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1. Introduction

Excellent progress has been made during the past few years in the growth of III-nitride
materials and devices. Today, one of the most important application of novel optoelectronic
devices is the design and engineering of light-emitting diodes (LEDs) working from
ultraviolet (UV) through infrared (IR), thus covering the whole visible spectrum. Since
the pioneer works of Nakamura et al. at Nichia Corporation in 1993 (Nakamura et al.
(1995)) when the blue LEDs and pure green LEDs were invented, an enormous progress
in this field was observed which has been reviewed by several authors (Ambacher (1998);
Nakamura et. al. (2000)). The rapid advances in the hetero-epitaxy of the group-III nitrides
(Fernández-Garrido et al. (2008); Kemper et al. (2011); Suihkonen et al. (2008)) have facilitated
the production of new devices, including blue and UV LEDs and lasers, high temperature and
high power electronics, visible-blind photodetectors and field-emitter structures (Hirayama
(2005); Hirayama et al. (2010); Tschumak et al. (2010); Xie et al. (2007); Zhu et al. (2007)).
There has been recent interest in the AlxIn1−x−yGayN quaternary alloys due to potential
application in UV LEDs and UV-blue laser diodes (LDs) once they present high brightness,
high quantum efficiency, high flexibility, long-lifetime, and low power consumption (Fu et al.
(2011); Hirayama (2005); Kim et al. (2003); Knauer et al. (2008); Liu et al. (2011); Park et al.
(2008); Zhmakin (2011); Zhu et al. (2007)). The availability of the quaternary alloy offers an
extra degree of freedom which allows the independent control of the band gap and lattice
constant. Another interesting feature of the AlGaInN alloy is that it gives rise to higher
emission intensities than the ternary AlGaN alloy with the absence of In (Hirayama (2005);
Wang et al. (2007)). An important issue is related to white light emission, which can be
obtained by mixing emissions in different wavelengths with appropriate intensities (Roberts
(1997); Rodrigues et al. (2007); Xiao et al. (2004)).
Highly conductive p-type III-nitride layers are of crucial importance, in particular, for the
production of LEDs. Although the control of p-doping in these materials is still subject of
discussion, remarkable progress has been achieved (Hirayama (2005); Zhang et al. (2011)) and
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2 Will-be-set-by-IN-TECH

recently reported experimental results point towards acceptor doping concentration high as
≈ 1019cm−3 (Liu et al. (2011); Zado et al. (2011); Zhang et al. (2011)).
The group-III nitrides crystallize in both, the stable wurtzite (w) phase and the metastable
cubic (c) phase. Unlike for the hexagonal w-structure, the growth of cubic GaN is more
complicated due to the thermodynamically unstable nature of the structure. In hexagonal
GaN inherent spontaneous and piezoelectric polarization fields are present along the c-axis
because of the crystal symmetry. Due to these fields, non-polar and semi-polar systems
have attracted interest. One method to produce real non-polar materials is the growth of
the c-phase. Considerable advances in the growth of c-nitrides, with the aim of getting a
complete understanding of the c-nitride-derived heterostructures have been observed (As
(2009); Schörmann et al. (2007)). Successful growth of quaternary c-AlxIn1−x−yGayN layers
lattice matched to GaN has been reported (Kemper et al. (2011); Schörmann et al. (2006)).
The absence of polarization fields in the c-III nitrides may be advantageous for some device
applications. Besides, it has been shown that these quaternary alloys can be doped easily as
p-type, and due to the wavelength localization the optical transition energies are higher in the
alloys than in GaN (Wang et al. (2007)).
However, the exact nature of the optical processes involved in the alloys with In is a subject of
controversy. Different mechanisms have been proposed for the origin of the carriers’ localized
states in the quantum well devices. One is related to the low solubility of InN in GaN, leading
to the presence of nanoclusters inside the alloy, which can be suppressed by biaxial strain
as predicted and measured in c-InGaN samples (Marques et al. (2003); Scolfaro et. al. (2004);
Tabata et al. (2002)). The second mechanism proposes that the recombination occurs through
the quantum confined states (electron-hole pairs or excitons) inside the well.
In this chapter we show the results of detailed studies of the theoretical photoluminescence
(PL) and absorption spectra for several systems based on nitride quaternary alloys, using the
�k · �p theory within the framework of effective mass approximation, in conjunction with the
Poisson equation for the charge distribution. Exchange-correlation effects are also included
within the local density approximation (Rodrigues et al. (2002); Sipahi et al. (1998)). All
systems are assumed to be strained, so that the optical transitions are due to confinement
effects. The theoretical method will be described in section 2. Through these calculations
the possibility of obtaining light emission from undoped (see section 3) and p-doped (see
section 4)quaternary AlXIn1−X−YGaYN/AlxIn1−x−yGayN superlattices (SLs) is addressed.
By properly choosing the x and y contents in the wells and the acceptor doping concentration
NA as well X and Y in the barriers, it is shown to be possible to achieve light emission which
covers the visible spectrum from violet to red. The investigation is also extended to double
quantum wells (DQWs), as described in section 5, confronting the results with experimental
data reported on these systems (Kyono et al. (2006)). The results are compared with regard
to the PL emissions for the different systems , also when an external electric field is present.
Finally it is shown that by adopting appropriated combinations of SLs is possible to obtain the
best conditions in order to get white-light emission. This fact is fundamental in the design of
new optoelectronic devices.

2. Theoretical band structure and luminescence spectra calculations

During the last few years, the super-cell�k ·�p method has been adapted to quantum wells and
superlattices (SLs) ( Rodrigues et al. (2002); Sipahi et al. (1996)). Using this approach, one can
self-consistently solve the 8 × 8 Kane multiband effective mass equation (EME) for the charge
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Application of Quaternary AlInGaN- Based Alloys for Light Emission Devices 3

distribution ( Sipahi et al. (1998)). The results below are calculated assuming an infinite SL of
squared wells along <001> direction.
The multiband EME is represented with respect to plane waves with vectors K=(2π/d)l (l
being an integer and d the SL period) equal to the reciprocal SL vector. The rows and columns
of the 8 × 8 Kane Hamiltonian refer to the Bloch-type eigenfunctions |jmj

�k) of Γ8 heavy- and

light-hole bands, Γ7 spin-orbit-split-hole band and Γ6 conduction band;�k denotes a vector in
the first SL Brillouin zone (BZ).
By expanding the EME with respect to plane waves (z|K) one is able to represent this equation
with respect to Bloch functions (�r|jmj

�k + K�ez). For a Bloch-type eigenfunction (z|E�k) of the

SL of energy E and wavevector�k, the EME takes the form:

∑
j′m′

jK
′

(

jmj
�kK |H0 + HST + VHET + VA + VH + VXC| j′m′

j
�kK′

) (

j′m′
j
�kK′|E�k

)

= E(�k)
(

jmj
�kK|E�k

)

, (1)

where H0 is the effective kinetic energy operator, generalized for a heterostrucures HST is
the strain operator originated from the lattice mismatch, VHET is the potential that arises
from the band offset at the interfaces, which is diagonal with respect to jmj, j′m′

j, VXC is the
exchange-correlation potential for carriers taken within Local Density Approximation (LDA),
VA is the ionized acceptor charge distribution potential, and VH is the Hartree potential or
one-particle potential felt by the carrier from the carriers charge density. So the Coulomb
potential, VC given by contribution of VA and VH potentials, can be obtained by means of the
self-consistent procedure, where the Poisson equation stands, in the reciprocal space as,

(K|VC

∣

∣K′) =
4πe2

ε

1
|K − K′|2

[

(K| NA(z)
∣

∣K′)− (K| p(z)
∣

∣K′)] , (2)

with ε being the dielectric constant, e the electron charge, NA(z) the ionized acceptors
concentration, and p(z) being the holes charge distribution, which is given by

p(z) = ∑
jmj

�k∈
empty states

∣

∣

∣( zs| jmj
�k)

∣

∣

∣

2
, (3)

where s is the spin coordinate.
The next term in the Hamiltonian is the strain potential, VST. The kind of strain in these
systems is biaxial, so it can be decomposed into two terms, a hydrostatic term and an
uniaxial term ( Rodrigues et al. (2001)). Since the hydrostatic term changes the gap energy,
thus not affecting the valence band potential depth, only the uniaxial strain component
will be considered ( Rodrigues et al. (2001)). This latter may be calculated by the following
expression:

ǫ = −2/3Duǫxx(1 + 2C12/C11), (4)

where −2/3Du is the shear deformation potential, C11 and C12 are the elastic constants, and
ǫxx is the lattice mismatch which is given by:

ǫxx = (abarrier − awell)/awell, (5)
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with abarrier and awell being the lattice parameters of the barrier and well materials,
respectively.
Through these definitions one can calculate the Fourier coefficients of the strain operator
(K| ǫ(z) |K′) and express the strain term of the Hamiltonian VST as follows:

(

jmj
�kK

∣

∣

∣
HST

∣

∣

∣
j′m′

j
�kK′

)

= (K| ǫ(z)
∣

∣K′) M
j′m′

j

jmj
, (6)

where M
j′m′

j

jmj
is defined as

M
j′m′

j

jmj
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0
0 −1 0 0 −i

√
2 0

0 0 −1 0 0 −i
√

2
0 0 0 1 0 0
0 i

√
2 0 0 0 0

0 0 i
√

2 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (7)

Exchange-correlation effects can be taken into account in the local density approximation, by
adopting a parameterized expression for an inhomogeneous hole gas, applying the exchange
interaction only for identical particles and the correlation for all of them ( Enderlein et al.
(1997)). The band shift potential VHET is diagonal with respect to jmj, j′m′

j, and is defined by
(

jmj
�kK

∣

∣

∣
VHET | j′m′

j
�kK′

)

= (K| VHET | K′) δjj′δmj m
′
j

(8)

where (K| VHET | K′) are the Fourier coefficients of VHET along the growth direction.
From the calculated eigenstates, one can determine the luminescence and absorption spectra
of the SL by using the following general expression ( Sipahi et al. (1998))

I(ω) =
2h̄ω3

c

e2

m0c2 ∑
�k

∑
ne

∑
nq,
q=hh,lh,so

fnenq(�k)N
ne
�k

[

1 − N
nq
�k

]

×

γ

π
[

Ene(
�k)− Enq(

�k)− h̄ω
]2

+ γ2
, (9)

where m0 is the electron mass, ω is the incident radiation frequency, γ is the emission
broadening (assumed as constant and equal to 10 meV), Ene and Enq are the energies associated
to ne and nq, respectively, the electron and hole states involved in the transition. The
occupation functions N

ne
�k

and [1 − N
nq
�k
] are the Fermi-like occupation functions for states

in the conduction- and valence-band, respectively.
For the calculation of luminescence (absorption) spectra, the sum in Eq. ( 9) is performed over
the occupied states in the conduction (valence) band, and unoccupied states in the valence
(conduction) band ( Sipahi et al. (1998)).
The oscillator strength, fnenq (�k), is given by

fnenq(
�k) =

2
m0

∑
σeσq

∣

∣

∣

〈

neσe
�k
∣

∣

∣
px

∣

∣

∣
nqσq

�k
〉∣

∣

∣

2

Ene(�k)− Enq(�k)
, (10)
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Application of Quaternary AlInGaN- Based Alloys for Light Emission Devices 5

GaN InN AlN

γ1 2.96 3.77 1.54
γ2 0.90 1.33 0.42
γ3 1.20 1.60 0.64

∆so(meV) 17 3 19
a(Å) 4.552 5.030 4.380
m∗

hh 0.86 0.84 1.44
m∗

lh 0.21 0.16 0.42
m∗

so 0.30 0.24 0.63
m∗

e 0.15 0.10 0.067
EΓ

g (eV) 3.3 0.9 5.94
ag (eV) -8.50 -12.98 -9.40

2/3Du (eV) 1.6 1.2 1.5
C11 (GPa) 293 187 304
C12 (GPa) 159 125 160

Table 1. Values of the parameters used in the self-consistent calculations of the p-doped cubic
(Al0.20In0.05Ga0.75)N/(AlxIn1−x−yGay)N SLs. Data extracted from Refs. (Ramos et al. (2001);
Rodrigues et al. (2000; 2002); Schörmann et al. (2006)).

where px is the dipole momentum in the x-direction, σe and σq denote the spin values for
electron and holes, respectively.
All the parameters used in this analysis are shown in Table I. For the quaternary (Alx In1−x−y

Gay)N band gap energy dependence on the alloy contents, x and y, was used the expression
provided in Ref.( Marques et al. (2003)). For all the other quantities, linear interpolations
were taken using the values for the binaries, AlN, GaN, InN. The temperature dependence
of bandgap energies was evaluated through the Varshni analytical expression as applied for
GaN ( Kohler et al. (2002)).

3. Undoped cubic AlxInyGa1−x−yN systems

In order to analyze the effects of the use of quaternary alloys in the electronic transitions, Fig.
1 presents the theoretical PL spectra at T= 2 K calculated for strained undoped In0.2Ga0.8N
/AlxGayIn1−x−yN SLs with x=0.03, 0.10, and 0.20 and y=0.40, 0.47, and 0.51, respectively. The
barriers, constituted by the ternary alloy, have width d1 = 60 nm, while the wells have width
d2 = 3 nm. It is important to remark that all systems are strained, so the luminescence cannot
arise from nanoclusters created during the growth. In all cases in this section the first peak
seen in the PL spectra corresponds to the first electronic transition E1-HH1 (first electron level
E1 and first heavy-hole level HH1) ( Rodrigues et al. (2005)).
From Fig. 1 one can observe that with the appropriate choice of parameters it is possible to
reach wavelengths from the red to the blue region. One can also see that, by changing the well
width as depicted in Fig. 2, the peaks in the PL spectra exhibit larger variations. As the well
width decreases, the transition energy gets closer to the red region. This occurs because of the
changes in the energies caused by the confinement and strain effects, which become stronger
as the In content increases.
As the results described above are from systems where InGaN represents the barriers and
the quaternary alloy is in the wells, one can change the picture and start analyzing systems
where the barriers correspond to the quaternary alloys while the InGaN alloy forms the wells.

359Application of Quaternary AlInGaN- Based Alloys for Light Emission Devices
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6 Will-be-set-by-IN-TECH

Fig. 1. Theoretical normalized PL spectra for strained undoped
In0.2Ga0.8N/AlxGayIn1−x−yN SLs, with x=0.03 (solid line), 0.10 (dashed line), and 0.20
(dotted line) and y= 0.40, 0.47, and 0.51, respectively, barrier width d1 = 60 nm, well width d2
= 3 nm.

Fig. 2. PL peaks as a function of the well width d2 for the same systems of Fig. 1.

Fig. 3 presents calculated SL systems with the same configurations as Fig. 1, but using
GaN as barriers instead of AlxGayIn1−x−yN. It presents calculated theoretical PL spectra,
at T = 2 K, for Al0.10Ga0.47In0.43N/ In0.55Ga0.45N, Al0.17Ga0.47In0.36N/ In0.42Ga0.68N, and
Al0.25Ga0.47In0.28N/ In0.25Ga0.75N SLs (solid lines). The figure presents also, for comparison,
the systems of Fig. 1 (dashed lines). A similar behavior, as obtained in Fig.1, is seen also
for InGaN barriers, with the possibility of light emission covering the entire visible spectra.

360 Optoelectronics - Materials and Techniques
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Application of Quaternary AlInGaN- Based Alloys for Light Emission Devices 7

Fig. 3. Theoretical normalized PL spectra for the strained undoped SLs
Al0.10Ga0.47In0.43N/In0.55Ga0.45N (solid line), Al0.17Ga0.47In0.36N/In0.42Ga0.68N (dashed line)
and Al0.25Ga0.47In0.28N/In0.25Ga0.75N (dotted line). The barrier width is d1 = 60 nm and the
well width is d2 = 3 nm. For comparison, we show the results for the SLs GaN/In0.55Ga0.45N
(dash-dotted line), GaN/GaN/In0.42Ga0.68N (dash-dot-dotted line), and GaN/In0.25Ga0.75N
(short-dashed line) systems.

However, this is not possible using GaN in the barriers, since we have a limitation imposed by
the fixed gap energy value for GaN. Another finding refers to the transition energies appearing
higher when the quaternary alloys constitute the barriers, when compared with the case in
which InGaN is in the barriers. This can be explained by the effective mass values which are
higher in the AlxGayIn1−x−yN alloys than in InGaN.
It is also very important to investigate the influence of an external electrical field on the
transition energies and how the results compare with those for the wurtzite phase structures.
In Fig. 4, the theoretical PL and electroluminescence (EL) spectra were depicted at T= 2 K
calculated for strained undoped In0.1Ga0.9N/ AlxGayIn1−x−yN SLs with x=0.03, 0.10 and 0.20,
and y=0.50. For these calculations the barrier width is d1 = 8 nm and the well width is d2 =
3 nm. The magnitude of the electric field was 1.6 MV/cm for the EL spectra calculations. The
results indicate that the electric field enhances the shift seen in the spectra towards the red
region, as compared with the PL spectra. This fact can be better visualized in Fig. 5, which
shows the reduction in the transition energy as the electric field increases. Such behavior is
attributed to the fact that the potentials become deeper as the electrical field increases. The
main consequence is the presence of more levels occupied near the bottom of the potential
wells. Comparing with wurtzite structures, which have intrinsic built-in electric fields, the
situation described here is very similar, however in cubic systems higher efficiencies are
predicted ( Rodrigues et al. (2005)).

361Application of Quaternary AlInGaN- Based Alloys for Light Emission Devices
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Fig. 4. Theoretical normalized PL (solid line) and electroluminescence (dashed line) spectra
for strained undoped In0.1Ga0.9N/AlxGayIn1−x−yN SLs, with x = 0.03, 0.10, and 0.20, and y =
0.50, respectively, barrier width d1 = 8 nm and well width d2 = 3 nm . The electric field used
for EL was 1.6 MV/cm.

Fig. 5. PL peaks as a function of the magnitude of the electric field for systems with the same
quaternary alloy contents as the ones in Fig. 4.

4. Doped cubic AlxInyGa1−x−yN systems

An important aspect to be analyzed is the effect of the acceptor doping on the electronic
transitions. Fig. 6 presents the PL spectra at T = 2 K for strained p-type doped
Al0.20Ga0.05In0.75N/ AlxInyGa1−x−yN SLs, for which x and y are varied as described in Table

362 Optoelectronics - Materials and Techniques
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Application of Quaternary AlInGaN- Based Alloys for Light Emission Devices 9

2. The ionized acceptor doping concentration considered to be uniformly distributed in
the barriers and fully ionized, is also varied assuming values of NA = 5 × 1018cm−3 and
NA = 10 × 1018cm−3. These values of NA allow us to envisage what happens in the range
from very low hole concentrations up to concentrations as high as ≈ 1019cm−3. The undoped
system is also presented for comparison. The barriers widths are 8 nm and the wells widths
are 3 nm ( Rodrigues et al. (2007)). The choice of values for x and y, the Al and In alloy contents
was such to reach all the visible-UV wavelength region.

c-(Al0.20In0.05Ga0.75)N/(AlxIn1−x−yGay)N x y 1 − x − y

red 0.00 0.35 0.65
green 0.02 0.40 0.58
blue 0.08 0.45 0.47

blue-violet 0.10 0.50 0.40
violet 0.15 0.55 0.30

Table 2. Values used for the alloy contents x and y in the p-doped
c-(Al0.20In0.05Ga0.75)N/(AlxIn1−x−yGay)N SLs, properly chosen to attain light emission in
the electromagnetic spectral regions indicated in the left column.

Fig. 6. Calculated normalized photoluminescence (PL) spectra, at T = 2 K, for
Al0.20In0.05Ga0.75N/AlxIn1−x−yGayN SLs, for x and y values as shown in Table 2, for ionized
acceptor concentrations of NA = 0, NA = 5 × 1018cm−3, and NA = 10 × 1018cm−3. The
energy range covers the electromagnetic spectrum from red to violet.

In Fig. 7 the PL peaks are depicted as a function of the acceptor doping concentration for the
first electronic transition E1-HH1. As NA increases a red-shift in energy is observed for all
regions investigated, except for the red region which presents a second electronic transition
E1-HH2 (first electron level E1 and second occupied heavy-hole level HH2) for NA= 0 and
5 × 1018cm−3. This behavior is directly related to the transition probabilities in such systems
and the potential profile due to the charges distribution. The later is determined by the balance
between the Coulomb and exchange-correlation potentials contribution which defines the
potential bending.

363Application of Quaternary AlInGaN- Based Alloys for Light Emission Devices
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Fig. 7. Peaks of PL spectra of Fig. 6 as a function of the acceptor doping concentration, NA.

Fig. 8. p-doped Al0.20In0.05Ga0.75)N/In0.65Ga0.35N SL, with NA = 5 × 1018cm−3 , which emits
in the red: (a) Real-space energy diagram showing the spatial dependence of the valence
band edges for heavy (Vhh), light (Vlh), and split-off (Vso) hole bands. Eight energy hole
levels inside the well are depicted. Also shown, by thick dash-dotted lines, are the acceptor
level in the barrier and the position of the Fermi level, EF . The energy zero was taken at the
top of the Coulomb potential at the barrier; (b) Different contributions to the self-consistent
total heavy-hole potential (Vhh), due to the Coulomb (Vhh

C ) and due to the
exchange-correlation (Vhh

XC) potentials.

In order to enhance the visualization of this behavior, Fig. 8 shows (a) the potential profile
for the Al0.20In0.05Ga0.75)N/ (In0.65Ga0.35)N SL, with NA = 5 × 1018cm−3, corresponding to
the red emission in PL depicted in Fig. 7. The potential profile for each kind of carrier:
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Application of Quaternary AlInGaN- Based Alloys for Light Emission Devices 11

heavy-holes, Vhh, light-holes Vlh and split-off holes, Vso is shown, as well as the Fermi
energy, EF . The acceptor level is also indicated; for the nitrides, the acceptor level energy
is deep, around 200 meV. However, the barriers in the nitrides are high since the strain effects
are strong due the large lattice mismatch. The energy zero was placed at the top of the
total Coulomb potential at the barrier. Fig. 8 (b) presents the exchange-correlation (Vhh

XC)
and Coulomb potential (Vhh

C ) profiles inside the well for the heavy-holes. For this case, in
particular, the exchange-correlation potential stands out the Coulomb potential. So the total
heavy-holes potential, Vhh is attractive and follows the same behavior of VXC.
The rapid screening of the Coulomb potential because of the higher effective masses of the
nitrides is responsible for this behavior. Consequently, the electronic transition decreases and
the energy shifts to the red region.
The PL spectra behavior with the increase of the temperature could also be analyzed. Fig. 9
presents the PL spectra of one of the systems shown in Fig. 6, emitting in the red wavelength,
the Al0.20In0.05Ga0.75N/In0.35Ga0.65N SL, with NA = 10 × 1018cm−3. As seen above, at T= 2
K one can observe two peaks, E1-HH1 and E1-HH2. As the temperature increases, a red-shift
in energy is seen. Above T= 200 K, other electronic transitions start to appear, showing a
third peak (E1-HH3), and for T=300 K, also a forth peak (E1-HH4). This behavior is due to
the higher probability of occupation of higher valence band energy levels as the temperatures
increases. The red-shift in energy is a consequence of the band gap shrinkage. One can also
observe that the peaks corresponding to the higher electronic transitions seen at T= 200 and
300 K are stronger due to the larger values for the oscillator strengths.

Fig. 9. Calculated PL spectra at T= 2 K (solid line), T= 40 K (dashed line), T= 80 K (dotted
line), T= 100 K (dash-dotted line), T= 200 K (dash-dot-dotted line) and T= 300 K
(short-dashed line) for the Al0.20In0.05Ga0.75N/In0.35Ga0.65N SL, with NA = 10 × 1018cm−3,
which emits in the red wavelength (see table 2).

Another important element to analyze in doped systems is the PL spectra dependence on
the doping concentration. Fig. 10 depicts the calculated PL and absorption spectra, at T =
2K, for a p-doped Al0.20In0.05Ga0.75N/AlxIn1−x−yGayN SL, corresponding to emission in the
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Fig. 10. Calculated PL and absorption spectra, at T = 2 K, for a p-doped
(Al0.20In0.05Ga0.75)N/(AlxIn1−x−yGay)N SL, which emits in the blue region (see Table II), for
NA = 0 (undoped), NA = 5 × 1018cm−3, and NA = 1 × 1019cm−3.

blue region, for NA = 0 (undoped), NA = 5 × 1018cm−3, and NA = 10 × 1018cm−3. One
can clearly observe a red shift in both, the PL and absorption spectra, as the acceptor doping
concentration increases due to the confinement and many body effects. From these results the
values obtained for the Stokes shift can be extracted, taken as the energy difference between
the PL peak and the absorption edge. A significant increasing in the values of the Stokes
shifts with the increase of NA can be seen. This is due to the fact that many-body effects
such as exchange and correlation within the 2DHG have shown to be relevant, particularly
for high hole-density systems. The values encountered for the Stokes shifts in the systems
shown in Fig. 10 are approximately 20 meV and 40 meV, respectively, for NA = 5 × 1018cm−3

and NA = 10 × 1018cm−3. Similar values for the Stokes shifts have been found for p-doped
ternary (AlGa)N/GaN SLs ( Rodrigues et al. (2007)).

5. Double AlxInyGa1−x−yN quantum wells

This section is dedicated to the the study of the PL spectra for undoped and p-doped Alx

In1−x−yGayN/AlXIn1−X−YGaYN double quantum wells (DQWs), in which the Al and the
In contents, as well as, the well and spike widths are varied. A schematic diagram of
the investigated DQWs is presented in Fig. 11. The well and spike widths, dw and ds,
respectively, are indicated. The first electronic transition is also shown and corresponds to the
transition between the first electron level and the first occupied heavy-hole level (E1- HH1)
( Rodrigues et al. (2008)).
Fig. 12 presents the theoretical PL spectra from undoped DQWs constituted by Al0.25In0.05
Ga0.70N in the barrier, 10 nm width, followed by a variable width well (dw) of Al0.08In0.37
Ga0.55N, a variable width spike (dw) of Al0.10In0.10Ga0.80N, again a variable width well (dw)
of Al0.08In0.37 Ga0.55N and a fixed barrier of 10 nm of Al0.25In0.05Ga0.70N. This set of spectra
corresponds to the cases in which the spike width is fixed in 4 nm and the well width is varied
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Fig. 11. Schematic diagram for the conduction and valence bands of the DQW structure
investigated here. dw and ds are the well and the spike widths, respectively. The interband
transition is also indicated, as well as the first electron (E1) and heavy-hole (HH1) occupied
levels.

Fig. 12. Calculated PL spectra at T = 2 K for undoped c-Al0.25In0.05Ga0.70N/
Al0.08In0.37Ga0.55N/Al0.10In0.10Ga0.80N DQWs for well width dw = 4 nm and spike widths ds

= 8 nm, 6 nm, 5 nm, 4 nm, 3 nm, and 2 nm.

from 2 nm, 3 nm, 4 nm, 5nm, 6 nm, to 8 nm. A blue-shift is present in energies up to dw = 4 nm,
whereas there is a red-shift for dw > 4 nm, and beyond this value a blue-shift is observed for
values of dw > 5 nm. This behavior can be explained by the fact that for dw < 4 nm the DQW
is in an interacting regime and at dw = 5 nm it reaches the changing point from interacting
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regime to isolated QWs. For larger wells, the spike width loses its importance and above dw

= 5 nm it occurs a blue-shift in the energy due to the confinement effects for isolated wells.
Fig. 13 presents calculated PL spectra for systems with fixed well width dw = 4 nm and spike
width, ds, varying from 2 to 8 nm. One can observe a red-shift in energy as ds increases. This
leads to the conclusion that confinement levels are localized deeper, decreasing the electronic
transition energies.

Fig. 13. Calculated PL spectra at T = 2 K for undoped c-Al0.25In0.05Ga0.70N/
Al0.08In0.37Ga0.55N/ Al0.10In0.10Ga0.80N DQWs for the spike width ds = 4 nm and well width
dw = 8 nm, 6 nm, 5 nm, 4 nm, 3 nm, and 2 nm.

To analyze the properties of doped systems, Fig. 14 presents the PL spectra at 2 K for the same
system depicted in Fig. 12, and for spike and well widths fixed at 4 nm. The two-dimensional
(2D) acceptor doping concentration is varied assuming values of N2D = 2 × 1012cm−2, 4 ×
1012cm−2, and 8 × 1012cm−2. The undoped system is also presented for comparison. One
can observe a red-shift in energy up to N2D = 4 × 1012cm−2, and for N2D = 8 × 1012cm−2

a blue-shift is seen. This behavior is due to the potential profile, which shows a bending
that curves up for low concentrations, and curves down for high concentrations, no matter
whether the total potential is attractive or repulsive. An attractive potential is observed up
to 4 × 1012cm−2, so the levels are localized near the bottom of the wells, beyond that, the
potential is repulsive, and one can expect larger transition energies.
The last issue to be addressed in DQWs is the strain. Fig. 15 presents the PL spectra at T = 2
K for strained p-type doping Al0.60In0.05Ga0.35N/ Al0.10In0.40Ga0.50N/ In0.10Ga0.90N DQWs,
in order to analyze the spike effects. The two-dimensional acceptor donor concentration was
fixed in N2D = 2 × 1012cm−2. Fig. 15(a) presents the spectra for a fixed spike width ds= 4
nm and (b) for fixed well widths dw= 4 nm. One can observe in Fig. 15 (a) a red-shift in
energy due to confinement effects as ds increases. This behavior is opposite to the one seen
in Fig. 15 (b), where a blue-shift in energy exists until dw = 3 nm, followed by a red shift,
where a change from an interacting to an isolated well regime occurs. After ds = 5 nm, again a
blue-shift in energy is observed, due to many body effects, which become more important than
the spike width contribution to these systems. It is important to note that a different behavior
is observed if compared with undoped systems. This is related to the charge distribution
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inside the wells, with the Fermi level lying near the bottom of wells for thicker wells, contrary
to what is observed for thin ones. Note that in this case the transition from interacting to
isolated regime occurs in ds= 4 nm.

Fig. 14. Calculated PL spectra at T = 2 K for p-doped c-Al0.25In0.05Ga0.70N/
Al0.08In0.37Ga0.55N/ Al0.10In0.10Ga0.80N DQWs, for well and spike widths equal to 4 nm and
doping N2D = 2 × 1012cm−2 (dashed-dot line), 4 × 1012cm−2 (dashed line), 8 × 1012cm−2

(dotted line), and undoped (solid line) for comparison.
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Fig. 15. Theoretical normalized PL spectra at 2 K for strained
c-Al0.60In0.05Ga0.35N/Al0.10In0.40Ga0.50N/In0.10Ga0.90N DQWs, fully p-doped barrier with
N2D = 2 × 1012cm−2. The systems have (a) fixed ds = 4nm and varying from dw = 2 nm to 8
nm, and (b) fixed dw = 4 nm and varying from ds = 2nm to 8 nm.

6. Conclusions

In this chapter it was performed a detailed investigation of the theoretical luminescence and
absorption spectra of strained undoped and doped c- AlXIn1−X−YGaYN/ AlxIn1−x−yGayN
SLs and DQWs using a self-consistent resolution of the 8×8 Kane Hamiltonian within the
effective mass theory.
At first it was shown the feasibility of reaching emissions from red light to blue light regions
by the correct combination of different quaternary alloys either in the well or in the barrier in
undoped systems. When an external field is taken into account, the theoretical spectra present
red shifts. A similar result could be obtained for the wurtzite phase of the structures, caused
by the presence of the intrinsic piezoelectric fields. In such systems, these effects lead to a
spatial segregation of the electron and hole charge distributions, causing a reduction in the
light emission efficiency. For the cubic phase structures, as the piezoelectric fields are absent,
the spatial segregation is smaller and therefore higher efficiency would be expected.
Analyzing the doped systems, it is pointed out that light emission arising from the
recombination involving confined states in the wells has not a monotonic behavior when
the doping concentration increases, even if it is always red shifted when compared to the
undoped SLs. The main reason for this is the shape of the potential bending induced by
the presence of a holes charge distribution inside the wells. The competition between the
exchange-correlation potential and the Coulomb potential was shown to be the main reason
for this behavior, since they define the total bending potential, attractive or repulsive, which
affects directly the optical transitions. Again, for single QWs, it was shown that by choosing
an appropriate set of alloy molar fractions and acceptor concentrations it is possible to achieve
white light emission by combining the emission in three different regions of the spectra.

370 Optoelectronics - Materials and Techniques

www.intechopen.com



Application of Quaternary AlInGaN- Based Alloys for Light Emission Devices 17

Regarding to different spatial arrangements, DQWs were analyzed.It was shown for p-doped
c-AlXIn1−X−YGaYN/AlxIn1−x−yGayN DQWs that the related PL spectra depict a different
behavior depending on the spike and/or adjacent well layer widths. A change in the kind of
regime from interacting wells to isolated non-interacting wells was demonstrated. Although
not shown here, it is also possible to reach all wavelengths using the DQWs structures, as it
was demonstrated for single QWs.
Another important conclusion that must be pointed out form the set of systems analyzed
in the chapter is that the red region of electromagnetic spectrum can be reached through
the quaternary alloys using less In content, as compared to the ternary InGaN alloy. From
the experimental point of view this finding is fundamental, since the growth with higher In
content is more difficult.
Finally, supported by the recent advances in the growth techniques, the analysis presented
here intends to elucidate and guide the study of optical properties in semiconductor nitride
systems, bringing new possibilities for experiments and, hopefully, novel proposals for the
next generation of advanced optical devices.
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