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1. Introduction 

Schizophrenia a complex neuropsychiatric disorder, is characterized by core impairments 

including positive symptoms (hallucinations, delusions), negative symptoms (blunted 

affect, alogia, social deficits, anhedonia, avolition), as well as persistent neurocognitive 

deficits (memory, concentration, and learning). Positive symptoms usually show good 

response to currently approved medications, all of which act exclusively by blocking D2 

receptors. Alternatively, the negative and neurocognitive symptoms respond poorly to D2 

antagonists, and therefore persist even in treated patients. Developing new therapies to 

target treatment-resistant symptoms requires identification of neural endophenotypes 

associated with these deficits (Braff and Light, 2005). Additionally, neurophysiological 

biomarkers may be objective indices of prominent features in schizophrenia patients such as 

cognitive dysfunction (Javitt et al., 2008). The brain processes underlying neurocognitive 

symptoms can be investigated using various neurophysiological measures such as event 

related potentials (ERP) and electroencephalography (EEG). Event-related potentials and 

EEG oscillations represent coordinated neuronal activity and are thought to be a means to 

assess fundamental mechanisms of memory, attention, learning, and other cognitive 

functions. Consequently, these measures are likely to be an appropriate biomarker for brain 

abnormalities in schizophrenia. As such, great effort has been made to link particular 

electrophysiological features with relevant aspects of schizophrenia including 

psychopathology, clinical outcome, genetics, and pharmacology.  

First, we will introduce the reader to the human EEG by giving an overview of the different 

components, highlighting each component’s clinical relevance, as well as addressing its 

limitations. Subsequently, we highlight the characteristics of ERPs of schizophrenia. In the 

second part of the review, current preclinical models (i.e., transgenic, pharmacological, and 

environmental approaches) of EEG abnormalities in schizophrenia will be discussed. We 

then discuss potential requirements of future model and methods in order to provide 

further insight into the pathophysiological disease mechanism and thus allow the 

development and evaluation of new treatments.  
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2. Human electroencephalogram (EEG) 

Electroencephalography was the first physiological technique used to examine the brain by 
recording electric field potentials with the capability to reflect both the normal and 
abnormal electrical activity of the brain. EEG evolved into an indispensable method for 
studying cerebral information processing, particularly due to the introduction of source 
localization techniques and the decomposition of event-related activity into its frequency 
components (Winterer, 2011). Conventionally, EEG is recorded from the scalp using 
numerous electrodes affixed to specific scalp locations and is represented as changes in 
potential difference. The scalp EEG reflects the summated potentials from a large 
synchronously activated population of pyramidal cells in the cerebral cortex. These 
potentials are thought to originate primarily from excitatory and inhibitory neural electric 
activity, including action potential (AP) and postsynaptic potentials (Dietrich and Kanso, 
2010). A small subset of EEG applications (e.g. epilepsy and neurooncology) makes use of 
implanting the electrodes directly inside the brain. In this section, we will refer only to EEG 
measured from the scalp surface.  
Recording paradigms. The pattern of the electrical brain activity is generally investigated in 
three different paradigms 1) at rest, 2) during sensory stimulation (tone, flash light), or 3) 
during a cognitively driven task. Oscillatory activity during the resting-state (baseline 
oscillations) is acquired while the subject lies still without engaging in a task. Irregularities 
in baseline oscillations are important indicators for non-physiological brain activity. Internal 
as well as external events (tone, flash light) induce changes in oscillatory activity, which are 
observable in the EEG. Commonly, the evoked EEG is assessed by engaging the patient in a 
research specific task (e.g. listening to tones, sort pictures, remember numbers). These 
complimentary techniques can be used to determine alterations in default as well as specific 
networks, and as such have been used to define measures of signal to noise processing in 
schizophrenia and related disorders. 
Advantages and limitations. Compared to in vivo ligand binding and hemodynamic 
measures including positron emission tomography (PET) and functional magnetic 
resonance imaging (fMRI) respectively, the greatest advantage of the EEG is the high degree 
of temporal resolution, which is typically 1ms or less. Such rapid data acquisition allows one 
to record complex pattern of neural interactions occurring within a physiological time range. 
Alternatively, hemodynamic and ligand binding measures provide a higher degree of 
spatial resolution than is possible using EEG techniques. Currently, the signal source 
localization for EEG lacks millimeter scale resolution due to blurring through the skull and 
scalp. Additionally, inverse source localization techniques are not suitable for deep 
structures and reply heavily on the constraints and assumptions of the models used. 
Consequently many possible EEG generator configurations may explain any given pattern 
of scalp EEG. Therefore, good spatial and temporal resolution is typically obtained by 
combining EEG with fMRI imaging (Javitt et al., 2008). 

2.1 Event-related Potentials (ERP)  

Electroencephalography provides a method to investigate general function of the brain 

including its reaction to particular stimuli that will be represented as changes in the EEG, 

globally known as event-related potentials (ERP) or evoked potentials (EP). These event-

related potentials are defined as the oscillatory brain responses that are triggered by the 

occurrence of particular stimuli (auditory, visual, somatosensory).  
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Auditory evoked potential. Significant voltage fluctuations are detectable resulting from 
evoked neural activity and allow one to measure distinct stages in neural information 
processing. Moreover, ERPs reflect sub-cortical and cortical information processing in real 
time and thus they provide a useful tool for examine cognitive mechanisms in both normal 
brain function and disorder-related impairments. Each acoustic stimulus consists of the 
three primary components frequency, intensity, and time (Weber et al., 1981). Frequency 
refers to the spectrum of sound in hertz (Hz) and relates to the location of physical 
stimulation along the basilar membrane of the cochlea and along the tonotopic 
representation of the central auditory pathways (G. Celesia, 2005). Relative to a control the 
intensity refers to a stimulus loudness which is expressed in decibels (dB). The third 
component time, commonly measured in either microseconds (µs) or milliseconds (ms), 
comprises duration, repetition rate, and phase of onset of the stimulus. 
The flow of information through the brain is reflected by the sequence of ERPs peaks. 
Human auditory evoked potential consists of three subsets of latency-defined components 
corresponding to progression of brain activity related to the auditory stimulus through the 
auditory pathway: brainstem auditory-evoked potentials (BAEP), middle-latency auditory-
evoked potentials (MLAEP), and long-latency auditory-evoked potentials (LLAEP). Early 
sensory responses characteristically occur within a 10-milisecond time period after the 
presentation of an auditory stimulus at high intensities (70-90 dB normal hearing level 
[nHL]). A cascaded activation of the brainstem nuclei along the auditory pathway generates 
six waves starting at the cochlear nuclear complex – in this regard, these responses are called 
brainstem evoked potentials (BAEP) or auditory brainstem potentials (ABP) and are 
represented by the roman numerals I-VI (Buchwald and Huang, 1975, Bolz and Giedke, 
1982). The I to V interpeak latency represents the brainstem transmission time as well as the 
brainstem auditory process. BAEP have been shown to be effective in the evaluation of 
integrity of the peripheral and central auditory pathways (G. Celesia, 2005). Clinical 
applications of BAEP are suitable in hearing assessment, determination of hearing loss, 
evaluation of brainstem function, and diagnosis of neurological disorders. Although BAEP 
are widely applied in clinical practice, concerns about the quality, comparability, and 
reproducibility have been raised (Chiappa and Young, 1985). In fact, the BAEP varies 
considerably in relation to changing aforementioned auditory stimulus parameters. 
Standardization of recordings techniques with respect to variables such as the positioning of 
the electrodes, stimulus characteristics, and click presentation time is important to obtain 
reproducible BAEPs.  
Middle-latency auditory evoked potentials (MLAEP), defined as responses between 10 and 
50ms (including the peaks N0, P0, N20, P50), are thought to correspond to the stimulus 
transduction in the auditory thalamus and auditory cortex (Picton et al., 1974). Most likely, 
these responses are originated from the medial geniculate nucleus and the primary auditory 
cortex (Woods et al., 1987). Middle-latency potentials find clinical application in the 
assessment of hearing threshold and identification of auditory perception (G. Celesia, 2005). 
Additionally, MLAPs provide a reliable method to asses thresholds to low frequencies that 
are crucial for speech perception (G. Celesia, 2005). However, contrary findings have been 
reported regarding to the reliability of the MLAP which arises questions about their clinical 
use. For instance, there is no consensus in terms of the presence of MLAPs in children. 
Several studies report the MLAP to be reliably recordable (Mendel et al., 1977, Mendelson 
and Salamy, 1981), others found the MLAP to be absent or unstable (Skinner and Glattke, 
1977, Davis et al., 1983). While present, MLAP may serve as an indicator of hearing 
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sensitivity, an absence of MLAP cannot be taken as an indication of hearing loss. 
Furthermore, in the normal population, the MLAP varies considerably, especially across age 
groups (Kraus et al., 1985). The difference in MLAP in normal subjects compared to MLAP 
in patients with neurological, cognitive, and speech disorders is also noted to be too small to 
equal an absent or abnormal MLAP with auditory pathway dysfunction. Longer latency 
components typically occur more than 50ms after acoustic stimulation reflecting the neural 
activity in the frontal cortex and cortical association areas (Gallinat et al., 2002). These 
potentials are predominately classified into obligate (N1, P1, P2) and task related 
components (P300, N400, MMN) referring to the dependence on characteristics of external 
(visual and acoustic) and internal stimuli, respectively. Thus, human LLAEP are mainly 
characterized by two major deflections, specifically the negative deflection N100, and the 
positive deflection P300 with latencies of 100 ms and 300 ms post, respectively. 
Abnormalities in LLAEP have been related with various type of psychopathology.  

2.2 Components of the human ERP 

The stages of information processing are mainly represented by following ERP components: 

P50, N100, P200, P300, and the mismatch negativity. P50 reflects the pre-attentive, N100 and 

P200 the early stages and P300 the late stage of information processing.  

Sensory gating denotes the ability of the central nervous system (CNS) to inhibit or 

suppress the response to irrelevant or distracting sensory input in order to focus on task-

relevant sensory information. Habituation following repeated exposure to the same sensory 

stimulus is an essential protective mechanism of the brain against flooding of the higher 

cortical centers with unnecessary information (Venables, 1964). A commonly used 

electrophysiological procedure to assess sensory gating in humans is the paired-click 

paradigm (PCP) (Adler et al., 1982, Boutros et al., 1993). During this task, a pair of identical 

brief auditory stimuli is presented at an interval of 500ms. Additionally, an interpair interval 

of 8-10s assure that the effects of one pair of stimuli do not carry over to the next pair 

(Zouridakis and Boutros, 1992). If inhibitory pathways are functioning normally, the 

amplitude of the response to the second stimulus (test response) is decreased because of 

inhibition pathways that are activated in response to a first (conditioning) stimulus. The 

quality of the sensory gating mechanism is expressed as the ratio of the two amplitudes 

(second amplitude/ first amplitude times 100)(Mazhari et al., 2011). Hence, low ratios 

indicate better sensory gating capability due to a stronger inhibition of irrelevant input. 

Mainly, three evoked potential components are used to examine the sensory gating: P50, 
N100, and P200. Under physiological conditions the amplitudes of P50, N100, and P200 to 
the second stimulus (S2) in the pair are significantly reduced compared to the first stimulus 
(S1) reflecting an inhibitory mechanism to minimize the disruptive effects of the second 
repeating and therefore irrelevant stimulus (Williams et al., 2011). Peaking between 15 and 
80 msec following stimulus presentation, P50 is the earliest major component that habituates 
to stimulus repetition. Attentional influences are minimal at this early stage of information 
processing making the P50 component optimal for the investigation of pre-attentive sensory 
mechanism (Grunwald et al., 2003). The N100, the largest component of the auditory evoked 
potential, has a peak latency of about 100ms and is a neurophysiological parameter 
reflecting arousal and attention (Strik et al., 1992). Its generation is conducted by a complex 
network of cortical areas (Rosburg et al., 2008). The amplitude of N100 is sensitive a long-list 
of individual related factors (e.g. attention, hearing threshold, motivation, drug and 
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smoking history) and physical characteristics of the stimulus (e.g., duration, intensity, rise 
time). N100 is primarily an exogenous component which is elicited by any discernible 
auditory stimulus, irrespective of attention. However, distinct differences between attended 
and unattended stimuli are observed (Rosburg et al., 2008). For example, the level of arousal 
has a modulating effect on the amplitude of the N100 evoked by unattended stimuli while 
the degree of selective attention influences the N100 amplitude evoked by attended 
stimulus. Auditory P200 is a positive event-related positive deflection automatically peaking 
roughly 200ms after stimulus presentation regardless of attention and task variables. 
However, its latency and amplitude co-vary with aspects of selective attention and stimulus 
encoding processes. P200 is reported to index early information processing, selective 
attention, and stimulus encoding (Shenton et al., 1989, Polich and Squire, 1993). Thus, the 
auditory temporal cortex has been highly implicated in P200 generation (Shenton et al., 
1989). It is noteworthy that brain regions that are not primary sources of P200 may modify 
the response as a function of experimental conditions (e.g., attentive versus inattentive).  
Mismatch Negativity. The ability to detect changes in auditory stimulus characteristics and 
adapt thereafter are basic neuronal functions that can be measured with ERPs in both, 
humans and animals. Mismatch negativity (MMN) reflects the context-dependent 
information processing which is required to compare a deviant incoming stimulus with the 
neural representation already stored in the transient auditory memory (Bomba and Pang, 
2004). When a string of tones with a specific regularity (sequence of homogenous tones) is 
presented, the brain stores the features of this auditory stimulation in a short-duration 
neural memory trace (Ulanovsky et al., 2004). While this echoic memory is still active, each 
new auditory input is compared to the existing trace for a break of regularity (deviant tone), 
which generates a neuronal adaptation giving rise to the MMN (Naatanen, 2000). MMN is 
most frequently elicited in an auditory oddball paradigm. A sequence of repetitive standard 
stimuli is randomly interrupted by a deviant oddball stimulus which may differ in stimulus 
characteristics such as pitch, intensity, or duration. Generators are located in the auditory 
and frontal cortices (Giard et al., 1990, Alho, 1995). Of particular importance, MMN is 
evoked irrespective of attention (e.g. present in comatose patients) (Fischer et al., 2000).  
Peaking between 100 and 225ms, MMN is a difference wave between responses to frequent 
and deviant stimuli. In clinical neurosciences, MMN has been widely used in various 
applications, in particular in schizophrenia research, due to its good reproducibility and the 
ability to assess it without a task (Garrido et al., 2009).  
P300. Probably the most extensive studied long-latency ERP component is the P300 (also 
termed P3), a time-locked positive deflection emerging 250 ms to 500 ms after attending 
stimulus. First described by Sutton et al. in 1965, P300 is thought to reflect an information 
processing cascade when attentional and memory mechanisms are engaged (Polich, 2007). 
Although related to the process of sensory stimulus mismatch detection, the P300 
component represents an attention-driven memory comparison process in which every 
incoming stimulus will be revised to detect possible stimulus feature modifications. 
According to whether changes are present or absent, the electrophysiological recordings will 
differ. If no change can be detected, only sensory evoked potentials are recorded (N100, 
P200, N200). If a new stimulus is presented and the subject allocates attentional resources to 
the target, the neural stimulus representation is altered and the consequent update leads to 
the generation of P300 (Polich, 2007). Similar to the MMN, the auditory P300 is elicited in 
context of an oddball paradigm, but in contrast to MMN elicitation the generation of P300 
requires the test-taking person to be attentive and respond physically or mentally to the 
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presented target. Commonly, subjects are instructed to either push a button following the 
infrequent target or to count deviants. The P300 is measured by quantifying its amplitude 
and its latency within a time window which varies (e.g. 250-500ms) as a function of the 
subjects age stimulus mode, and task conditions (Singh and Basu, 2009). P300 amplitude is 
also considered to index brain activity reflecting attention to incoming stimulus information 
when representations are updated (Polich, 2007, Turetsky et al., 2007b). The P300 latency is 
thought to be a measure of perceptual processing speed (Polich, 2007). The P300 consists of 
two subcomponents, an early potential P3a and a later component P3b. While P3a is evoked 
by any novel stimulus, the task-relevant P3b potential is only elicited during target stimulus 
processing (Javitt et al., 2008).  P3a is hypothesized to be generated by stimuli which change 
the content of the working memory. This attentional-driven neural activity may then be 
transmitted to brain areas associated with memory storage and subsequently generate the 
P3b. Supportively, time frequency analyses indicate that theta and alpha activity govern the 
relationship of the P3a to attention and P3b to memory processing (Intriligator and Polich, 
1994, Spencer and Polich, 1999, Polich, 2007). The P3a appears to be sensitive to specific 
neurotransmitters; in particular dopamine and glutamate have been implicated in the 
mediation of P3a. Specifically, clinical populations associated with reduced dopamine levels 
(e.g., Parkinson’s disease, rest-less leg syndrome) exhibited deficient P3a (Hansch et al., 
1982, Stanzione et al., 1991). Conversely, pharmacological enhancement of dopamine level 
was shown to increase P3a in patients with low baseline amplitudes (Takeshita and Ogura, 
1994). In addition, glutamatergic and GABAergic disequilibrium impair the generation of 
P3a. Watson found both the NMDA receptor antagonist ketamine and the GABA-A receptor 
agonist thiopental to reduce P3a amplitude, while ketamine also shortened the P3a latency 
(Watson et al., 2009). The second P300 subcomponent, P3b, is thought to serve as a measure 
of evaluation of environmental signals including contextual information (Squires et al., 1976, 
Barcelo and Knight, 2007). Furthermore, perceptual analysis and response initiation are 
suggested to be reflected by P3b. The locus coeruleus–norephedrine system (LC-NE) is of 
importance for the regulation of sensory signal transmission and was suggested to underlie 
the generation of P3b (Nieuwenhuis et al., 2005). Pharmacological evidence emerges from 
studies in which subjects were exposed to nicotine, a NE-release mediating agent, inducing 
a significant increase in P3b amplitude (Polich and Criado, 2006). 
In summary, P300 and its subcomponents may provide an insight to the mechanisms and 

pathways of various cognitive processes. However, the understanding and investigation of 

these coponents is coined by some noteworthy limitations. Studies of the differences in the 

P300 observed across various patient populations have been highly variable (Polich, 2007). 

Specifically, in only 10-15% of normal young adults the P3a can readily be observed. Despite 

simplicity of the task situation and the reliability of observing ERPs in the oddball 

paradigm, the cerebral mechanisms producing the P300 remain elusive. As such, the neural 

generators of P300 are imprecisely delineated (Soltani and Knight, 2000, Eichele et al., 2005, 

Linden, 2005).  

2.3 ERP measurements and analysis 

The primary step of all ERP analysis is to extract the event-related portion of the recorded 

field potentials. Detecting ERP activity within ongoing activity is a general problem since 

brain responses to individual sensory, cognitive, or motor events are relatively small 

compared to the steadily ongoing background activity, also called noise, (i.e., the activity not 
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related to the stimulus). Thus, to enhance the responses in contrast to the background noise 

(i.e., improve signal-to-noise ratio) the analysis of ERP is done by averaging the oscillatory 

activity of a series of trials.  

Power measure. Power reflects the amplitude of an oscillation. Amplitude (µV) is defined as 
difference between the mean pre-stimulus baseline voltage and the largest positive or 
negative going peak of the ERP waveform with in a time window. Its latency (ms) defines 
the time from stimulus onset to the point of maximum amplitude (Polich, 2007). For a 
stationary signal, in which the EEG does not change over time, the Fast-Fourier Transform 
(FFT) is used to spectrally decompose the time-invariant signal into component frequencies. 
The power spectrum yielded by FFT analysis is used for resting-state tasks. The analysis of 
non-stationary neural activity requires signal-processing methods that compute changes in 
oscillatory activity at a particular frequency across time. Oscillatory responses can be 
categorized by their phase- and temporal-relationship to repeated trials of a sensory or 
cognitive event (Galambos and Makeig, 1992, Tallon-Baudry et al., 1998). Oscillations 
directly in phase with a stimulus (i.e., phase- and time-locked) are called evoked oscillations. 
Induced oscillatory activity is modulated by a stimulus but is not strictly phase-locked to 
event onset (i.e., time- but not phase-locked). Oscillatory activity that is in-phase with a 
stimulus averages across trials to produce an evoked-response assuming that (1) the delay of 
the electrical brain responses relative to the stimulus is invariable across the testing trial; and 
(2) the ongoing background activity is  steady (Da Silva, 2005). In the time domain, induced 
oscillations tend to average out and thus require different single-trial signal processing 
methods for identification. Finally, total power refers to the sum of evoked and induced 
power and is typically represented as difference from or a percentage change from pre-
stimulus baseline power at each frequency (Gandal et al., 2010). 
Phase measures. The main approach is to decompose a neural time series into phase 

information at a given frequency. Applying time-frequency transforms, one can investigate 

changes in frequency-specific measures during a given task with millisecond precision. 

Event-related spectral perturbation (ERSP) is a measure of change of power from baseline 

associated with a stimulus presentation, and includes both phase locked and non-phase 

locked activity (Shin et al., 2010). Time-frequency transforms also provide measures of the 

phase of oscillations, allowing for investigation of phase-synchrony. Phase-synchrony is 

independent of oscillatory amplitude and is therefore thought to be a more direct measure 

of the synchronization of neural signals. The phase locking factor (PLF) (i.e., intertrial 

coherence, ITC) describes the similarity in phase at a given point in time across trials at a 

single electrode site. This measure is unitless, ranging from 0 to 1.  

Auditory Steady State Responses (ASSR) are middle-latency auditory evoked potentials 
triggered by presentation of auditory stimuli at rates between 1 and 200 Hz or by 
continuous tones modulated in amplitude and or frequency. The responses from both types 
of stimuli are a metric for looking at synchronous neuronal activity in the brain’s auditory 
processing. Conventionally, values of 0.5, 1, 2 and 4 kHz are used for the continuous carrier 
tone whereas repetitive stimulus trains are often presented around 40 Hz (Galambos et al., 
1981, Herdman and Stapells, 2001, Luts and Wouters, 2005). The modulation of the carrier 
tone occurs in amplitude or frequency at a set rate. The response to these periodic 
modulations or stimulation trains is measured for phased locking and amplitude. ASSR 
stimuli contrast with the broadband clicks delivered with Auditory Brain Responses (ABRs). 
Whereas the auditory stimulus of the ABRs consist of a spectrum of tones in one stimulus 
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click, the ASSR stimulations (especially with continuous tone amplitude modulation) can 
target specific tones, giving ASSRs a level of frequency-specific information sensitivity that 
is not present in the ABR metric (Roeser, 2007). ASSRs therefore give a consistent 
measurement of brain responses reflective of information processing and hearing thresholds 
without the need of subject involvement. 
Frequencies. Oscillatory activity is generally evaluated within EEG frequency ranges: delta 
(0–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma (>30 Hz). 
Furthermore, each range is linked to specific perceptual and cognitive processes as well as 
behavioral states (Table 1) (Basar et al., 2001). In 1929, Hans Berger first depicted measurable 
brain activity at a frequency of ~10Hz and termed this oscillation alpha (Berger, 1929). 
Alpha oscillations are correlated to brain function such as inhibition, attention, 
consciousness  and primarily generated in thalamus, hippocampus, and cortical regions 
(Uhlhaas and Singer, 2010). The theta range is associated with perceptual processing, 
learning, memory, and synaptic plasticity (Huerta and Lisman, 1993). Cortico-hippocampal 
circuits have been found as key generators of the rhythm (Ehrlichman et al., 2009a). Beta 
oscillations are believed to be generated in overall cortical structures and are involved in 
sensory gating, attention, and long-term synchronization (Kopell et al., 2000, Gross et al., 
2004, Hong et al., 2008a). Gamma oscillations have received special attention in the research 
of neuropsychiatric disorders due to their alleged role in sensory binding, selective 
attention, associative and perceptual learning, encoding and retrieval of memory traces 
(Singer, 1993, Bragin et al., 1995, Chrobak and Buzsaki, 1998, Miltner et al., 1999, Fries et al., 
2001). Gamma-band oscillations depend on intact function of the fast-spiking GABAergic 
(parvalbumin containing) interneurons (Fuchs et al., 2001). These subsets of inhibitory 
GABAergic interneurons, located in hippocampal and cortical areas, are proposed to play a 
primary role in the generation of the gamma oscillations (Uhlhaas and Singer, 2010).  
 

Frequency range Primary generators Function 

Alpha (8-12 Hz) 
Thalamus, hippocampus, cortical 
regions 

Inhibition, attention, 
consciousness 

Theta (4-7 Hz) Cortico-hippocampal circuits 
Perceptual processing, 
learning, memory, synaptic 
plasticity 

Beta (13-10 Hz) Overall cortical structures 
sensory gating, attention, 
and long-term 
synchronization 

Gamma (30-200 
Hz) 

Hippocampal and cortical  

Perception, selective 
attention, consciousness, 
encoding and retrieval of 
memory traces 

Table 1. Functional correlates of neural oscillations 

3. EEG abnormalities in schizophrenia  

3.1 Abnormalities in obligate ERP 

Neurophysiological measures have been widely applied with regard to schizophrenia since 
they provide the ability to index abnormalities in information processing, to localize 
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involved brain regions and correlate well with negative and cognitive deficits. Supporting 
evidence from EEG studies suggest that the core pathophysiology of schizophrenia is 
related to abnormal brain dynamics, neural synchronization, and connectivity. 
Schizophrenia patients exhibit deficits in amplitude and/or gating of the P50, N100, and 
P200 obligate components, as well as reductions in task related mismatch negativity, P3a, 
and P3b. Thus, this section will introduce readers to the characteristic ERPs of 
schizophrenia, which are typified by alterations in all amplitude, latency, and gating of 
several key components relative to healthy population. 
Mismatch negativity provides a useful tool for investigating mechanism underlying 

cognitive dysfunction in patients suffering from schizophrenia as well as autism, dyslexia, 

and dementia. Initially, Shelley and colleagues found abnormalities of MMN in individuals 

with schizophrenia (Shelley et al., 1991). Similarly, more than 30 studies report a significant 

attenuated MMN amplitude in patients with schizophrenia, for both frequency and latency 

(Umbricht and Krljes, 2005). Thus, these findings are believed to reflect the degraded 

auditory perception, a feature linked with schizophrenia (Naatanen, 2003). For instance 

according to Javitt, schizophrenia subjects exhibit impairments not only in generation of 

frequency-MMN, but also in tone-matching performance (Javitt, 2000). Additionally, studies 

have noted a correlation between the magnitude of the MMN and disease severity (Catts et 

al., 1995). However, it is necessary to note that changes of MMN parameters (e.g., 

prolongation of latency and reduction of amplitude) are not sufficiently specific to diagnose 

particular disease. Disturbances in the glutamatergic system, more specifically the 

inadequate NMDA-receptor neurotransmission, have been implicated in neurocognitive 

deficits of schizophrenia (Javitt and Zukin, 1991). Thus, the assumption that MMN depends 

on intact NMDA receptor signaling makes MMN a particularly interesting paradigm for 

schizophrenia research. NDMAR antagonists, such as ketamine and phencyclidine (PCP), 

have been shown to selectively abolish the MMN suggesting the NMDAR-dependent 

neurotransmission to underlie deficits in MMN generation and echoic memory (Javitt, 2000, 

Umbricht et al., 2000, Naatanen, 2003). Furthermore, MMN has been proved useful in 

clinical investigations of schizophrenia patients due to its robustness to changes in attention 

and performance (Garrido et al., 2009). Intrestingly, also siblings of schizophrenia patients 

have been reported to exhibit impaired working memory reflected in a reduction of the 

MMN amplitude (Sevik et al., 2011). Although the literature contains conflicting results, 

MMN may serve as an index of genetic predisposition to schizophrenia and disease 

progression (Jessen et al., 2001, Michie et al., 2002, Shinozaki et al., 2002). 

Disturbances in information processing are key features of schizophrenia (Braff, 1993). 
Insufficient inhibitory processing of repetitive, irrelevant acoustic stimuli has been reported 
in patients as well as their first-degree relatives (Bramon et al., 2004, de Wilde et al., 2007). 
Using a double-click auditory paradigm, Adler and others have noted that schizophrenia 
patients have a diminished gating of the auditory P50 (Adler et al., 1982) (Judd et al., 1992, 
Olincy and Martin, 2005). While in healthy subjects a repeated presentation of an auditory 
stimulus causes a >60% reduction in S2 amplitude, schizophrenia patients routinely fail to 
suppress their response to the second click (Adler et al., 1982, Braff and Geyer, 1990, Stevens 
et al., 1991). Adler and colleagues also noted a diminishment of the amplitude and latency of 
the response to the first stimuli in unmedicated individuals with schizophrenia (Adler et al., 
1986). Neuroleptics increase P50 latency and amplitude, but do not normalize conditioning-
testing ratios. As such, the observed gating deficits may actually result as an 
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epiphenomenon of medication, rather than as part of the disease (Siegel et al., 2005). Despite 
this limitation, P50 gating has been interpreted by some to demonstrate reduced capability 
to extract relevant from irrelevant information, leading to an overload of information 
reaching consciousness and cognitive fragmentation (Venables, 1960, Patterson et al., 2008). 
This may contribute to many of the difficulties people suffering from struggle with 
including the inability to stay focused during conversation or the being overwhelmed by the 
physical environment (Freedman et al., 1996, Turetsky et al., 2007b, Williams et al., 2011). 
The brain regions and their neural dynamics that underlie the malfunctioning of inhibitory 
processes still remain to be determined. Furthermore, it should be noted that this P50 gating 
phenomenon has not been replicated outside a small number of institutions, suggesting a 
large impact of operator processing on the measure (de Wilde et al., 2007). As such, P50 
gating is not an ideal measure of signal processing and should not be used in place of more 
robust and reproducible findings using other ERP measures and components. 
Patients with schizophrenia exhibit deficits in N100 generation, especially at long 

interstimulus intervals (ISI) and extremely short ISIs. Amplitude reduction and latency 

delay of the auditory N100 are robust physiological abnormalities in schizophrenia (Roth et 

al., 1981, Laurent et al., 1999). However, the findings are inconsistent and seem to depend on 

the experimental conditions used (Davis et al., 1966, Pritchard, 1986). Reduced N100 

amplitude reflects deficits in mechanism involved in initial sensory processing and early 

selective attention, prominent features seen in schizophrenia (Strik et al., 1992, Frangou et 

al., 1997). Although N100 amplitude reduction is relatively independent of symptom 

severity, Ahveninen and colleagues proposed N100 reduction could serve as an 

endophenotypic trait marker of functional brain changes related to genetic predisposition to 

schizophrenia (Ahveninen et al., 2006). There is some evidence that N100 amplitude 

reduction is also seen in first-degree relatives (Blackwood et al., 1991, Turetsky et al., 2008). 

For instance, a combined EEG/MEG study on monozygotic and dizygotic twins discordant 

for schizophrenia revealed an N100 amplitude reduction in both schizophrenia patients and 

their unaffected siblings (Ahveninen et al., 2006). More evidence for the heritability of the 

N100 amplitude comes from similar twin studies (Blackwood et al., 1991, Frangou et al., 

1997). Furthermore, a reduction in N100 amplitude appears not to be specific to 

schizophrenia in that it is also reported in patients with bipolar disorder, and 

hypothyroidism (Umbricht et al., 2003, Oerbeck et al., 2007). Reduced gating of the N100 

response to repeated stimulation has also been demonstrated in schizophrenia (Turetsky et 

al., 2008).  

The auditory P200 indexes early stimulus processing and thus is informative to study in 
schizophrenia, which has been linked to deficits in early information processing. Numerous 
reports have demonstrated that amplitude and gating of the P200 are reduced in 
schizophrenia (Roth et al., 1981, Boutros et al., 2004a, Boutros et al., 2004b, Lijffijt et al., 
2009a, Gjini et al., 2010). Moreover, reduced amplitude appears to be related to negative 
symptoms, in particular anhedonia and avolition (Shenton et al., 1989). P200 gating shows a 
positive relationship to attentional performance and the post-attentive cognitive P300 
response (Boutros et al., 2004b, Lijffijt et al., 2009b). Pharmacological studies indicate various 
neurotransmitters, such as glutamate and dopamine, contribute to the generation of P200. 
As such, healthy people display schizophrenia-like decreases in P200 amplitude during 
acute exposure to ketamine (Murck et al., 2006). Moreover, amphetamine administration 
reduces P200 amplitude to the first stimulus in an auditory gating paradigm, suggesting 
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that decreased NMDA-mediated transmission may produce the observed attenuation of the 
P200 through facilitation of dopamine release (Connolly et al., 2004). Various family studies 
indicate that there are abnormalities in P200 among relatives of schizophrenia patients, 
suggesting a substantial genetic component to this endophenotype (Frangou et al., 1997, 
Freedman et al., 1997). Similar to N100, the P200 has further been suggested as a measure for 
sensory gating since both components produce less inter-subject and inter-protocol 
variability as compared to P50. 
In the oddball paradigm, the P300 response indexes cortical responses related to recognizing 
and assessing the significance of rare stimuli. Meta-analysis has shown that schizophrenia 
patients have significantly reduced P300 amplitudes and that their P300 latency is 
significantly delayed compared to normal controls (Bramon et al., 2004). Diminished P300 
may indicate the presence of unsteady background activity that interferes with detecting the 
identity and salience of the task-related stimulus (Pfefferbaum et al., 1989). Additionally, 
Pritchard suggested that P3 amplitude attenuation may potentially serve as a trait marker 
for the negative symptoms of schizophrenia (Pritchard, 1986). Several studies support a 
negative correlation between P3 amplitude and severity of negative symptoms, but 
emphasize its validity only in medicated patients (Roth et al., 1975, Pfefferbaum et al., 1989). 
Anti-psychotic medications were also shown to significantly affect the amplitude but not 
latency of P300 (Bramon et al., 2004). Interestingly, it has been proposed that the P300 
waveform is a physiological correlate of an update in working memory related to changes in 
the environment (Donchin and Isreal, 1980). This idea is supported by the finding that P300 
amplitude and latency correlate with neuropsychological performance scores in patients. 
Notably, there are correlations between decreased P300 amplitude, lower IQ and poorer 
memory performance as well as increased P300 latency and lower IQ, poorer total memory 
scores, and serial clustering (Shajahan et al., 1997). Evidence that P300 abnormalities may 
serve as an indicator for genetic vulnerability arises from recent studies which found similar 
P300 alteration in first-degree relatives including decreased amplitude and increased latency 
(Saitoh et al., 1984, Blackwood et al., 1991, Kidogami et al., 1991).  
In addition to the task related P3, also known as the P3b, an automatic, task-independent 

portion of the P3 called the P3a is thought to be modulated by both glutamate and 

dopamine (Siegel et al., 2003). A growing body of evidence suggests that there is also a 

reduction in P3a amplitude in schizophrenia (Mathalon et al., , Mathalon et al., 2000, Alain 

et al., 2002, Devrim-Ucok et al., 2006, Ford et al., 2008, van der Stelt and van Boxtel, 2008, 

Mathalon et al., 2010). Prolongation of P3a latency is also observed in patients (Frodl et al., 

2001). Within the schizophrenia population, patients with prominent auditory 

hallucinations manifest a P3a amplitude reduction compared to those without 

hallucinations (Fisher et al., 2010). This data has been interpreted to indicate that 

hallucinations reflect a preferential attention to internally generated brain activity, relative 

to incoming exogenous stimuli (Fisher et al., 2008). Furthermore, P3a has been linked to 

functional outcomes in schizophrenia in that reduced P3a amplitude is associated with 

extended illness duration  and increased depression-anxiety symptoms (Mathalon et al., 

2000, van der Stelt and van Boxtel, 2008).  

Deficient processing of contextual information is a prominent feature of cognitive 
dysfunction in schizophrenia. Thus, P3b response has been extensively studied in 
schizophrenia and shows promise both as a measure of attentional processes during signal 
detection and as a predictor of performance on formal laboratory tests of cognition. 
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Suppressed P3b amplitude is a widely replicated finding in schizophrenia, while P3b 
latency elongation is less consistently reported (Blackwood et al., 1991, Ford et al., 1992, 
Roxborough et al., 1993, Coburn et al., 1998, Jeon and Polich, 2003). Most investigations of 
P3b have been conducted in chronic schizophrenia populations. Thus, it is of considerable 
interest to determine if these abnormalities are present at onset or are exacerbated by 
chronicity. To address this question, few studies have investigated the P3b component in 
first-episode schizophrenia (FES) and consistently report a reduction in P3b amplitude as 
well as prolonged latencies (Hirayasu et al., 1998, Brown et al., 2002, Demiralp et al., 2002, 
Wang et al., 2003). Furthermore, the P3b amplitude appears to correlate inversely with the 
disorder’s duration (Olichney et al., 1998, Mathalon et al., 2000, Martin-Loeches et al., 2001). 
Brown and others identified similarities in P3b amplitudes in FES and CS patients (Hirayasu 
et al., 1998, Brown et al., 2002). Similarly, unaffected first-degree relatives of patients have 
frequently been reported to exhibit reduced P3b amplitudes (Blackwood et al., 1991, 
Kidogami et al., 1991, Roxborough et al., 1993). Additionally, most studies of P3 and its 
subcomponents have been performed in medicated patients. Thus, the effect of neuroleptics 
on these ERP components remains controversial. Some studies suggested that antipsychotic 
medication increases the P3b amplitude, in contrast to others which failed to replicate this 
finding (Pfefferbaum et al., 1989, Ford et al., 1994, Coburn et al., 1998, Umbricht et al., 1998). 
Lastly, it is important to note that the alterations of P3a and P3b are not specific to 
schizophrenia. For instance, bipolar depression is linked to similar impairments. Although 
the lack of specificity is a limitation with respect to addressing the unique pathophysiology 
of schizophrenia, the P3 family may still serve as a trait marker for schizophrenia 
vulnerability. 

3.2 Event-related Spectral Perturbations (ERSP) abnormalities in schizophrenia 

Neural oscillation and their synchronization are thought to reflect important mechanisms 

for interneural communication and binding of information that is processed in distinct brain 

areas (Roach and Mathalon, 2008). These oscillations are decomposed in order to examine 

individual frequency ranges. These frequency domains are linked to distinct cognitive and 

perceptual processes, some of which are known to be impaired in schizophrenia. Therefore, 

this section will discuss the schizophrenia-like alterations in time-frequency measures in 

baseline, evoked and non-evoked auditory responses across all frequency. Furthermore, a 

growing body of evidence indicates that people with schizophrenia also display abnormal 

EEG rhythms, in both high (beta and gamma) and low frequency bands (delta and theta). 

Contemporary EEG studies mainly focus on gamma oscillations because this range is 

thought to reflect a fundamental mechanism to integrate neural networks and play a critical 

role in cognitive function (Tiitinen et al., 1993, Gandal et al., 2010). Alternatively, earlier EEG 

studies in schizophrenia focused primarily on lower frequencies and found substantial 

evidence of abnormalities.  

Increased pre-stimulus theta- and delta-band activity have consistently been observed in 
schizophrenia, occurring; 1) both locally and among distant electrodes; 2)  regardless of 
medication history, and 3) in both first-episode and chronic patients (Morihisa et al., 1983, 
Morstyn et al., 1983, Sponheim et al., 1994). Converging evidence from magnetic resonance 
imaging studies supports that the default network in schizophrenia tends to be overactive 
(Fehr et al., 2003, Harrison et al., 2007). Positive symptoms were found to positively 
correlate with an elevated resting-state theta activity in certain brain areas (Garrity et al., 
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2007). Contrary to resting-state activity, a number of studies using time-frequency measures 
revealed a reduction in theta and delta power of both phase locked and non-phase locked 
responses to an auditory stimulus in individuals with schizophrenia (Ford et al., 2008, 
Doege et al., 2009). Although a number of abnormal findings have been reported in the delta 
frequency range among people with schizophrenia, these data have been inconsistent across 
studies (Siekmeier and Stufflebeam, 2010). 
Several investigators reported reduced or even absent power and coherence of alpha 

activity in schizophrenia during resting EEG and sustained attention (Itil, 1979, Merrin and 

Floyd, 1992). Also, Sponheim and others noted that individuals with schizophrenia exhibit 

reduced alpha activity, along with increased neighboring frequencies in the theta and beta 

bands. However, within the patient group no further differences were found between first-

episode and chronic patients or between medication-naïve and medicated patients 

(Sponheim et al., 1994, Boutros et al., 2008). This consistency among clinical populations 

suggests that these abnormalities are a stable characteristic of schizophrenia and not 

treatment-related or duration-dependent. These EEG alpha alterations appear to correlate 

with the severity of negative symptoms. Indeed, repetitive transcranial magnetic stimulation 

was reported to improve negative symptoms and concomitantly to increase the alpha 

activity amplitude (Jin et al., 2006).  As reviewed above, alpha oscillatory activity is 

associated with attention, which is impaired in schizophrenia. Investigation of evoked and 

induced alpha oscillations in schizophrenia revealed reduced alpha power and impaired 

ability to synchronize the phase of ongoing alpha activity. Greater trial-by-trial variability 

may be due the interference of ongoing background brain activity with the recruitment of 

neural systems which is indispensable for the processing of sensory information. For 

example, disturbed phase-locking leads to an increased trial-by-trial variability and 

diminished amplitude of certain ERP components, such as the N100 (Makeig et al., 2000, 

Gallinat et al., 2004, Haenschel et al., 2009, White et al., 2009). The influence of alpha 

oscillations on N100 is mirrored by a positive correlation between attention and N100 

amplitude. Taken together, this may delineate the mechanism of impaired attention in 

schizophrenia. Furthermore, White proposed that an interaction between alpha and gamma 

oscillations is necessary for high fidelity and integrated communication within and across 

brain structures, facilitating coherent sensory registration (White et al., 2009). Given that a 

growing body of evidence also reveals disturbances in gamma oscillations in schizophrenia, 

it is possible that the interaction between early gamma and evoked alpha activity is 

diminished in schizophrenia. Gamma abnormalities have been reported in a variety of 

contexts, including in sensory-driven, cognitive, and resting-state paradigms. These deficits 

are present at first-episode psychosis, in unmedicated patients, and, to a lesser degree, in 

unaffected relatives, suggesting that abnormal gamma synchrony is a heritable feature of 

schizophrenia(Rodin et al., 1968b, Leicht et al., 2009)Symond et al., 2005). In resting-state 

paradigms, several studies reported elevated high-frequency EEG activity in schizophrenia 

(Finley, 1944, Itil et al., 1972, Fenton et al., 1980). Accordingly, two large studies found 

elevated pre-stimulus gamma power in schizophrenia patients during auditory paradigms 

(Winterer et al., 2004, Hong et al., 2008b). However, no group-differences in pre-stimulus 

gamma power were observed in smaller study, perhaps reflecting a need for larger sample 

sizes to detect subtle changes (Brockhaus-Dumke et al., 2008). Numerous studies have also 

investigated evoked and induced gamma oscillatory activity in schizophrenia. The overall 

findings suggest a reduction in stimulus-related gamma-band oscillations (Leicht et al., , 
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Basar-Eroglu et al., 2009, Leicht et al., 2010a, Leicht et al., 2010b) (for review see (Gandal et 

al., 2010). However, not all studies found differences in evoked gamma-activity between 

patients and healthy comparison individuals, again suggesting that gamma band 

abnormalities may be subtle and require relatively large samples with sufficient power to 

detect population differences (Blumenfeld and Clementz, 2001, Brockhaus-Dumke et al., 

2008). 
Finally, lower levels of beta oscillatory activity have been observed in patients with 
schizophrenia (Rutter et al., 2009). In sleep studies, unmedicated patients had higher beta 
power at all stages of the sleep compared to healthy individuals (Tekell et al., 2005). 
Alternatively, deficient power and synchronization of evoked and induced EEG rhythms in 
the beta and gamma bands have frequently been reported (Clementz et al., 1997, Cho et al., 
2006, Uhlhaas et al., 2006). Interestingly, these findings were replicated in medication-naïve 
and chronically medicated patients. However like other frequencies, contradictory and 
negative finding exists. Thus, few studies report an augmentation in evoked beta activity, 
which may be due to methodological or analytical differences (for review see (Uhlhaas and 
Singer, 2010).  

3.3 Auditory steady-state response abnormalities in schizophrenia 

Auditory steady-state auditory responses (ASSRs), in which the evoked potential entrains to 

stimulus frequency and phase, are reduced in amplitude and phase locking in patients with 

schizophrenia, particularly at 40 Hz (Kwon et al., 1999, Brenner et al., 2003, Light et al., 2006, 

Krishnan et al., 2009). Importantly, these deficits are present in schizophrenia patients 

during their first hospitalization. Several animal models of schizophrenia display similar 

ASSR disruption as those found in humans (Spencer et al., 2008, Vohs et al., 2010). These 

issues suggest deficiencies in the coordinated timing of neural populations within specific 

types of networks (Maharajh et al., 2010). The Gamma frequency has been correlated with 

many of the neuro-cognitive behaviors that are disrupted in schizophrenia (Haig et al., 

2000). Thus, ASSR in the gamma spectrum may offer an objective biomarker of 

schizophrenia and provide further insight as to how disruptions in gamma affect neuronal 

processing and behavior. ASSRs have also been used to help elucidate potential mechanisms 

by which hallucinations in schizophrenia are associated with phase synchronization 

between the primary auditory cortices (Mulert et al., 2010). 

4. Preclinical models of EEG abnormalities 

4.1 Approaches to modeling EEG in mice 

Historically, EEG and ERPs have been most commonly obtained from deeply anesthetized 
animals.  In such preparations, the animal is typically placed within a stereotaxic apparatus 
and surgical procedures are used to remove the skull and expose the brain. A recording 
electrode is then lowered into the appropriate location in the brain and recordings are 
obtained. Typically, auditory stimuli are delivered through speakers located in the 
stereotaxic apparatus. There are several advantages to the use of this methodology. First, 
since the electrode is not permanently affixed to the skull, it can be moved around so as to 
obtain the best signal possible. This is especially true if the researcher is interested in 
obtaining ERP/EEG recordings within cell populations that can be easily identified 
according to a unique firing pattern. Second, since the auditory stimulus is presented at a 
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very short and invariant distance from the auditory canal, the resulting EEG response will 
typically show low levels of variance across trials and across different animals, leading to 
very stable and reliable results. Third, since the animal is anesthetized the EEG/ERP is less 
likely to be influenced by such factors as state of arousal, movement or attention to 
extraneous stimuli. While less popular in recent years, this methodology is still widely used 
within some research communities and is especially useful when one is interested in 
studying EEG and electrophysiology primarily as an end in itself. A major drawback to 
recording EEG in this manner lies in the limited translatability to the types of EEG 
methodologies used in patient populations.  If this is a goal of the study, recording EEG in 
awake and freely moving animals is the more optimal choice. While the results obtained 
using this methodology can indeed be confounded by extraneous factors, such factors may 
actually be useful to study within the context of translational research. For example, changes 
in arousal can occur following exposure to drugs that stimulate nicotinic receptors and EEG 
techniques could be used to examine the neural processes responsible for this change. It 
should be noted that these two techniques can produce very different results under some 
circumstances. For example, amphetamine increases theta oscillations in anesthetized 
animals, but decreases theta in awake animals. This difference could be due to the fact that 
the inherent state of arousal is greatly different in the two cases, or could be due to the 
locomotor enhancing effects of amphetamine, which could act to increase movement related 
theta in awake but not anesthetized animals.  
A second consideration involves the question of electrode placement. In some cases, EEG 

and ERPs can be obtained from electrodes placed on the scalp (in humans) or the surface of 

the cortex (in animals). Alternatively, electrodes can be placed within a particular region of 

the brain, such as the hippocampus, that the researcher may be interested in.  Superficially, 

recording from the surface of the cortex offers the greatest similarity to the scalp recordings 

ordinarily obtained in human subjects and, thus, may be of greatest interest to researchers 

interested in translational studies. However, it should be noted that there is often little 

overlap in organization and topography between human and animal cortices, and this could 

lead to divergent or erroneous results. Similarly, since the relative size of the cortex is much 

smaller in animals and since electrical activity can carry over great distances in the brain it is 

quite likely that surface recordings in animals are strongly influenced by electrical activity 

occurring in sub-cortical areas. This is much less likely to be an issue in humans, given the 

much greater size of the cortex in this species. Traditionally, depth recordings have been the 

exclusive domain of animal researchers, due to the difficulty of obtaining depth recordings 

in human subjects (although such recordings have been obtained in humans during surgical 

intervention to reduce epileptic seizures). In general, depth recordings have been most 

widely used by researchers interested in studying the function of particular brain regions 

and offer a great opportunity to study neural activity within isolated brain regions. It should 

be noted that there are some EEG phenomena that are only see during depth recordings in 

isolated regions. A primary example of this is movement-induced increases in hippocampal 

theta, which are only observed when recording EEG directly in the hippocampus (Krause et 

al., 2003). Nonetheless, depth recordings offer many advantages over surface electrodes. 

First, since depth electrodes are located within the neural tissue, as opposed to being on top 

of the brain or on the scalp, signals obtained with depth recordings usually have much 

greater amplitude than those obtained from the surface. As a consequence, there is typically 

less variance across trials and across animals in depth recordings.  Second, depth recordings 
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are less susceptible to the confounding effects of muscle activity or movement that often 

occur when recording from the scalp. Finally, due to the emergence of deep brain 

stimulation as a method to improve brain function in various disease states, it is becoming 

increasingly possible to record from within particular brain regions in humans as well, 

suggesting that the results from depth recordings done in rodents may become increasingly 

translatable to human studies (McCracken and Grace, 2009).   

4.1.1 EEG from human to mouse  

In addition to human studies, the neural information processing has been investigated with 
auditory evoked potentials in cats, rats, mice, and monkeys (Cook et al., 1968, Javitt et al., 
1996, de Bruin et al., 1999, Javitt et al., 2000, de Bruin et al., 2001, Pincze et al., 2001, Ehlers 
and Somes, 2002). Rodents were shown to share many similarities with humans for specific 
portions of the ERP, including mouse analogs of the P50, N100, P200, and P300 components. 
These components are named the P20, N40, P80, and P120 in mice according to the time 
point the deflection takes place. They occur at approximately 40% of the latency of the 
human components and share similar overall morphology with the human components in 
response to parametric manipulation and pharmacological agents (Iwanami et al., 1994, 
Siegel et al., 2003, Hajos, 2006). The latency shift may be explained by the difference in brain 
size. As such, shorter distances allow faster progression of neural activity. However, the 
literature about the analogy of humans and rodent ERP is controversial and highly debated 
(Ehlers et al., 1997, Miyazato et al., 1999).  

4.1.2 Mouse correlates of the human ERP waveform 

The human P50 component is a positive deflection that occurs approximately 50 
milliseconds following the onset of sensory stimulation. Mice show a similar early positive 
ERP component that emerges roughly 20 milliseconds after stimulus onset (Siegel et al., 
2003, Maxwell et al., 2004, Umbricht et al., 2004). The mouse P20 shows a number of 
similarities to the human P50, including inter-stimulus interval (ISI) and intensity functions 
(Onitsuka et al., 2000, Maxwell et al., 2004), as well as pharmacological response to a wide 
variety of agents including amphetamine, ketamine, nicotine and neuroleptics (Stevens et 
al., 1995, Maxwell et al., 2004, Halene and Siegel, 2008, Rudnick et al., 2009). These factors 
have led to the suggestion that the P50 could potentially serve as a useful biomarker for 
detecting disease presence and for assessing treatment response. Several studies have 
shown correlations between reduced P50 (gating and amplitude) and impaired performance 
on measures of sustained attention and speed of processing (Cullum et al., 1993, Erwin et al., 
1998, Potter et al., 2006, Smith et al., 2010). Decreases in P50 gating and amplitude are 
related to reduced working memory performance in schizophrenia (Cullum et al., 1993, 
Smith et al., 2010). Furthermore, mice show a negative deflection in the ERP around 40 
milliseconds that shares a remarkable similarity with the human N100. For example, both 
the mouse N40 and human N100 show decreased amplitude during acute exposure to 
ketamine (Maxwell et al., 2006a, Murck et al., 2006, Lazarewicz et al., 2010). Furthermore, the 
mouse N40 has been shown to be sensitive to changes in stimulus novelty (MMN). 
Ketamine administration attenuates this sensitivity (Siegel et al., 2003, Ehrlichman et al., 
2008).  
Following the N100, the human ERP contains a second positive deflection termed P200. 
Mice show a clear P200-like response that appears around 80 milliseconds following 
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stimulus onset. Several lines of evidence have proposed a relationship between the mouse 
P80 and cognitive function. Example given, P80 amplitude and gating are reduced in mice 
exposed to ketamine but are increased following nicotine treatment (Connolly et al., 2004, 
Amann et al., 2009). The P300 component is seen during cognitive processing of stimuli or 
during departures from a frequently occurring stimulus (Linden, 2005). Corresponding to 
the human P3a, an augmentation in the mouse P120 has been shown following a novel 
stimulus (Siegel et al., 2003).  However, there has not been a clearly defined demonstration 
of a P3b-like response in rodents. The lack of evidence for a P3b type component in rodents 
may be due to fact that the methodology required to produce such a response has not been 
pursued (Figure 1). 
 

 

Fig. 1. (a) Mouse ERP to novel (black) and standard (gray) across all strains and drug 
treatment conditions. (b) Human ERP responses to novel (black) and standard (gray). Note 
that the human P300 and mouse P120 display increased amplitude following novel stimuli. 
As in Figure3, the timescale for mice is 40% that in humans and the amplitude of evoked 
potentials is greater in mice due to the use of intracranial electrodes as compared to scalp 
electrodes in humans. Reproduced with permission from Siegel (Siegel et al., 2003). 

Mismatch negativity is elicited when the monotony or repetitive stimulation is interrupted 

by a deviant stimulus. Although deviant stimuli result in ERPs with similar morphology to 

that elicited by the repetitive stimulus, the negative deflection is enhanced in amplitude and 

latency. While mismatch negativity is simple to evoke and constitutes a robust finding in 

humans, dichotomy exists between the studies in rodents. The most contentious point is the 
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existence of MMN in mice. As the human MMN temporally follows the N100, the MMN-

like activity in rodents appears as a negative deflection after the N40 component. 

Furthermore, similar to human, ketamine abolished the generation of MMN-like activity in 

mice (Ehrlichman et al., 2008). However, mismatch negativity-like activity observed in mice 

generates an ERP with increased amplitude in N40, but contradictory findings of the latency 

changes exits. Among others, Sambeth and Ruusuvirta did not observe any significant 

differences in the deviance-related activity compared to the standard-related activity 

(Ruusuvirta et al., 1998, Sambeth et al., 2003). However, a number of other studies have 

confirmed the presence of evoked potential components that are similar to MMN observed 

in humans (Ehlers and Somes, 2002, Siegel et al., 2003, Umbricht et al., 2005). Umbricht 

demonstrated that the deviant manipulation (e.g., frequency, probability, duration) has to be 

well chosen in that only deviants differing in stimulus duration from standard stimuli were 

shown to successfully induce the MMN in mice. Alternatively, Ehrlichman and others have 

shown frequency elicited MMN in mice (Ehrlichman et al., 2009a). In summary, although 

several approaches in mouse have succeeded to induce ERP activity corresponding to the 

human MMN, further studies are needed to establish this endophenotype as a robust model.  

4.2 Model systems 

Animal models are extremely useful and serve as an essential tool for investigating 
mechanisms and treatments for a variety of human disorders including schizophrenia.  
Similar to human evoked-potential studies, rodents can be examined for endophenotypes of 
pre-attentive auditory processing, the ability to discriminate between tones presented at 
different frequencies or temporal proximity. Auditory evoked responses have been 
extensively explored in rats and mice (Simpson and Knight, 1993, Siegel et al., 2003, 
Umbricht et al., 2004), with highly analogous waveforms observed across species. The 
following section provides an overview of currently used approaches to model particular 
aspects or endophenotypes of schizophrenia, highlighting the advantages and limitations of 
each model. In particular, transgenic, pharmacological, and environmental models are 
reviewed. 

4.2.1 Pharmacological approaches 

Pharmacological models of schizophrenia are based on the current understanding of the 

alterations in various neurotransmitter systems. They rely on the observation that certain 

drugs induce prominent behaviors and features mimicking aspects of schizophrenia. The 

lack of efficacy for antipsychotics with respect to negative symptoms and cognitive deficits 

is a significant obstacle for the treatment of schizophrenia. Developing new drugs to target 

these symptoms requires appropriate neural biomarkers that can be investigated in model 

organisms, be used to track treatment response, and provide insight into pathophysiological 

disease mechanisms. 

This section reviews the extent to which EEG studies in pharmacological model systems 

have helped to understand the contributions of dopamine, glutamate (e.g. NMDA 

receptors), and nicotine in both disease and therapy. 

Dopamine. Schizophrenia has traditionally been linked to dysfunctional dopamine 
neurotransmission (Carlsson, 1977, Bennett et al., 1998). The dopamine hypothesis 
postulates dopaminergic hyperfunction in schizophrenia. Among other neurotransmitters, 
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dopamine is involved in the sensory gating (Javanbakht, 2006).  For instance, the indirect 
dopamine agonist, amphetamine, produces a psychotic state in healthy individuals and 
exacerbates the symptoms of psychosis in patients (Angrist et al., 1970, Levy et al., 1993). 
Amphetamine became one of the most used models for schizophrenia, largely because it 
reproduces fairly well positive symptoms (e.g., hallucinations, paranoia, and psychosis) in 
humans. In addition to studies in humans, auditory gating has also been frequently 
demonstrated in laboratory animals (Shaywitz et al., 1976, Adler et al., 1988, Stevens et al., 
1991). As such, amphetamine-induced alterations of the auditory processing abnormalities 
common to schizophrenia are well characterized in rodents and applied in multiple studies 
to investigate the amphetamine effect on rodent ERP. It has been repeatedly reported that 
amphetamine significantly disturbs ERP amplitude and gating, in particular diminishing 
N40 and P80 components (Stevens et al., 1991, Stevens et al., 1996, de Bruin et al., 1999, 
Maxwell et al., 2004). Furthermore, normal gating in rats is disrupted following 
amphetamine administration. Decreased N50, the rat correlate of the human P50, amplitude 
and abolished suppression of the neural response to the second stimulus resemble the 
gating disturbances seen in acutely psychotic, unmedicated patients (Adler et al., 1986). 
Ehrlichman and colleagues found amphetamine to reduce theta power following a stimulus 
which is consistent with other animal models and also with studies in humans suffering 
from schizophrenia (Yamamoto, 1997, Koukkou et al., 2000, Krause et al., 2003, Ehrlichman 
et al., 2009a). However, amphetamine did not significantly change basal power (theta, 
gamma) and evoked gamma power which is inconsistent with common findings in 
schizophrenia. Suggesting, while dopamine plays a key role in the generation of theta 
oscillations, its involvement in generating gamma oscillations is marginal (Kocsis et al., 
2001, Kirk and Mackay, 2003). Amphetamine has been a heuristic model of positive 
psychosis fundamental to schizophrenia. However, amphetamine poorly mimics negative 
and cognitive symptoms of the disorder (Angrist et al., 1974). Moreover, chronic, stabilized 
patients generally exhibit a diminished response when exposed to amphetamine   and also 
of the show a paradoxical behavioral improvement (Kornetsky, 1976, Angrist et al., 1982). 
Consequently, amphetamine has been proposed to constitute a model of positive psychosis 
in general, not specifically to schizophrenia. Finally, increased dopamine activity seems to 
play a limited role in the generation of negative and cognitive symptoms. Conclusively, 
amphetamine-treated animals provide only a limited representation of the traits of 
schizophrenia (i.e., positive symptoms). 
Glutamate. Considerable evidence implicates reduced glutamatergic N-methyl-D-aspartate 
receptor (NMDAR) mediated signaling as the core pathophysiologic deficit of schizophrenia 
(i.e., the Glutamate Hypothesis) (Goff and Coyle, 2001, Coyle, 2006). Pharmacological 
evidence emerges from the effects NMDA receptor antagonists such as PCP, ketamine, and 
dizocilpine (MK801). Specifically, in healthy subjects aforementioned NMDAR antagonists 
were shown to induce a transient state characterized by symptoms associated with 
schizophrenia (Pearlson, 1981, Krystal et al., 1994). NMDAR antagonists as model of 
schizophrenia became of great interest because these antagonists cover the complete 
spectrum of symptoms: 1) positive (paranoia, agitation, and auditory hallucinations), 2) 
negative (apathy, though disorder, social withdrawal) and 3) cognitive symptoms (impaired 
working memory) (Becker et al., 2003). NMDA receptor antagonizing drugs have also been 
reported to induce schizophrenia-like alteration of event-related potentials, such as reduced 
P300 and impaired MMN (Oranje et al., 2000, Umbricht et al., 2000). As reviewed above, 
NMDARs are critically involved in the generation of human MMN making them a fortiori 
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interesting as a target to model schizophrenia. In line with human studies, animals treated 
with NMDAR antagonists exhibit similar electrophysiological shifting. Taken together, all 
these aspects prompted researchers to increasingly employ pharmacological NMDAR 
blockade as a disease model (Olney et al., 1999). Thus, the following section reasons 
approaches using ketamine, PCP, and MK801 to model the glutamatergic theories of 
schizophrenia. 
Patients treated with ketamine experience an exacerbation of positive and negative system, 

suggesting that NMDAR antagonists affect a brain system that is already vulnerable in 

schizophrenia (Javitt, 2010). Similar to healthy humans, animals treated with ketamine 

exhibit behavioral and electrophysiological features that closely resemble schizophrenia. 

Consistent with results in human, studies have demonstrated that acute ketamine 

administration decreases the amplitude and latency of the mouse N40 and P80 mimicking 

schizophrenia-like abnormalities on those components (Connolly et al., 2004, Maxwell et al., 

2006a).  However, a study by de Bruin and colleagues (de Bruin et al., 1999) reported that 

acute ketamine had no effect on gating of the N40 and P80 components. However, De Bruin 

confirmed that ketamine selectively decreased the amplitude of P80 in awake rats (de Bruin 

et al., 1999). Furthermore, mice undergoing 14 days of chronic ketamine (daily acute 

administration) showed lasting effects of long-term ketamine exposure such as decreased 

N40 amplitude (Maxwell et al., 2006a).  Reduced ability to detect changes in the auditory 

environment is a further characteristic of schizophrenia which can be addressed by 

administering ketamine to rodents. Ketamine has been reported to impair gating of 

responses to repeated clicks presented at 100ms intervals (Boeijinga et al., 2007). While some 

studies have reported ketamine to disrupt MMN (Connolly et al., 2004, Bickel and Javitt, 

2009, Ehrlichman et al., 2009a), others observed no significant effects (de Bruin et al., 1999, 

Connolly et al., 2004, Heekeren et al., 2008). In animals, ketamine disrupted the auditory 

gating and MMN with deficits similar to those seen in schizophrenia (Miller et al., 1992, 

Tikhonravov et al., 2008). Thus, deviance-elicited changes in N40 amplitude and in the 

subsequent temporal region between 50-75 msec (late N40 negativity) are observable, which 

displays characteristics similar to those seen with MMN in humans. Ehrlichman and others 

have found that ketamine attenuates both of these responses (Ehrlichman et al., 2008). These 

findings are important for several reasons. (1) They bolster the link between deviance 

detection and the NMDA receptor system. (2) They support the hypothesis that mouse N40 

is the analogous to the human N100 which finally (3) demonstrates the feasibility of 

ketamine as a NMDAR antagonist to be a model of schizophrenia. Using the auditory click 

paradigm, Lazarewicz and others investigated the effect of ketamine on background, 

evoked, and induced power (Lazarewicz et al.). While low dose of ketamine (5mg/kg) only 

affected background power in the theta range, the higher dose (20mg/kg) significantly 

increased background power in theta and gamma range. Additionally, they observed a 

decrease in evoke theta power (3-12Hz) and an increase in evoked gamma power. Similar 

findings were replicated in rats as well as in humans (Hahn et al., 2006, Hong et al.). The 

reports of gamma power abnormalities highly diverge. Reduction on gamma power and 

synchronization are frequently reported in schizophrenia (Haig et al., 2000, Gallinat et al., 

2004, Uhlhaas and Singer). However, inconsistent data exist (Lee et al., 2003, Spencer et al., 

2003). Acute brain slice preparations have also been used to investigate gamma synchrony 

in pharmacologic models of schizophrenia. Such paradigms have demonstrated strikingly 

divergent results from the in vivo studies described above. Whereas in vivo studies 
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demonstrated consistent brain-region independent increases in gamma activity with 

ketamine, slice studies reported increased gamma power only in auditory cortex with no 

changes in other cortical regions.  

Phencyclidine (PCP) and other dissociative PCP-like drugs (e.g., MK801) are extensively 
applied to model schizophrenia, in particular due to its ability to mirror the 
symptomatology of schizophrenia including positive, negative, and cognitive symptoms 
(Bodi et al., 1959, Javitt et al., 1987). Especially, psychosis induced by PCP gained great 
interest since it reflects fairly well clinical features of the schizophrenia psychosis. Rats 
exposed to acute PCP display an impaired sensory gating, in particular of N2. Furthermore, 
Dissanayake and others found PCP to disrupt the gating of N2 in cortical and hippocampal 
areas (Miller et al., 1992, Mears et al., 2006, Dissanayake et al., 2009). Clozapine, an atypical 
neuroleptic, prevented the disruption in gating which stands in agreement with human 
studies demonstrating successful reversal of sensory gating deficits in schizophrenia 
(Nagamoto et al., 1996, Adler et al., 2004). Furthermore, schizophrenia-like abnormalities in 
MMN generation have been demonstrated by exposing monkeys to PCP (Javitt et al., 2000). 
Notably, PCP inhibited the N1 and P1 generation at long inter-stimulus-intervals (ISI), while 
at short ISI their generation was unaffected. Further, phencyclidine increases gamma 
frequency power, in particular in the hippocampus (Ma and Leung, 2000). Furthermore, an 
elevation in hippocampal theta power is observable following PCP administration. In 
contrary, total cortical power was reported to be decreased. Perinatal PCP exposure was 
found to result in long-lasting deficits in sensory gating, cognitive, and executive 
functioning in adult mice. Furthemore, atypical antispsychotics reverse these impairments. 
These biochemical and behavioral changes phenotipically resemble observations seen in 
schizophrenia and may serve as a model of the development of schizophrenia (Broberg et 
al., 2008, Wang et al., 2008).  
Finally, Dizocilpine (MK801) is frequently used as an animal model of schizophrenia  
(Fletcher et al., 1989). However, in human research ketamine/PCP are used instead of 
MK801 due to its severe neurotoxicity. A single injection of MK801 is sufficient to model 
positive and negative symptoms. Animals treated acutely with MK801 mimic successfully 
the features of psychosis. Higher doses of MK-801 produce changes in brain activity 
accompanied by strong behavioral effects involving impaired locomotor control (Kovacic 
and Somanathan). Specifically, MK801 significantly augments low frequencies (1-6Hz) in 
cortical and amygdalar areas, while it concomitantly reduces higher frequencies (16-32Hz) 
(Ehlers et al., 1992). Also, the deficit in P200 gating seen in schizophrenia can be mimicked 
in the mouse correlate P80 by administrating MK801 (Ehlers et al., 1992). Finally, MK801 
was shown to dose-dependently block the generation of MMN in unanesthetized monkeys 
and anesthetized rats (Javitt et al., 1996, Tikhonravov et al., 2008).  
In summary, pharmacological approaches targeting NMDAR are effective tools in 
examining the pathophysiology of schizophrenia. Compared to other pharmacological 
animal models of schizophrenia, the NMDAR antagonist model provides clinical parallels 
allowing researchers to translate findings and treatment strategies from animal into human 
studies. A further advantage is the fact that acute exposures of above reviewed NMDAR 
antagonist induce schizophrenia-like symptomatology in healthy individuals lasting several 
hours up to days (Bakker and Amini, 1961). However, NMDAR antagonists produce acute 
receptor hypofunction and therefore fail to reflect chronic, developmental disruption in 
glutamatergic signaling that may underlie schizophrenia pathogenesis. Collectively, these 
virtues exemplify reasons for NMDA model in providing useful strategies to identify neural 
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endophenotypes in regard to development of new therapies to target treatment-resistant 
symptoms. 
Nicotine. Nicotine has generated interest as a candidate for therapeutic use in alleviating 

schizophrenia symptoms. Individuals with schizophrenia are three times more likely to 

smoke and have high nicotine dependence compared to the general population (Hughes et 

al., 1986, de Leon and Diaz, 2005). They also have lower smoking cessation rates and self-

administer more nicotine during cigarette smoking than control patients, a finding 

supported by measuring cotinine, a nicotine metabolite used as a biomarker of tobacco 

exposure (Olincy et al., 1997, de Leon and Diaz, 2005). This, along with the known 

prevalence of genotype differences leading to the loss of function in the alpha 7 nicotinic 

receptor found in individuals with schizophrenia, (Adler et al., 1998, Leonard et al., 2001, 

Picciotto and Zoli, 2008) supports the idea that individuals with schizophrenia self-

administer nicotine as a form of self-medication to rectify deficits in neurocognitive 

performance and alleviate symptoms associated with the disease (Dalack and Meador-

Woodruff, 1996, Kumari and Postma, 2005, Kumari et al., 2006)(Dalack and Meador-

Woodruff, 1996).As mentioned previously, individuals with schizophrenia exhibit a higher 

ratio between the second and first stimulus in the auditory gating paradigm reflecting a 

dysfunction in stimulus processing. Acute nicotine in humans transiently normalizes the 

P50 gating deficit. This is observed with cigarette smoking in schizophrenia patients (Adler 

et al., 1993)as well as in studies using nicotine-containing gum in non-smoking family 

members of schizophrenia patients who exhibited P50 gating deficits (Adler et al., 1992). 

Mice undergoing 14 days of chronic nicotine increased both in the amplitude and gating of 

the P20, while having only acute nicotine decrease the amplitude and gating of N40(Metzger 

et al., 2007). A variety of pharmacological models further demonstrate the importance of the 

nAChr in stimulus gating. nAChR agonists display similar affects to nicotine. Acute 

administration of DMXB-A, a nicotinic agonist specifically targeting the alpha7 nicotinic, 

significantly suppressed the P50 of the test stimulus in subjects with schizophrenia, bringing 

the gating of the schizophrenia patients into the range of controls (Meyer et al., 1997, Olincy 

et al., 2006). These results were consistent with animal model studies testing the same 

drug(Stevens et al., 1998). Administration of 5-I A-85380, an alpha4beta2 nAChR agonist, in 

DBA/2 mice also significantly reduced the second to first stimulus response ratio 

(Wildeboer and Stevens, 2008). Tropisetron, a partial alpha7 agonist significantly improves 

gating in schizophrenia patients (Koike et al., 2005). Luntz-Leybman (Luntz-Leybman et al., 

1992) showed that alpha-bungarotoxin, an alpha-7 nAChR antagonist, disrupts P20 and P40 

gating in rats while mecamylamine showed no affect. Physiostigmine, a drug that deters the 

breakdown of endogenous cholinergic drug in the body by inhibiting acetylcholinesterase, 

normalizes P50 gating in a schizophrenia-free individual that exhibited gating deficits in the 

P50 gating, further supporting nicotine’s role in modulating sensory gating (Adler et al., 

1992). Direct pharmacological targeting of the nAChR directly is not necessarily the only 

way to trigger the receptors effects. In animal models, Siegel demonstrated that dopamine 

reuptake inhibition and nicotine antagonism both contribute to the observed phenotype of 

gating impairment in both the P20 and P40 gating in mice (Siegel et al., 2005). Nicotine and 

haloperidol increased P20 amplitude, supporting a role for nicotine agonists in pre-attentive 

sensory encoding deficits. While it remains elusive, the mechanism of action underlying the 

gating difference could be critical to understanding and treating the physiological 
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disturbances that cause the phenotype of schizophrenia, and nicotine is shown to affect this 

mechanism. 

Since MMN deficits are thought to indicate degraded auditory perception experienced by 
schizophrenia patients, it follows that the effect of nicotine administration on schizophrenia 
symptoms be assessed using this measure. In the schizophrenia-free population, nicotine 
has been shown to enhance MMN amplitudes and shorten MMN latencies (Inami et al., 
2005, Martin et al., 2009). Further evidence for the role of nicotine in ameliorating the MMN 
deficit emerges from the administration of the nicotinic agonist AZD3480, selective for the 
alpha-4-beta-2 subtype. As such, AZD3480 significantly increases the MMN amplitude and 
reduces the MMN latency, at the same time significantly enhancing scores in cognitive tests 
of attention and episodic memory when administered chronically for ten days (Dunbar et 
al., 2007). Human studies directly assessing the effects of nicotine on individuals with 
schizophrenia are few in number and exhibit mixed results. Acute nicotine transiently 
normalized the amplitude of MMN in response to duration but not frequency changes in 
auditory stimuli (Dulude et al., 2010). Inami found that acute transdermal nicotine in non-
smokers reduces the MMN latency in healthy subjects, but not in patients with 
schizophrenia (Inami et al., 2007). This finding could be unique to the schizophrenia 
population that refrains from smoking and may reflect either differential drives to smoke 
based on symptom alleviation or be affected by the myriad of neuronal adaptations that 
chronic nicotine exposure induces, creating two distinct populations in schizophrenia. More 
studies are needed to elucidate the role of nicotinic receptors on MMN performance. There 
are several issues that limit nicotine being used as therapeutic drug. The ubiquity of nicotine 
receptors in the CNS and PNS make it difficult for a drug to target a specific region of the 
brain. A therapeutic drug’s binding specificity and route of administration would therefore 
have to be optimized so as to minimize drug side affects. Nicotine itself has a short half-life. 
The rapid metabolism of the drug and its transient effects would mean that a mechanism of 
sustained release would need to be employed for the agent to remain active for an extended 
period of time. However, a direct impediment to this therapeutic modification is that 
nicotinic receptors exhibit quick desensitization. This would mean target receptors might 
not be available for binding and drug efficacy. These factors must be addressed before 
nicotine can be seriously considered as a candidate as a therapeutic drug for schizophrenia 
patients. There are currently several drugs that act at the nAChR that show promise. 
Agonists like DMXBA have been shown to successfully overcome several of these 
pharmacological challenges and stand as contenders for therapeutic relief (Martin and 
Freedman, 2007). Other options include the use of a positive allosteric modulator to enhance 
the efficacy of the receptor without directly activating it (Gronlien et al., 2007).  

4.2.2 Transgenic approaches 

Schizophrenia carries an important genetic contribution with a heritability of approximately 

80% (Sullivan et al., 2003). ERPs deficits, particularly of the P50, N100, P300 and MMN 

components are among the most heritable (approximately 70%) and reproducible 

phenotypes of schizophrenia (Frangou et al., 1997, Ahveninen et al., 2006, Hall et al., 2006, 

Turetsky et al., 2007a). Whereas the number of candidate genes for schizophrenia is 

estimated to be over 1000, a subset of specific genetic contributions have been directly 

associated with ERPs. These genes are mostly involved in dopaminergic, nicotinic and 

glutamatergic mechanisms. For example, P50 gating deficits have been linked to the alpha-7 
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nicotinic acetylcholine receptor  as well as the Catechol-O-methyltransferase (COMT) genes 

(Lu et al., 2007), although the later result was not replicated in a recent study (Shaikh et al., , 

Freedman et al., 1997, Leonard et al., 1998, Shaikh et al., 2011). Also, P300 amplitude 

decrease is associated with COMT and Disrupted in schizophrenia-1 (DISC1) genes while 

P300 increased latency is significantly influenced by the dopamine D2/D3 receptor as well 

as the Neuregulin-1 (NRG1) genes (Hill et al., 1998, Anokhin et al., 1999, Blackwood et al., 

2001, Gallinat et al., 2003, Blackwood and Muir, 2004, Berman et al., 2006, Mulert et al., 2006, 

Bramon et al., 2008). Finally, whereas MMN is most extensively investigated in regard to 

glutamatergic mechanisms, no study has genetically linked both. However, a genetic 

association between MMN and the COMT gene has been shown (Baker et al., 2005). Those 

reports, combined with the aforementioned pharmacological studies, demonstrate the 

importance of investigating ERPs in specific transgenic (Tg) mouse models of schizophrenia. 

To date, the Tg mouse models that have been used to study ERPs components can be 

separated in 3 main groups based on the molecular pathway in which the target gene is 

involved: 1) Dopamine (COMT and Gsa  Tg mice),  2) glutamate (NRG1 and NMDA 

receptor-1 (NR1)) Tg mice and 3) nicotine (C3Hα7 receptor Tg mice).  

Dopamine. COMT Tg mice: The Catechol-O-methyltransferase (COMT) is a key regulatory 

enzyme that degrades dopamine and thus controls dopamine availability (Axelrod and 

Tomchick, 1958, Goldberg and Weinberger, 2004). In humans, a single nucleotide 

polymorphism leads to the substitution of a Valine in place of a Methionine at the 158/108 

locus (Lachman et al., 1996). This modification results in a two-fold increase of its activity 

thereby reducing dopamine levels (Chen et al., 2004). A recent study from our laboratory 

using COMT-Val-tg mice (Papaleo et al., 2008) shows a lack of change in P20 amplitude but 

a trend of P20 latency increase (unpublished data). These results are consistent with the 

human data mentioned above, which show both significant and non-significant genetic 

linkage between the COMT gene and P50 gating deficits. We also observed increased N40 

latency and decreased P80 amplitude as well as reduced baseline theta and gamma power.  

Gsa Tg mice: Gsa Tg mice express an isoform of the G-protein subunit Gsa that is 

constitutively active due to a point mutation (Q227L) that prevents hydrolysis of bound 

GTP (Wand et al., 2001, Gould et al., 2004). Gsa Tg mice displayed decreased amplitude of 

cortically-generated N40 that is reversed by the Gi-coupled dopamine D2-receptor 

antagonist haloperidol (Maxwell et al., 2006b). This result is consistent with the amplitude 

reduction of the N100 observed in patients with schizophrenia (Frangou et al., 1997, 

Ahveninen et al., 2006). 

Glutamate. NRG1 Tg mice: NRG-1 is a high-risk gene for schizophrenia that has been 

associated with NMDA receptor hypofunction (Gu et al., 2005, Hahn et al., 2006, 

Bjarnadottir et al., 2007, Li et al., 2007). Although several Tg mice for NRG1 have been 

engineered, to our knowledge, only one study has tested auditory ERPs (Ehrlichman et al., 

2009b). This study has used the NRG1 model in which all three major types of NRG1 have a 

partial deletion of the EGF like domain. These NRG1 heterozygote mice did not show 

deficits in P20 amplitude or gating. Nevertheless, they showed disrupted mismatch 

negativity similar to what is observed in schizophrenia. It would be interesting to 

investigate ERPs in the other NRG1 Tg mouse lines as it may help to identify which form of 

NRG1 mutant are most closely associated with the electrophysiological abnormalities 

commonly found in schizophrenia.  

www.intechopen.com



 
Electrophysiological Deficits in Schizophrenia: Models and Mechanisms 

 

43 

NR1 Tg mice: NR1 hypomorphic mice express 5-10% of the normal NR1 protein (Mohn et al., 
1999). Several studies have reported behavioral abnormalities in these mice that are also 
found in schizophrenia. Since then, NR1 hypomorphic mice have been considered as a 
translation model for the disease. Measure of auditory and visual event related potentials 
showed significant increased amplitudes of P20 and N40 in NR1 hypomorphic mice, 
suggesting decreased inhibitory tone (Bodarky et al., 2009, Halene et al., 2009). Indeed, 
auditory gating for the P20 and the N40 peak is significantly impaired in these mice 
compared to their wild-type littermates (Bickel et al., 2007, 2008). Those results correlate 
with the pathophysiology of the observed gating and ERPs generation alterations in 
schizophrenia (Javitt et al., 2000). 
Nicotine. C3Hα7 Tg mice (Adams et al., 2008): C3Há7 null mutant heterozygote mice 

exhibit significant reduction of the alpha-7 nicotinic receptor in the hippocampus. In these 
mice, the auditory gating for P20 and N40 was decreased compare to the wild type mice. 
This result is consistent with the deficit of P50 gating reported for schizophrenia patients. 
These data reinforce the idea of a genetic linkage between the alpha-7 nicotinic receptor and 
this phenotype observed in human. 

4.2.3 Environmental approaches 

The notion that schizophrenia occurs as a result of problems in neurodevelopment is 

strongly suggested by the appearance of a number of gross alterations in the brain inn 

schizophrenia, including enlargement of the cerebral ventricles, decreased cortical volume, 

and hippocampal cellular pathology (Harrison, 1999). That these alterations have occurred 

early in development can be assumed given that they occur largely in areas of the brain, 

such as the hippocampus, that complete the developmental process long before the typical 

onset of the disease. Although the full emergence of schizophrenia symptoms usually does 

not occur until late-adolescence or early-adulthood, people who subsequently go on to 

develop schizophrenia often show numerous deficits in cognitive and social function 

indicative of problems early in the developmental process. Given the importance of 

identifying the potential mechanisms that underlie such developmental changes, numerous 

neurodevelopmental models have been proposed in animals that presume to replicate the 

conditions leading to schizophrenia-like brain dysfunction.  

NNVHL. Lesioning of the ventral hippocampal area during early life has been shown to 
reproduce in rodents many of the symptoms observed in schizophrenia. Important 
features of this model are: 1) post-pubertal emergence of behavioral changes 2) 
schizophrenia-like deficits in cognition 3) schizophrenia-like changes on putative positive 
symptom measures, such as amphetamine-induced locomotor activity and pre-pulse 
inhibition 4) schizophrenia-like cellular and neuroanatomical changes, including 
reductions in parvalbumin expressing GABAergic interneurons 5) exaggerated response 
to glutamate agonist and antagonists, suggestive of a hypoglutamatergic state. 
Importantly, most of these changes occur only when the lesion is induced during the 
neonatal period and do not occur in adult animals given similar lesions of the ventral 
hippocampus, suggesting that it is the altered neurodevelopmental environment that is 
the source of the changes observed in the model.  
Methylazoxymethanol. Embryonic exposure to methylazoxymethanol acetate (MAM), an 
inhibitor of cell division, is currently a popular animal model of schizophrenia. Exposure 
to MAM at embryonic day 17 produces a pattern of brain atrophy in adult animals similar 
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to that seen in human schizophrenia (i.e. cortical and hippocampal atrophy) (Talamini et 
al., 1998). Importantly, these neural changes overlap with dysfunctions across a wide 
range of behavioral and cognitive domains known to be affected in humans with 
schizophrenia, including measures sensitive to mesolimbic dopamine function and 
cognitive performance. Thus, MAM treated animals display impaired long-term memory, 
working memory and attentional flexibility, as well as increased responsiveness to 
amphetamine as adults (Fiore et al., 2002, Gourevitch et al., 2004, Moore et al., 2006, 
Featherstone et al., 2007). The enhanced response to amphetamine is not seen when 
animals are tested during the pre-pubescent period, suggesting that the behavioral 
changes induced by MAM follow the same developmental time course seen in the human 
disease (Moore et al., 2006).  Parvalbumin (PV) expressing GABAergic interneurons are 
dramatically reduced in both the hippocampus and PFC following embryonic MAM 
treatment, suggesting that these cells may be especially vulnerable to the effects of MAM. 
Moreover, it is possible that the loss of such cells could be responsible for many of the 
cognitive and behavioral changes that occur following MAM treatment (Penschuck et al., 
2006). For example, PV expressing GABAergic interneurons are known to be the primary 
source of high frequency gamma oscillations. In a latent inhibition procedure, MAM 
treated animals showed reduced gamma power during pre-exposure to a tone and this 
was shown to correspond with impaired development of latent inhibition (Lodge et al., 
2009). In contrast, exposure to MAM did not alter activity in the lower frequency theta 
band, suggesting a high degree of specificity in the underlying change induced by MAM 
treatment. Additionally, MAM treated animals show an enhanced locomotor response to 
NMDA antagonists such as ketamine and PCP, and this also appears to correspond 
strongly and specifically with a reduced ability for these drugs to alter activity within the 
gamma frequency range. Both studies suggest that MAM treatment results in a decreased 
inhibitory tone consistent with the proposed role of GABAergic interneurons in inhibitory 
function.  

4.3 Limitation and future models 

ERPs and ERSPs have been widely used to examine neural activity in normal individuals 

and those suffering from schizophrenia. The high degree of similarity between the methods 

used to assess these measures in humans and laboratory animals has made these techniques 

very valuable for studying normal and abnormal brain function. Presently, however, it is 

unclear how such measures relate to clinical symptoms or cognitive impairments, although 

evidence for a link between these measures and cognition is beginning to emerge. Future 

studies will need to assess the degree to which ERP and EEG measures relate to cognitive 

performance on tasks in mice that more closely replicate those used in humans. 

Establishment of such a link could provide a novel means for assessing cognition in mice 

and for testing potential pharmaceutical interventions for schizophrenia. Much work has 

been done assessing EEG during cognitive performance in humans, as well as in non-human 

primates, which has typically focused on sophisticated analyses of neural oscillations and 

synchrony. While such measures are interesting, ERP measures are also useful candidates 

for translational biomarkers of cognition, since they do not require extensive expertise to 

analyze and there are years of human data using these measures. Further, mice are excellent 

subjects for translational research, given the wide range of genetically modified mice 

available to researchers. 
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