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1. Introduction 

1.1 Complex DSP versus real DSP 

Digital Signal Processing (DSP) is a vital tool for scientists and engineers, as it is of 
fundamental importance in many areas of engineering practice and scientific research.  
The “alphabet” of DSP is mathematics and although most practical DSP problems can be 
solved by using real number mathematics, there are many others which can only be 
satisfactorily resolved or adequately described by means of complex numbers.  
If real number mathematics is the language of real DSP, then complex number 
mathematics is the language of complex DSP. In the same way that real numbers are a part 
of complex numbers in mathematics, real DSP can be regarded as a part of complex DSP 
(Smith, 1999). 
Complex mathematics manipulates complex numbers – the representation of two variables 
as a single number - and it may appear that complex DSP has no obvious connection with our 
everyday experience, especially since many DSP problems are explained mainly by means 
of real number mathematics. Nonetheless, some DSP techniques are based on complex 
mathematics, such as Fast Fourier Transform (FFT), z-transform, representation of periodical 
signals and linear systems, etc. However, the imaginary part of complex transformations is 
usually ignored or regarded as zero due to the inability to provide a readily comprehensible 
physical explanation.  
One well-known practical approach to the representation of an engineering problem by 
means of complex numbers can be referred to as the assembling approach: the real and 
imaginary parts of a complex number are real variables and individually can represent two 
real physical parameters. Complex math techniques are used to process this complex entity 
once it is assembled. The real and imaginary parts of the resulting complex variable 
preserve the same real physical parameters. This approach is not universally-applicable and 
can only be used with problems and applications which conform to the requirements of 
complex math techniques. Making a complex number entirely mathematically equivalent to 
a substantial physical problem is the real essence of complex DSP. Like complex Fourier 
transforms, complex DSP transforms show the fundamental nature of complex DSP and such 
complex techniques often increase the power of basic DSP methods. The development and 
application of complex DSP are only just beginning to increase and for this reason some 
researchers have named it theoretical DSP.  
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It is evident that complex DSP is more complicated than real DSP. Complex DSP transforms 
are highly theoretical and mathematical; to use them efficiently and professionally requires 
a large amount of mathematics study and practical experience.  
Complex math makes the mathematical expressions used in DSP more compact and solves 

the problems which real math cannot deal with. Complex DSP techniques can complement 

our understanding of how physical systems perform but to achieve this, we are faced with 

the necessity of dealing with extensive sophisticated mathematics. For DSP professionals 

there comes a point at which they have no real choice since the study of complex number 

mathematics is the foundation of DSP. 

1.2 Complex representation of signals and systems 

All naturally-occurring signals are real; however in some signal processing applications it is 

convenient to represent a signal as a complex-valued function of an independent variable. 

For purely mathematical reasons, the concept of complex number representation is closely 

connected with many of the basics of electrical engineering theory, such as voltage, current, 

impedance, frequency response, transfer-function, Fourier and z-transforms, etc.  

Complex DSP has many areas of application, one of the most important being modern 

telecommunications, which very often uses narrowband analytical signals; these are 

complex in nature (Martin, 2003). In this field, the complex representation of signals is very 

useful as it provides a simple interpretation and realization of complicated processing tasks, 

such as modulation, sampling or quantization.  

It should be remembered that a complex number could be expressed in rectangular, polar and 

exponential forms: 

  cos sin ja jb A j Ae      . (1) 

The third notation of the complex number in the equation (1) is referred to as complex 

exponential and is obtained after Euler’s relation is applied. The exponential form of complex 

numbers is at the core of complex DSP and enables magnitude A and phase θ components to 

be easily derived. 

Complex numbers offer a compact representation of the most often-used waveforms in 

signal processing – sine and cosine waves (Proakis & Manolakis, 2006). The complex number 

representation of sinusoids is an elegant technique in signal and circuit analysis and 

synthesis, applicable when the rules of complex math techniques coincide with those of sine 

and cosine functions. Sinusoids are represented by complex numbers; these are then 

processed mathematically and the resulting complex numbers correspond to sinusoids, 

which match the way sine and cosine waves would perform if they were manipulated 

individually. The complex representation technique is possible only for sine and cosine 

waves of the same frequency, manipulated mathematically by linear systems. 

The use of Euler’s identity results in the class of complex exponential signals:  

        0 0jjn
R Ix n A A e e x n jx n

      . (2) 

 0 0j
e
    and jA A e   are complex numbers thus obtaining: 
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        0 0
0 0cos ; sin .n n

R Ix n A e n x n A e n         (3) 

Clearly, xR(n) and xI(n) are real discrete-time sinusoidal signals whose amplitude Aeon is 

constant (0=0), increasing (0>0)  or decreasing 0<0) exponents (Fig. 1). 
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Fig. 1. Complex exponential signal x(n) and its real and imaginary components xR(n) and 

xI(n)  for (a) 0=-0.085; (b) 0=0.085 and (c) 0=0 
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The spectrum of a real discrete-time signal lies between –ωs/2 and ωs/2 (ωs is the sampling 
frequency in radians per sample), while the spectrum of a complex signal is twice as narrow 
and is located within the positive frequency range only. 
Narrowband signals are of great use in telecommunications. The determination of a signal’s 
attributes, such as frequency, envelope, amplitude and phase are of great importance for 
signal processing e.g. modulation, multiplexing, signal detection, frequency transformation, 
etc. These attributes are easier to quantify for narrowband signals than for wideband signals 
(Fig. 2). This makes narrowband signals much simpler to represent as complex signals. 
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(a)                                                                      (b) 

Fig. 2. Narrowband signal (a)      x n n n   1 sin 60 4 cos 2 ;  

            wideband signal (b)      x n n n   2 sin 60 4 cos 16  

Over the years different techniques of describing narrowband complex signals have been 
developed. These techniques differ from each other in the way the imaginary component is 
derived; the real component of the complex representation is the real signal itself. 
Some authors (Fink, 1984) suggest that the imaginary part of a complex narrowband signal 

can be obtained from the first  Rx n  and second  Rx n  derivatives of the real signal: 

      
 

R
I R

R

x n
x n x n

x n


 


. (4) 

One disadvantage of the representation in equation (4) is that insignificant changes in the 
real signal xR(n) can alter the imaginary part xI(n) significantly; furthermore the second 
derivative can change its sign, thus removing the sense of the square root. 
Another approach to deriving the imaginary component of a complex signal representation, 
applicable to harmonic signals, is as follows (Gallagher, 1968): 

    
0

R
I

x n
x n




 , (5) 

where 0 is the frequency of the real harmonic signal. 
Analytical representation is another well-known approach used to obtain the imaginary part 
of a complex signal, named the analytic signal. An analytic complex signal is represented by 
its inphase (the real component) and quadrature (the imaginary component). The approach 
includes a low-frequency envelope modulation using a complex carrier signal – a complex 

exponent 0j ne   named cissoid (Crystal & Ehrman, 1968) or complexoid (Martin, 2003): 

             0 0
0 0cos sinj n j n

R R R R Ix n e x n x n e x n n j n x n jx n          . (6) 

In the frequency domain an analytic complex signal is:  
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      j n j n j n
C R IX e X e jX e    . (7) 

The real signal and its Hilbert transform are respectively the real and imaginary parts of the 

analytic signal; these have the same amplitude and /2 phase-shift (Fig. 3).  
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Fig. 3. Complex signal derivation using the Hilbert transformation 

According to the Hilbert transformation, the components of the  j n
RX e   spectrum are 

shifted by /2 for positive frequencies and by –/2 for negative frequencies, thus the 

pattern areas in Fig. 3b are obtained. The real signal  j n
RX e   and the imaginary one 

 j n
IX e   multiplied by j (square root of -1), are identical for positive frequencies and –/2 

phase shifted for negative frequencies – the solid blue line (Fig. 3b). The complex signal 

 j n
CX e   occupies half of the real signal frequency band; its amplitude is the sum of the 

 j n
RX e   and  j n

IjX e   amplitudes (Fig. 3c). The spectrum of the complex conjugate 

analytic signal  C
j nX e   is depicted in Fig. 3d.  
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In the frequency domain the analytic complex signal, its complex conjugate signal, real and 

imaginary components are related as follows: 

 

      
      

     

1

2
1

2

2 2 , 0 2

0, 2 0

j n j n j n
R

j n j n j n
I

j n j n
R I Sj n

S

X e X e X e

jX e X e X e

X e jX e
X e

  

  

 
  

 





 

 

    
  

 (8) 

Discrete-time complex signals are easily processed by digital complex circuits, whose 
transfer functions contain complex coefficients (Márquez, 2011).  
An output complex signal YC (z) is the response of a complex system with transfer function 
HC (z), when complex signal XC (z) is applied as an input. Being complex functions, XC (z), 
YC (z) and HC (z), can be represented by their real and imaginary parts:  

 

     

           

C C C

R I R I R I

Y z H z X z

Y z jY z H z jH z X z jX z

  



              

 
 (9) 

After mathematical operations are applied, the complex output signal and its real and 
imaginary parts become: 

 

         
               

   

C R I R I

R R I I I R R I

R I

Y z H z jH z X z jX z

H z X z H z X z j H z X z H z X z

Y z Y z
 

          
             (10) 

According to equation (10), the block-diagram of a complex system will be as shown in 
Fig. 4. 
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Fig. 4. Block-diagram of a complex system 
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1.3 Complex digital processing techniques - complex Fourier transforms 

Digital systems and signals can be represented in three domains – time domain, z-domain 
and frequency domain. To cross from one domain to another, the Fourier and z-transforms 
are employed (Fig. 5). Both transforms are fundamental building-blocks of signal processing 
theory and exist in two formats - forward and inverse (Smith, 1999).  
 

 

Fourier 
transforms

Frequency 
Domain 

Time 
Domain

Z- 
Domain 

Z- 
transforms

 

Fig. 5. Relationships between frequency, time, and z- domains  

The Fourier transforms group contains four families, which differ from one another in the 
type of time-domain signal which they process - periodic or aperiodic and discrete or 
continuous. Discrete Fourier Transform (DFT) deals with discrete periodic signals, Discrete 
Time Fourier Transform (DTFT) with discrete aperiodic signals, and Fourier Series and 
Fourier Transform with periodic and aperiodic continuous signals respectively. In addition to 
having forward and inverse versions, each of these four Fourier families exists in two 
forms - real and complex, depending on whether real or complex number math is used. All 
four Fourier transform families decompose signals into sine and cosine waves; when these 
are expressed by complex number equations, using Euler’s identity, the complex versions of 
the Fourier transforms are introduced. 
DFT is the most often-used Fourier transform in DSP. The DFT family is a basic 
mathematical tool in various processing techniques performed in the frequency domain, for 
instance frequency analysis of digital systems and spectral representation of discrete signals.  
In this chapter, the focus is on complex DFT. This is more sophisticated and wide-ranging 
than real DFT, but is based on the more complicated complex number math. However, 
numerous digital signal processing techniques, such as convolution, modulation, 
compression, aliasing, etc. can be better described and appreciated via this extended math. 
(Sklar, 2001) 
Complex DFT equations are shown in Table 1. The forward complex DFT equation is also 
called analysis equation. This calculates the frequency domain values of the discrete periodic 
signal, whereas the inverse (synthesis) equation computes the values in the time domain. 
 

 

Table 1. Complex DFT transforms in rectangular form  

The time domain signal x(n) is a complex discrete periodic signal; only an N-point unique 
discrete sequence from this signal, situated in a single time-interval (0÷N, -N/2÷N/2, etc.) is 
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considered. The forward equation multiplies the periodic time domain number series from 
x(0) to x(N-1) by a sinusoid and sums the results over  the complete time-period.  
The frequency domain signal X(k) is an N-point complex periodic signal in a single 
frequency interval, such as [0÷0.5ωs], [-0.5ωs÷0], [-0.25ωs÷0.25ωs], etc. (the sampling 
frequency ωs is often used in its normalized value). The inverse equation employs all the N 
points in the frequency domain to calculate a particular discrete value of the time domain 
signal. It is clear that complex DFT works with finite-length data.  
Both the time domain x(n) and the frequency domain X(k) signals are complex numbers, i.e. 

complex DFT also recognizes  negative time and negative frequencies. Complex mathematics 

accommodates these concepts, although imaginary time and frequency have only a 

theoretical existence so far. Complex DFT is a symmetrical and mathematically 

comprehensive processing technology because it doesn’t discriminate between negative and 

positive frequencies. 

Fig. 6 shows how the forward complex DFT algorithm works in the case of a complex time-

domain signal. xR(n) is a real time domain signal whose frequency spectrum has an even real 

part and an odd imaginary part; conversely, the frequency spectrum of the imaginary part 

of the time domain signal xI(n) has an odd real part and an even imaginary part. However, 

as can be seen in Fig. 6, the actual frequency spectrum is the sum of the two individually-

calculated spectra. In reality, these two time domain signals are processed simultaneously, 

which is the whole point of the Fast Fourier Transform (FFT) algorithm. 

 

 

Frequency Domain 

X (k)=XR (k)+XI (k) 

 

Complex DFT

Time Domain 

x(n)= xR (n) + j xI (n) 

xR (n)                                                                                 xI (n) 
Real time signal                                                           Imaginary time signal 

Real Frequency Spectrum 
(even) 

Imaginary Frequency Spectrum 
(odd) 

Real Frequency Spectrum 
(odd) 

Imaginary Frequency Spectrum 
(even) 

 

Fig. 6. Forward complex DFT algorithm 

The imaginary part of the time-domain complex signal can be omitted and the time domain 
then becomes totally real, as is assumed in the numerical example shown in Fig. 7. A real 
sinusoidal signal with amplitude M, represented in a complex form, contains a positive ω0 
and a negative frequency -ω0. The complex spectrum X(k) describes the signal in the 
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frequency domain. The frequency range of its real, Re X(k), and imaginary part, Im X(k), 
comprises both positive and negative frequencies simultaneously. Since the considered time 
domain signal is real, Re X(k) is even (the spectral values A and B have the same sign), while 
the imaginary part Im X(k) is odd (C is negative, D is positive). 
The amplitude of each of the four spectral peaks is M/2, which is half the amplitude of the 
time domain signal. The single frequency interval under consideration [-¼ωs÷¼ωs]  
([-0.5÷0.5] when normalized frequency is used) is symmetric with respect to a frequency of 
zero. The real frequency spectrum Re X(k) is used to reconstruct a cosine time domain 
signal, whilst the imaginary spectrum Im X(k) results in a negative sine wave, both with 
amplitude M in accordance with the complex analysis equation (Table 1). In a way 
analogous to the example shown in Fig. 7, a complex frequency spectrum can also be 
derived. 
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Forward complex DFT
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Fig. 7. Inverse complex DFT - reconstruction of a real time domain signal  

Why is complex DFT used since it involves intricate complex number math?  
Complex DFT has persuasive advantages over real DFT and is considered to be the more 

comprehensive version. Real DFT is mathematically simpler and offers practical solutions to 

real world problems; by extension, negative frequencies are disregarded. Negative 

frequencies are always encountered in conjunction with complex numbers.  
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A real DFT spectrum can be represented in a complex form. Forward real DFT results in 
cosine and sine wave terms, which then form respectively the real and imaginary parts of a 
complex number sequence. This substitution has the advantage of using powerful complex 
number math, but this is not true complex DFT. Despite the spectrum being in a complex 
form, the DFT remains real and j is not an integral part of the complex representation of real 
DFT. 
Another mathematical inconvenience of real DFT is the absence of symmetry between 
analysis and synthesis equations, which is due to the exclusion of negative frequencies. In 
order to achieve a perfect reconstruction of the time domain signal, the first and last samples 
of the real DFT frequency spectrum, relating to zero frequency and Nyquist’s frequency 
respectively, must have a scaling factor of 1/N applied to them rather than the 2/N used for 
the rest of the samples.  
In contrast, complex DFT doesn’t require a scaling factor of 2 as each value in the time 
domain corresponds to two spectral values located in a positive and a negative frequency; 
each one contributing half the time domain waveform amplitude, as shown in Fig. 7. The 
factor of 1/N is applied equally to all samples in the frequency domain. Taking the negative 
frequencies into account, complex DFT achieves a mathematically-favoured symmetry 
between forward and inverse equations, i.e. between time and frequency domains. 
Complex DFT overcomes the theoretical imperfections of real DFT in a manner helpful to 
other basic DSP transforms, such as forward and inverse z-transforms. A bright future is 
confidently predicted for complex DSP in general and the complex versions of Fourier 
transforms in particular. 

2. Complex DSP – some applications in telecommunications 

DSP is making a significant contribution to progress in many diverse areas of human 

endeavour – science, industry, communications, health care, security and safety, commercial 

business, space technologies etc. 

Based on powerful scientific mathematical principles, complex DSP has overlapping 

boundaries with the theory of, and is needed for many applications in, telecommunications. 

This chapter presents a short exploration of precisely this common area.  

Modern telecommunications very often uses narrowband signals, such as NBI (Narrowband 

Interference), RFI (Radio Frequency Interference), etc. These signals are complex by nature 

and hence it is natural for complex DSP techniques to be used to process them (Ovtcharov et 

al, 2009), (Nikolova et al, 2010). 

Telecommunication systems very commonly require processing to occur in real time, 

adaptive complex filtering being amongst the most frequently-used complex DSP techniques. 

When multiple communication channels are to be manipulated simultaneously, parallel 

processing systems are indicated (Nikolova et al, 2006), (Iliev et al, 2009).  

An efficient Adaptive Complex Filter Bank (ACFB) scheme is presented here, together with 

a short exploration of its application for the mitigation of narrowband interference signals in 

MIMO (Multiple-Input Multiple-Output) communication systems.  

2.1 Adaptive complex filtering 

As pointed out previously, adaptive complex filtering is a basic and very commonly- 
applied DSP technique. An adaptive complex system consists of two basic building blocks: 
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the variable complex filter and the adaptive algorithm. Fig. 8 shows such a system based on 
a variable complex filter section designated LS1 (Low Sensitivity). The variable complex LS1 
filter changes the central frequency and bandwidth independently (Iliev et al, 2002), (Iliev et 

al, 2006). The central frequency can be tuned by trimming the coefficient , whereas the 

single coefficient  adjusts the bandwidth. The LS1 variable complex filter has two very 
important advantages: firstly, an extremely low passband sensitivity, which offers resistance 
to quantization effects and secondly, independent control of both central frequency and 
bandwidth over a wide frequency range. 
The adaptive complex system (Fig.8) has a complex input x(n)=xR(n)+jxI(n) and provides 
both band-pass (BP) and band-stop (BS) complex filtering. The real and imaginary parts of 
the BP filter are respectively yR(n) and yI(n), whilst those of the BS filter are eR(n) and eI(n). 
The cost-function is the power of the BP/BS filter’s output signal. 
The filter coefficient , responsible for the central frequency, is updated by applying an 
adaptive algorithm, for example LMS (Least Mean Square): 

 ( 1) ( ) Re[ ( ) ( )]n n e n y n      . (11) 

The step size controls the speed of convergence, () denotes complex-conjugate, y(n) is the 
derivative of complex BP filter output y(n) with respect to the coefficient, which is subject to 
adaptation.  
 

Adaptive Complex Filter
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cos




 

Fig. 8. Block-diagram of an LS1-based adaptive complex system 

In order to ensure the stability of the adaptive algorithm, the range of the step size  should 
be set according to (Douglas, 1999): 

 
2

0
P

N



  . (11) 

where N is the filter order, σ2 is the power of the signal y(n) and P is a constant which 

depends on the statistical characteristics of the input signal. In most practical situations, P is 

approximately equal to 0.1. 
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The very low sensitivity of the variable complex LS1 filter section ensures the general 
efficiency of the adaptation and a high tuning accuracy, even with severely quantized 
multiplier coefficients. 
This approach can easily be extended to the adaptive complex filter bank synthesis in 
parallel complex signal processing.  
In (Nikolova et al, 2002) a narrowband ACFB is designed for the detection of multiple 
complex sinusoids. The filter bank, composed of three variable complex filter sections, is 
aimed at detecting multiple complex signals (Fig. 9).  
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Fig. 9. Block-diagram of an adaptive complex filter bank system 
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The experiments are carried out with an input signal composed of three complex sine-
signals of different frequencies, mixed with white noise. Fig. 10 displays learning curves for 

the coefficients1, 2 and 3. The ACFB shows the high efficacy of the parallel filtering 
process. The main advantages of both the adaptive filter structure and the ACFB lie in their 
low computational complexity and rapid convergence of adaptation.  
 

 

Fig. 10. Learning curves of an ACFB consisting of three complex LS1-sections 

2.2 Narrowband interference suppression for MIMO systems using adaptive complex 
filtering 

The sub-sections which follow examine the problem of narrowband interference in two 

particular MIMO telecommunication systems. Different NBI suppression methods are 

observed and experimentally compared to the complex DSP technique using adaptive 

complex filtering in the frequency domain. 

2.2.1 NBI Suppression in UWB MIMO systems 

Ultrawideband (UWB) systems show excellent potential benefits when used in the design of 

high-speed digital wireless home networks. Depending on how the available bandwidth of 

the system is used, UWB can be divided into two groups: single-band and multi-band (MB). 

Conventional UWB technology is based on single-band systems and employs carrier-free 

communications. It is implemented by directly modulating information into a sequence of 

impulse-like waveforms; support for multiple users is by means of time-hopping or direct 

sequence spreading approaches.  

The UWB frequency band of multi-band UWB systems is divided into several sub-bands. By 

interleaving the symbols across sub-bands, multi-band UWB can maintain the power of the 

transmission as though a wide bandwidth were being utilized. The advantage of the multi-

band approach is that it allows information to be processed over a much smaller bandwidth, 

thereby reducing overall design complexity as well as improving spectral flexibility and 

worldwide adherence to the relevant standards. The constantly-increasing demand for 

higher data transmission rates can be satisfied by exploiting both multipath- and spatial-

diversity, using MIMO together with the appropriate modulation and coding techniques 
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(Iliev et al, 2009). The multipath energy can be captured efficiently when the OFDM 

(Orthogonal Frequency-Division Multiplexing) technique is used to modulate the 

information in each sub-band. Unlike more traditional OFDM systems, the MB-OFDM 

symbols are interleaved over different sub-bands across both time and frequency. Multiple 

access of multi-band UWB is enabled by the use of suitably-designed frequency-hopping 

sequences over the set of sub-bands. 

In contrast to conventional MIMO OFDM systems, the performance of MIMO MB-OFDM 

UWB systems does not depend on the temporal correlation of the propagation channel. 

However, due to their relatively low transmission power, such systems are very sensitive to 

NBI. Because of the spectral leakage effect caused by DFT demodulation at the OFDM 

receiver, many subcarriers near the interference frequency suffer from serious Signal-to-

Interference Ratio (SIR) degradation, which can adversely affect or even block 

communications (Giorgetti et al, 2005). 

In comparison with the wideband information signal, the interference occupies a much 

narrower frequency band but has a higher-power spectral density (Park et al, 2004). On the 

other hand, the wideband signal usually has autocorrelation properties quite similar to 

those of AWGN (Adaptive Wide Gaussian Noise), so filtering in the frequency domain is 

possible. The complex DSP technique for suppressing NBI by the use of adaptive complex 

narrowband filtering, which is an optimal solution offering a good balance between 

computational complexity and interference suppression efficiency, is put forward in (Iliev et 

al, 2010). The method is compared experimentally with two other often-used algorithms 

Frequency Excision (FE) (Juang et al, 2004) and Frequency Identification and Cancellation 

(FIC) (Baccareli et al, 2002) for the identification and suppression of complex NBI in 

different types of IEEE UWB channels.  

A number of simulations relative to complex baseband presentation are performed, 

estimating the Bit Error Ratio (BER) as a function of the SIR for the CM3 IEEE UWB channel 

(Molish & Foerster, 2003) and some experimental results are shown in Fig. 10.  

 

 

(a) 
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(b) 

 

(c) 

Fig. 10. BER as a function of SIR for the CM3 channel (a) complex NBI; (b) multi-tone NBI;  
(c) QPSK modulated NBI 

The channel is subject to strong fading and, for the purposes of the experiments, 

background AWGN is additionally applied, so that the Signal-to-AWGN ratio at the input 

of the OFDM receiver is 20 dB. The SIR is varied from -20 dB to 0 dB. It can be seen (Fig. 10a) 

that for high NBI, i.e. where the SIR is less than 0 dB, all methods lead to a significant 

improvement in performance. The adaptive complex filtering scheme gives better 

performance than the FE method. This could be explained by the NBI spectral leakage effect 

caused by DFT demodulation at the OFDM receiver, when many sub-carriers near the 
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interference frequency suffer degradation. Thus, filtering out the NBI before demodulation 

is better than frequency excision. The FIC algorithm achieves the best result because there is 

no spectrum leakage, as happens with frequency excision, and there is no amplitude and 

phase distortion as seen in the case of adaptive complex filtering. 

It should be noted that the adaptive filtering scheme and frequency cancellation scheme lead 
to a degradation in the overall performance when SIR >0. This is due either to the amplitude 
and phase distortion of the adaptive notch filter or to a wrong estimation of NBI parameters 
during the identification. The degradation can be reduced by the implementation of a 
higher-order notch filter or by using more sophisticated identification algorithms. The 
degradation effect can be avoided by simply switching off the filtering when SIR > 0. Such a 
scheme is easily realizable, as the amplitude of the NBI can be monitored at the BP output of 
the filter (Fig. 8). 
In Fig. 10b, the results of applying a combination of methods are presented. A multi-tone NBI 
(an interfering signal composed of five sine-waves) is added to the OFDM signal. One of the 
NBI tones is 10 dB stronger than the others. The NBI filter is adapted to track the strongest NBI 
tone, thus preventing the loss of resolution and Automatic Gain Control (AGC) saturation. It can 
be seen that the combination of FE and Adaptive Complex Filtering improves the 
performance, and the combination of FIC with Adaptive Complex Filtering is even better.  
Fig. 10c shows BER as a function of SIR for the CM3 channel when QPSK modulation is 
used, the NBI being modelled as a complex sine wave. It is evident that the relative 
performance of the different NBI suppression methods is similar to the one in Fig. 10a but 
the BER is higher due to the fact that NBI is QPSK modulated.  
The experimental results show that the FIC method achieves the highest performance. On 
the other hand, the extremely high computational complexity limits its application in terms 
of hardware resources. In this respect, Adaptive Complex Filtering turns out to be the 
optimal NBI suppression scheme, as it offers very good performance and reasonable 
complexity. The FE method shows relatively good results and its main advantage is its 
computational efficiency. Therefore the complex DSP filtering technique offers a good 
compromise between outstanding NBI suppression efficiency and computational 
complexity. 

2.2.2 RFI mitigation in GDSL MIMO systems 

The Gigabit Digital Subscriber Line (GDSL) system is a cost-effective solution for existing 

telecomunication networks as it makes use of the existing copper wires in the last 

distribution area segment. Crosstalk, which is usually a problem in existing DSL systems, 

actually becomes an enhancement in GDSL, as it allows the transmission rate to be extended 

to its true limits (Lee et al, 2007). A symmetric data transmission rate in excess of 1 Gbps 

using a set of 2 to 4 copper twisted pairs over a 300 m cable length is achievable using 

vectored MIMO technology, and considerably faster speeds can be achieved over shorter 

distances. 

In order to maximize the amount of information handled by a MIMO cable channel via the 
cable crosstalk phenomenon, most GDSL systems employ different types of precoding 
algorithms, such as Orthogonal Space–Time Precoding (OSTP), Orthogonal Space– 
Frequency Precoding (OSFP), Optimal Linear Precoding (OLP), etc. (Perez-Cruz et al, 2008). 
GDSL systems use the leading modulation technology, Discrete Multi-Tone (DMT), also 
known as OFDM, and are very sensitive to RFI. The presence of strong RFI causes nonlinear 
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distortion in AGC and Analogue-to-Digital Converter (ADC) functional blocks, as well as 
spectral leakage in the DFT process. Many DMT tones, if they are located close to the 
interference frequency, will suffer serious SNR degradation. Therefore, RFI suppression is of 
primary importance for all types of DSL communications, including GDSL.  
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Fig. 11. MIMO GDSL Common Mode system model 

The present section considers a MIMO GDSL Common Mode system, with a typical MIMO 

DMT receiver, using vectored MIMO DSL technology (Fig. 11) (Poulkov et al, 2009). 

To achieve the outstanding data-rate of 1 Gbps, the GDSL system requires both source and 

load to be excited in Common Mode (Starr et al, 2003). The model of a MIMO GDSL channel 

depicted in Fig. 11 includes 8 wires that create k=7 channels all with the 0 wire as reference. 

ZS and ZL denote the source and load impedance matrices respectively; s(k,n) is the n-th 

sample of k-th transmitted output, whilst x(k,n) is the n-th sample of k-th received input. 

Wide-scale frequency variations together with standard statistics determined from 

measured actual Far End Crosstalk (FEXT) and Near End Crosstalk (NEXT) power transfer 

functions are also considered and OLP, 64-QAM demodulation and Error Correction 

Decoding are implemented (ITU-T Recommendation G.993.2, 2006), (ITU-T Recommenda-

tion G.996.1, 2006). As well as OLP, three major types of general RFI mitigation approaches 

are proposed.  

The first one concerns various FE methods, whereby the affected frequency bins of the DMT 
symbol are excised or their use avoided. The frequency excision is applied to the MIMO 
GDSL signal with a complex RFI at each input of the receiver. The signal is converted into 
the frequency domain by applying an FFT at each input, oversampled by 8, and the noise 
peaks in the spectra are limited to the pre-determined threshold. After that, the signal is 
converted back to the time domain and applied to the input of the corresponding DMT 
demodulator. The higher the order of the FFT, the more precise the frequency excision 
achieved.  
The second approach is related to the so-called Cancellation Methods, aimed at the 

elimination or mitigation of the effect of the RFI on the received DMT signal. In most cases, 

when the SIR is less than 0 dB, the degradation in a MIMO DSL receiver is beyond the reach 

of the FE method. Thus, mitigation techniques employing Cancellation Methods, one of 

which is the RFI FIC method, are recommended as a promising alternative (Juang et 
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al, 2004). The FIC method is implemented as a two-stage algorithm with the filtering process 

applied independently at each receiver input. First, the complex RFI frequency is estimated 

by finding the maximum in the oversampled signal spectrum per each receiver‘s input. 

After that, using the Maximum Likelihood (ML) approach, the RFI amplitude and phase are 

estimated per input. The second stage realizes the Non-Linear Least Square (NLS) 

Optimization Algorithm, where the RFI complex amplitude, phase and frequency are 

precisely determined. 

The third RFI mitigation approach is based on the complex DSP parallel adaptive complex 

filtering technique. A notch ACFB is connected at the receiver’s inputs in order to identify 

and eliminate the RFI signal. The adaptation algorithm tunes the filter at each receiver input 

in such a way that its central frequency and bandwidth match the RFI signal spectrum (Lee 

et al, 2007). 

Using the above-described general simulation model of a MIMO GDSL system (Fig. 11), 

different experiments are performed deriving the BER as a function of the SIR. The RFI is a 

complex single tone, the frequency of which is centrally located between two adjacent DMT 

tones. Depending on the number of twisted pairs used 2, 3 or 4-pair MIMO GDSL systems 

are considered (Fig. 12) (Poulkov et al, 2009).  

The GDSL channels examined are subjected to FEXT, NEXT and a background AWGN with 

a flat Power Spectral Density (PSD) of - 140 dBm/Hz. 

The best RFI mitigation is obtained when the complex DSP filtering method is applied to the 

highest value of channel diversity, i.e. 4-pair GDSL MIMO. The FIC method gives the 

highest performance but at the cost of additional computational complexity, which could 

limit its hardware application. The FE method has the highest computational efficiency but 

delivers the lowest improvement in results when SIR is low: however for high SIR its 

performance is good.  

 

 

(a) 
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(b) 

 

 

(c) 

Fig. 12. BER as a function of SIR for (a) 2-pair; (b) 3-pair; (c) 4-pair GDSL MIMO channels 

In this respect, complex DSP ACFB filtering turns out to be an optimal narrowband 

interference-suppression technique, offering a good balance between performance and 

computational complexity.  
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3. Conclusions 

The use of complex number mathematics greatly enhances the power of DSP, offering 
techniques which cannot be implemented with real number mathematics alone. In 
comparison with real DSP, complex DSP is more abstract and theoretical, but also more 
powerful and comprehensive. Complex transformations and techniques, such as complex 
modulation, filtering, mixing, z-transform, speech analysis and synthesis, adaptive complex 
processing, complex Fourier transforms etc., are the essence of theoretical DSP. Complex 
Fourier transforms appear to be difficult when practical problems are to be solved but they 
overcome the limitations of real Fourier transforms in a mathematically elegant way.  
Complex DSP techniques are required for many wireless high-speed telecommunication 
standards. In telecommunications, the complex representation of signals is very common, 
hence complex processing techniques are often necessary.  
Adaptive complex filtering is examined in this chapter, since it is one of the most frequently-
used real-time processing techniques. Adaptive complex selective structures are 
investigated, in order to demonstrate the high efficiency of adaptive complex digital signal 
processing. 
The complex DSP filtering method, based on the developed ACFB, is applied to suppress 
narrowband interference signals in MIMO telecommunication systems and is then 
compared to other suppression methods. The study shows that different narrowband 
interference mitigation methods perform differently, depending on the parameters of the 
telecommunication system investigated, but the complex DSP adaptive filtering technique 
offers considerable benefits, including comparatively low computational complexity.  
Advances in diverse areas of human endeavour, of which modern telecommunications is 
only one, will continue to inspire the progress of complex DSP.  
It is indeed fair to say that complex digital signal processing techniques still contribute more 
to the expansion of theoretical knowledge rather than to the solution of existing practical 
problems - but watch this space!  
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