected with (10), a centrosymmetric smoothed desired
function can be introduced in the transition region [Parks & Burrus (1987)]. Requiring, for
instance, a transition band of width ∆Ω = Ωs − Ωp > 0 and using spline transition

functions for D(ejΩ), the above coefficients (10) are modified as follows [Göckler & Groth
(2004); Parks & Burrus (1987)]:

hk =
1

2

sin(k π
2 )

k π
2

[
sin(k ∆Ω

2β )

k ∆Ω
2β

]β

, |k| = 1, 2, . . . ,
n
2

, β ∈ R. (11)

Least squares design can also be subjected to constraints that confine the maximum deviation
from the desired function: The Constrained Least Squares (CLS) design [Evangelista (2001);
Göckler & Groth (2004)]. This approach has also efficiently been applied to the design of
high-order LP FIR filters with quantized coefficients [Evangelista (2002)].
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Subsequently, all comparisons are based on equiripple designs obtained by minimization of

the maximum deviation max
∣
∣
∣H(ejΩ)− D(ejΩ)

∣
∣
∣ ∀Ω on the region of support according to

[McClellan et al. (1973)]. To this end, we briefly recall the clever use of this minimax design
procedure in order to obtain the exact values of the predefined (centre and zero) coefficients of
(9), as proposed in [Vaidyanathan & Nguyen (1987)]: To design a two-band HBF of even order
n = N − 1 = 4m − 2, as specified in Fig. 5, start with designing i) a single-band zero-phase
FIR filter g(k) ←→ G(z) of odd order n/2 = 2m − 1 for a passband cut-off frequency
of 2Ωp which, as a type II filter [Mitra & Kaiser (1993)], has a centrosymmetric zero-phase

frequency response about G(ejπ) = 0, ii) upsample the impulse response g(k) by two by
inserting between any pair of coefficients an additional zero coefficient (without actually
changing the sample rate), which yields an interim filter impulse response h′(k) ←→ H′(z2)
of the desired odd length N with a centrosymmetric frequency response about H′(ejπ/2) = 0
[Göckler & Groth (2004); Vaidyanathan (1993)], iii) lift the passband (stopband) of H′(ejΩ) to
2 (0) by replacing the zero centre coefficient with 2h(0) = 1, and iv) scale the coefficients of
the final impulse response h(k) ←→ H(z) with 1

2 .

Efficient implementations

Monorate FIR filters are commonly realized by using one of the direct forms [Mitra (1998)]. In
our case of an LP HBF, minimum expenditure is obtained by exploiting coefficient symmetry,
as it is well known [Mitra & Kaiser (1993); Oppenheim & Schafer (1989)]. The count of
operations or hardware required, respectively, is included below in Table 1 (column MoR).
Note that the “multiplication” by the central coefficient h0 does not contribute to the overall
expenditure.
The minimal implementation of an LP HBF decimator (interpolator) for twofold
down(up)sampling is based on the decomposition of the HBF transfer function into two (type
1) polyphase components [Bellanger (1989); Göckler & Groth (2004); Vaidyanathan (1993)]:

H(z) = E0(z
2) + z−1E1(z

2). (12)

In the case of decimation, downsampling of the output signal (cf. upper branch of Fig. 1) is
shifted from filter output to system input by exploiting the noble identities [Göckler & Groth
(2004); Vaidyanathan (1993)], as shown in Fig. 6(a). As a result, all operations (including delay
and its control) can be performed at the reduced (decimated) output sample rate fd = fn/2:
Ei(z

2) := Ei(zd), i = 0, 1. In Fig. 6(b), the input demultiplexer of Fig. 6(a) is replaced with

a commutator where, for consistency, the shimming delay z−1/2
d := z−1 must be introduced

[Göckler & Groth (2004)].
As an example, in Fig. 7(a) an optimum, causal real LP FIR HBF decimator of n = 10th order
and for twofold downsampling is recalled [Bellanger et al. (1974)]. Here, the odd-numbered
coefficients of (9) are assigned to the zeroth polyphase component E0(zd) of Fig. 6(b), whereas
the only non-zero even-numbered coefficient h0 belongs to E1(zd).
For implementation we assume a digital signal processor as a hardware platform. Hence, the
overall computational load of its arithmetic unit is given by the total number of operations
NOp = NM + NA, comprising multiplication (M) and addition (A), times the operational
clock frequency fOp [Göckler & Groth (2004)]. All contributions to the expenditure are listed
in Table 1 as a function of the filter order n, where the McMillan degree includes the
shimming delays. Obviously, both coefficient symmetry (NM < n/2) and the minimum
memory property (nmc < n [Bellanger (1989); Fliege (1993); Göckler & Groth (2004)]) are

242 Applications of Digital Signal Processing
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Fig. 6. Polyphase representation of a decimator (a,b) and an interpolator (c) for sample rate

alteration by two; shimming delay: z−1/2
d := z−1

Fig. 7. Optimum SFG of LP FIR HBF decimator (a) and interpolator (b) of order n = 10

MoR: fOp = fn Dec: fOp = fn/2 Int: fOp = fn/2

nmc n n/2 + 1

NM (n + 2)/4
NA n/2 + 1 n/2

NOp 3n/4 + 3/2 3n/4 + 1/2

Table 1. Expenditure of real linear-phase FIR HBF; n: order, nmc: McMillan degree, NM(NA):
number of multipliers (adders), fOp: operational clock frequency

concurrently exploited. (Note that this concurrent exploitation of coefficient symmetry and
minimum memory property is not possible for Nyquist(M)filters with M > 2. As shown in
[Göckler & Groth (2004)], for Nyquist(M)filters with M > 2 only either coefficient symmetry
or the minimum memory property can be exploited.)
The application of the multirate transposition rules on the optimum decimator according to
Fig. 7(a), as detailed in Section 3 and [Göckler & Groth (2004)], yields the optimum LP FIR
HBF interpolator, as depicted in Fig. 6(c) and Fig. 7(b), respectively. Table 1 shows that the
interpolator obtained by transposition requires less memory than that published in [Bellanger
(1989); Bellanger et al. (1974)].
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2.1.2 Minimum-Phase (MP) IIR filters

In contrast to FIR HBF, we describe an MP IIR HBF always by its transfer function H(z) in the
z-domain.

Specification and properties

The magnitude response of an MP IIR lowpass HBF is specified in the frequency domain by
∣
∣
∣D(ejΩ)

∣
∣
∣, as shown in Fig. 8, again for a minimax or equiripple design. The constraints of

the designed magnitude response
∣
∣
∣H(ejΩ)

∣
∣
∣ are characterized by the passband and stopband

deviations, δp and δs, according to [Lutovac et al. (2001); Schüssler & Steffen (1998)] related by

(1 − δp)
2 + δ2

s = 1. (13)

The cut-off frequencies of the IIR HBF satisfy the symmetry condition (6), and the squared

magnitude response
∣
∣
∣H(ejΩ)

∣
∣
∣

2
is centrosymmetric about

∣
∣
∣D(ejπ/2)

∣
∣
∣

2
=

∣
∣
∣H(ejπ/2)

∣
∣
∣

2
= 1

2 .

We consider real MP IIR lowpass HBF of odd order n. The family of the MP
IIR HBF comprises Butterworth, Chebyshev, elliptic (Cauer-lowpass) and intermediate
designs [Vaidyananthan et al. (1987); Zhang & Yoshikawa (1999)]. The MP IIR HBF is
doubly-complementary [Mitra & Kaiser (1993); Regalia et al. (1988); Vaidyananthan et al.
(1987)], and satisfies the power-complementarity

∣
∣
∣H(ejΩ)

∣
∣
∣

2
+

∣
∣
∣H(ej(Ω−π))

∣
∣
∣

2
= 1 (14)

and the allpass-complementarity conditions
∣
∣
∣H(ejΩ) + H(ej(Ω−π))

∣
∣
∣ = 1. (15)

H(z) has a single pole at the origin of the z-plane, and (n − 1)/2 complex-conjugated
pole pairs on the imaginary axis within the unit circle, and all zeros on the unit circle
[Schüssler & Steffen (2001)]. Hence, the odd order MP IIR HBF is suitably realized by a
parallel connection of two allpass polyphase sections as expressed by

H(z) =
1

2

[

A0(z
2) + z−1 A1(z

2)
]

, (16)

where the allpass polyphase components can be derived by alternating assignment of adjacent
complex-conjugated pole pairs of the IIR HBF to the polyphase components. The polyphase
components Al(z

2), l = 0, 1 consist of cascade connections of second order allpass sections:

H(z) =
1

2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

n−1
2 −1

∏
i=0,2,...

ai + z−2

1 + aiz−2

︸ ︷︷ ︸

A0(z2)

+z−1

n−1
2 −1

∏
i=1,3,...

ai + z−2

1 + aiz−2

︸ ︷︷ ︸

A1(z2)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (17)

where the coefficients ai, i = 0, 1, ..., ( n−1
2 − 1), with ai < ai+1, denote the squared moduli

of the HBF complex-conjugated pole pairs in ascending order; the complete set of n poles is

given by
{

0, ±j
√

a0, ±j
√

a1, ..., ±j√a n−1
2 −1

}

[Mitra (1998)].
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Fig. 8. Magnitude specification of minimum-phase IIR lowpass HBF;
(1 − δp)

2 + δ2
s = 1, Ωp + Ωs = π

Design outline

In order to compare MP IIR and LP FIR HBF, we subsequently consider elliptic filter designs.
Since an elliptic (minimax) HBF transfer function satisfies the conditions (6) and (13), the
design result is uniquely determined by specifying the passband Ωp (stopband Ωs) cut-off
frequency and one of the three remaining parameters: the odd filter order n, allowed minimal
stopband attenuation As = −20log(δs) or allowed maximum passband attenuation Ap =
−20log(1 − δp).
There are two most common approaches to elliptic HBF design. The first group of
methods is performed in the analogue frequency domain and is based on classical analogue

filter design techniques: The desired magnitude response
∣
∣
∣D(ejΩ)

∣
∣
∣ of the elliptic HBF

transfer function H(z) to be designed is mapped onto an analogue frequency domain
by applying the bilinear transformation [Mitra (1998); Oppenheim & Schafer (1989)]. The
magnitude response of the analogue elliptic filter is approximated by appropriate iterative
procedures to satisfy the design requirements [Ansari (1985); Schüssler & Steffen (1998; 2001);
Valenzuela & Constantinides (1983)]. Finally, the analogue filter transfer function is remapped
to the z-domain by the bilinear transformation.
The other group of algorithms starts from an elliptic HBF transfer function, as given by (17).
The filter coefficients ai, i = 0, 1, ..., ( n−1

2 − 1) are obtained by iterative nonlinear optimization
techniques minimizing the peak stopband deviation. For a given transition bandwidth, the
maximum deviation is minimized e.g. by the Remez exchange algorithm or by Gauss-Newton
methods [Valenzuela & Constantinides (1983); Zhang & Yoshikawa (1999)].
For the particular class of elliptic HBF with minimal Q-factor, closed-form equations for
calculating the exact values of stopband and passband attenuation are known allowing for
straightforward designs, if the cut-off frequencies and the filter order are given [Lutovac et al.
(2001)].

Efficient implementation

In case of a monorate filter implementation, the McMillan degree nmc is equal to the filter
order n. Having the same hardware prerequisites as in the previous subsection on FIR HBF,
the computational load of hardware operations per output sample is given in Table 2 (column
MoR). Note that multiplication by a factor of 0.5 does not contribute to the overall expenditure.
In the general decimating structure, as shown in Fig. 9(a), decimation is performed by an
input commutator in conjunction with a shimming delay according to Fig. 6(b). By the
underlying exploitation of the noble identities [Göckler & Groth (2004); Vaidyanathan (1993)],
the cascaded second order allpass sections of the transfer function (17) are transformed to

first order allpass sections: ai+z−2

1+aiz−2 :=
ai+z−1

d

1+aiz
−1
d

, i = 0, 1, ..., n−1
2 − 1, as illustrated in Fig. 9(b).
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Fig. 9. Optimum minimum-phase IIR HBF decimator block structure (a) and SFG of the 1st
(2nd) order allpass sections (b)

MoR: fOp = fn Dec: fOp = fn/2 Int: fOp = fn/2

nmc n (n + 1)/2

NM (n − 1)/2
NA 3(n − 1)/2 + 1 3(n − 1)/2

NOp 2n − 1 2n − 2

Table 2. Expenditure of real minimum-phase IIR HBF; n: order, nmc: McMillan degree,
NM (NA): number of multipliers (adders), fOp: operational clock frequency

Hence, the polyphase components Al(z
2) := Al(zd), l = 0, 1 of Fig. 9(a) operate at the

reduced output sampling rate fd = fn/2, and the McMillan degree nmc is almost halved.
The optimum interpolating structure is readily derived from the decimator by applying the
multirate transposition rules (cf. Section 3 and [Göckler & Groth (2004)]). Computational
complexity is presented in Table 2, also indicating the respective operational rates fOp for the
NOp arithmetical operations.
Elliptic filters also allow for multiplierless implementations with small quantization error,
or implementations with a reduced number of shift-and-add operations in multipliers
[Lutovac & Milic (1997; 2000); Milic (2009)].

2.1.3 Comparison of real FIR and IIR HBF

The comparison of the Tables 1 and 2 shows that NFIR
Op < N I IR

Op for the same filter order n,

where all operations are performed at the operational rate fOp, as given in these Tables. Since,
however, the filter order nIIR < nFIR or even nIIR ≪ nFIR for any type of approximation, the
computational load of an MP IIR HBF is generally smaller than that of an LP FIR HBF, as it is
well known [Lutovac et al. (2001); Schüssler & Steffen (1998)].
The relative computational advantage of equiripple minimax designs of monorate IIR
halfband filters and polyphase decimators [Parks & Burrus (1987)], respectively, is depicted
in Fig. 10 where, in extension to [Lutovac et al. (2001)], the expenditure NOp is indicated as a
parameter along with the filter order n. Note that the IIR and FIR curves of the lowest order
filters differ by just one operation despite the LP property of the FIR HBF.
A specification of a design example is deduced from Fig. 10: nIIR = 5 and nFIR = 14,
respectively, with a passband cut-off frequency of fp = 0.1769 fn at the intersection point
of the associated expenditure curves: Fig. 11. As a result, the stopband attenuations of both
filters are the same (cf. Fig. 10). In addition, for both designs the typical pole-zero plots are
shown [Schüssler & Steffen (1998; 2001)]. From the point of view of expenditure, the MP IIR
HBF decimator (NOp = 9, nmc = 3) outperforms its LP FIR counterpart (NOp = 12, nmc = 8).
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Fig. 10. Expenditure curves of real linear-phase FIR and minimum-phase IIR HBF decimators
based on equiripple minimax designs [Parks & Burrus (1987)]

2.2 Complex Halfband Filters (CHBF)

A complex HBF, a classical Hilbert-Transformer [Lutovac et al. (2001); Mitra & Kaiser (1993);
Schüssler & Steffen (1998; 2001); Schüssler & Weith (1987)], is readily derived from a real HBF
according to Subsection 2.1 by applying the z-transform modulation theorem (3) by setting in
compliance with (2)

zc = z±2 = z∓6 = ej2π f±2/ fn = e±j π
2 = ±j, (18)

thus shifting the real prototype HBF to a passband centre frequency of f±2 = ± fn/4 (Ω±2 =
±π/2). For convenience, subsequently we restrict ourselves to the case fc = f2.

2.2.1 Linear-Phase (LP) FIR filters

In the FIR CHBF case the frequency shift operation (3) is immediately applied to the impulse
response h(k) in the time domain according to (3). As a result of the modulation of the
impulse response (9) of any real LP HBF on a carrier of frequency f2 according to (18), the
complex-valued CHBF impulse response

hk = h(k)ejk π
2 − n

2
≤ k ≤ n

2
(19)

is obtained. (Underlining indicates complex quantities in time domain.) By directly equating
(19) and relating the result to (9), we get:
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Fig. 11. RHBF design examples: Magnitude characteristics and pole-zero plots

hk =

⎧

⎪⎪⎨

⎪⎪⎩

1
2 k = 0

0 k = 2l l = 1, 2, . . . , (n − 2)/4

jkh(k) k = 2l − 1 l = 1, 2, . . . , (n + 2)/4

(20)

where, in contrast to (5), the imaginary part of the impulse response

h−k = −hk ∀k > 0 (21)

is skew-symmetric about zero, as it is expected from a Hilbert-Transformer. Note that the
centre coefficient h0 is still real, whilst all other coefficients are purely imaginary rather than
generally complex-valued.

Specification and properties

All properties of the real HBF are basically retained except of those which are subjected to the
frequency shift operation of (18). This applies to the filter specification depicted in Fig. 5 and,
hence, (6) modifies to

Ωp +
π

2
+ Ωs +

π

2
= Ωp+ + Ωs− = 2π, (22)
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Fig. 12. Optimum SFG of decimating LP FIR HT (a) and its interpolating multirate transpose
(b)

Dec: R �→ C Int: C �→ R Dec: C �→ C Int: C �→ C

nmc 3n/4 + 1/2 n + 2

NM (n + 2)/4 (n + 2)/2
NA n/2 n + 2 n
NOp 3n/4 + 1/2 3n/2 + 3 3n/2 + 1

Table 3. Expenditure of linear-phase FIR CHBF; n: order, nmc: McMillan degree, NM(NA):
number of multipliers (adders), operational clock frequency: fOp = fn/2

where Ωp+ represents the upper passband cut-off frequency and Ωs− the associated stopband
cut-off frequency. Obviously, strict complementarity (7) is retained as follows

H(ej(Ω∓ π
2 )) + H(ej(Ω± π

2 )) = 1, (23)

where (3) is applied in the frequency domain.

Efficient implementations

The optimum implementation of an n = 10th order LP FIR CHBF for twofold downsampling
is again based on the polyphase decomposition of (20) according to (12). Its SFG is depicted in
Fig. 12(a) that exploits the odd symmetry of the HT part of the system. Note that all imaginary
units are included deliberately. Hence, the optimal FIR CHBF interpolator according to Fig.
12(b), which is derived from the original decimator of Fig. 12(a) by applying the multirate
transposition rules [Göckler & Groth (2004)], performs the dual operation with respect to
the underlying decimator. Since, however, an LP FIR CHBF is strictly rather than power
complementary (cf. (23)), the inverse functionality of the decimator is only approximated
[Göckler & Groth (2004)].
In addition, Fig. 13 shows the optimum SFG of an LP FIR CHBF for decimation of a complex
signal by a factor of two. In essence, it represents a doubling of the SFG of Fig. 12(a). Again,
the dual interpolator is readily derived by transposition of multirate systems, as outlined in
Section 3.
The expenditure of the half- (R ⇋ C) and the full-complex (C �→ C) CHBF decimators and
their transposes is listed in Table 3. A comparison of Tables 1 and 3 shows that the overall
numbers of operations NCFIR

Op of the half-complex CHBF sample rate converters (cf. Fig. 12)

are almost the same as those of the real FIR HBF systems depicted in Fig. 7. Only the number
of delays is, for obvious reasons, higher in the case of CHBF.
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Fig. 13. Optimum SFG of decimating linear-phase FIR CHBF

2.2.2 Minimum-Phase (MP) IIR filters

In the IIR CHBF case the frequency shift operation (3) is again applied in the z-domain. Using
(18), this is achieved by substituting the complex z-domain variable in the respective transfer
functions H(z) and all corresponding SFG according to:

z :=
z
z2

= ze−j π
2 = −jz. (24)

Specification and properties

All properties of the real IIR HBF are basically retained except of those subjected to the
frequency shift operation of (18). This applies to the filter specification depicted in Fig. 8
and, hence, (6) is replaced with (22). Obviously, power (14) and allpass (15) complementarity
are retained as follows

|H(ej(Ω∓ π
2 ))|2 + |H(ej(Ω± π

2 ))|2 = 1, (25)
∣
∣
∣H(ej(Ω∓ π

2 )) + H(ej(Ω± π
2 ))

∣
∣
∣ = 1, (26)

where (3) is applied in the frequency domain.

Efficient implementations

Introducing (24) into (16) performs a frequency-shift of the transfer function H(z) by f2 =
fn/4 (Ω2 = π/2):

H(z) =
1

2

[

A0(−z2) + jz−1A1(−z2)
]

. (27)

The optimum general block structure of a decimating MP IIR HT, being up-scaled by 2, is
shown in Fig. 14(a) along with the SFG of the 1st (system theoretic 2nd) order allpass sections
(b), where the noble identities [Göckler & Groth (2004); Vaidyanathan (1993)] are exploited. By
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Fig. 14. Decimating allpass-based minimum-phase IIR HT: (a) optimum block structure (b)
SFG of the 1st (2nd) order allpass sections

Fig. 15. Block structure of decimating minimum-phase IIR CHBF

Dec: R �→ C Int: C �→ R Dec: C �→ C Int: C �→ C

nmc (n + 1)/2 n + 1

NM (n − 1)/2 n − 1

NA 3(n − 1)/2 3(n − 1) + 2 3(n − 1)
NOp 2n − 2 4n − 2 4n − 4

Table 4. Expenditure of minimum-phase IIR CHBF; n: order, nmc: McMillan degree,
NM(NA): number of multipliers (adders), operational clock frequency: fOp = fn/2

doubling this structure, as depicted in Fig. 15, the IIR CHBF for decimating a complex signal
by two is obtained. Multirate transposition [Göckler & Groth (2004)] can again be applied to
derive the corresponding dual structures for interpolation.
The expenditure of the half- (R ⇋ C) and the full-complex (C �→ C) CHBF decimators and
their transposes is listed in Table 4. A comparison of Tables 2 and 4 shows that, basically,
the half-complex IIR CHBF sample rate converters (cf. Fig. 14) require almost the same
expenditure as the real IIR HBF systems depicted in Fig. 9.

2.2.3 Comparison of FIR and IIR CHBF

As it is obvious from the similarity of the corresponding expenditure tables of the previous
subsections, the expenditure chart Fig. 10 can likewise be used for the comparison of CHBF
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decimators. Both for FIR and IIR CHBF, the number of operations has to be substituted:
NCHBF

Op := NHBF
Op − 1.

2.3 Complex Offset Halfband Filters (COHBF)

A complex offset HBF, a Hilbert-Transformer with a frequency offset of ∆ f = ± fn/8 relative
to an RHBF, is readily derived from a real HBF according to Subsection 2.1 by applying the zT
modulation theorem (3) with c ∈ {1, 3, 5, 7}, as introduced in (2):

zc = ej2π fc/ fn = ejc π
4 = cos(c

π

4
) + j sin(c

π

4
) = ± 1 ± j√

2
. (28)

As a result, the real prototype HBF is shifted to a passband centre frequency of fc ∈
{

± fn

8 ,± 3 fn

8

}

. In the sequel, we predominantly consider the case fc = f1 (Ω1 = π/4).

2.3.1 Linear-Phase (LP) FIR filters

Again, the frequency shift operation (3) is applied in the time domain. However, in order
to get the smallest number of full-complex COHBF coefficients, we introduce an additional
complex scaling factor of unity magnitude. As a result, the modulation of a carrier of
frequency fc according to (28) by the impulse response (9) of any real LP FIR HBF yields
the complex-valued COHBF impulse response:

hk = ejc π
4 h(k)zk

c = h(k)ej(k+1)c π
4 = h(k)jc(k+1)/2, (29)

where − n
2 ≤ k ≤ n

2 and c = 1, 3, 5, 7. By directly equating (39) for c = 1, and relating the result
to (9), we get:

hk =

⎧

⎪⎪⎨

⎪⎪⎩

1
2

1+j√
2

k = 0

0 k = 2l l = 1, 2, . . . , (n − 2)/4

j(k+1)/2h(k) k = 2l − 1 l = 1, 2, . . . , (n + 2)/4

(30)

where, in contrast to (21), the impulse response exhibits the symmetry property:

h−k = −jckhk ∀k > 0. (31)

Note that the centre coefficient h0 is the only truly complex-valued coefficient where,
fortunately, its real and imaginary parts are identical. All other coefficients are again either
purely imaginary or real-valued. Hence, the symmetry of the impulse response can still be
exploited, and the implementation of an LP FIR COHBF requires just one multiplication more
than that of a real or complex HBF [Göckler (1996b)].

Specification and properties

All properties of the real HBF are basically retained except of those which are subjected to the
frequency shift operation according to (28). This applies to the filter specification depicted in
Fig. 5 and, hence, (6) modifies to

Ωp + c
π

4
+ Ωs + c

π

4
= Ωp+ + Ωs− = π + c

π

2
. (32)
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Fig. 16. Optimum SFG of decimating LP FIR COHBF (a) and its transpose for interpolation
(b)

where Ωp+ represents the upper passband cut-off frequency and Ωs− the associated stopband
cut-off frequency. Obviously, strict complementarity (7) reads as follows

H(ej(Ω−c π
4 )) + H(ej(Ω−π(1+c/4))) = 1. (33)

Efficient implementations

The optimum implementation of an n = 10th order LP FIR COHBF for twofold
downsampling is again based on the polyphase decomposition of (40). Its SFG is depicted
in Fig. 16(a) that exploits the coefficient symmetry as given by (41).
The optimum FIR COHBF interpolator according to Fig. 16(b) is readily derived from the
original decimator of Fig. 16(a) by applying the multirate transposition rules, as discussed
in Section 3. As a result, the overall expenditure is again retained (c.f. invariant property of
transposition [Göckler & Groth (2004)]).
In addition, Fig. 17 shows the optimum SFG of an LP FIR COHBF for decimation of a complex
signal by a factor of two. It represents essentially a doubling of the SFG of Fig. 16(a). The dual
interpolator can be derived by transposition [Göckler & Groth (2004)].
The expenditure of the half- (R ⇋ C) and the full-complex (C �→ C) LP COHBF decimators
and their transposes is listed in Table 5 in terms of the filter order n. A comparison of Tables
3 and 5 shows that the implementation of any type of COHBF requires just two or four extra
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Fig. 17. Optimum SFG of linear-phase FIR COHBF decimating by two

Dec: R �→ C Int: C �→ R Dec: C �→ C Int: C �→ C

nmc n n + 2

NM (n + 6)/4 (n + 6)/2

NA n/2 + 1 n + 4 n + 2

NOp 3n/4 + 5/2 3n/2 + 7 3n/2 + 5

Table 5. Expenditure of linear-phase FIR COHBF; n: order, nmc: McMillan degree, NM(NA):
number of multipliers (adders), operational clock frequency: fOp = fn/2

operations over that of a classical HT (CHBF), respectively (cf. Figs. 12 and 13). This is due
to the fact that, as a result of the transition from CHBF to COHBF, only the centre coefficient

changes from trivially real (h0 = 1
2 ) to simple complex (h0 =

1+j
2
√

2
) calling for only one extra

multiplication. The number nmc of delays is, however, of the order of n, since a (nearly) full
delay line is needed both for the real and imaginary parts of the respective signals. Note that
the shimming delays are always included in the delay count. (The number of delays required
for a monorate COHBF corresponding to Fig. 17 is 2n.)

2.3.2 Minimum-Phase (MP) IIR filters

In the IIR COHBF case the frequency shift operation (3) is again applied in the z-domain. This
is achieved by substituting the complex z-domain variable in the respective transfer functions
H(z) and all corresponding SFG according to:

z :=
z
z1

= ze−j π
4 = z

1 − j√
2

. (34)
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Dec: R �→ C Int: C �→ R Dec: C �→ C Int: C �→ C

nmc n 2n
NM n 2n
NA 3(n − 1) 6(n − 1) + 2 6(n − 1)
NOp 4n − 3 8n − 4 8n − 6

Table 6. Expenditure of minimum-phase IIR COHBF; n: order, nmc: McMillan degree,
NM(NA): number of multipliers (adders), operational clock frequency: fOp = fn/2

Specification and properties

All properties of the real IIR HBF are basically retained except of those subjected to the
frequency shift operation of (28). This applies to the filter specification depicted in Fig. 8
and, hence, (6) is replaced with (32). Obviously, power (14) and allpass (15) complementarity
are retained as follows

|H(ej(Ω−c π
4 ))|2 + |H(ej(Ω−π(1+c/4)))|2 = 1, (35)

∣
∣
∣H(ej(Ω−c π

4 )) + H(ej(Ω−π(1+c/4)))
∣
∣
∣ = 1, (36)

where (3) is applied in the frequency domain.

Efficient implementations

Introducing (34) in (16), the transfer function is frequency-shifted by f1 = fn/8 (Ω = π/4):

H(z) =
1

2

[

A0(−jz2) +
1 + j√

2
z−1 A1(−jz2)

]

. (37)

The optimal structure of an n = 5th order MP IIR COHBF decimator for real input signals
is shown in Fig. 18(a) along with the elementary SFG of the allpass sections Fig. 18(b).
Doubling of the structure according to Fig. 19 allows for full-complex signal processing.
Multirate transposition [Göckler & Groth (2004)] is again applied to derive the corresponding
dual structure for interpolation.
The expenditure of the half- (R ⇋ C) and the full-complex (C �→ C) COHBF decimators
and their transposes is listed in Table 6. A comparison of Tables 2 and 6 shows that the
half-complex IIR COHBF sample rate converter (cf. Fig. 18(a)) requires almost twice, whereas
the full-complex IIR COHBF (cf. Fig. 19) requires even four times the expenditure of that of
the real IIR HBF system depicted in Fig. 9.

2.3.3 Comparison of FIR and IIR COHBF

LP FIR COHBF structures allow for implementations that utilize the coefficient symmetry
property. Hence, the required expenditure is just slightly higher than that needed for CHBF.
On the other hand, the expenditure of MP IIR COHBF is almost twice as high as that of
the corresponding CHBF, since it is not possible to exploit memory and coefficient sharing.
Almost the whole structure has to be doubled for a full-complex decimator (cf. Fig. 19).

2.4 Conclusion: Family of single real and complex halfband filters

We have recalled basic properties and design outlines of linear-phase FIR and minimum-phase
IIR halfband filters, predominantly for the purpose of sample rate alteration by a factor of
two, which have a passband centre frequency out of the specific set defined by (1). Our
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Fig. 18. Decimating allpass-based minimum-phase IIR COHBF, n = 5: (a) optimum SFG (b)
the 1st (2nd) order allpass section, i = 0, 1

Fig. 19. Block structure of decimating (a) and interpolating (b) minimum-phase IIR COHBF

main emphasis has been put on the presentation of optimum implementations that call for
minimum computational burden.
It has been confirmed that, for the even-numbered centre frequencies c ∈ {0, 2, 4, 6}, MP
IIR HBF outperform their LP FIR counterparts the more the tighter the filter specifications.
However, for phase sensitive applications (e.g. software radio employing quadrature
amplitude modulation), the LP property of FIR HBF may justify the higher amount of
computation to some extent.
In the case of the odd-numbered HBF centre frequencies of (2), c ∈ {1, 3, 5, 7}, there exist
specification domains, where the computational loads of complex FIR HBF with frequency
offset range below those of their IIR counterparts. This is confirmed by the two bottom rows
of Table 7, where this table lists the expenditure of a twofold decimator based on the design
examples given in Fig. 11 for all centre frequencies and all applications investigated in this
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LP FIR MP IIR
NOp nmc Fig. NOp nmc Fig.

HBF Decimator 12 8 7 9 3 9
CHBF: R �→ C 11 11 12(a) 8 3 14

CHBF: C �→ C 24 16 13 18 6 15
COHBF: R �→ C 13 14 16(a) 17 5 18

COHBF: C �→ C 28 16 17 36 10 19

Table 7. Expenditures of real and complex HBF decimators based on the design examples of
Fig. 11; NOp: number of operations, nmc: McMillan degree; operational clock frequency:
fOp = fn/2

contribution. This sectoral computational advantage of LP FIR COHBF is, despite nIIR < nFIR,
due to the fact that these FIR filters still allow for memory sharing in conjunction with the
exploitation of coefficient symmetry [Göckler (1996b)]. However, the amount of storage nmc

required for IIR HBF is always below that of their FIR counterparts.

3. Halfband filter pairs2

In this Section 3, we address a particular class of efficient directional filters (DF). These DF
are composed of two real or complex HBF, respectively, of different centre frequencies out
of the set given by (1). To this end, we conceptually introduce and investigate two-channel
frequency demultiplexer filter banks (FDMUX) that extract from an incoming complex-valued
frequency division multiplex (FDM) signal, being composed of up to four uniformly allocated
independent user signals of identical bandwidth (cf. Fig. 20), two of its constituents by
concurrently reducing the sample rate by two Göckler & Groth (2004). Moreover, the DF shall
allow to select any pair of user signals out of the four constituents of the incoming FDM signal,
where the individual centre frequencies are to be selectable with minimum switching effort.
At first glance, there are two optional approaches: The selectable combination of two filter
functions out of a pool of i) two RBF according to Subsection 2.1 and two CHBF (HT), as
described in Subsection 2.2, where the centre frequencies of this filter quadruple are given by
(1) with c ∈ {0, 2, 4, 6}, or ii) four COHBF, as described in Subsection 2.3, where the centre
frequencies of this filter quadruple are given by (1) with c ∈ {1, 3, 5, 7}. Since centre frequency
switching is more crucial in case one (switching between real and/or complex filters), we
subsequently restrict our investigations to case two, where the FDM input spectrum must be
allocated as shown in Fig. 20.
These DF with easily selectable centre frequencies are frequently used in receiver
front-ends to meet routing requirements [Göckler (1996c)], in tree-structured FDMUX
filter banks [Göckler & Felbecker (2001); Göckler & Groth (2004); Göckler & Eyssele (1992)],
and, in modified form, for frequency re-allocation to avoid hard-wired frequency-shifting
[Abdulazim & Göckler (2007); Eghbali et al. (2009)]. Efficient implementation is crucial, if
these DF are operated at high sampling rates at system input or output port. To cope with this
high rate challenge, we introduce a systematic approach to system parallelisation according
to [Groth (2003)] in Section 4 .
In continuation of the investigations reported in Section 2, we combine two linear-phase
(LP) FIR complex offset halfband filters (COHBF) with different centre frequencies, being
characterized by (1) with c ∈ {1, 3, 5, 7}, to construct efficient directional filters for one input

2 Underlying original publication: Göckler & Alfsmann (2010)
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Fig. 20. FDM input spectrum for selection and separation by two-channel directional filter
(DF)

and two output signals Göckler (1996a). For convenience, we map the original odd indices
c ∈ {1, 3, 5, 7} of the COHBF centre frequencies to natural numbers as defined by

fo = (2o + 1) · fn

8
, o ∈ {0, 1, 2, 3} (38)

for subsequent use throughout Section 3.
Section 3 is organized as follows: In Subsection 3.1, we detail the statement of the problem,
and recall the major properties of COHBF needed for our DF investigations. In the
main Subsection 3.2, we present and compare two different approaches to implement the
outlined LP DF for signal separation with selectable centre frequencies: i) A four-channel
uniform complex-modulated FDMUX filter bank undercritically decimating by two, where
the respective undesired two output signals are discarded, and ii) a synergetic connection of
two COHBF that share common multipliers and exploit coefficient symmetry for minimum
computation. In Subsection 3.3, we apply the transposition rules of [Göckler & Groth (2004)]
to derive the dual DF for signal combination (FDM multiplexing). Finally, we draw some
further conclusions in Subsection 3.4.

3.1 Statement of the DF problem

Given a uniform complex-valued FDM signal composed of up to four independent user
signals so(kTn) ←→ So(e

jΩ) centred at fo, o = {0, 1, 2, 3}, according to (38), as depicted
in Fig. 20, the DF shall extract any freely selectable two out of the four user signals of
the FDM input spectrum, and provide them at the two DF output ports separately and

decimated by two: so(2kTn) := so(mTd) ←→ So(e
jΩ(d)

); Td = 1/ fd = 2Tn. Recall
that complex-valued time-domain signals and spectrally transformed versions thereof are
indicated by underlining.
Efficient signal separation and decimation is conceptually achieved by combining two
COHBF with their differing passbands centred according to (38), where o ∈ {0, 1, 2, 3},
along with twofold polyphase decomposition of the respective filter impulse responses
[Göckler & Damjanovic (2006a); Göckler & Groth (2004)]. All COHBF are frequency-shifted
versions of a real zero-phase (ZP) lowpass HBF prototype with symmetric impulse response
h(k) = hk = h−k ←→ H0(ejΩ) ∈ R according to Subsection 2.1.1, as depicted in Fig. 21(a)
as ZP HBF frequency response [Milic (2009); Mitra & Kaiser (1993)]. A frequency domain
representation of a possible DF setting (choice of COHBF centre frequencies o ∈ {0, 2}) is
shown in Fig. 21(b), and Figs.21(c,d) present the output spectra at port I (o = 0) and port II
(o = 2), respectively, related to the reduced sampling rate fd = fn/2.
A COHBF is derived from a real HBF (9) by applying the frequency shift operation in the time

domain by modulating a complex carrier zk
o = ej2πk fo/ fn = ejk(2o+1) π

4 of a frequency prescribed
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Fig. 21. DF operations: (a) Real HBF prototype centrosymmetric about H0(ejπ/2) = 1
2 , (b)

Two selected DF filter functions, (c,d) Spectra of decimated DF output signals

by (38), o ∈ {0, 1, 2, 3}, with the RHBF impulse response h(k) defined by (9). According to (39),
highest efficiency is obtained by additionally introducing a suitable complex scaling factor of
unity magnitude:

hk,o,a = eja π
4 h(k)zk

o = h(k)ej π
4 [k(2o+1)+a] = h(k)jk(o+ 1

2 )+
a
2 , (39)

where − N−1
2 ≤ k ≤ N−1

2 and o ∈ {0, 1, 2, 3}. By directly equating (39), and relating the result
to (9) with a suitable choice of the constant a = 2o + 1 compliant with (29), we get :

hk,o =

⎧

⎪⎨

⎪⎩

1
2 jo+

1
2 k = 0

0 k = 2l l = 1, . . . , (N − 3)/4

j(k+1)(o+1
2 )hk k = 2l − 1 l = 1, . . . , (N + 1)/4

(40)

with the symmetry property:

h−k,o = −j(2o+1)khk,o ∀k > 0, o ∈ {0, 1, 2, 3}. (41)

The respective COHBF centre coefficient

h0,o =
1

2
{cos[(2o + 1)

π

4
] + j sin[(2o + 1)

π

4
]}, o ∈ {0, 1, 2, 3}, (42)
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is the only truly complex-valued coefficient, where its real and imaginary parts always
possess identical moduli. All other coefficients are either purely imaginary or real-valued.
Obviously, all frequency domain symmetry properties, including also those related to strict
complementarity, are retained in the respective frequency-shifted versions, cf. Subsection 2.3.1
and [Göckler & Damjanovic (2006a)].

3.2 Linear-phase directional separation filter

We start with the presentation of the FDMUX approach [Göckler & Groth (2004);
Göckler & Eyssele (1992)] followed by the investigation of a synergetic combination of two
COHBF [Göckler (1996a;c); Göckler & Damjanovic (2006a)].

3.2.1 FDMUX approach

Using time-domain convolution, the I = 4 potentially required complex output signals,
decimated by 2 and related to the channel indices o ∈ {0, 1, 2, 3}, are obtained as follows:

y
o
(mTd) := y

o
(m) =

N−1

∑
κ=0

x(2m − κ)ho(κ − N−1
2 ), (43)

where the complex impulse responses of channels o are introduced in causal (realizable) form.
Replacing the complex impulse responses with the respective modulation forms (39), and
setting the constant to a = (2o + 1)(N − 1)/2, we get:

y
o
(m) =

N−1

∑
κ=0

x(2m − κ)h(κ − N−1
2 )ej π

4 κ(2o+1), (44)

where h[k − (N − 1)/2] represents the real HBF prototype (9) in causal form. Next, in order
to introduce an I-component polyphase decomposition for efficient decimation, we split the
convolution index κ into two indices:

κ = rI + p = 4r + p, (45)

where p = 0, 1, 2, I − 1 = 3 and r = 0, 1, . . . , ⌊(N − 1)/I⌋ = ⌊(N − 1)/4⌋. As a result, it
follows from (44):

y
o
(m) =

3

∑
p=0

⌊ N−1
4 ⌋

∑
r=0

x(2m − 4r − p)h(4r + p − N−1
2 ) · ej π

4 (4r+p)(2o+1). (46)

Rearranging the exponent of the exponential term according to π
4 (4r + p)(2o + 1) = 2πro +

πr + p π
4 + 2π

4 op, (46) can compactly be rewritten as [Oppenheim & Schafer (1989)]:

y
o
(m) =

3

∑
p=0

vp(m) · ej 2π
4 op = 4 · IDFT4{vp(m)}, (47)

where the quantity

vp(m) =
⌊ N−1

4 ⌋
∑
r=0

x(2m − 4r − p)h(4r + p − N−1
2 )(−1)rejp π

4 (48)
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Fig. 22. SFG of directional filter with allowing for 2-out-of-4 channel selection: FDMUX
approach; N = 11

encompasses all complex signal processing to be performed by the modified causal HBF
prototype.
An illustrative example with an underlying HBF prototype filter of length N = n + 1 = 11
is shown in Fig. 22 [Göckler & Groth (2004)]. Due to polyphase decomposition (45) and (46),
sample rate reduction can be performed in front of any signal processing (shimming delays:
z−1). Always two polyphase components of the real and the imaginary parts of the complex
input signal share a delay chain in the direct form implementation of the modified causal
HBF, where all coefficients are either real- or imaginary-valued except for the centre coefficient

h0 = 1
2 ej π

4 . As a result, only N + 3 real multiplications must be performed to calculate a set
of complex output samples at the two (i.e. all) DF output ports. Furthermore, for the FDMUX
DF implementation a total of (3N − 5)/2 delays are needed (not counting shimming delays).
The calculation of vp(m), p = 0, 1, 2, 3, is readily understood from the signal flow graph (SFG)
Fig. 22, where for any filter length N always one of these quantities vanishes as a result of
the zero coefficients of (9). Hence, the I = 4 point IDFT, depicted in Fig. 23(a,b) in detailed
form, requires only 4 real additions to provide a complex output sample at any of the output
ports o ∈ {0, 1, 2, 3}; Fig. 23(b). Channel selection, for instance as shown in Fig. 21, is
simply achieved by selection of the respective two output ports of the SFG of Figs.22 and
23(a), respectively. Moreover, the remaining two unused output ports may be deactivated by
disconnection from power supply.
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Fig. 23. I = 4 point IDFT of FDMUX approach; N = 11: (a) general (b) pruned for channels
o = 0, 1

k -5 -3 -1 0 1 3 5
hk,o
hk

−1 − j
(−1)o 1

1+j√
2

jo
j

(−1)o −1 − j
(−1)o

type R I R C I R I

Table 8. Properties of COHBF coefficients in dependence of channel index o ∈ {0, 1, 2, 3}; I: C

with Re{•} = 0

3.2.2 COHBF approach

For this novel approach, we combine two decimating COHBF of different centre frequencies
fo, o ∈ {0, 1, 2, 3}, according to (38) in a synergetic manner to construct a DF for signal
separation that requires minimum computation. To this end, we first study the commonalities
of the impulse responses (40) of the four transfer functions Ho(z), o ∈ {0, 1, 2, 3} (underlying
constant in (39) subsequently: a = 2o + 1). These impulse responses are presented in Table 8
as a function of the channel number o ∈ {0, 1, 2, 3} for the non-zero coefficients of (40), related
to the respective real RHBF coefficients.
Except for the centre coefficient exhibiting identical real and imaginary parts, one half of the
coefficients is real (R) and independent of the desired centre frequency represented by the channel
indices o ∈ {0, 1, 2, 3}. Hence, these coefficients are common to all four transfer functions.
The other half of the coefficients is purely imaginary (I: i.e., their real parts are zero) and
dependent of the selected centre frequency. However, this dependency on the channel number
is identical for all these coefficients and just requires a simple sign operation. Finally, the
repetitive pattern of the coefficients, as a result of coefficient symmetry (41), is reflected in
Table 8.
A COHBF implementation of a demultiplexing DF aiming at minimum computational load must
exploit the inherent coefficient symmetry (41), cf. Table 8. To this end, we consider the
COHBF as depicted in Fig. 17 of Subsection 2.3.1, applying input commutators for sample
rate reduction. In contrast to the FDMUX approach of Fig. 22, the SFG of Fig. 17 is based
on the transposed FIR direct form Bellanger (1989); Mitra (1998), where the incoming signal
samples are concurrently multiplied by the complete set of all coefficients, and the delay
chains are directly connected to the output ports. When combining two of these COHBF

262 Applications of Digital Signal Processing

www.intechopen.com



Most Efficient Digital Filter Structures: The Potential of Halfband Filters in Digital

Signal Processing 27

SFG, the coefficient multipliers can obviously be shared with all transfer functions Ho(z),
o ∈ {0, 1, 2, 3}; however, the respective outbound delay chains must essentially be duplicated.
Merging all of the above considerations, a signal separating DF requiring minimum
computation that, in addition, allows for simple channel selection or switching, respectively,
is readily developed as follows:

1. Multiply the incoming decimated polyphase signal samples concurrently and
consecutively by the complete set of all real coefficients (9) to allow for the exploitation of
coefficient symmetry (41) in compliance with Table 8.

2. Form a real and imaginary (R/I) sub-sequence of DF output signals being independent of the
selected channel transfer functions, i.e. oI, oII ∈ {0, 1, 2, 3}, by using all R-set coefficients of
Table 8.

3. Form an R and I sub-sequence of DF output signals being likewise independent of the
selected channels oI, oII by using all I-set coefficients of Table 8 multiplied by (−1)o to
eliminate channel dependency.

4. Form R/I sub-sequences of DF output signals being dependent of the selected channels
oI, oII that are derived from centre coefficients h0,o.

5. Combine all of the above R/I sub-sequences considering the sign rules of Table 8 to select
the desired DF transfer functions Hoi

(z), oi ∈ {0, 1, 2, 3}, i ∈ {I, II}.

Based on the outlined DF implementation strategy, an illustrative example is presented in Fig.
24 with an underlying RHBF of length N = 11. The front end for polyphase decomposition
and sample rate reduction by 2 is identical to that of the FDMUX approach of Fig. 22. Contrary
to the former approach, the delay chains for the odd-numbered coefficients are outbound and
duplicated (rather than interlaced) to allow for simple channel selection. As a result, channel
selection is performed by combining the respective sub-sequences that have passed the R-set
coefficients (cf. Table 8) with those having passed the corresponding I-set coefficients, where
the latter sub-sequences are pre-multiplied by bi = (−1)oi ; oi ∈ {0, 1, 2, 3}, i ∈ {I, II}.
Multipliers and delays for the centre coefficient h0,oi

signal processing are implemented
similarly to Fig. 22 without need for duplication of delays. However, the post-delay inner
lattice must be realized for each transfer function individually; its channel dependency follows
from Table 8 and (40):

h0,oi
=

h0√
2
(1 + j)joi =

h0√
2

[

(−1)⌈oi/2⌉ + j(−1)⌊oi/2⌋
]

, (49)

where oi ∈ {0, 1, 2, 3}, i ∈ {I, II} and h0 = 1/2 according to (9). Rearranging (49) yields with
obvious abbreviations:

h0,oi
=

h0√
2
[(−1)oi + j] (−1)⌊oi/2⌋ =

h0√
2
[bi + j] di. (50)

It is easily recognized that the inner lattices of Fig. 24 implement the operations within
the brackets of (50) with their results displayed at the respective inner nodes A, B, C, D. In
compliance with (50), these inner node sequences must be multiplied by the respective signs

di = (−1)⌊oi/2⌋; oi ∈ {0, 1, 2, 3}, i ∈ {I, II}, prior to their combination with the above R/I
sub-sequences.
To calculate a set of complex output samples at the two DF output ports, obviously the
minimum number of (N + 5)/2 real multiplications must be carried out. Furthermore, for
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Fig. 24. COHBF approach to demultiplexing DF implementation with selectable transfer

functions; N = 11, bi = (−1)oi , di = (−1)⌊oi/2⌋; oi ∈ {0, 1, 2, 3}, i ∈ {I, II}

Fig. 25. DF separator: Sign-setting for selection of desired channel transfer functions

the COHBF approach to DF implementation a total of (5N − 11)/2 delays are needed (not
counting shimming delays, z−1, and the two superfluous delays at the input nodes of the
outer delay chains, indicated in grey).
Finally, we want to show and emphasise the simplicity of the channel selection procedure.
There is a total of 8 summation points, the inner 4 lattice output nodes A, B, C, and D, and the
4 system output port nodes, where the signs of some input sequences of the output port nodes
must be set compliant to the desired channel transfer functions: oi ∈ {0, 1, 2, 3}, i ∈ {I, II}. The
sign selection is most easily performed as shown in Fig. 25.
A concise survey of the required expenditure of the two approaches to the implementation
of a demultiplexing DF is given in Table 9, not counting sign manipulations for channel
selection. Obviously, the COHBF approach requires the minimum number of multiplications
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APPROACH multiplications/sample delays

FDMUX N + 3 (3N − 5)/2

FDMUX ex.: N = 11 14 14

COHBF (N + 5)/2 (5N − 11)/2
COHBF ex.: N = 11 8 22

Table 9. Comparison of expenditure of FDMUX and COHBF DF approaches

at the expense of a higher count of delay elements. Finally, it should be noticed that the DF
group delay is independent of its (FDMUX or COHBF) implementation.

3.3 Linear-phase directional combination filter

Using transposition techniques, we subsequently derive DF being complementary (dual) to
those presented in Subsection 3.2: They combine two complex-valued signals of identical
sampling rate fd that are likewise oversampled by at least 2 to an FDM signal, where different
oversampling factors allow for different bandwidths.
An example can be deduced from Fig. 21 by considering the signals so(mTd) ←→
So(e

jΩ(d)
), o = 0, 2, of Figs.21(c,d) as input signals. The multiplexing DF increases the

sampling rates of both signals to fn = 2 fd, and provides the filtering operations shown in Fig.
21(b), ho(kTn) ←→ Ho(e

jΩ), c = 0, 2, to form the FDM output spectrum being exclusively
composed of So(e

jΩ), o = 0, 2.

3.3.1 Transposition of complex multirate systems

The goal of transposition is to derive a system that is complementary or dual to the original
one: The various filter transfer functions must be retained, demultiplexing and decimating
operations must be replaced with the dual operations of multiplexing and interpolation,
respectively [Göckler & Groth (2004)].
The types of systems we want to transpose, Figs.22 and 24, represent complex-valued 4 ×
2 multiple-input multiple-output (MIMO) multirate systems. Obviously, these systems are
composed of complex monorate sub-systems (complex filtering of polyphase components) and
real multirate sub-systems (down- and upsampler), cf. [Göckler & Groth (2004)].
While the transposition of real MIMO monorate systems is well-known and unique
[Göckler & Groth (2004); Mitra (1998)], in the context of complex MIMO monorate systems the
Invariant (ITr) and the Hermitian (HTr) transposition must be distinguished, where the former
retains the original transfer functions, HT

o (z) = Ho(z) ∀o, as desired in our application. As
detailed in [Göckler & Groth (2004)], the ITr is performed by applying the transposition rules
known for real MIMO monorate systems provided that all imaginary units “j”, both of the
complex input and output signals and of the complex coefficients, are conceptually considered
and treated as multipliers within the SFG3 (denoted as truly complex implementation), as to
be seen from Figs.22 and 24.
The transposition of an M-downsampler, representing a real single-input single-output (SISO)
multirate system, uniquely leads to the corresponding M-upsampler, the complementary
(dual) multirate system, and vice versa [Göckler & Groth (2004)].

3 The imaginary units of the input signals and the coefficients must not be eliminated by simple
multiplication and consideration of the correct signs in subsequent adders; this approach would
transform the original complex MIMO SFG to a corresponding real SFG, where the direct transposition
of the latter would perform the HTr [Göckler & Groth (2004)].
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Connecting all of the above considerations, the ITr transposition of a complex-valued MIMO
multirate system is performed as follows [Göckler & Groth (2004)]:

• The system SFG to be transposed must be given as truly complex implementation.

• Reverse all arrows of the given SFG, both the arrows representing signal flows and
those symbolic arrows of down- and upsamplers or rotating switches (commutators),
respectively.

As a result of transposition [Göckler & Groth (2004)]

• all input (output) nodes become output (input) nodes, a 4× 2 MIMO system is transformed
to a 2 × 4 MIMO system,

• the number of delays and multipliers is retained,

• the overall number of branching and summation nodes is retained, and

• the overall number of down- and upsamplers is retained.

Obviously, the original optimality (minimality) is transposition invariant.

3.3.2 Transposition of the SFG of the COHBF approach to DF

As an example, we transpose the SFG of the COHBF approach to the implementation of
a separating DF, as depicted in Fig. 24. The application of the transposition rules of
the preceding Subsection 3.3.1 to the SFG of Fig. 24 results in the COHBF approach to a
multiplexing DF shown in Fig. 26. The invariant properties are easily confirmed by comparing
the original and the transposed SFG. Hence, the numbers of delays and multipliers required
by both DF systems being mutually dual are identical. As expected, the numbers of adders
required are different, since the overall number of branching and summation nodes is retained
only.
Moreover, it should be noted that also the simplicity of the channel selection procedure is
retained. To this end, we have shifted the channel-dependent sign-setting operators di =

(−1)⌊oi/2⌋, oi ∈ {0, 1, 2, 3}, i ∈ {I, II}, to more suitable positions in front of the summation
nodes G and H. Again, there is a total of 8 summation points, where the signs of the respective
input sequences must be adjusted: The 4 inner lattice output nodes A, B, C, and D, the 2 input
summation nodes E and F immediately fed by the imaginary parts of the input sequences,
and the 2 inner post-lattice summing nodes G and H. At all these summation nodes, the signs
of some or all input sequences must be set in compliance with the desired channel transfer
functions: Ho(z), oi ∈ {0, 1, 2, 3}, i ∈ {I, II}, cf. Fig. 26. The sign selection is again most easily
performed, as shown in Fig. 27.

3.4 Conclusion: Halfband filter pair combined to directional filter

In this Section 3, we have derived and analyzed two different approaches to linear-phase
directional filters that separate from a complex-valued FDM input signal two complex user
signals, where the FDM signal may be composed of up to four independent user signals: The
FDMUX approach (Subsection 3.2.1) needs the least number of delays, whereas the synergetic
COHBF approach (Subsection 3.2.2) requires minimum computation. Signal extraction is
always combined with decimation by two.
While the four frequency slots of the user signals to be processed (corresponding to the four
potential DF transfer functions Ho(z), oi ∈ {0, 1, 2, 3}, i ∈ {I, II}, centred according to (38);
cf. Fig. 21 ) are equally wide and uniformly allocated, as indicated in Fig. 28, the individual
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Fig. 26. COHBF approach to multiplexing DF implementation with selectable transfer
functions derived by transposition from corresponding separating DF; N = 11,

bi = (−1)oi , di = (−1)⌊oi/2⌋; oi ∈ {0, 1, 2, 3}, i ∈ {I, II}

Fig. 27. DF combiner: Sign-setting for selection of desired channel transfer functions

Fig. 28. Generally permissible FDM input spectrum to separation DF
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user signals may possess different bandwidths. However, each user signal must completely
be contained in one of the four frequency slots, as exemplified in Fig. 28.
Furthermore, by applying the transposition rules of [Göckler & Groth (2004)], the
corresponding complementary (dual) combining directional filters have been derived, where
the multiplication rates and the delay counts of the original structures are always retained.
Obviously, transposing a system allows for the derivation of an optimum dual system by
applying the simple transposition rules, provided that the original system is optimal. Thus,
a tedious re-derivation and optimization of the complementary system is circumvented.
Nevertheless, it should be noted that by transposition always just one particular structure
is obtained, rather than a variety of structures [Göckler & Groth (2004)].
Finally, to give an idea of the required filter lengths required, we recall the design result
reported in [Göckler & Eyssele (1992)] where, as depicted in the above Fig. 21(a,b), the
passband, stopband and transition bands were assumed equally wide: With an HBF prototype
filter length of N = 11 and 10 bit coefficients, a stopband attenuation of > 50dB was achieved.

4. Parallelisation of tree-structured filter banks composed of directional filters 4

In the subsequent Section 4 of this chapter we consider the combination of multiple
two-channel DF investigated in Section 3 to construct tree-structured filter banks. To this
end, we cascade separating DF in a hierarchical manner to demultiplex (split) a frequency
division multiplex (FDM) signal into its constituting user signals: this type of filter bank (FB)
is denoted by FDMUX FB; Fig. 2. Its transposed counterpart (cf. Subsection 3.3.1), the FMUX
FB, is a cascade connection of combining DF considered in Subsection 3.3 to form an FDM
signal of independent user signals. Finally, we call an FDMUX FB followed by an FMUX FB
an FDFMUX FB, which may contain a switching unit for channel routing between the two FB.
Subsequently, we consider an application of FDFMUX FB for on-board processing in satellite
communications. If the number of channels and/or the bandwidth requirements are high,
efficient implementation of the high-end DF is crucial, if they are operated at (extremely) high
sampling rates. To cope with this issue, we propose to parallelise the at least the front-end
(back-end) of the FDMUX (FMUX) filter bank. For this outlined application, we give the
following introduction and motivation.
Digital signal processing on-board communication satellites (OBP) is an active field of
research where, in conjunction with frequency division multiplex (FDMA) systems, presently
two trends and challenges are observed, respectively: i) The need of an ever-increasing
number of user channels makes it necessary to digitally process, i.e. to demultiplex,
cross-connect and remultiplex, ultra-wideband FDM signals requiring high-end sampling
rates that range considerably beyond 1GHz [Arbesser-Rastburg et al. (2002); Maufroid et al.
(2004; 2003); Rio-Herrero & Maufroid (2003); Wittig (2000)], and ii) the desire of flexibility
of channel bandwidth-to-user assignment calling for simply reconfigurable OBP systems
[Abdulazim & Göckler (2005); Göckler & Felbecker (2001); Johansson & Löwenborg (2005);
Kopmann et al. (2003)]. Yet, overall power consumption must be minimum demanding highly
efficient FB for FDM demultiplexing (FDMUX) and remultiplexing (FMUX).
Two baseline approaches to most efficient uniform digital FB, as required for OBP, are
known: a) The complex-modulated (DFT) polyphase (PP) FB applying single-step sample
rate alteration [Vaidyanathan (1993)], and b) the multistage tree-structured FB as depicted
in Fig. 2, where its directional filters (DF) are either based on the DFT PP method

4 Underlying original publication: Göckler et al. (2006)
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[Göckler & Groth (2004); Göckler & Eyssele (1992)] according to Subsection 3.2.1, or on the
COHBF approach investigated in Subsection 3.2.2. For both approaches it has been shown
that bandwidth-to-user assignment is feasible within reasonable constraints [Abdulazim et al.
(2007); Johansson & Löwenborg (2005); Kopmann et al. (2003)]: A minimum user channel
bandwidth, denoted by slot bandwidth b, can stepwise be extended by any integer number of
additional slots up to a desired maximum overall bandwidth that shall be assigned to a single
user.
However, as to challenge i), the above two FB approaches fundamentally differ from
each other: In a DFT PP FDMUX (a) the overall sample rate reduction is performed in
compliance with the number of user channels in a single step: all arithmetic operations are
carried out at the (lowest) output sampling rate [Vaidyanathan (1993)]. In contrast, in the
multistage FDMUX (b) the sampling rate is reduced stepwise, in each stage by a factor of two
[Göckler & Eyssele (1992)]. As a result, the polyphase approach (a) inherently represents a
completely parallelised structure, immediately usable for extremely high front-end sampling
frequencies, whereas the high-end stages of the tree-structured FDMUX (b) cannot be
implemented with standard space-proved CMOS technology. Hence, the tree structure,
FDMUX as well as FMUX, calls for a parallelisation of the high rate stages.
As motivated, this contribution deals with the parallelisation of multistage multirate systems.
To this end, we recall a general systematic procedure for multirate system parallelisation
[Groth (2003)], which is deployed in detail in Subsection 4.1. For proper understanding,
in Subsection 4.2 this procedure is applied to the high rate front-end stages of the FDMUX
part of the recently proposed tree-structured SBC-FDFMUX FB [Abdulazim & Göckler (2005);
Abdulazim et al. (2007)], which uniformly demultiplexes an FDM signal always down to slot
level (of bandwidth b) and that, after on-board switching, recombines these independent slot
signals to an FDM signal (FMUX) with different channel allocation – FDFMUX functionality.
If a single user occupies a multiple slot channel, the corresponding parts of FDMUX and
FMUX are matched for (nearly) perfect reconstruction of this wideband channel signal – SBC
functionality [Vaidyanathan (1993)]. Finally, some conclusions are drawn.

4.1 Sample-by-sample approach to parallelisation

In this subsection, we introduce the novel sample-by-sample processing (SBSP) approach to
parallelisation of digital multirate systems, as proposed by [Groth (2003)] where, without
any additional delay, all incoming signal samples are directly fed into assigned units for
immediate signal processing. Hence, in contrast to the widely used block processing (BP)
approach, SBSP does not increase latency.
In order to systematically parallelise a (multirate) system, we distinguish four procedural
steps [Groth (2003)]:
1. Partition the original system in (elementary SISO or MIMO) subsystems E(z) with single or
multiple input and/or output ports, respectively, still operating at the original high clock
frequency fn = 1/T that are simply amenable to parallelisation. To enumerate some of
these: Delay, multiplier, down- and up-sampler, summation and branching, but also suitable
compound subsystems such as SISO filters and FFT transform blocks.
2. Parallelise each subsystem E(z) in an SBSP manner according to the desired individual degree
of parallelisation P, where P ∈ N. To this end, each subsystem is cascaded with a P-fold
SBSP serial-to-parallel (SP) commutator for signal decomposition (demultiplexing) followed
by a consistently connected P-fold parallel-to-serial (PS) commutator for recomposition
(remultiplexing) of the original signal, as depicted in Fig. 29(a). Here, obviously P =
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Fig. 29. P-Parallelisation of SISO subsystem E(z) to P × P MIMO system E(zd)

PSP = PPS, and p ∈ [0, P − 1] denotes the relative time offsets of connected pairs of
down- and up-samplers, respectively. Evidently, the P output signals of the SP interface
comprise all polyphase components of its input signal in a time-interleaved (SBSP) manner
at a P-fold lower sampling rate fd = fn/P [Göckler & Groth (2004); Vaidyanathan (1993)].
Since the subsequent PS interface is inverse to the preceding SP interface [Göckler & Groth
(2004)], the SP-PS commutator cascade has unity transfer with zero delay in contrast to the
(P − 1)-fold delay of the BP Delay-Chain Perfect-Reconstruction system [Göckler & Groth
(2004); Vaidyanathan (1993)], as anticipated (cf. also Fig. 30).
After this preparation, P-fold parallelisation is readily achieved by shifting the (SISO)
subsystem E(z) between the SP and PS interfaces by exploiting the noble identities
[Göckler & Groth (2004); Vaidyanathan (1993)] and some novel generalized SBSP multirate
identities [Groth (2003); Groth & Göckler (2001)]. Thus, as shown in Fig. 29(b), the two
interfaces are interconnected by an equivalent P × P MIMO system E(zd), which represents
the P-fold parallelisation of E(z), where all operations of which are performed at the P-fold
reduced operational clock frequency fd.
3. Reconnect all parallelised subsystems exactly in the same manner as in the original system.
This is always given, since parallelisation does not change the original numbers of input and
output ports of SISO or MIMO subsystems, respectively.
4. Eliminate all interfractional cascade connections of PS-SP interfaces using the obvious multirate
identity depicted in Fig. 30. Note that this elimination process requires identical up- and

down-sampling factors, Pout,a
PS = Pin,b

SP , of each PS-SP interface cascade restricting free choice
of P for subsystem parallelisation. As a result of parallelisation, all input signals of the original
(possibly MIMO) system are decomposed into P time-interleaved polyphase components by
a SP demultiplexer for subsequent parallel processing at a P-fold lower rate, and all system
output ports are provided with a PS commutator to interleave all low rate subsignals to form
the high speed output signals.

For illustration, we present the parallelisation of a unit delay z−1 := z−1/P
d , and of an M-fold

down-sampler with zero time offset [Groth (2003)], as shown in Fig. 31. The unit delay
(a) is realized by P parallel time-interleaved shimming delays to be implemented by suitable
system control:

EP×P(zd) = z−1/P
d

(
0 1

I(P−1)×(P−1) 0

)

,

where permutation is introduced for straightforward elimination of interfractional PS-SP
cascades according to Fig. 30 (I : Identity matrix). In case of down-sampling Fig. 31(b),
to increase efficiency, the P parallel down-samplers of the diagonal MIMO system E(zd) are
merged with the P down-samplers of the SP interface. Hence, by using suitable multirate
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Fig. 30. Identity for elimination of P-fold interfractional PS-SP cascades

Fig. 31. Parallelisation of unit delay (a) and M-fold down-sampler (b) with zero time offset
(p = 0)

identities [Groth (2003)], the contiguous PM-fold down-samplers of the SP demultiplexer
have a relative time offset of M.

4.2 Parallelisation of SBC-FDFMUX filter bank

Subsequently, we deploy the parallelisation of the high rate FDMUX front-end section of
the versatile tree-structured SBC-FDFMUX FB for flexible channel and bandwidth allocation
[Abdulazim & Göckler (2005); Abdulazim et al. (2007)]. The first three hierarchically cascaded
stages of the FDMUX are shown in Fig. 32 in block diagram form applying BP. In
each stage, ν = 1, 2, 3, the respective input spectrum is split into two subbands of equal
bandwidth in conjunction with decimation by two. For convenience of presentation, all DF
have identical coefficients and, in contrast to Section 3, are assumed as critically sampling
2-channel DFT PP FB with zero frequency offset (cf. [Abdulazim et al. (2007)]). The branch
filter transfer functions Hλ(zν), λ = 0, 1, represent the two PP components of the prototype

filter [Göckler & Groth (2004); Vaidyanathan (1993)] where, by setting zν := ejΩ(ν)
with

Ω(ν) = 2π f / fν and ν = 1, 2, 3, the respective frequency responses Hλ(e
jΩ(ν)

) are obtained,
which are related to the operational sampling rate fν of stage ν. The respective DF lowpass

271Most Efficient Digital Filter Structures: 
The Potential of Halfband Filters in Digital Signal Processing

www.intechopen.com



36 Will-be-set-by-IN-TECH

Fig. 32. FDMUX front end of SBC-FDFMUX filter bank according to Abdulazim et al. (2007));

zν := ejΩ(ν)
, Ω(ν) = 2π f / fν, ν = 0, 1, 2, 3, f3 = fd = fn/8

and highpass filter transfer functions of stage ν, related to the original sampling rate 2 fν,
are generated by the two branch filter transfer functions Hλ(zν), λ = 0, 1, in combination
with the simple “butterfly” across the output ports of each DF: Summation produces the
lowpass, subtraction the complementary highpass filter transfer function Bellanger (1989);
Kammeyer & Kroschel (2002); Mitra (1998); Schüssler (2008); Vaidyanathan (1993).
Assuming, for instance, a high-end input sampling frequency of fn = f0 = 2.4GHz
[Kopmann et al. (2003); Maufroid et al. (2003)], the operational clock rate of the third stage
is f3 = fn/23 = 300MHz, which is deemed feasible using present-day CMOS technology.
Hence, front-end parallelisation has to reduce operational clock of all subsystems preceding
the third stage down to fd = f3 = 300MHz. This is achieved by 8-fold parallelisation

of input branching and blocking (delay z−1
0 ), 4-fold parallelisation of the first stage of the

FDMUX tree (comprising input decimation by two, the PP branch filters Hλ(z1), λ = 0, 1,

and butterfly), and of the input branching and blocking (delay z−1
1 ) of the second stage and,

finally, corresponding 2-fold parallelisation of the two parallel 2-channel FDMUX FB of the
second stage of the tree, as indicated in Fig. 32.
The result of parallelisation, as required above, is shown in Fig. 33, where all interfractional
interfaces have been removed by straightforward application of identity of Fig. 30.
Subsequently, parallelisation of elementary subsystems is explained in detail:
1. Down-Sampling by M = 2: In compliance with Fig. 31(b), each 2-fold down-sampler is
replaced with Pν units in parallel for 2Pν-fold down-sampling with even time offset 2p, where
p = 0, 1, 2, 3 applies to the first tree stage (P1 = 4), and p = 0, 1 to the second stage (P2 = 2).
The result of 4-fold parallelisation of the front end input down-sampler of the upper branch
(ν = 1, λ = 0) is readily visible in Fig. 33 preceding filter MIMO block H

1
0(zd): In fact, it

represents an 8-to-4 parallelisation, where all odd PP components are removed according to
Fig. 31(b) Groth (2003).
2. Cascade of unit blocking delay and 2-fold down-sampler: For proper explanation, we first focus
on the input section of the first tree stage, lower branch (ν = λ = 1) in front of filter block
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Fig. 33. Complete parallelisation of FDMUX front-end of SBC-FDFMUX filter bank (Fig. 32);

zd := ejΩ(d)
, Ω(d) = 2π f / fd, fd = fn/8

H1(z1). To this end, as required by Fig. 32, the unit delay z−1
0 is parallelised by P0 = 8, as

shown in Fig. 31(a), while the subsequent down-sampler applies P1 = 4, as described above
w.r.t. Fig. 31(b). Immediate cascading of parallelised unit delay (P0 = 8) and down-sampling
(P1 = 4, M = 2) (as induced by Fig. 31) shows that only those four PP components of the
parallelised delay with even time offset (p = 0, 2, 4, 6) are transferred via the 4-branch SP-input
interface of down-sampling (2P1 = 8) to its PS-output interface with naturally ordered time
offsets p = 0, 1, 2, 3 w.r.t. P1 = 4. Hence, only those retained 4 out of 8 PP components
of odd time index p = 7, 1, 3, 5, being provided by the unit delay’s SP-input interface and

delayed by z−1
0 = z−1/8

d , are transferred (mapped) to the P1 = 4 up-samplers with timing
offset p = 0, 1, 2, 3 of the 4-branch PS-output interface of the down-sampler. Fig. 33 shows
the correspondingly rearranged signal flow graph representation of stage 1 input section (ν =
λ = 1).
As a result, the upper branch of stage 1, H0(z1) → H

1
0(zd), is fed by the even-indexed

PP components of the high rate FDMUX input signal, whereas the lower branch H1(z1) →
H

1
1(zd) is provided with the delayed versions of the PP components of odd index, as depicted

in Fig. 33. Hence, as in the original system Fig. 32, the input sequence is completely fed into
the parallelised system.
This procedure is repeated with the input branching and blocking sections of the subsequent
stages ν = 2, 3: The PP branch filters H0(zν) → H

ν
0(zd) parallelised by Pν, where P2 = 2 and

P3 = 1 (P1 = 4), are provided with the even-numbered PP components of the respective input
signals with timing offsets in natural order. Contrary, the set of PP components of odd index

is always delayed by z−1/Pν−1

d and fed into filter blocks H1(zν) → H
ν
1(zd) in crossed manner

(cf. input section λ = 1).
3. Pν-fold Parallelisation of PP branch filters Hλ(zν) → H

ν
λ(zd), λ = 0, 1; ν = 1, 2, is

achieved by systematic application of the procedure condensed in Fig. 29 (for details
cf. Göckler & Groth (2004); Groth (2003)). To this end, Hλ(zν) is decomposed in Pν PP
components of correspondingly reduced order, which are arranged to a MIMO system by
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exploiting a multitude of multirate identities Groth (2003); Groth & Göckler (2001). The
resulting Pν × Pν MIMO filter transfer matrix H

ν
λ(zd) contains each PP component of Hλ(zν)

Pν times: Thus, the amount of hardware is increased Pν times whereas, as desired for
feasibility, the operational clock rate is concurrently reduced by Pν. Hence, the overall
expenditure, i.e. the number of operations times the respective operational clock rate
Göckler & Groth (2004), is not changed.
4. Parallelisation of butterflies combining the output signals of associated PP filter blocks
is straightforward: For each (time-interleaved) PP component of the respective signals a
butterfly has to be foreseen, as shown in Fig. 33.

4.3 Conclusion: Parallelisation of multirate systems

In this Section 4, a general and systematic procedure for parallelisation of multirate systems,
for instance as investigated in Sections 2 and 3, has been presented . Its application
to the high rate decimating FDMUX front end of the tree-structured SBC-FDFMUX FB
Abdulazim & Göckler (2005); Abdulazim et al. (2007) has been deployed in detail. The stage
ν degree of parallelisation Pν, ν = 0, 1, 2, 3, is diminished proportionally to the operational
clock frequency fν of stage ν and is, thus, adapted to the actual sampling rate. As a result,
after suitable decomposition of the high rate front end input signal by an input commutator
in P0 = Pmax polyphase components (as depicted for Pmax = 8 in Fig. 33), all subsequent
processing units are likewise operated at the same operational clock rate fd = fn/P0 = f0/P0.
Since inherent parallelism of the original tree-structured FDMUX (Fig. 32) has attained
Pmax = 8 in the third stage, and the output signals of this stage represent the desired eight
demultiplexed FDM subsignals, interleaving PS-output commutators are no longer required,
as to be seen in Fig. 33. Finally, it should be noted that parallelisation does not change
overall expenditure; yet, by multiplying stage ν hardware by Pν, the operational clock rates
are reduced by a factor of Pν to a feasible order of magnitude, as desired.
Applying the rules of multirate transposition (cf. Subsection 3.3.1 or Göckler & Groth
(2004)) to the parallelised FDMUX front end, the high rate interpolating back end of the
tree-structured SBC-FDFMUX FB is obtained likewise and exhibits the same properties as
to expenditure and feasibility Groth (2003). Hence, the versatile and efficient tree-structured
filter bank (FDMUX, FMUX, SBC, wavelet, or any combination thereof) can be used in any
(ultra) wide-band application without any restriction.

5. Summary and conclusion

In Section 2 we have introduced and investigated a special class of real and complex FIR
and IIR halfband bandpass filters with the particular set of centre frequencies defined by
(1). As a result of the constraint (1), almost all filter coefficients are either real-valued or
purely imaginary-valued, as opposed to fully complex-valued coefficients. Hence, this class
of halfband filters requires only a small amount of computation.
In Section 3, two different options to combine two of the above FIR halfband filters with
different centre frequencies to form a directional filter (DF) have been investigated. As a result,
one of these DF approaches is optimum w.r.t. to computation (most efficient), whereas the
other requires the least number of delay elements (minimum McMillan degree). The relation
between separating DF and DF that combine two independent signals to an FDM signal via
multirate transposition rules has extensively been shown.
Finally, in Section 4, the above FIR directional filters (DF) have been combined to
tree-structured multiplexing and demultiplexing filter banks. While this procedure is
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straightforward, the operating clock rates within the front- or back-ends may be too high for
implementation. To this end, we have introduced and described to some extent the systematic
graphically induced procedure to parallelise multirate systems according to [Groth (2003)]. It
has been applied to a three-stage demultiplexing tree-structured filter bank in such a manner
that all operations throughout the overall system are performed at the operational output
clock. As a result, parallelisation makes the system feasible but retains the computational
load.
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