
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

0

ASIP Design and Prototyping for Wireless
Communication Applications

Atif Raza Jafri, Amer Baghdadi and Michel Jezequel
Telecom Bretagne/Lab-STICC CNRS

France

1. Introduction

Last three decades can undoubtedly be said as the decades of wireless communications.
New state of the art data processing techniques have been developed and used in practical
system. These techniques include advanced Error Control Coding (ECC), Bit Interleaved
Coded Modulation (BICM), high ordered Quadrature Amplitude Modulations (QAM), Signal
Space Diversity (SSD), Multi Input Multi Output (MIMO), Orthogonal Frequency Division
Multiplexing (OFDM), and others.
To guide the wireless communication industry, for the adoption of new developed techniques
in the commercial devices, diverse wireless communication standards have been evolved
rapidly in the domain of cellular telephone network, local/wide wireless area networks and
Digital Video Broadcast (DVB). These standards propose best combination of evolved data
processing schemes at the transmitter to protect data from destructive channel effects under
different transmission conditions. Taking an example of mobile telephony, by using newly
developed concepts such as spatial multiplexing feature of MIMO, the evolving 3GPP-LTE
standard is aimed at achieving 100 Mega bits per second to support high data rate real-time
applications on a mobile terminal. Similar trends are also visible in other public domains
of wireless communication such as DVB-NGH (Next Generation Handheld), which is the
next generation standard for video broadcasting, providing services for fixed and mobile
terminals. The other aspect under consideration is the global roaming or seamless coverage
across geographical regions which demands multi-mode radios compatible with different
systems and standards to provide seamless services at fixed location.
While translating these requirements on the physical layer of a radio terminal, this can
be seen as a flexible high throughput hardware platform which can be configured to the
required air interface. The overall flexibility of the radio platform can be achieved through
the flexibility of individual components at transmitter side (encoder, interleaver, mapper,
etc.) and at receiver side (equalizer, demapper, deinterleaver, decoder, etc.). This emerging
flexibility need in digital baseband design constitutes a new major challenge when added to
the ever increasing requirements in terms of throughput and area. In addition to technical
requirements associated with rapid growth in wireless communication industry, the severe
time-to-market constraints compel the designers for adopting the rapid design, validation
and prototyping flow to conceive these wireless radio terminals for their successful and
timely delivery in the market. In short, the diverse requirements of wireless communication
standards imply, between others, two crucial requirements on hardware implementation: (1)

14

www.intechopen.com

2 Will-be-set-by-IN-TECH

Hardware platform flexibility for multi-standard support, and (2) Rapid prototyping flow for
system validation under different use case scenarios.

1.1 ASIP and rapid design flow

Considering the first requirement of flexibility, the very first idea about the flexible platform
was presented in the initial work on Software Defined Radio (SDR) (Mitola, 1995). Any
reconfiguration of an SDR platform simply corresponds to a change in a software program.
The required software does not even need to be stored in the device itself, since it can be
downloaded, thereby bringing easy maintenance capability to the radio. In this proposition,
off-the-shelf General Purpose Processors (GPP) and Digital Signal Processors (DSP) were
presented as programmable Processing Elements (PE) of different functional block of a flexible
radio platform. With increasing demand of high throughput and low power requirements,
GPP and DSP are no more suitable due to their limited parallelism and huge flexibility which
is more than what is required in PEs of functional blocks of future radio platforms and hence
causing low throughput and high power consumption.
In this regard, Application Specific Instruction-set Processors (ASIPs) are increasingly used
in complex System on Chip (SoC) designs. ASIPs are tailored to particular applications,
thereby combining performance and energy efficiency of dedicated hardware solutions with
the flexibility of a programmable solution. The main idea is to design a programmable
architecture tailored to a specific application, thus preserving only the required flexibility.
Coming to the second requirement of rapid design flow, while selecting ASIP as the
implementation approach, an ASIP design flow integrating hardware generation and
corresponding software development tools (assembler, linker, debugger, etc.) is mandatory.
In this regard, by looking at available commercial solutions for ASIP design, it is possible to
identify three main classes based on the degree of freedom which is left to the designer:

• Architecture Description Language (ADL) based solutions which can be also defined as
ASIP-from-scratch. This approach results in the highest flexibility and efficiency, but on
the other hand it requires a significant design effort.

• Template architecture based which allow the designer to add custom instructions to a
pre-defined and pre-verified core, thus restricting the degree of freedom with respect to
the previous approach to the instruction set definition only.

• Software configurable processors and reconfigurable processors with a fixed hardware,
including a specific reconfigurable ISE fabric, which allows the designer to build custom
instructions after the fabrication.

CoWare Processor Designer is an ASIP design environment entirely based on LISA
(Hoffmann et al., 2001). The language syntax provides a high flexibility to describe
the instruction set of various processors, such as SIMD (Single-Instruction Multiple-Data),
MIMD (Multiple-Instruction Multiple-Data) and VLIW (Very long instruction word)-type
architectures. Moreover, processors with complex pipelines can be easily modeled.
Processor Designer’s high degree of automation greatly reduces the time for developing the
software tool suite and hardware implementation of the processor, which enables designers
to focus on architecture exploration and development. The usage of a centralized description
of the processor architecture ensures the consistency of the Instruction-Set Simulator (ISS),
software development tools (compiler, assembler, and linker etc.) and RTL (Register Transfer
Level) implementation, minimizing the verification and debug effort. Using the Processor

244 Advanced Applications of Rapid Prototyping Technology in Modern Engineering

www.intechopen.com

ASIP Design and Prototyping for Wireless Communication Applications 3

Designer’s automated design and optimization environment which utilizes LISA language
description to develop a wide range of processor architectures, like SIMD and VLIW as well
as processors with DSP or RISC-specific features. The generation of the software development
environment by Processor designer enables to start application software development prior to
silicon availability, thus eliminating a common bottleneck in embedded system development.

1.2 ASIP for wireless communication applications

Consider the system diagram of Fig. 1, where transmitter includes the channel coding, BICM
interleaving, constellation mapping and finally a possibility of SSD and MIMO STC. In the
channel encoder there are several flexibility parameters such as input bit in encoder, states of
the encoder and trellis construction. BICM interleaver, mapper, SSD and MIMO STCs have
their own flexibility parameters.

MAPPER
INTERLEAVER

MIMO

CODE)

(SPACE TIME

RAYLEIGH FADING CHANNEL

DEC−1

DEC−2

TURBO DECODER

Decoded Bits
MIMO

EQUALIZER

MAPPER

SOFT

SOURCE CC−1

CC−2

d

S

P1

P2

TURBO ENCODER

SSD

DEINTERLEAVER

BICM
(QPSK, 16−QAM

64−QAM, 256−QAM)∏2

xvc

x =

⎡

⎢

⎢

⎣

x0
x1
.
.

⎤

⎥

⎥

⎦

x

xSSD

DECODER

∏1 ∏1∏
−1
1

c̃

L(vi
t; O)
= =

L(ci
t; I)

x̃ =

⎡

⎢

⎢

⎣

x̃0
x̃1
.
.

⎤

⎥

⎥

⎦

∏2

=

L(vi
t; I)

ĉext/apost

=

=
L(vi

t; I)

v̂apost

v̂ext

y

y =

⎡

⎢

⎢

⎣

y0
y1
.
.

⎤

⎥

⎥

⎦

∏1

x̂ =

⎡

⎢

⎢

⎣

x̂0
x̂1
.
.

⎤

⎥

⎥

⎦

DEMAPPER
∏

−1
2ṽ

L(ci
t; O) L(p1)

L(s)

L(p2)

Fig. 1. System Diagram of a Modern Radio Platform

On the receiver side there are blocks such as MIMO equalizer, symbol demapper, deinterleaver
and channel decoder. There are also the possibilities of applying iterative/turbo processing to
achieve the error rate performance approaching theoretical limits e.g turbo decoding where
decoders share the extrinsic information, turbo demodulation where there is an additional
feedback exist between decoders and demapper and finally turbo equalization where there is
a feedback also to the equalizer. On hardware side, three ASIPs dedicated for turbo decoding,
demapping and MIMO equalization functions are required to achieve overall flexibility of the
presented receiver. These three ASIPs are named as TurbASIP (Muller et al., 2009), DemASIP
(Jafri, Baghdadi & Jezequel, 2009), and EquASIP (Jafri, Karakolah, Baghdadi & Jezequel, 2009).
The design methodology adopted to conceive these ASIPs is comprised of four steps:

1. Step 1: Analysis of target application and underlined algorithms with respect to flexibility
needs of multi-standard requirements.

2. Step 2: Derivation of architectural choices for the target flexibility and parallelism degree.

3. Step 3: Design of basic building blocks of the ASIP. Efficient resource usage and sharing
are considered at this step.

245ASIP Design and Prototyping for Wireless Communication Applications

www.intechopen.com

4 Will-be-set-by-IN-TECH

4. Step 4: Design of the complete architecture of the ASIP (including instruction-set, datapath,
pipeline stages, memory banks, and I/O interfaces).

To address the severe time to market constraint, a rapid flow for ASIP modeling, validation,
and FPGA prototyping is used. This flow is based on Processor Designer Framework from
CoWare Inc. The whole process is divided into three abstraction levels where first one is LISA
ADL, the second is the HDL level, and finally FPGA/ASIC implementation is last level of
this rapid prototyping flow. In this chapter EquASIP is taken as an example to demonstrate
the whole approach: (1) Four steps involved in wireless communication ASIP design and (2)
Associated three abstraction levels of a rapid validation and FPGA prototyping flow.

2. EquASIP: ASIP-based MMSE-IC linear equalizer

The use of multiple antennas is recognized as a key enabling technology in high performance
wireless communications. Most of emerging wireless standards, such as IEEE 802.11m,
IEEE 802.16, and 3GPP LTE, propose the use of MIMO systems with different features and
parameters. In these standards MIMO techniques such as time diversity and/or spatial
multiplexing are specified. Diversity and/or multiplexing achieved through MIMO in
different standards are summarized in Table 1. State of the art MIMO detection techniques

MIMO Feature IEEE 802.11n IEEE 802.16e 3GPP-LTE

Time Diversity(Alamouti) � � �

Spatial Multiplexing � � �

Golden Code �

Mixed Diversity/
� �

Multiplexing

Table 1. Multi Standard MIMO Support

can be classified in three categories (Burg et al., 2005): Maximum Likelihood (ML) detection,
Sphere Decoding (SD), and linear filtering based detection. The complexity of ML detection
increases exponentially with the number of antennas and modulation order. The SD approach
has a polynomial complexity. To perform SD, first a QR decomposition of channel matrix is
carried out and then tree exploration is performed. This tree search is further categorized
as depth-first and breadth-first methods. The depth-first has a reduced area complexity and
optimal performance, but has variable throughput with SNR. In breath-first case, the most
famous algorithm is the K-best in which K best nodes are visited at each level. Hence,
the complexity depends on K. A large value of K results in high complexity and good
performance. Linear filtering based solutions such as Minimum Mean Squared Error -
Interference cancellation (MMSE-IC), considerably reduce the complexity of the hardware
implementation of a MIMO detector. Whereas the compensation for sub-optimality can be
achieved using an iterative equalization with the channel decoder.
In linear filtering based solution, matrix inversion implying complex numbered operations is
the most demanding computational task. Hence, most of the existing work has been focused
on the inversion of variable-sized complex-numbered matrices. Matrix inversion based on QR
Decomposition Recursive Least Square (QRD-RLS) algorithm has been proposed (Karkooti
et al., 2005). In (Myllyla et al., 2005), authors have proposed a Coordinate Rotation Digital
Computer (CORDIC) and Squared Givens Rotation (SGR) based Linear MMSE detector while
in (Edman & Öwall, 2005) a linear array architecture for SGR implementation has been

246 Advanced Applications of Rapid Prototyping Technology in Modern Engineering

www.intechopen.com

ASIP Design and Prototyping for Wireless Communication Applications 5

introduced. Matrix inversion through block-wise analytical method has been implemented
in (Eilert et al., 2007). Two separate MMSE-IC2 equalizers for 4×4 turbo MIMO SM
environment using QPSK and QAM-16 modulations, implementing CORDIC method of QR
decomposition, have been proposed in (Boher et al., 2008) for fast fading applications. Using
analytic method of matrix inversion, a fully dedicated architecture for MMSE-IC1 LE for
2×2 turbo MIMO system with pre-coding used in quasi static channel has been proposed
in (Karakolah et al., 2009). The other work carried out in (Kim et al., 2008) shows exciting
results in terms of throughput for 802.11n MIMO-OFDM application. The implementation is
based on a inverse free architecture using square-root MMSE formulation.
To the best of our knowledge all the available implementations target a specific STC with
limited modulation support. In the following sections, the process of developing a flexible
MMSE-IC equalizer using the ASIP approach and conforming to multi-standard requirements
is explained.

2.1 Step 1: Algorithm analysis and flexibility requirements

At the inputs of the equalizer, as shown in Fig. 1, the received symbol vector y is given by the
following expression.

y = Hx + j (1)
where y is a vector of size of number of receive antennas (Nr), x is a vector of size of number
of transmit antennas (Nt), H is channel matrix of size NrxNt and the j is column vector of
Additive White Gaussian Noise(AWGN) of size Nr. The output x̃ of the MMSE-IC equalizer
using time invariant approximation as proposed by (Laot et al., 2005) is given by:

x̃k = λkpH
k (y − Hx̂ + x̂khk) (2)

where k = 1, 2, ...Nt, x̂ is vector of decoded symbols of size Nt and x̂k is kth element of this
vector, hk is kth column of H matrix and (.)H is Hermitian operator. The other parameters λk,
and pk are given by:

pk = E−1hk (3)
E = (σ2

x − σ2
x̂)HHH + σ2

wI (4)
where σ2

x , σ2
x̂ and σ2

w are variances of transmitted symbols, decoded symbols and noise. I is
identity matrix.

λk =
σ2

x

1 + σ2
x̂ βk

where βk = pH
k hk (5)

Equation (2) can be rewritten in the form

x̃k = λkpH
k (y − Hx̂) + λkpH

k x̂khk

= λkpH
k (y − Hx̂) + gk x̂k

(6)

where gk = λkβk is equivalent bias of AWGN noise whose real part is used in demapper.
Once we correlate these equations of MMSE-IC algorithm to the needs of multi-standard
requirements, following are the three considered sources in extracting the flexibility
parameters:

• MIMO STC supported at the transmitter

• Time diversity of the channel i.e quasi static, block fading and fast fading

• Possibility of iterative equalization in the receiver

247ASIP Design and Prototyping for Wireless Communication Applications

www.intechopen.com

6 Will-be-set-by-IN-TECH

2.1.1 MIMO STC

MIMO Spatial multiplexing (SM), Alamouti code and Golden code are the STCs adopted
in emerging wireless standards. For MIMO SM with different antenna dimensions, such
as 2×2, 3×3 and 4×4, the expressions (3 to 6) can directly be implemented using channel
matrix and received vector inputs. Hence, a hardware capable of implementing variable
sized complex matrix operation involved in the algorithm can address MIMO SM from 2 to
4 antennas. As far as Golden code and Alamouti code are concerned, MMSE-IC algorithm
can be used by applying equivalent channel transformations on the inputs prior to their use.
In case of 2×2 Golden code, the equivalent channel transformation is presented in (Cavalec
et al., 2008). The idea is to treat two transmitted vectors (each having two elements) as one
transmission of four symbols. By applying equivalent channel transformation, the inputs
to the MMSE-IC equalizer are y of four elements and an equivalent channel matrix H̆ of size
4×4. The equivalent channel transformation of Alamouti code is presented in (BOUVET, 2005)
which transforms a 2×1 channel matrix into a 2×2 equivalent matrix and 2×2 channel matrix
into a 4×4 equivalent matrix. Hence, supporting MIMO SM with an additional capability of
equivalent channel transformation, addresses this first source of flexibility parameters.

2.1.2 Time diversity

The time diversity of the channel decides how frequent the computations of equalization
coefficients (Equation 3 to Equation 5) is required. For quasi static channel these coefficients
are computed once per iteration whereas for fast fading channel they are computed for each
received vector per iteration. In case of block fading, these coefficients are computed for a set
of received vectors for which channel matrix is considered as constant.

2.1.3 Iterative equalization

The last source of flexibility is the iterative/non-iterative nature of the equalizer. In an iterative
context the equalizer must incorporate the a priori information.

2.2 Step 2: Architectural choices

In the MMSE-IC algorithm, one can note that the expressions computing equalization
coefficients and symbol estimation exhibit similar arithmetic operations. Now considering
the flexibility need related to time diversity of the channel, allocating separate resources for
equalization coefficients computation will result in an inefficient architecture in case of quasi
static and block fading channel. For this reason, and targeting flexibility as well as efficiency,
our first architectural choice is based on hardware resource sharing between these two tasks.
Out of these two distinctive parts of the algorithm, the one related to equalization coefficient
computation is more resource demanding. In fact, in this part of the algorithm, the implied
computations can only be done in a serial order. For example, to compute matrix E−1 of
Equation 3, one need to compute:

• Hermitian of H

• Matrix multiplication HHH

• Scaler-Matrix multiplication

• Matrix addition

• Matrix inversion

248 Advanced Applications of Rapid Prototyping Technology in Modern Engineering

www.intechopen.com

ASIP Design and Prototyping for Wireless Communication Applications 7

+

−

+

−

o
r

o
r

o
r

o
r

(a) (b)

X = a + bj

c

a

0

a

b

0
d

b

Y = c + dj

(X
−

Y
) r

e
(X

−
Y
) i

mb

d

c

a

(X
+

Y
) r

e
(X

+
Y
) i

m

(−
X
) r

e

(X
∗
) r

e

(−
X
) i

m

(X
∗
) i

m

Fig. 2. Basic components (a) Complex adder (b) Complex subtracter, negater and conjugator

The other metrics (such as βk, λk and gk) are computed with a similar pattern. For this
kind of serial computations, temporal parallelism implementation through pipelining can be
applied to increase throughput. Now considering the flexibility need related to STC, allocating
hardware resources according to the requirements of the most complex STC configuration will
result in an inefficient architecture for the low complexity configurations. For this reason, our
second architectural choice is based on dimensioning the hardware resources in order to be
fully used in all STC configurations. In this regard, the implied complex matrix operations
are analyzed and broken down into basic arithmetic operations. Then adequate hardware
operators are constructed considering the best tradeoff between flexibility, parallelism and
hardware efficiency.

2.3 Step 3: Design of basic building blocks

In this section, a bottom-up presentation approach is adopted to explain the proposed
hardware architecture capable of performing complex operations through the basic arithmetic
operators. In the first part of this section, we will propose the architectures for the
basic complex number operators (performing addition, subtraction, negation, conjugation,
inversion) which provide maximum resource sharing. Later on, complex matrix operation,
achieved through execution of basic complex number operations (performing multiplication,
hermitian and inversion) will be presented.

2.3.1 Complex number operations

In MMSE-IC algorithms, the complex matrix operations can be broken down into basic
complex number operation such as addition, subtraction, negation, conjugation and
inversion. To perform each operation the architecture of the operator is detailed below.

2.3.1.1 Complex number addition, subtraction, negation and conjugate

The complex number addition needs two real adders whereas a complex numbered
subtraction needs two real subtracters. Using two real subtracters, negation of a complex
number can be performed. Similarly, conjugate of a complex number, required in calculating
the hermitian of a matrix can also share the real subtracter. Fig. 2(a) shows hardware
architecture for addition of two complex numbers X = a+ jb and Y = c+ jd whereas Fig. 2(b)

249ASIP Design and Prototyping for Wireless Communication Applications

www.intechopen.com

8 Will-be-set-by-IN-TECH

+

−

or

or

or

or

+

−
or

+

−

R
E
G

E
G

E
G

R

R

R

R

G

R

R
E

E
G

E
G

E

R
E
G

E
G

R

G

c
a

X = a + bj Y = c + dj

d

a

b

b

c

c
(a + c)

(a + b)

(b + d)

(c + d)a
b
0

(a − c)

(b − a)

b

0
d

b

d(a + b)

a(c + d)

c(b − a)

(−a)

(b − d)

(−b)

a

c

d

(X × Y)im

(X × Y)re

Fig. 3. Combined Complex Adder Subtracter and Multiplier (CCASM)

shows combined architecture of subtraction of X and Y and negation/hermitian of a complex
number X.

2.3.1.2 Complex number multiplication

By applying the classical formula (7) of multiplication of complex numbers, a complex
numbers multiplier must perform 4 real multiplications and 2 real additions/subtractions.

X × Y = (a + jb)(c + jd) = (ac − bd) + j(ad + bc) (7)

A rearrangement may be proposed to reduce the number of multiplications required, as:

X × Y = (a + jb)(c + jd) = a(c + d)− d(a + b) + j [a(c + d) + c(b − a)] (8)

By applying this reformulation, a complex number multiplier must perform only three
real multiplications and 5 real additions/subtractions. Reducing one real multiplier per
complex multiplier at the cost of three adders significantly reduces the complexity of
the complex number multiplier. In addition the adders and subtracters of first stage of
pipelined multipliers can also be used for complex number addition, subtraction, negation
and conjugation. A Combined Complex Adder Subtracter and Multiplier (CCASM) is
shown in Fig. 3. This architecture is capable of performing all basic operation of complex
number addition, subtraction, negation, conjugation (output at first stage of pipeline) and
multiplication (output at third stage of pipeline).

250 Advanced Applications of Rapid Prototyping Technology in Modern Engineering

www.intechopen.com

ASIP Design and Prototyping for Wireless Communication Applications 9

2.3.1.3 Complex number inversion

The inverse of a complex number can be computed using following expression:

1
a + bj

=
a

a2 + b2 −
b

a2 + b2 j (9)

The architecture for this inverter can be obtained by reusing the real multipliers and one adder
of the CCASM to compute a2 + b2. Pre-computed LUT can then be used to find inversion
value of 1

a2+b2 . Finally, two real multipliers and one subtracter are required for final result
computation.

2.3.2 Complex matrix operations

In this subsection we propose the use of basic operators, developed in previous part, to
achieve complex numbered matrix operations such as matrix hermitian, multiplication and
inversion.

2.3.2.1 Matrix hermitian, addition, subtraction, negation

To perform hermitian operation on a matrix, at first, one need to copy the rows of the matrix
into columns of an intermediate matrix. Then by taking complex conjugate of each element
of this intermediate matrix, the resultant matrix will be the required hermitian matrix. Using
4 instances of the architecture presented in Fig. 2 with some control logic, provides a fully
parallel and flexible architecture to perform Matrix Hermitian, Addition, Subtraction and
Negation operations for 2×2 and 4×4 matrices. In case of 3×3 matrix this architecture will be
75% efficient. Hence, to perform any of these operation on 2×2, 3×3 and 4×4 matrices, 1, 3
and 4 clock cycles will be required.

2.3.2.2 Matrix multiplication

To perform a multiplication of two 2×2 matrices, 8 complex multiplications are required
whereas for 3×3 and 4×4 matrices the number of complex multiplications required are 27
and 64 respectively. Use of four CCASM (Fig. 3), can efficiently perform all operations
(matrix hermitian, addition, subtraction, negation and multiplication) required for 2×2 and
4×4 matrices. For 2×2 matrix multiplications, two complex adders will be required to sum up
the multiplication results whereas in 4×4 case, in addition to two complex adders, one more
adder will be required. The architecture of 2×2 and 4×4 matrix multiplications is shown in
Fig. 4. The number of cycles required to perform 2×2, 3×3 and 4×4 matrix multiplications
will be 2, 9 and 16 respectively.

2.3.2.3 Matrix inversion

The matrix inversion can be achieved through one of the following methods:

• based on matrix triangulation

• based on analytical method

The first method based on matrix triangulation can realized using systolic architecture
through the LU decomposition, Cholesky decomposition or QR decomposition. The method
based on QR decomposition is the most interesting due to its numerical stability and its
practical feasibility. It consists of decomposing decompose a matrix A of size N × N as
A = QR where Q is an orthogonal matrix (QQH = I) and R an upper triangular matrix. This
decomposition allows to compute the inverse of the matrix A after a simple inversion of the

251ASIP Design and Prototyping for Wireless Communication Applications

www.intechopen.com

10 Will-be-set-by-IN-TECH

COMPLEX ADDER COMPLEX MULTIPLIER

Matrix Multiplication

(a) (b)

For 3 × 3

b

e

a

f
a

g

b

h

x

y

z

b

e

a

f
c

g

d

h

d = h = 0

B =

[

e f
g h

]

A =

[

a b
c d

]

A × B =

[

x y
. .

]

A =

⎡

⎢

⎢

⎣

a b c d
. . . .
. . . .
. . . .

⎤

⎥

⎥

⎦

B =

⎡

⎢

⎢

⎣

e . . .
f . . .
g . . .
h . . .

⎤

⎥

⎥

⎦

A × B =

⎡

⎢

⎢

⎣

z . . .
. . . .
. . . .
. . . .

⎤

⎥

⎥

⎦

Fig. 4. Complex matrix multiplications (a) 2×2 Matrix multiplication (b) 3×3 and 4×4 Matrix
multiplication

triangular matrix R and a matrix multiplication as A−1 = R−1Q. There are several methods
(Golub & van Van Loan, 1996) to achieve this decomposition, such as the Givens method
or the method of Gram-Schmidt. Hardware designers give special attention to the Givens
method due to its practical feasibility, its parallelism and its numerical stability (Myllyla et al.,
2005)(Edman & Öwall, 2005). The method of Givens consists of triangularization of matrix A

by applying a series of plane rotations called Givens rotations. Each rotation is designed to
cancel an element of A. The standard method of Givens uses operations that are not easily
implementable, including square root and division. Therefore, there are several variants of
this method to avoid these operations. The SGR (Squared Givens Rotations) (Döhler, 1991)
and CORDIC method (Volder, 1959) are the best known methods. A comparison between the
two approaches: SGR and CORDIC has been made by (Myllyla et al., 2005) through MMSE
detector. The results show that the CORDIC-based architecture is more expensive in hardware
cost and is 1.5 times slower than those based on SGR. In his thesis work , Edman (Edman,
2006) used SGR method to achieve matrix inversion and studied both triangular and linear
architectures. For this type of architecture there are dedicated Processing Elements (PEs)
which are used as boundary elements and internal elements of a systolic array or linear array
(Edman & Öwall, 2005). Although linear array architecture is flexible for variable sized matrix
inversion, it is dedicated to matrix inversion only.
The analytic method of matrix inversion is good candidate, not only for variable sized matrix
inversion but also for resource reuse for other matrix computations. The expression for the

252 Advanced Applications of Rapid Prototyping Technology in Modern Engineering

www.intechopen.com

ASIP Design and Prototyping for Wireless Communication Applications 11

inversion of 2×2 matrix through analytical method is given by:

[

a b
c d

]−1

=
1

ad − bc

[

d −b
−c a

]

(10)

To implement Equation 10 the resources required are a complex number negater and a
complex divider. For a 4×4 matrix, the matrix is divided into four 2×2 matrix and inversion
can be achieved block wise.

[

A B
C D

]−1

=

[

W X
Y Z

]

(11)

where

W = A−1 + A−1B(D − CA−1B)−1CA−1

X = −A−1B(D − CA−1B)−1

Y = −(D − CA−1B)−1CA−1

Z = (D − CA−1B)−1

The inversion of a 3×3 matrix is performed by extending it to a 4×4 matrix. This can be
done by copying all three rows of 3×3 matrix into first three rows of 4×4 matrix and then
putting zeros in all elements of fourth row and fourth column where a 1 should be put on the
intersection of fourth row and fourth column. The inversion can then be performed using the
method mentioned above. The final result lies in first three elements of first three rows (or
column). All the expressions involved in the inversion of up to 4×4 matrix can be achieved
through already described matrix operations and will be used in the EquASIP.

2.3.2.4 Operator reuse in fixed-point representation

To find the required data width for fixed-point representation of the parameters involved
in MMSE-IC algorithm, long simulations have been conducted for all supported system
configurations (STC and modulation type). Results analysis have shown that at maximum
16-bit signed representation with different bits for integer and fractional part is sufficient
for all the parameters involved during the different computational steps of MMSE-IC LE
algorithm. To enable the reuse of hardware resources for these different computations,
involving operands with different fixed-point representations, certain rules have been set.
First of all, while reading input data from memories, the data which is represented in less
than 16-bits, is sign extended to 16-bit. Secondly, a programmable 33 to 16-bit conversion
is performed at the outputs of the multipliers. Last of all, to avoid the hazards caused by
overflow/underflow during an arithmetic operation, a control mechanism is provided to fix
the output at its maximum/minimum limit.

2.4 Step 4: Design of the complete architecture of EquASIP

In this step granularity level of basic building blocks is increased to achieve the data path
whereas this datapath is distributed over several pipeline stages to reduce the critical path.
Other components such as memory banks are added to achieve complete architecture of
the ASIP. The proposed EquASIP architecture is mainly composed of Matrix Register Banks
(MRB), Complex Arithmetic Unit (CAU) and Control Unit (CU) besides its memory interfaces.
The input to the EquASIP are through “Channel Data Memory” and the soft mapper as

253ASIP Design and Prototyping for Wireless Communication Applications

www.intechopen.com

12 Will-be-set-by-IN-TECH

GP1 GP2 GP3 GP4

ADR

Matrix Register Banks

H0_0 H0_1 H0_2 H0_3

GP0

V0 V1 V2 V3

H0 H1 H2 H3

F
E

T
C

H

A
D

_
S

U
_
M

U
L

1

M
U

L
2

M
U

L
3

1
A

D
D

O
U

T

H

V

GP

128 128
32 64/3264

128

ADR

DATA
DATA

to Demapper

20 24

Program
Memory Memory

ADR

DATA

from Mapper

Complex
Arithmatic

Unit

C
O

N
T

R
O

L
 U

N
IT

P
ip

el
in

e
R

eg
is

te
rs

P
ip

el
in

e
R

eg
is

te
rs

P
ip

el
in

e
R

eg
is

te
rs

P
ip

el
in

e
R

eg
is

te
rs

P
ip

el
in

e
R

eg
is

te
rs

2
A

D
D

REAL PART (16 BIT SIGNED)

Channel Data

10
12

15 15

LUT

P
ip

el
in

e
R

eg
is

te
rs

IMAGINARY PART (16 BIT SIGNED)

x̂ and σ2
x̂

x̃ and g

1
x

Fig. 5. EquASIP block diagram

shown in Fig. 5. The data bus of all inputs is set to 16 (32 bit for complex number). This
provides flexibility to use up to 16 bit data representation and in case of smaller data widths,
signed/unsigned extension can be done externally. The ASIP has 7 pipeline stages named as:
FETCH, AD_SU_MUL1, MUL2, MUL3, 2ADD, 1ADD and OUT.

2.4.1 Matrix register banks

To store a complex number two separate 16-bit registers have been used, one storing the
real and the other imaginary part. Based on the requirements of the Equation 6 for a 4×4
spatially multiplexed MIMO system, 13 MRBs have been proposed, where each MRB can
store 4 complex numbers (Fig. 5). H-MRB (H0, H1, H2, and H3) which are connected to
the memory, can store 4 rows or columns of Channel Matrix. Four V-MRB (V0, V1, V2, and
V3) store 16 entries of λk pk. GP0, GP1, GP2, GP3 and GP4 are assigned to the storage of
gj , x̂j, y, gj x̂j and the estimated symbols x̃ respectively. Other than this specific use, these GP
registers save the intermediate results of equalization coefficients. Among other registers there
are three registers to store the variances of noise, modulation symbol and decoded symbols
besides pipeline registers and the registers for REPEAT instruction.

254 Advanced Applications of Rapid Prototyping Technology in Modern Engineering

www.intechopen.com

ASIP Design and Prototyping for Wireless Communication Applications 13

A EDCB

FROM LUT

RM3

2ADD

RM4

AD_SU_MUL1 MUL2FETCH OUT

CA8

CA9

CS5

CS6

MUL3 1ADD

CONV9

CONV10

CA1 /CS1 /

CM1 STAGE 1

CA2 /CS2 /

CM2 STAGE 1

CA3 /CS3 /
CM3 STAGE 1

CA4 /CS4 /

CM4 STAGE 1
CM4 STAGE 2

CM3 STAGE 2

CM2 STAGE 2

CM1 STAGE 2 CM1 STAGE 3

CM2 STAGE 3

CM3 STAGE 3

CM4 STAGE 3

CA5

CA6

CA7

@Gen

CS = COMPLEX SUBTRACTOR

CM = COMPLEX MULTIPLIER

RM = REAL MULTIPLIER

A = RESULT OF 4 COMPLEX

B = RESULT OF 4

C =

E =

D =

CONV = 33 to 16−Bit Converter

CA = COMPLEX ADDER ADDITIONS/SUBTRACTIONS

COMPLEX MULTIPLICATIONS

6
 P

IP
E

L
IN

E
 R

E
G

IS
T

E
R

S

1
0

 P
IP

E
L

IN
E

 R
E

G
IS

T
E

R
S

1
4

 P
IP

E
L

IN
E

 R
E

G
IS

T
E

R
S

2
6

 P
IP

E
L

IN
E

 R
E

G
IS

T
E

R
S

2
 P

IP
E

L
IN

E
 R

E
G

IS
T

E
R

S

6
 P

IP
E

L
IN

E
 R

E
G

IS
T

E
R

S

CONV1

CONV2

CONV3

CONV4

CONV5

CONV6

CONV7

CONV8

b
a2 + b2

In
ve

rs
io

n
C

om
p

le
x

N
u

m
be

r

a + bj

a2

b2
(a2 + b2) 1

a2 + b2

a
a2 + b2

REULT OF MULTIPLICATION OF 1 ROW AND 2 COLUMNS OF 2 × 2 MATRIX

RESULT OF MULTIPLICATION OF 1 ROW AND 1 COLUMN OF 4 × 4 MATRIX

(y − Hx̂) or x̃ or 1
a + bj

−b
a2 + b2

Fig. 6. CAU and pipeline stages

2.4.2 Complex arithmetic unit

The computational resources of the Complex Arithmetic Unit (CAU) of EquASIP are shown
in Fig. 6. After fetch pipeline stage, 4 CCASM units (Fig. 3) are spread over three pipeline
stages to perform 4 concurrent complex additions, complex subtractions/negation, complex
conjugation and complex multiplications. The results of complex addition, subtraction,
negation and conjugate operations are copied into destination registers in AD_SU_MUL1
pipeline stage. In MUL3 stage, 33-bit to 16-bit transformation is performed according to
the information provided in multiply instruction. The results of four complex multiplication
(16-bits for each of real and imaginary part of the complex number) are saved in the target
registers. To perform 2×2 matrix multiplication one row/column of first matrix is introduced
twice at first input of CCASMs and two columns/rows of second matrix are exposed to
the second input of CCASMs. Providing the results of four complex multiplication to two
complex adders in 2ADD pipeline stage, the output will give one resultant row/column of
multiplication of 2×2 matrix. In case of 4×4 matrix multiplication, one row/column from
each matrix goes to the inputs of four CCASM. The results of four multiplications are added
together using 2 adders of 2ADD and one adder of 1ADD pipeline stage to output one element
of 4×4 matrix multiplication. Complex adders/subtracters in last pipeline stage are used
in the computation of Equation 6. The inversion process of a complex number in different
pipeline stages is shown as dotted area in Fig. 6. For this particular operation, additional
resources are required as Look-Up Tables (LUT), two 33 to 16-bit converters, and two real
multipliers.

2.4.3 Control unit

The EquASIP control unit works as administrator of the 7-stage pipelined CAU as mentioned
above and shown in (Fig. 5). It controls the flow of the program instructions over the designed
datapath (MRBs, CAU) during the different stages of the pipeline. The functioning of the
control unit will be reflected during the instruction set presentation which is detailed in the
next section.

2.4.4 EquASIP instruction set

The instructions of the proposed ASIP are categorized as follows:

255ASIP Design and Prototyping for Wireless Communication Applications

www.intechopen.com

14 Will-be-set-by-IN-TECH

V_0

V_1

V_2

V 3

H_0

H_1

H_2

H 3

SOURCE1OPERATIONUNUSEDOPCODE SOURCE2

7 2 041619
ADD

SUBTRACT

CONJUGATE

NEGATE

Fig. 7. 20-bit Addition, subtraction, negation and conjugate instructions

2.4.4.1 LOAD, MOVE, REPEAT, NOP

LOAD instruction is used to load channel matrix into H-MRB from memory. While loading
data there are possibilities for loading directly or loading after applying conjugation to
support equivalent channel transformation. LOAD_CODE instruction is used to initialize
the V-MRBs for values which are used in equivalent channel transformation for Golden code.
The MOVE instruction is used to transfer data between MRBs whereas REPEAT instruction
repeats a block of code as many times as given in REPEAT_SIZE Register. NOP instruction is
used to add empty cycles during the execution of the program when required.

2.4.4.2 Matrix addition, subtraction, negation and conjugation instructions

The instruction format for addition, subtraction, negation and conjugation operation is shown
in Fig. 7. Besides opcode, the other fields are the “OPERATION” field and two “SOURCE”
fields to input two register banks in complex adders and subtracters. The “OPERATION” field
of 3-bits indicates the following six different operations: ADD, SUBTRACT, CONJUGATE,
NEGATE, MOV_REC and MOV_MOD.
ADD: Using ADD instruction, programmer can select any of the H-MRB as source1 and any
of V-MRB as source2. The result of an addition is always saved in GP_0 MRB.
SUBTRACT: Using SUBTRACT instruction, any one of selected H-MRB and any of V-MRB
are subtracted and result is always saved in GP_0 MRB.
CONJUGATE/NEGATE: In this single source instruction all four elements of one of the
selected H-MRB are conjugated/negated and the results are copied in respective V-MRB i.e
V-MRB(n) = Conjugate/Negate(H-MRB(n)) where n can be any integer from 0 to 3.
MOV_REV: This instruction copies the elements of H-MRB(0), in reverse order, into V-MRB(0)
with second element in negative form. This is used to align the elements of 2×2 matrix (to
be inverted) for a multiplication which results in its determinant. For example if H-MRB(0)
has a matrix A with elements a, b, c and d (Equation 10) then V-MRB(0) will have elements
d,−c, b and a after the execution of this instruction. To obtain determinant of A (det(A) =
ad − bc), one can multiply H-MRB(0) with V-MRB(0) and add the results of first two complex
multiplications.
MOV_MOD:This instruction is to copy and rearrange the matrix A (saved in H-MRB(0)) in
V-MRB(0) to a form required in the inversion of a 2 × 2 matrix (Equation 10) i.e. if H-MRB(0)
has a matrix A with elements a, b, c and d then V-MRB(0) will have elements d,−b,−c and a
after the execution of this instruction

2.4.4.3 MULTIPLY

This category is the most demanding one in EquASIP instruction set. Different fields of
the multiply instruction are detailed in Fig. 8(a). Eight different opcodes fall under this
category to use complex multipliers for multiplication of 4×4 and 2×2 matrices (MULT4X4
and MULT2X2), multiplication of 4 complex numbers (MULT_CMPLX), 3 different MAC
instructions (MAC1, MAC2 and MAC3)and two instructions to compute the output symbols

256 Advanced Applications of Rapid Prototyping Technology in Modern Engineering

www.intechopen.com

ASIP Design and Prototyping for Wireless Communication Applications 15

(b32 ..b0)

Multiplier Output (33 bit)

0 0 0 0

1
2

8

1
2

8
1

2
8

G
P

1

V3_0

V3_2

V3_0

V3_1

V3_1

V3_3

V3_2

V3_0

V3_2

V3_3

V3_1

V3_3

V0_0

V0_0

V0_2

V0_1

V0_1

V0_3

V0_2

V0_0

V0_2

V0_3

V3_1

V0_3

R
E

A
L

 N
U

M
B

E
R

 O
N

 A
L

L
 4

 L
IN

E
S

GP0GP2

128 Bits = 4 Complex numbers
128

128
128

128128

H
0
_
0

H
0
_
1

H
0
_
2

H
0
_
2

H
0
_
1

H
0
_
3

4 SAME PARAMETERS

1
2

8
 B

it
s

=
 4

 C
o

m
p

le
x

 N
u

m
b

er
s

1
2

8
1

2
8

1
2

8

32

32

32

32

32

32

32

32

33

33

33

H
3
_
0

H
3
_
1

H
3
_
2

H
3
_
2

H
3
_
1

H
3
_
3

H
0
_
0

H
0
_
1

H
0
_
2

H
0
_
3

S
o

u
rc

e
2

Source 1

COMPLEX MULTIPLIER 1

COMPLEX MULTIPLIER 2

COMPLEX MULTIPLIER 3

COMPLEX MULTIPLIER 4

33 to 16 Converter

33 to 16 Converter

33 to 16 Converter

33 to 16 Converter

33 to 16 Converter

33 to 16 Converter

33 to 16 Converter

16

16

16

16

16

16

16

16

33

33

33

33

33

128

33 to 16 Converter

3

3

4 Bit 4 Bit 4 Bit 4 Bit

Opcode Source 1 Source 2 Destination16Bit Select

4 Bit

10

Underflow1
Overflow1

(b17 ..b2)

(b31 ..b17)

b32
Underflow2
Overflow2

(b18 ..b3)

(b31 ..b16)

b32

(b31 ..b17)

Overflow

Underflow

Selected 16 Bit
16 Bit Resu

(b31 ..b16)

b32

b32

Underflow16 = 0

Overflow16 = 0 0x7FFF

0x8000

16Bit Select

(b32 ..b17)
4

16Bit Select

33 bit Complex Multiplication Result Syntax

456 127814 13 1211 91516172022232425272829303132 26 21 19 18 10 0

Binary
Mapping

456 0127814 13 1211 91516172022232425272829303132 26 21 19 18 10

4 356 0127814 13 1211 91516172022232425272829303132 26 21 19 18 10 0 0 0 1

0 0 1 0

0 0 1 1

16DOT0

1DOT15

2DOT14

3DOT13

4DOT12

1 1 1 14 356 0127814 13 1211 91516172022232425272829303132 26 21 19 18 10

456 0127814 13 1211 91516172022232425272829303132 26 21 19 18

3

(b)

(a)

(c)

Fig. 8. Complex multiplication datapath: (a) 20-bit Multiply Instruction, (b) Possible inputs
to complex multipliers, (c) 33 to 16-bit converter

257ASIP Design and Prototyping for Wireless Communication Applications

www.intechopen.com

16 Will-be-set-by-IN-TECH

x̃(OUT1 and OUT2). The 3×3 matrix multiplication is achieved by 4×4 matrix multiplication
by providing zero at the input lines of fourth CCASM.
Different possible sources to complex multipliers are shown in the Fig. 8(b). Depending upon
the fields “Source1” and “Source2” of the instruction, 4 operands are selected as source1 and 4
as source2 for 4 complex multipliers. To obtain different 16-bit fixed-point representations
from 33-bit output of complex multipliers, 33 to 16-bit converters are designed. These
converters (Fig. 8(c)) select 16 consecutive bits from 33-bit multiplication result depending
upon the “16-Bit Control” field of the instruction. A combinational logic has also been
provided to detect overflow/underflow with each choice of bit selection and consequently
saturate the output value to maximum/minimum bounds. The “Destination” field of
instruction selects the destination for the result.

2.4.4.4 DIVIDE

Two divide instructions have been defined. The first one is the division of a real number while
the second one is used to invert a complex number. The first operation during execution of
complex number division starts in the third stage of the pipeline to use the real multipliers.
LUTs have been used to store the inversion values. The overall operation is shown as dotted
area of Fig. 6.

3. Rapid ASIP FPGA prototyping

While selecting ASIP as the implementation approach, an ASIP design flow integrating
hardware generation and corresponding software development tools (assembler, linker,
debugger, etc.) is mandatory. In this chapter we consider the use of Processor Designer
framework from Coware Inc. which enables the designer to describe the ASIP at LISA
(Hoffmann et al., 2001) abstraction level and automates the generation of RTL model along
with software development tools. ASIP design, validation and prototyping flow has been
divided into 3 levels of abstraction as shown in Fig. 9 and is detailed in the following
subsections.

3.1 LISA abstraction level

The first step towards the ASIP implementation is the LISA ADL modeling of the proposed
architecture and the application program writing (.asm file) to be executed on the ASIP.
To simulate the input data memories the contents of these memories, taken from the
software reference model of the target application, are written in different sections of the
assembly file as defined in the linker command file. With ADL model of the ASIP, Processor
Designer framework generates tools like assembler, linker, processor debugger and simulator.
Assembler and linker process the application program (.asm file) to generate the executable
file (.out file) which is used in Processor Debugger to verify both the ASIP model and the
application program. Once the ASIP is verified, a special utility “lvcdgen” can be used to
generate Value Change Dump (VCD) file which store all registers content and ASIP output
values during the application program execution. The generated VCD file can be used
at lower abstraction levels for verification purpose. The “lvcdgen” utility uses Dynamic
Simulator Object and executable file of the application to produce this reference VCD file.
The complete flow is shown in Fig. 9(a).

258 Advanced Applications of Rapid Prototyping Technology in Modern Engineering

www.intechopen.com

ASIP Design and Prototyping for Wireless Communication Applications 17

VERIFICATION

FILE
LINKER COMMAND

NOT OK

lvcdgen

LISA VCD FILE

.dump FILES

MEMORY LAYOUT

FILE

HDL SIMULATION

MEMORY MODELS

MEMORY CONTENTS

.mmap FILES

ASIP
HDL MODEL OF

VERIFICATION

VERIFIED SYSTEM

NOT OK

HDL BEHAVIORAL LEVEL

mmap2coe

VERIFIED SYSTEM

VERIFICATION
NOT OK

HDL SYNTHESIS LEVEL

XILINX
VIRTEX 5

FPGA

USER CONSTRAINT

.ucf FILE

VERIFIED SYSTEM

LISA LEVEL
exefile PROCESSOR

DEBUGGER
LINKER

&

OBJECT

(LISA FILES)

DYNAMIC SIMULATOR

PROCESSOR DEBUGGER

ASSEMBLER , LINKER &PROCESSOR
DESIGNER

ASSEMBLER

(memory contents)
(code)

.ASM FILE

SIMULATOR

HDL

exe2txt

RTL VCD FILE
.dump FILES

PROCESSOR
GENERATOR

lvcdcmp

LISA MODEL OF ASIP

OPTIONS

HDL GENERATION

(b) HDL ABSTRACTION LEVEL

SPECIFICATIONS

MEMORY

SYNTHESIZABLE

MEMORY

(c) FPGA IMPLMENTATION LEVEL

(a) LISA ABSTRACTION LEVEL

SYNTHESIS
ROUTE

&
PLACE

CORE

GENERATOR

.

Fig. 9. Prototyping Flow: (a) LISA abstraction level, (b) HDL abstraction level, (c) FPGA
implementation level

3.2 HDL abstraction level

Processor Designer framework provides the Processor Generator tool which is configured to
generate HDL (VHDL/Verilog) model of the ASIP from LISA model, simulation models of
memories and the memory layout file as shown in Fig. 9(b). The quality of the generated HDL
depends upon the LISA modeling and the configuration options of Processor Generator. It is
highly recommended that LISA modeling should be as close as possible to HDL, e.g if in one
pipeline stage we want resource sharing, that resource should be declared once. Otherwise,
due to inability to detect sharing, resources will be duplicated in HDL. Other issue is the use
of high level operators of LISA which may not be produced by the Processor Generator e.g
modulo two operation (“variable % 2” in LISA) should be rather implemented by the LSB
manipuation of the considered variable. For memory interface generation, different Memory
Interface Definition Files (MIDF) are provided which define the number of ports and latencies.
Once memory layout file and executable application program file is available, “exe2bin”
utility inputs them to generate the contents of memories in separate .mmap files. With
these three inputs (VHDL model, memory model and .mmap files), the VHDL model can
be simulated behaviorally using an HDL simulator, e.g ModelSim by Mentor Graphics.
To run HDL simulation, Processor Generator produces ready-to-use Makefile which can be
executed to see either the waveforms or to generate VCD file. To verify the generated ASIP
HDL model, the VCD file generated through HDL model and the one generated through LISA
model (in previous subsection) can be compared using “lvcdcmp” utility.

259ASIP Design and Prototyping for Wireless Communication Applications

www.intechopen.com

18 Will-be-set-by-IN-TECH

3.3 FPGA implementation level

At this level, the only missing elements are the synthesizable memory models. Depending
upon the FPGA selected, equivalent synthesizable memories are generated through FPGA
vendor specific tools and at the same time .mmap memory content files have to be translated,
if necessary, in required format for compatibility. With Xilinx devices,“Core Generator” tool
can be used to generate the synthesizable memories and “mmaptocoe translator” converts
.mmap files into required .coe format. With this complete synthesizable HDL model, synthesis
can be performed as shown in Fig. 9(c). After successful synthesis, the placement and
routing is performed as per the user constraints file (.ucf file). Inside .ucf file, the user inputs
the platform dependent timing and location constraints, e.g the operational frequency and
input/output pins. The final step is the generation of the configuration file which can be used
to configure the FPGA for the final ASIP prototype model.

3.4 EquASIP FPGA prototyping

On board validation is a crucial step in order to demonstrate the feasibility, resolve any
eventual system and/or environment issue, and measure the exact performance of the
designed architecture. In our case, a logic emulation board (DN9000K10PCI) integrating
6 Xilinx Virtex 5 devices was available and has been used to validate the designed ASIPs.
With this board, appropriate communication controllers are available and can be added to
the design in order to read/write various output/input memories from a host computer
using a USB interface. Using the Xilinx tool suite ISE, a new project was created integrating
the ASIP, corresponding memories, and a board communication controller as shown in Fig.
10. The contents of the input memories i.e Channel Data Memory, 1

x LUTs and Mapper
Output Memory were generated automatically from the fixed-point software reference model
in .coe file format along with a reference result file containing the output of the equalizer.
In this prototype, except Channel Data Memory and 1

x LUT which are synchronous, rest
of the memories are asynchronous. Xilinx Virtex 5 device provides two type of memories,
Distributed and Block Memories which can be customized for asynchronous and synchronous
respectively. In order to record ASIP’s results and to compare them with reference result
file, a dual port Equalizer Output Memory has been created. One port of this memory is
written with equalization results from EquASIP side and the other port is read by external
host computer through USB interface. On this host computer, a graphical user interface with
adapted parameters is used in order to setup the various parameters of the board and to
download the output memory contents for comparison with reference result file.

4. EquASIP results and performance

By performing hardware synthesis and executing the application programs, performance of
EquASIP is ascertained for different configurations and presented below.

4.1 Synthesis results

From the generated RTL description of EquASIP, logic synthesis has been conducted both on
ASIC and FPGA. For ASIC target, the processor has been synthesized with Design Compiler
tool from Synopsys. For FPGA target, Xilinx ISE tool has been used. In Table 2, the results of
synthesis are summarized.

260 Advanced Applications of Rapid Prototyping Technology in Modern Engineering

www.intechopen.com

ASIP Design and Prototyping for Wireless Communication Applications 19

PC

20

6

ADR

DATA

Main Bus

CTRL

DATA

FPGA XC5VLX330

Memory

Mapper

Output

Memory

Output

Equalizer

Memory

LUT
x
_1

DN9000K10PCI LOGIC EMULATION BOARD

USB

MB[35:0]

DATA

ADR

ADR

10

12
DATA

15

Equalizer

ASIP

24

40

5

20
Program

Memory

Channel Data

Memory

6

A
D

R

D
A

T
A

2
0

ADR

DATA

ADR

16

Fig. 10. EquASIP on-board prototype

ASIC Synthesis Results (Synopsis Design Compiler)

Technology ST 90nm
Conditions Worst Case (0.9V ; 105oC)
Area 0.37mm2 (84 K Gate)
Frequency 546 MHz

FPGA Synthesis Results(Xilinx Virtex5 xc5vlx330)

Slice Registers 3,174 out of 207,360 (1%)
Slice LUTs 11,299 out of 207,360 (5%)
DSP48Es 14 out of 192(7%)
Frequency 130 MHz

Table 2. EquASIP synthesis results

4.2 Execution performance

To estimate the throughput of the EquASIP for different system configurations, the number of
cycles required to compute the expressions involved in MMSE-IC1 are summarized in Table
3. Using this information, the user can estimate the throughput of the system under different
channel’s time diversity conditions and used STC. In case of quasi static conditions, after
equalization coefficient computation, the throughput in terms of symbols per clock cycle is
described in the last row of Table 3. For a 3×3 MIMO SM configuration the symbol throughput
is less than a 4×4 MIMO SM. This is due to the fact that for a 3×3 MIMO SM system 25%

261ASIP Design and Prototyping for Wireless Communication Applications

www.intechopen.com

20 Will-be-set-by-IN-TECH

Expression MIMO 2×2 MIMO 3×3 MIMO 4×4

(Cycles) (Cycles) (Cycles)

E (Ref. eq. 4) 18 33 50

E−1 14 68 68

pk (Ref. eq. 3) 12 26 39

βk (Ref. eq. 5) 7 19 27

λk (Ref. eq. 5) 23 22 23

λjp
H
k , gk (Ref. eq. 6) 7 12 14

Total 81 180 221

Symbol x̃ Throughput (Ref. eq. 6) 4 symbols/8 cycles 3 symbol/11 cycles 4 symbol/13 cycles
ASIC M Symbols/sec (@ 546 MHz) 273 149 168
FPGA M Symbols/sec (@ 130 MHz) 65 35.45 40

Table 3. EquASIP computation time for MMSE-IC1 equations

of the resources are not used. This illustrates a typical tradeoff between flexibility, resource
utilizations and system performance. The throughput for 2×2 Golden code is same as 4×4
SM.

4.3 Comparison with state of the art

In Table 4, different architectural parameters of state of the art implementations are
summarized and compared with EquASIP implementation results. All of the referenced
implementations present dedicated architecture for a specific system configuration except
(Eilert et al., 2007) where the proposed architecture supports 2×2 and 4×4 matrix inversion.
Table 4 is organized in such a way that first of all comparison is made with (Boher et al., 2008),
(Kim et al., 2008) and (Karakolah et al., 2009) which provide a complete solution to generate
estimated symbol vectors. Then comparison with (Myllyla et al., 2005) (providing solution
to compute only the coefficient matrix of Equation 3) is tabulated. Finally, the EquASIP
is compared with (Edman & Öwall, 2005), (Karkooti et al., 2005) and (Eilert et al., 2007)
which provide architectures only for matrix inversion. Furthermore, in order to make a fair
comparison, the EquASIP was synthesized with the same target technology as used in the
implementation with which it is being compared.
The work presented in (Boher et al., 2008) is aimed at achieving fast fading 4×4 MIMO
SM using MMSE-IC. This implementation uses σ2

x̂ = 0 in first iteration and σ2
x̂ = σ2

x in
later iterations to simplify the architecture. However, while using in iterative context this
assumption of perfect σ2

x̂ information induces a performance loss. Due to a fully pipelined
architecture it outputs a vector containing four estimated symbols at every 38 clock cycle.
Hence, the throughput is 1.31 Mega vectors at presented frequency. With EquASIP, working
on same configuration, the cycles required for one symbol vector estimation are 234. This
results in a throughput of 0.5 Mega vectors per second at considered frequency. Hence, the
flexibility of EquASIP to support 5 different STC comes at the cost of 2.4 times less throughput,
53% more slice registers and 16 more dedicated multipliers compared to (Boher et al., 2008).
In (Kim et al., 2008), the architecture implements 4×4 MIMO SM detector for 802.11n standard.
In this application the design is made for a worst case scenario where for 48 vectors channel
remains constant. To decode a frame of 48 vectors, the work in (Kim et al., 2008) takes 388
clock cycles. Which results in 17.3 M vectors per second at a frequency of 140 MHz. When

262 Advanced Applications of Rapid Prototyping Technology in Modern Engineering

www.intechopen.com

ASIP Design and Prototyping for Wireless Communication Applications 21

Opr. Ref. Algorithm

Opr. Hardware Resources Throughput
System Target Freq. FPGA ASIC Clock (Mega
Config. Device

(MHz)
Slice/LE HW Area Cycle Operations

Reg. LUT Mul. (K Gates) per sec)

4×4 SM (Boher et al., 2008) QR CORDIC
Startix

50 8670 12 - 38 1.31
Fast Fading EquASIP Analytical 120 13272 28 - 234 0.5

MIMO 4×4 SM (Kim et al., 2008) QR CORDIC
Virtex-II

140 14166 103 - 388 17.31
Symbol Block Fading EquASIP Analytical 83 8477 14 - 845 4.71
Vector 2×2

(Karakolah et al., 2009)
Blockwise

60 817 2715 60 - 1 120
Estim. PC Analytical Virtex-V

Quasi Static EquASIP 130 3174 11299 14 - 3.25 40

2×2
(Myllyla et al., 2005)

QR CORDIC - 11910 20 - 685 -
MIMO SM QR SGR - 6305 59 - 415 -

pk EquASIP Analytical 83 8477 14 - 42 1.97
Eq.3 4×4

(Myllyla et al., 2005)
QR CORDIC Virtex-II - 16805 44 - 3000 -

MIMO SM QR SGR - - - - - -
EquASIP Analytical 83 8477 14 - 157 0.53

(Edman & Öwall, 2005) QR SGR
Virtex-II

100 2224 2212 - - 175 0.57
EquASIP Analytical 83 3177 15997 14 - 68 1.2

(Karkooti et al., 2005) QRD-RLS Virtex-IV 115 9117 22 - 933 0.15
Matrix 4×4

(Eilert et al., 2007)
Virtex-IV 100 1716 2094 8 - 120 0.83

Inv. Matrix Blockwise 90 nm 500 - - - 43 92 5.43

EquASIP
Analytical Virtex-IV 117 3232 16091 14 - 68 1.7

90 nm 546 - - - 85 68 8.02

Table 4. EquASIP performance comparison

comparing with our work, this EquASIP consumes 221 clock cycles to compute equalization
coefficient for a frame and 13 clock cycles for each vector estimation. Hence the total
consumed clock cycles for 48 vectors estimation are 221 + 13×48 = 845 which results in a
throughput of 4.7 M vectors per second at a frequency of 83 MHz. Hence, throughput of the
dedicated architecture of (Kim et al., 2008) is almost 3.6 times more at a cost of almost twice
the FPGA slice used and 7.5 times more multipliers. Again this implementation is not flexible
for variable antenna size, time selectivity of the channel and iterative nature of equalization.
The realization of 2×2 MMSE-IC equalizer in (Karakolah et al., 2009) includes pre-coding (PC).
The equivalent channel matrix becomes a 4×4 matrix shown below:

H =

⎡

⎢

⎢

⎣

h11 h12 0 0
h21 h22 0 0
0 0 h11 h12
0 0 h21 h22

⎤

⎥

⎥

⎦

The inversion of this matrix needs execution of two 2×2 matrix inversions. Other than this,
to map this PC on the EquASIP, one 4×4 matrix multiplication is required to incorporate the
PC matrix. The rest of the computations are same as required in 4×4 MIMO SM. Hence, to
compute the equalization coefficients on EquASIP, 197 clock cycles will be consumed. For
a target quasi-static environment, the EquASIP takes 197 cycles at 130 MHz as compared to
the dedicated architecture taking 20 cycles at 61 MHz (Karakolah et al., 2009). This part is
not crucial because it is computed once for a frame. The throughput of EquASIP is 40 Mega

263ASIP Design and Prototyping for Wireless Communication Applications

www.intechopen.com

22 Will-be-set-by-IN-TECH

symbols per second and hence 3 times less than the dedicated architecture. The 3 times faster
output of dedicated architecture comes at 5 times multipliers used and this architecture used
4 times less slice registers and LUTs.
The EquASIP is better both in area and performance when compared with (Myllyla et al.,
2005). While comparing with (Edman & Öwall, 2005), (Karkooti et al., 2005) and (Eilert et al.,
2007), EquASIP outperforms these architectures in throughput. EquASIP occupies more area
as compared to these dedicated implementations for matrix inversion as, besides its flexibility,
EquASIP supports all functions required in MMSE-IC equalization algorithm.
In the above analysis, an attempt is made to compare dedicated and flexible architectures for
MMSE-based equalization. In the presence of multiple system configurations and different
variants of algorithms in the equalizer, EquASIP provides a promising flexible solution
compared to dedicated implementations.

5. Conclusion

ASIP concept with associated efficient design and prototyping flows is emerging nowadays
as a promising implementation solution for wireless communication applications. It is mainly
the need to increase the flexibility and the opportunities for modular reuse that is pushing
industry to use more and more software-programmable solutions for practically every class
of digital components. Trade-offs between performance and flexibility can be tuned to the
exact needs of the application, besides the already available design tools enable really efficient
hardware synthesis and validation.
This chapter illustrates ASIP design and prototyping approach in wirless communication
applications through a detailed example for MIMO detection. The first flexible ASIP
implementing an MMSE-IC linear equalizer for turbo equalization application has been
presented. Analysis and simulation of mathematical equations involved in MMSE-IC
LE allowed to identify potential complex-numbered operations which lead to device the
instruction set for the proposed EquASIP. The specific instructions for complex number
arithmetic enable to efficiently perform computations on variable sized complex numbered
matrices which in turn provide required flexibility in MMSE-IC and promote its reuse for
other MMSE-based applications.
Flexibility of the presented EquASIP architecture allows its reuse for each of Alamouti code,
Golden code, 2×2, 3×3 or 4×4 spatially multiplexed turbo MIMO application with BPSK,
QPSK, 16-QAM, and 64-QAM. When targeting 90 nm technology, the proposed architecture
enables a maximum throughput of 273 MSymbol/sec for 2×2, 148 MSymbol/sec for 3×3 and
168 MSymbol/sec for 4×4 MIMO systems. The presented original contribution demonstrates
promising results using the ASIP approach to implement flexible, yet efficient, MMSE-based
iterative MIMO equalizer.
Regarding research perspectives in this domain, the increasing low-power requirement
should be considered as another optimizing design dimension to the ASIP solution
for wireless communications applications. By inheriting the relevant low-power design
techniques from already established low-power implementation schemes for programmable
architectures, ASIP design flows can be optimized for power consumption. In the presented
ASIP design example an attempt is made to provide maximum flexibility within the
equalization application. This upper bound for flexibility implies similar bound for power
consumption. Hence by examining the exact required flexibility for a particular system a
trade-off can be achieved between flexibility and power demands.

264 Advanced Applications of Rapid Prototyping Technology in Modern Engineering

www.intechopen.com

ASIP Design and Prototyping for Wireless Communication Applications 23

6. Acknowledgment

This work was supported in part by UDEC and TEROPP projects of the French Research
Agency (ANR).

7. References

Boher, L., Rabineau, R. & Hélard, M. (2008). Architecture and implmentation of an iterative
receiver for MIMO systems, International Symposium on Turbo Codes and Realted Topics.

BOUVET, P.-J. (2005). Récepteurs itératifs pour systèmes multi-antennes, PhD thesis, INSA de
Rennes France.

Burg, A., Borgmann, M., Wenk, M., Zellweger, M., Fichtner, W. & Boelcskei, H. (2005). VLSI
Implementation of MIMO Detection Using the Sphere Decoding Algorithm, IEEE
Journal on Solid-State Circuits 40(3).

Cavalec, K. A., Sicot, G. & Leroux, D. (2008). Reduced complexity near-optimal iterative
receiver for Wimax full-rate space time code, 5th international symposium on Turbo
Codes and related topics.

Döhler, R. (1991). Squared Givens rotation, IMA Journal of Numerical Analysis 11(1): 1–5.
Edman, F. (2006). Digital Hardware Aspects of Multiantenna Algorithms, PhD thesis, Lund

University, Department of Electroscience, Lund, Sweden.
Edman, F. & Öwall, V. (2005). A scalable pipelined complex valued matrix inversion

architecture, IEEE International Symposium on Circuits And Systems, ISCAS’05,
pp. 4489–4492.

Eilert, J., Wu, D. & Liu, D. (2007). Efficient complex matrix inversion for MIMO Software
Defined Radio, IEEE International Symposium on Circuits and Systems, ISCAS’07 .

Golub, G. H. & van Van Loan, C. F. (1996). Matrix Computations (3rd Edition), The Johns
Hopkins University Press.

Hoffmann, A., Schliebusch, O., Nohl, A., Braun, G., Wahlen, O. & Meyr, H. (2001). A
Methodology for the Design of Application Specific Instruction set Processors (ASIP)
Using the Machine Description Language LISA, IEEE/ACM International Conference
on Computer Aided Design, ICCAD’2001., pp. 625–630.

Jafri, A. R., Baghdadi, A. & Jezequel, M. (2009). ASIP-Based Universal Demapper for
Multiwireless Standards, IEEE Embedded Systems Letters 1(1): 9–13.

Jafri, A.-R., Karakolah, D., Baghdadi, A. & Jezequel, M. (2009). ASIP-based Flexible MMSE-IC
Linear Equalizer for MIMO Turbo-Equalization Applications, IEEE/ACM Design,
Automation and Test in Europe Conference & Exhibition, DATE’09.

Karakolah, D., Jégo, C., Langlais, C. & Jézéquel, M. (2009). Design of an iterative receiver
for linearly precoded MIMO systems, IEEE International Symposium on Circuits and
Systems, ISCAS’09 .

Karkooti, M., Cavallaro, J. R. & Dick, C. (2005). FPGA Implementation of Matrix Inversion
Using QRD-RLS Algorithm, Asilomar Conference on Signals, Systems and Computers,
pp. 1625–1629.

Kim, H., Zhu, W., Bhatia, J., Mohammad, K., Shah, A. & Danesrad, B. (2008). A Practical
Hardware Friendly MMSE Detector for MIMO-ODFM-Based Systems, EURASIP
Journal on Advances in Signal Processing .

265ASIP Design and Prototyping for Wireless Communication Applications

www.intechopen.com

24 Will-be-set-by-IN-TECH

Laot, C., Le Bidan, R. & Leroux, D. (2005). Low-complexity MMSE turbo equalization:
a possible solution for EDGE, IEEE Transactions on Wireless Communications
4(3): 965–974.

Mitola, J. (1995). The Software Radio Architecture, IEEE Communications Magazine 33(5): 26
–38.

Muller, O., Baghdadi, A. & Jezequel, M. (2009). From Parallelism Levels to a Multi-ASIP
Architecture for Turbo Decoding, IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 17(1): 92–102.

Myllyla, M., Hintikka, J.-H., Cavallaro, J., Juntti, M., Limingoja, M. & Byman, A. (2005).
Complexity Analysis of MMSE Detector Architectures for MIMO OFDM Systems,
Asilomar Conference on Signals, Systems and Computers, pp. 75 –81.

Volder, J. E. (1959). The Cordic Trigonometric Computing Technique, IEEE Transactions on
Electronic Computers 8(3): 330–334.

266 Advanced Applications of Rapid Prototyping Technology in Modern Engineering

www.intechopen.com

Advanced Applications of Rapid Prototyping Technology in

Modern Engineering

Edited by Dr. M. Hoque

ISBN 978-953-307-698-0

Hard cover, 364 pages

Publisher InTech

Published online 22, September, 2011

Published in print edition September, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Rapid prototyping (RP) technology has been widely known and appreciated due to its flexible and customized

manufacturing capabilities. The widely studied RP techniques include stereolithography apparatus (SLA),

selective laser sintering (SLS), three-dimensional printing (3DP), fused deposition modeling (FDM), 3D

plotting, solid ground curing (SGC), multiphase jet solidification (MJS), laminated object manufacturing (LOM).

Different techniques are associated with different materials and/or processing principles and thus are devoted

to specific applications. RP technology has no longer been only for prototype building rather has been

extended for real industrial manufacturing solutions. Today, the RP technology has contributed to almost all

engineering areas that include mechanical, materials, industrial, aerospace, electrical and most recently

biomedical engineering. This book aims to present the advanced development of RP technologies in various

engineering areas as the solutions to the real world engineering problems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Atif Raza Jafri, Amer Baghdadi and Michel Jezequel (2011). ASIP Design and Prototyping for Wireless

Communication Applications, Advanced Applications of Rapid Prototyping Technology in Modern Engineering,

Dr. M. Hoque (Ed.), ISBN: 978-953-307-698-0, InTech, Available from:

http://www.intechopen.com/books/advanced-applications-of-rapid-prototyping-technology-in-modern-

engineering/asip-design-and-prototyping-for-wireless-communication-applications

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

