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1. Introduction 

Metallic biomaterials constitute approximately 70% - 80% of all implant materials, and thus 

represent a very important class of biomaterials. Among the various metallic biomaterials 

such as stainless steels and Co-Cr alloys, titanium and its alloys exhibit the best 

biocompatibility. Consequantly, titanium and its alloys have been the fucus of attension for 

biomedical materials, especially for use in load bearing implants such as artificial hip joints, 

bone plates and screws, spinal instruments, and dental implants.  

The Young’s moduli of metallic biomaterials are generally much higher than that of the human 

cortical bone (hereafter, bone) (Niinomi, 2002a). If the Young’s modulus of a load bearing 

implant made of metallic biomaterials is higher than that of the cortical bone, bone atrophy 

occurs because of the stress shielding between the implant and bone (Sumitomo, 2008). Stress 

shielding causes loosening of the implants such as artificial joints or bone re-fracture after 

extraction of the implants. Therefore, the Young’s modulus of the metallic biomaterials must 

be equal to that of the natural bone. Titanium and its alloys possess lower Young’s moduli 

than those of other mettalic biomaterials such as stainless steels and Co-Cr alloys. -type 

titanium alloys, in particular, having a single  phase exhibit much smaller Young’s moduli 

compared with - and ( + -type titanium alloys (Niinomi, 2002b). As such, the -type 

titanium alloys are particulary promissing for biomedical applications. A number of -type 

titanium alloys composed of non-toxic and non-allergic elements with low Young’s modulus 

have been developed and even more are currently under development (Niinomi, 2011a). Much 

of the current research in the biomaterials field has been directed at lowering the Young’s 

modulus of the -type titanium alloys for biomedical applications.  

The mechanical biocompatibility factors such as fatigue strength, fretting fatigue strength, 

tensile properties, wear resistance, fracture toughness, etc., including the Young’s modulus are 

very important factors for the practical application of the allloys in biomaterials as well as the 

biological biocompatibilities (Niinomi, 2008a). Among the mechanical biocompatibility factors, 

the endurance, i.e., the fatigue strength is one of the most important factors (Niinomi, 20007). 

The development of metallic biomaterials with improved fatigue strength and a 

simaltaneously low Young’s modulus is desirable for biomedical applications.  

The effect of the Young’s modulus of the metallic implant should be clarified by animal 

experiments prior to medical applications, and recently, these kinds of studies have begun 

to be implemented (Niinomi, 2002b). 
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A recent report highlited the contrasting requirements of patients versus surgeons for 
metallic implants. The rquirements of the patients dictate that the implants have a Young’s 
modulus similar to that of the bone, whereas while the surgeons require a high Young’s 
modulus for inhibiting springback both during and after the operation procedure (Nakai, 
2011a). Titanium alloys that simultaneously satisfy the demands of both patients and 
surgeons are thus necessiated.  
There is a demand to remove the implant when the bone fracture is healed, in which case, 
the adhesion of the implant to the bone must be weak enough to inhibit the refracture of the 
bone. This requires titanium alloys having poor bone conductivity, but excellent 
biocompatibility (Zhao, 2011).  

This chapter introduces low modulus -type titanium alloys and various methods of 

lowering the Young’s modulus of the -type titanium alloy, improving the strength and 

fatigue strength of the -type titanium alloy while maintaining a low Young’s modulus, the 
evaluation of the effect of the Young’s modulus on bone atrophy using rabbits, titanium 
alloys with variable Young’s moduli, and removable titanium alloys are described.  

2. Low modulus β–type titanium alloys for biomedical applications 

A number of -type titanium alloys with low Young’s modulus have been developed for use 
in the human body. The titanium alloys composed of safe alloying elements developed to 
date include the following; Ti-13Nb-13Zr, Ti-12Mo-6Zr-2Fe, Ti-15Mo, Ti-15Mo-5Zr-5Sn, Ti-
15Mo-5Zr-3Al, Ti-16Nb-10Hf, Ti-15Mo-2.8Nb-0.2Si, Ti-30Ta, Ti-35Zr-10Nb, Ti-8Fe-8Ta, Ti-
8Fe-8Ta-4Zr, Ti-35Nb-7Zr-5Ta, Ti-29Nb-13Ta-4.6Zr (TNTZ), and Ti-Nb-Sn system alloys 
(Niinomi, 2011a). Shape memory and super-elastic Ti-Nb based alloys have been also been 
developed; Ti-Nb, Ti-Nb-O, Ti-Nb-Sn, Ti-Nb-Al, Ti-22Nb-(0.5-2.0)O (at%),Ti-Nb-Zr, Ti-Nb-
Zr-Ta, Ti-Nb-Zr-Ta-O, Ti-Nb-Ta-Zr-N, Ti-Nb-Mo, Ti-22Nb-6Ta(at%), Ti-Nb-Au, Ti-Nb-Pt, 
Ti-Nb-Ta, and Ti-Nb-Pd system alloys. Ti-Mo based alloys have been developed; Ti-Mo-Ga, 
Ti-Mo-Ge, Ti-Mo-Sn, Ti-Mo-Ag, Ti-5Mo-(2-5)Ag (at%), Ti-5Mo-(1-3)Sn (at%), in addition to 
Ti-Sc-Mo system alloys. The Ti-Ta based alloys are Ti-50Ta, Ti-50Ta-4Sn, and Ti-50Ta-10Zr. 
Other alloys such as Ti-7Cr-(1.5, 3.0, 4.5)Al super elastic and shape memory alloys, Gum 
Metal (Ti-25at% (Ta, Nb, V) + (Zr, Hf, O)), and Ti-9.7Mo-4Nb-2V-3Al super elastic alloys 
have also been developed (Niinomi, 2011b). 

3. Further decreases in Young’s modulus 

Improvements in the static strength of biomaterials such as the tensile strength can be 
achieved by employing strengthening mechanisms including work hardening, grain 
refinement strengthening, precipitation strengthening, and dispersion strengthening. One of 
the best ways to increase tensile strength while maintaining a low Young’s modulus is to 
introduce a number of dislocations into the alloy system by conventional severe cold 
working techniques such as severe cold rolling and swaging, and by special severe cold 
working techniques such as high pressure torsion (HPT), accumulated roll-bonding (ARB) 
and equal channel angular pressing (ECAP) (Yilmazer, 2009).  
Figure 1 (Niinomi, 2010a) shows the relationships between the tensile properties and 
working ratio of Ti-29Nb-13Ta-4.6Zr (TNTZ) while Fig. 2 (Niinomi, 2010a) shows the 
relationship between the Young’s modulus and working ratio of TNTZ after subjecting 
TNTZ to severe cold working by general severe cold rolling or swaging in both cases.  
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Fig. 1. Tensile properties of TNTZ subjected to cold rolling or cold sawaging as a function of 
working ratio.  

 

Working ratio of cold rolling or cold swaging (%)

Y
o
u

n
g

’s
 m

o
d

u
lu

s,
 E

/ 
G

P
a

100 20 30 40 50 60 70 80 90 100

100

90

80

70

60

50

40

30

20

10

: Rolling

: Swaging

 

Fig. 2. Young’s modulus of TNTZ subjected to cold rolling or cold swaging as a function of 
working ratio. 

The tensile strength and 0.2% proof strength of cold rolled and swaged TNTZ increase with 
increasing working ratio up to approximately 20 % and then become almost constant. The 
ductility (elongation) of cold rolled TNTZ decreases with increasing cold working ratio, but 
that of swaged TNTZ decreases with increasing cold working ratio up to approximately  
20 % and then becomes constant while maintaining high elongation. The tensile and 0.2 % 
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proof stress of TNTZ subjected to cold rolling and swaging are nearly equal to those of Ti-
6Al-4V extra-low interstitial alloy (Ti-6Al-4V ELI); having a tensile strength of around 800 
MPa) at high cold working ratio with good elongation.  
The Young’s modulus of TNTZ subjected to cold rolling or cold swaging is almost constant 
with increasing working ratio. The Young’s modulus of TNTZ subjected to cold rolling 
tends to decrease when the working ratio is high because the trend of the formation of the 
texture becomes significant. 

3.1 Lowering the Young’s modulus by control of the crystal direction  

Anisotorophy of the mechanical properties of -type titanium alloy, TNTZ, has been 
reported to be significantly larger than those of other metallic materials such as carbon steel, 

S45C. Figure 3 (Niinomi, 2008b) shows the tensile strain () versus lattice strain (l) of TNTZ 
and ferrite in S45C, both of which have the bcc structure. Strains were calculated from the 

(110), (200), and (211) planes of the  phase of TNTZ and ferrite in S45C from the XRD 
profiles, obtained from in-situ X-ray analysis under tensile loading. The degree of the 
change in lattice strain with tensile strain for S45C is smaller than that for TNTZ. The 
relationship between the lattice strain and tensile strain obtained from the (100), (200), and 
(211) planes is nearly the same for each plane in S45C, but varies significantly for TNTZ. 
This illustrates that the anisotropy of the mechanical properties of TNTZ is large. Based on 
this trend in mechanical properties, the Young’s modulus of TNTZ is considered to exhibit 
large anisotprophy. The single crystal of TNTZ, which grows to a certain direction, is 
expected to exhibit a low Young’s modulus.  
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Fig. 3. Relationships between tensile strain and lattice strain calculated using several 
diffraction angles of TNTZ30 (Ti-30Nb-10Ta-5Zr) and carbon steel (S45C). 

Figure 4 (Tane, 2008) shows the orientation dependence of the Young’s modulus in Ti-29Nb-
Ta-Zr and Ti-25Nb-Ta-Zr single crystals between the <100> and <110> directions, which 
were calculated by coordinate conversion of cij. The symbol θ denotes the angle from the 
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<100> direction on the <110> zone axis. The Young’s modulus of Ti-29Nb-Ta-Zr is lower 
than that of Ti-25Nb-Ta-Zr in all directions, but there are many common features 
independent of the alloy composition. The Young’s modulus of both single crystals shows 
anisotropy as a function of θ; the Young’s modulus of both crystals in the <100> direction, 
E100, is approximately two times lower than the Young’s modulus in the <111> direction, 
E111, where E100 and E111 are the lowest and highest among all of the Young’s moduli in all 
the directions, respectively. The lowest Young’s modulus, E100, of the Ti-29Nb-Ta-Zr single 
crystal is quite low at a value of only about 35 GPa, which is comparable to that of cortical 
bone. This level may be effective in the suppression of stress shielding in bone. Therefore, 
metallic single crystals of titanium alloys may be applicable as biomaterials; these may be 
referred to as “single crystal biometals”. 
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Fig. 4. Young’s modulus of single-crystal Ti-29Nb-13Ta-4.6Zr in directions between [100] 
and [110]. 

3.2 Lowering the Young’s modulus through structural design  
Introduction of porosity into titanium and its alloys is a very effective method for further 
reducing the Young’s moduli of titanium and its alloys. Introduction of porosity into 
titanium may affect a drastic reduction of the Young’s modulus, and offer control of the 
Young’s modulus by variation of the porosity. The relationship between the Young’s 
modulus and porosity of porous titanium made from titanium powders with different 
particle diameters have been compared with the Young’s modulus of bulk titanium in a 
recent report. According to that report, at a porosity of approximately 30%, the Young’s 
modulus is nearly equal to that of cortical bone. The use of a titanium alloy with an even 
lower Young’s modulus than titanium may allow for the achievement of a Young’s modulus 
equal to that of cortical bone at lower porosity compared with the case of titanium. Pores of 
the proper size also enhance the bone conductivity. On the other hand, however, increasing 
the porosity of titanium results in a drastic decrease in its strength. At a porosity of 
approximately 30%, which leads to the Young’s modulus equal to that of cortical bone,the 
0.2% proof stress is below 100 Mpa (Oh, 2002).  
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This decrease in the strength of porous titanium can be prevented by combining with a 
biocompatible polymer. Penetration of the polymer into the porous titanium can be 
achieved by pressing. In the pressing method, HMDP (high molecular density polyethylene) 
is pressed into porous titanium.  
Another proposed method for penetration of a polymer into the titanium pores (Nakai, 2010) 
involves firstly using the monomer of PMMA. The porous titanium (pTi) is first immersed 
into a monomer solution of PMMA leading to penetration of the monomer into the pores of 
titanium. The PMMA monomer in the porous titanium is then subjected to polymerization by 
heating. By combination with PMMA, the strength of porous titanium increases as shown in 
Fig. 5 (Nakai, 2010). The tensile strength of PMMA infiltrated porous titanium is greater than 
that of porous titanium, whereas the Young’s modulus of PMMA infiltrated porous titanium 
is nearly equal to that of porous titanium as shown in Fig. 6 (Nakai, 2010). The tensile 
strength of PMMA infiltrated porous titanium increases by silane coupling treatment while 
the Young’s modulus remains unchanged as shown in Figs. 5 and 6.  
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Fig. 5. Tensile strengths of pTi, pTi/PMMA, and Si-treated pTi/PMMA. 

Another advantage offered by porous titanium and polymer composites is the ease with 

which bio-functionalities may be added given that the surface of porous titanium can be 

covered with polymers. Instead of PMMA, biodegradable PLLA can also be filtrated into the 

pores of porous titanium by modifying the process for PMMA filtration. Fig. 7 (Nakai, 

2011b) shows the compressive 0.2% proof stress of porous titanium and PLLA infiltrated 

porous titanium as a function of porosity in the range of 5%–45%. In this figure, the 

compressive 0.2% proof stress of PLLA obtained experimentally is also shown for 

comparison. The compressive 0.2% proof stress of PLLA infiltrated porous titanium is 

higher than those of porous titanium independent to porosity. This result indicates that the 

PLLA filling can improve the compressive 0.2% proof stress of porous titanium at any 

degree of porosity. In particular, the increase in compressive 0.2% proof stress due to PLLA 

filling is relatively large for porosities higher than or equal to 35%. The compressive 0.2% 

proof stress of PLLA obtained is around 80–120 MPa, which is higher than that of PMMA 

(around 50–80MPa) (Honda, 1961; Imai and Brown, 1976).  
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Fig. 6. Young’s moduli of pTi, pTi/PMMA, and Si-treated pTi/PMMA. 

 

PLLA
0.2 = 80–120 MPa

50C
o

m
p

re
ss

iv
e 

0
.2

%
 p

ro
o

f 
st

re
ss

, 
0

.2
/ 

M
P

a

0

100

200

300

400

5 10 15 20 25 30 35 40 45

Porosity (%)

pTi

pTi/PLLA pTi45
series

pTi150
series pTi250

series

0

50

150

250

350

 

Fig. 7. Compressive 0.2% proof stresses of porous titanium (pTi) and porous titanium filled 
with poly-L-lactic acid (pTi/PLLA). 

Figure 8 (Nakai, 2011b) shows the compressive Young’s modulus of porous titanium and 

PLLA infiltrated porous titanium as a function of porosity in the range of 5%–45%. In this 

figure, the compressive Young’s modulus of PLLA obtained experimentally is also shown 

for comparison. The compressive Young’s modulus of porous titanium decreases with 

increasing porosity. The compressive Young’s modulus is higher for PLLA infiltrated 

porous titanium than for porous titanium with a relatively high porosity of ≥35%. 

Since PLLA is biodegradable, an agent to enhance the bone conductivity can be added to the 

PLLA in the porous titanium, and the agent can then be released into the body fluid. The 

released agent is expected to enhace the bone conductivity of the porous titanium. 

www.intechopen.com



 
Biomaterials Science and Engineering 

 

256 

PLLA
E = 20–23 GPa

Porosity (%)

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45 50

C
o

m
p

re
ss

iv
e 

Y
o

u
n

g
’s

 m
o

d
u

lu
s,

 E
/ 

G
P

a pTi45
series

pTi150
series

pTi250
series

0

pTi

pTi/PLLA 

 

Fig. 8. Compressive Young’s moduli of porous titanium (pTi) and porous titanium filled 
with poly-L-lactic acid (pTi/PLLA).  

3.3 Strengthening or increasing endurance while maintaining a low Young’s modulus 
As already shown in Figs.1 and 2, the tensile strength and 0.2% proof strength of TNTZ both 
increase with an increase in the cold working ratio, and at high cold working ratio, these 
parameters become almost equal to those of Ti-6Al-4V ELI (having a tensile strength of 
around 800 MPa). Good elongation is also achieved when TNTZ is subjected to both cold 
rolling and cold swaging while the Young’s modulus is kept low for both types of 
treatments.  
However, the dynamic strength, i. e., the fatigue strength of TNTZ cannot be improved by 
severe cold working as shown in Fig. 9 (Akahori, 2003). Therefore, work hardening is not 
effective for improving the fatigue strength of TNTZ. Precipitation strengthening and 
dispersion strengthening are expected to improve the fatigue strength of TNTZ. 

-phase precipitation significantly increases the strength and the Young’s modulus of TNTZ 

as compared to -phase precipitation, although the -phase enhances the brittleness of the 

alloy. Therefore, a small amount of -phase precipitation is expected to improve the fatigue 
strength of TNTZ while maintaining a low Young’s modulus. For this purpose, short-time 
aging at fairly low temperatures, which enhances the precipitation of small amounts of the 

-phase, is effective.  
Figure 10 (Nakai, 2011c) shows the relationship between tensile strength and the Young’s 
modulus of TNTZ subjected to various thermomechanical treatments. In this figure, the 
terms CR, AT3.6, AT10.8, and AT86.4 indicate TNTZ subjected to severe cold rolling at a 
reduction ratio of 87 %, and aged at 573 K for 3.6 ks, 10.8 ks, and 86.4 ks, respectively. After 
severe cold rolling at a reduction ratio of 87 % (the samples are reffered to as (aging 
treatment) AT samples). The data for TNTZ subjected to aging treatments at 573 K, 598 K, 
673 K, and 723 K for various times after solution treatment are also presented. TNTZ aged at 
573 K, 673 K, and 723 K for various times after solution treatment showsYoung’s moduli 
greater than or equal to 80 GPa. TNTZ aged at 573 K or 598 K has much higher Young’s 
moduli (around 100-120 GPa). The strengths of these samples are scattered across a larger 
range than those of TNTZ subjected to aging treatments at other temperatures. These effects  
 

www.intechopen.com



 
Low Modulus Titanium Alloys for Inhibiting Bone Atrophy 

 

257 

300

400

500

600

700

800

900

M
a

x
im

u
m

 c
y

cl
ic

 s
tr

es
s,

 
 m

a
x
 /

 M
P

a

Number of cycles to failure，Nf

105 106 107104103 108

Fatigue limit range 

of Ti-6Al-4V ELI

TNTZST

TNTZCR

 

Fig. 9. S-N curves of TNTZ subjected to solution treatment (TNTZST) and severe cold rolling 
with a reduction ratio of around 87 % (TNTZCR) along with fatigue limit range of Ti-6Al-4V 
ELI in air. 

are the result of the presence of a large amount of ω-phase; TNTZ containing the ω- phase 
often exhibits inproved strengths (around 1400 MPa), when the samples do not fail in the 
elastic deformation range during tensile testing. However, in other cases, the brittleness 
becomes too high to attain plastic deformation during tensile testing, resulting in relatively 
low tensile strengths (around 800–900 MPa). In contrast, the TNTZ samples subjected to 
aging treatment (AT) , except for AT86.4, have Young’s moduli below 80 GPa because of the 
small amount of ω-phase formed as a result of the short aging time. Among the AT samples, 
AT3.6 and AT10.8 exhibit an excellent balance between high strength and low Young’s 
modulus (numbers 4 and 5 in Fig.10). Therefore, further examination of their fatigue 
properties was performed. 
Figure 11 (Nakai, 2011c) shows the relationship between fatigue strength and Young’s 
modulus of the TNTZ subjected to various thermomechanical treatments. In this figure, the 
abbreviations of the data are same as used in Fig.10. AT3.6 is classified as being in the low 
fatigue strength group. The AT10.8 falls in the intermediate level of fatigue strength among 
the samples, but possesses the highest fatigue strength among the samples having a Young’s 
modulus less than 80 GPa.Therefore, it is possible to effectively control the proper 

precipitation of the- phase, evidenced by the fact that short-time aging at relatively low 
temperatures improves the fatigue strength of TNTZ while maintaining a low Young’s 
modulus. 
The addition of a small amount of ceramics particles such as TiB2 and Y2O3 into the titanium 

matrix is also expected to improve the fatigue strength of -type titanium alloys while 
maintaining a low Young’s modulus. Figure 12 (Niinomi, 2011c) shows the Young’s 
modulus and fatigue limit of TNTZ with TiB2 or Y2O3 additions, subjected to severe cold 
rolling; as a function of B or Y concentration along with those of TNTZ subjected to severe 
cold rolling (TNTZCR) and solution treatment (TNTZST), and Ti-6Al-4V ELI (Ti64 ELI). The 
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fatigue limit of TNTZ is improved with 0.1 mass% and 0.2 mass% B concentration or 0.2 
mass% and 0.5 mass% Y concentration while maintaining a very low Young’s modulus.  
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Fig. 10. Relationship between tensile strength and Young’s modulus of TNTZ subjected to 
various thermomechanical treatments. 
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Fig. 11. Relationship between fatigue strength and Young’s modulus of TNTZ subjected to 
various thermomechanical treatments. 
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Fig. 12. Relationships between Young’s modulus and fatigue limit of TNTZ with B 
concentrations of 0.1 and 0.2 mass% (0.1BCR and 0.2BCR,), and Y concentrations of 0.2, 0.5, 
and 1.0 (0.2YCR, 0.5YCR, 1.0YCR,) subjected to severe cold rolling, TNTZ subjected to severe 
cold rolling (TNTZCR), TNTZ subjected to solution treatment (TNTZST), and Ti-6Al-4V ELI 
(Ti64 ELI). 

4. Bone remodeling and Young’s modulus  

It is very important to prove that alloys for implants have a Young’s modulus similar to that 
of bone, which will inhibit bone atrophy and induce good bone remodeling as stated above.. 
It is known that the geometry of the implant is another factor used to control the Young’s 
modulus, but the effect of geometry is not treated in this chapter. Studies on bone plates 

made of low Young’s modulus -type titanium alloy (TNTZ), and conventional and 

practical ( + )-type titanium alloy (Ti-6Al-4V ELI), and stainless steel (SUS 316L) in 
fracture models made into the tibiae of rabbits have been conducted. The Young’s moduli of 
TNTZ, Ti-6Al-4V ELI, and SUS 316L stainless steel used for intramedullary rods, which 
were measured by three point bending tests, were 58, 108, and 161 GPa, respectively. In that 
study, an increase in the diameter of the tibia and the double-wall structure in the 
intramedullary bone tissue were reported to be observed only for the case of the bone plate 
made of TNTZ as shown in Fig. 13 (Niinomi, 2010a, b). Figure 13 shows that the inner wall 
bone structure is the original (old) cortical bone whereas the outer wall bone structure is 
newly formed bone. This is the possible result of bone remodeling with a bone plate having 
a low Young’s modulus. 
Furthermore, understanding of the Young’s modulus level that is most effective in 
inhibiting bone atrophy and bone remodeling is necessary. Figure 14 (Niinomi, 2010a) 
shows the profiles of the extracted bone plates made of TNTZ subjected to solution 
treatment (TNTZ-ST), TNTZ subjected to aging after solution treatment (TNTZ-AT), and 
SUS 316 L stainless steel (SUS 316L) attached to the tibiae of the rabbits at 52 weeks after 
implantation. The Young’s moduli of TNTZ-ST, TNTZ-AT, and SUS 316L measured by 
three-point bending tests were 58 GPa, 78 GPa, and 161 GPa, respectively. The upper surface 
and sides of each bone plate are covered by newly formed bone, but a fairly large amount of  
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Fig. 13. CMRs of cross sections of fracture models implanted with and without bone plates 
made of TNTZ at middle position and distal position at 48 weeks after implantation : (a) 
cross section of fracture model, (b) parts of (a), namely high magnification CMR of branched 
parts of bones formed outer and inner sides of tibiae, and (c) cross sections of un-implanted 
tibiae. 

newly formed bone can be observed on the heads of the screws made of TNTZ-ST and 
TNTZ-AT; these have been encircled. Figure 15 (Niinomi, 2010a) shows the optical 
micrographs of the bone state beneath the bone plates made of TNTZ-ST, TNTZ-AT, and 
SUS 316L. Bone atrophy can be observed for all the cases, but it is more exident with a 
titanium having a lower Young’s modulus will be advantageous for inhibiting bone atrophy 
leading to better bone remodeling.  
 

(a) TNTZ-ST (b) TNTZ-AT (c) SUS 3 16L
Fig. 14. Profiles of extracted bone plates made of (a) TNTZ-ST, (b) TNTZ-AT, and (c) SUS 
316L stainless steel fixed to tibiae of rabbits at 52 weeks after implantation. 
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Fig. 15. Optical photographs of bones formed around extracted bone plates made of (a) 
TNTZ-ST, (b) TNTZ-AT, and (c) SUS 316L stainless steel fixed to tibiae of rabbits at 52 weeks 
after implantation. 

5. Variable Young’s modulus titanium alloys 

While using low modulus titanium alloys, some surgeons specializing in spinal diseases, such 
as scoliosis, spondylolisthesis, and spine fracture, pointed out that the amount of spring-back 
in the implant rods should be small so that the implant offers better handling ability during 
surgeries. The implant rods undergo bending when they are manually handled by surgeons 
within the small space inside the patient’s body for in-situ spine contouring. It is considered 
that the amount of spring-back depends on both the strength and the Young’s modulus of the 
implant rod. If two implant rods having the same strength but with different Young’s moduli 
are used, the implant rod having lower Young’s modulus shows greater spring-back. Implant 
rods made of low modulus titanium alloys exhibit a lower Young’s modulus, resulting in 

greater spring back. Thus, a low Young’s modulus, which is one of the key features of -type 
titanium alloys such as TNTZ as a metallic biomaterial, is obviously a desirable property for 
patients but becomes an undesirable property for surgeons. Titanium alloys, which satisfy the 
requirements of both surgeons and patients with regard to the Young’s modulus of the 
implant rod, are currently being developed (Nakai, 2011a).  
The amount of spring back is considered to be small for an alloy having a higher Young’s 
modulus than for an alloy having a low Young’s modulus. Therefore, a low Young’s 

modulus -type titanium alloy having a variable Young’s modulus that becomes high only 
at the deformed part may reduce spring-back while simultaneously satisfying the low 
Young’s modulus condition. This concept is called ろself-adjustment of Young’s modulusわ. 

In general, the Young’s modulus of metals and alloys does not change upon deformation. 
However, in the case of certain metastable ǃ-type titanium alloys, non-equilibrium phases 
such as ǂĻ-, ǂļ-, and ω-phases appear in the ǃ matrix during deformation. If the Young’s 
modulus of the deformation-induced phase is higher than that of the original ǃ-phase, the 
Young’s modulus of only the deformed part of the implant rod increases, whereas that of 
the non-deformed part remains low. In orthopedic operations performed for the treatment 
of spinal diseases, the implant rod is bent by the surgeons so that it corresponds to the 
curvature of the spine. Therefore, if a suitable titanium alloy is employed as the implant rod 
material, spring-back can be suppressed by the deformation-induced phase transformation 
that occurs during bending in the course of operation, while a low Young’s modulus can be 

retained for patients. In general, the Young’s modulus of the -phase is much greater than 
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those of the -, ’-, ’’-, and -phase. Among these phases, the -, ’-, and ’’-phase can be 

induced by deformation in -type titanium alloys with certain chemical compositions.  
Ti-12Cr has been reported to be one of the candidate alloys with self-adjustable Young’s 
modulus for biomedical applications. Figure 16 (Nakai, 2011a) shows the Young’s moduli of 
Ti-12Cr subjected to solution treatment (Ti-12Cr-ST) and severe cold rolling (Ti-12Cr-CR) 
along with those of TNTZ subjected to solution treatment (TNTZ-ST) and severe cold rolling 
(TNTZ-CR). Ti-12Cr-ST exhibits a low Young’s modulus of ~70 GPa; this value is comparable 
to that of TNTZ-ST, which has been developed as a biomedical ǃ-type titanium alloy having a 
low Young’s modulus. TNTZ-CR also shows a low Young’s modulus almost equal to that of 
TNTZ-ST. Thus, cold rolling leads to negligible change in the Young’s modulus of TNTZ. 
However, in the case of Ti-12Cr, the Young’s modulus increases upon cold rolling and that of 
Ti-12Cr-CR is >80 GPa. The deformation-induced ω phase was detected in Ti-12Cr, but no 
induced phase was detected in TNTZ. Therefore, the increase in Young’s modulus of Ti-12Cr 
is probably due to the deformation-induced ω phase transformation.  
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Fig. 16. Comparison of Young’s moduli of the designed alloy (Ti-12Cr) and those of an alloy 
with a low Young’s modulus (TNTZ): Ti-12Cr subjected to solution treatment (ST) and cold 
rolling at a reduction ratio of 10 % (CR), and TNTZ subjected to solution treatment (ST) and 
severe cold rolling at a reduction ratio of 87 % (CR). 

Figure 17 (Nakai, 2011a) shows the tensile properties of Ti-12Cr-ST, Ti-12Cr-CR, TNTZ-ST, 
and TNTZ-CR. The tensile strengths of both Ti-12Cr-ST and TNTZ-ST show an increase, but 
the elongation due to cold rolling tends to decrease. This trend is probably caused by the 
occurrence of work hardening. Furthermore, the tensile strengths of Ti-12Cr-ST and Ti-12Cr-
CR may be higher than those of TNTZ-ST and TNTZ-CR, respectively. Moreover, the 
elongations of Ti-12Cr-ST and Ti-12Cr-CR are >10% and ~10%, respectively. High strength 
is an essential requirement from the viewpoint of practical application, although such high 
strength could lead to undesirable spring-back. Therefore, the fundamental composition of 
Ti-12Cr makes it one of the preferred candidates for use in spinal fixation devices as a 
biomedical titanium alloy with the ability to self-adjust its Young’s modulus. 
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Fig. 17. Comparison of tensile properties of the designed alloy (Ti-12Cr) and those of an 
alloy with a low Young’s modulus (TNTZ): Ti-12Cr subjected to solution treatment (ST) and 
cold rolling at a reduction ratio of 10 % (CR), and TNTZ subjected to solution treatment (ST) 
and severe cold rolling at a reduction ratio of 87 % (CR). 

6. Low Young’s modulus titanium alloys for reconstructive implant devices  

In the case of some types of internal fixation devices implanted into the bone marrow such 
as femoral, tibia, and humeral marrow, in the case of screws used for bone plate fixation 
(Kobayashi, 2007), and in the case of implants used for children, which otherwise would 
grow into the bone, it is essential to remove the internal fixation device after surgery owing 
to certain specific indications; these indications include significant local symptoms such as 
palpable hardware, wound dehiscence/exposure of hardware, or athletes returning to 
contact sport (Kambouroglou, 1998) (Coook, 1985). The assimilation of removable internal 
fixation devices into the bone due to precipitation of calcium phosphate might cause 
refracture of the bone during the removal of the fixation device. Therefore, in these cases, it 
is essential to prevent the adhesion of the alloys with the bone tissues. Hence, considering 
this requirement, it is essential to inhibit the precipitation of calcium phosphate. It is 
reported that Zr, which is a non-toxic and allergy-free element, has the ability to prevent 
precipitation of calcium phosphate (Kawahara, 1963), and Ti alloys with Zr contents 
exceeding 25 mass% prevent the formation of calcium phosphate, which is the main 
component of human bones (Narushima, 2005). Thus, Ti-30Zr-Mo has been proposed as a 
low Young’s modulus titanium based biomaterial for use in removable implants. 
Figure 18 (Zhao, 2011) shows the Young’s moduli of Ti-30Zr-xMo (x = 5, 6, and 7) subjected 
to solution treatment and those of the alloys considered for comparison. The Young’s 
modulus of Ti-30Zr-xMo is lower than that of the alloys considered for comparison except 
TNTZ. The minimumYoung’s modulus is obtained for Ti-30Zr-6Mo with a value of around 
60 GPa, and TNTZ also shows a low Young’s modulus. 
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Fig. 18. Young’s moduli of Ti-30Zr-xMo (x = 0, 2, 5, 6, 7, and 8 mass%) alloys subjected to 
solution treatment and the alloys considered for comparison.  

In orthopedic applications, ideal biomedical implant materials are required to have high 
strength and a low Young’s modulus. The elastic admissible strain, defined as the strength-
to-modulus ratio, is a useful parameter considered in orthopedic applications. The higher 
the elastic admissible strain, the more suitable are the materials for such applications 
(Williams , 1971). Figure 19 (zhao, 2011) shows the distribution of the as-solutionized Ti-
30Zr-xMo and the alloys considered for comparison in the plot of elastic admissible strain 
against elongation. Ti-30Zr-6Mo and -7Mo exhibit larger elongation and higher elastic 
admissible strain than the other Ti-30Zr-xMo and SUS316L, CP Ti, Ti64 ELI, and TNTZ.  
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Fig. 19. Distribution of solutionized Ti-30Zr-xMo (x = 0, 2, 5, 6, 7, and 8 mass%) alloys and 
the alloys (SUS 316 L stainless steel, TNTZ and commercially pure titanium (C.P.Ti) 
considered for comparison in a plot of elastic admissible strain against elongation. 

Figure 20 (Zhao, 2011) shows the density of cells cultured for 24 h in the presence of Ti-30Zr-
7Mo and the alloys considered for comparison. Ti-30Zr-7Mo has the highest value of cell 
density. Therefore, Ti-30Zr-6Mo and Ti-30Zr-7Mo show promising potential to be new 
candidates for use in biomedical applications. 
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Fig. 20. Density of cells cultured in 7Mo and the alloys (SUS 316 L stainless steel, 
commercially pure titanium (CPTi), Ti-6Al-4V ELI (Ti64ELI), and TNTZ) considered for 
comparison.  

Figure 21 (Zhao, 2011) shows Young’s moduli of Ti-30Zr-5Mo, Ti-30Zr--6Mo, and Ti-30Zr-
-7Mo subjected to solution treatment (referred to as 5Mo-ST, 6Mo-ST, and 7Mo-ST, 
respectively) and subjected to cold rolling at a reduction ratio of 10 % (referred to as 5Mo-
CR, 6Mo-CR, and 7Mo-CR respectively). In the ST samples, with increasing Mo content, 
the Young’s modulus initially decreases from 75 GPa in 5Mo-ST to 63 GPa in 6Mo-ST and 
then increases slightly to 66 GPa in 7Mo-ST. The Young’s moduli of the ST alloys are 
lower than those of conventional biomedical alloys such as SUS316L stainless steel (SUS 
316L), commercial pure Ti (CP Ti), and Ti–6Al–4V extra-low interstitial alloy (Ti64 ELI). 
The change in Young’s modulus after cold rolling varies with the Mo content: the Young’s 
modulus of 5Mo-CR decreases drastically to 59 GPa from 75 GPa (after ST), and the 
Young’s modulus of 6Mo-CR deceases to 61 GPa from 63 GPa (after ST). However, the 
Young’s modulus of 7Mo-CR increases to 73 GPa from 66 GPa (after ST). Therefore, Ti-
30Zr-7Mo is expected to be a Young’s modulus self-adjustable titanium alloy for 
biomedical applications. 
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Fig. 21. Young’s moduli of Ti–30Zr–(5, 6, 7)Mo alloys subjected to solution treatment (5Mo-, 
6Mo-, 7Mo-ST) and cold-rolling (6Mo-, 6Mo-, 7Mo-CR). 
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7. Summary 

The removal of metallic biomaterials from implanted bone tissue is fairly new concept 
because tight adhesion between the metallic biomaterial and bone is currently one of the 
targets of biomaterials researchers.  
Nowadays, conflicting properties of a low Young’s modulus to inhibit bone atrophy and 
high Young’s modulus to inhibit spring-back are simultaneously desired in biomaterials. 
i.e., Young’s modulus self-adjustment ability is required in the metallic biomaterials. In 

order to satisfy these demands, metastable -type titanium alloys that exhibit deformation-
induced transformation are prospective candidates materials can be selectively changed 
from low to high at the deformation point. However, the degree of the change in the 
Young’s modulus is currently insufficient to satisfy the biomaterial demand and thus, 
further investigation of these kinds of titanium alloys is warranted.  

8. Acknowledgements 

The authors thank Professor T. Hattori of Meijo University, Nagoya, Japan, and Miss. X. 
Zhao of Institute for Materials Research, Tohoku University, Sendai, Japan for their 
contributions to the experiments. This study was supported in part by the Global COE 
Program “Materials Integration International Center of Education and Research, Tohoku 
University”, Ministry of Education, Culture, Sports, Science and Technology (MEXT) 
(Tokyo, Japan) and The New Energy and Industrial Technology Development Organization 
(NEDO) (Tokyo, Japan), the collaborative project between Tohoku University and Kyusyu 
University on “Highly-functional Interface Science: Innovation of Biomaterials with Highly-
functional Interface to Host and Parasite”, MEXT (Tokyo, Japan), The Light Metal 
Educational Foundation, Inc. (Osaka, Japan), the cooperative research program of Institute 
for Materials Research, Tohoku University (Sendai, Japan), and the cooperative research 
program of the Advanced Research Center of Metallic Glasses, Institute for Materials 
Research, Tohoku University (Sendai, Japan). 

9. References 

Akahori, T., Niinimi, M., Ishimizu, K., Fukui, H., & Suzuki, A. (2003). Effect of 
Thermomechanical Processing on Fatigue Characteristics of Ti-29Nb-13Ta-4.6Zr, J. 
Jpn. Inst. Metals, Vol. 67, No. 11, pp. 652-660. 

Cook, S. D., Renz, E. A., Barrzak, R., Thomas. K. A., Harding, A. F., Haddad R.J, Jr. & 
Mllicic, M. (1985). Clinical and Metallurgical Analysis of Retrieved Internal Fixation 
Devices, Clin. Orthop. Relat. R., Vol. 194, pp. 236–247. 

Kambouroglou, G. & Axelrod, T. (1998). Complications of the AO/ASIF Titanium Distal 

Radius Plate System ( plate) in Internal Fixation of the Distal Radius: A Brief 
Report, J. Hand Surg., Vol. 23, pp. 737–741. 

Kawahara, H., Ochi, S., Tanetani, K., Kato, K., Isogai, M., Mizuno, Y., Yamamoto, H., & 
Yamaguchi, A. (1963). Biological Test of Dental Materials. Effect of Pure Metals 
upon the Mouse Subcutaneous Fibroblast. Strain L Cell in Tissue Culture, J. Jpn. 
Soc. Dent. Apparat. Mater., Vol. 4, pp. 65–75. 

www.intechopen.com



 
Low Modulus Titanium Alloys for Inhibiting Bone Atrophy 

 

267 

Kobayashi, E., Ando, M., Tsutsumi, Y., Doi, H., Yoneyama, T., Kobayashi, M., & Hanawa, T. 
(2007). Inhibition Effect of Zirconium Coating on Calcium Phosphate Precipitation 
of Titanium to Avoid Assimilation with Bone, Mater. Trans. , Vol. 48, pp. 301–306. 

Nakai, M., Niinomi, M., Akahori, T., Tsutsumi, H., Itsuno, S., Haraguchi, N., Itoh, Y., 
Ogasawara, T., Onishi, T., & Shindoh., T. (2010). Development of Biomedical 
Porous Titanium Filled with Medical Polymer by In-Situ Polymerization of 
Monomer Solution Infiltrated into Pores, J. Mech. Behav. Biomed. Mater., Vol. 3, pp. 
41-50. 

Nakai, M., Niinomi, M., Zhao, X. F., & Zhao, X. L. (2011a). Self-Adjustment of Young’s 
Modulus in Biomedical Titanium Alloys during Orthopaedic Operation. Mater. 
Lett., Vol. 65, pp. 688-690. 

Nakai, M., Niinomi, M., & Ishii, D. (2011b). Mechanical and Biodegradable Properties of 
Porous Titanium Filled with Poly-L-lactic Acid by Modified In-Situ Polymerization 
Technique, J. Mech. Behav. Biomed. Mater., in press. 

Nakai, M., Niinomi, M., & Oneda, T. (2011c). Improvement in Fatigue Strength of 
Biomedical ǃ-type Ti–Nb–Ta–Zr Alloy while Maintaining Low Young’s Modulus 
through Optimizing ω-phase Precipitation, submitted to Metal. Mater. Trans. A. 

Narushima, N. (2005). Titanium and Titanium Alloys, J. Jpn. Soc. Biomat., Vol. 23, pp. 86–94. 
Niinomi, M. (2002a). Recent Metallic Materials for Biomedical Applications, Metall. Mater. 

Trans. A, Vol. 33A, No.3, pp. 477-486. 
Niinomi, M., Hattori, T., Morikawa, K., Kasuga, T., Suzuki, A., Fukui, H. & and Niwa, S. 

(2002b). Development of Low Rigidity ǃ-type Titanium Alloy for Biomedical 
Applications, Materi. Trans., Vol. 43, No. 12, pp. 2970-2977. 

Niinomi, M. (2007). Fatigue Characteristics of Metallic Biomaterials, Int. J. Fatigue, Vol. 29, 
pp. 992-1000. 

Niinomi, M. (2008a). Mechanical Biocompatibilities of Titanium Alloys for Biomedical 
Applications. J. Mech. Behav. Biomed.l Materi., Vol. 1, No. 1, pp. 30-42. 

Niinomi, M., Akahori, T., & Nakai, M. (2008b). In Situ X-Ray Analysis of Mechanism of 
Nonlinear Super Elastic Behavior of Ti-Nb-Ta-Zr System Beta-Type Titanium Alloy 
for Biomedical Applications, Mater. Sci. Eng. C, Vol. 2, pp. 406-413.  

Niinomi, M. (2010a). Trend and Present State of Titanium Alloys with Body Centered 
Structure for Biomedical Applications, Bulletin of The Iron and Steel Inst. Jpn., Vol. 
15, No. 11, pp. 661-670. 

Niinomi, M., & Hattori,,T. (2010b). Effect of Young’s Modulus in Metallic Implants on 
Atrophy and Bone Remodeling, Interface Oral Health Science 2009, Sasano, T., 
Suzuki, O., Stashenko, P., Sasaki, K., Takahashi, N., Kawai, T., Taubman, M. A., & 
H. C. Margolis,H. C., (Eds.), Springer, pp. 90-99. 

Niinomi, M. & Nakai, M. (2011a). Titanium-based Biomaterials for Preventing Stress 
Shielding between Implant Devices and Bone, Int. J. Biomaterials, in press. 

Niinomi, M., (2011b). Shape memory, Super Elastic and Low Young’s Modulus Alloys, 
submitted to Biomaterials for Spinal Surgery, Ambrosio, L. & Tanner, K. E., (Eds.), 
Woodhead Publishing Ltd., Cambridge, UK. 

Niinomi, M., Nakai, M., Song, X., & Wang, L. (2011c). Improvement of Mechanical Strength 

of a -type Titanium Alloy for Biomedical Applications with Keeping Young’s 
Modulus Low by Adding a Small Amount of TiB2 or Y2O3, Proc. PFAMXIX 

www.intechopen.com



 
Biomaterials Science and Engineering 

 

268 

(Processing and Fabrication of Advanced Materials), Vol. 2, Bhattacharyya, D., Lin, R. J. 
T., & Srivatsan, T. S. (Eds.), pp. 817-827. 

Oh, I. H., Nomura, N., & and Hanada, S. (2002). Microstructures and Mechanical Properties 
of Porous Titanium Compacts Prepared by Powder Sintering, Mater. Trans., Vol. 43, 
pp. 443-446. 

Sumitomo, N., Noritake, K., Hattori T., Morikawa, K., Niwa, S, Sato, K. & Niinomi, M. 
(2008). Experiment Study on Fracture Fixation with Low Rigidity Titanium Alloy - 
Plate Fixation of Tibia Fracture Model in Rabbit, J. Mater. Sci.: Mater. in Medicine, 
Vol. 19, No. 4, pp. 1581-1586. 

Tane, M., Akita, S., Nakano, T., Hagihara, K., Umakoshi, Y., Niinomi, M., & and Nakajima, 
H. (2008). Peculiar Elastic Behavior of Ti-Nb-Ta-Zr Single Crystals, Acta Mater, Vol. 
56, pp. 2856-2863. 

Williams, J. C., Hickman, B. S., & D.H. Leslie, D. H. (1971). The Effect of Ternary Additions 
on the Decomposition of Detestable Beta Phase Titanium Alloys, Metall. Mater. 
Trans., Vol. B 2, pp. 477–484. 

Yilmazer, H., Niinomi, M., Akahori, T., Nakai, M., & Tsutsumi, H., (2009). Effects of Severe 
Plastic Deformation and Thermo-mechanical Treatments on Microstructures and 
Mechanical Properties of ǃ-type Titanium Alloys for Biomedical Applications, Proc. 
PFAMXIII, pp. 1401-1410. 

Zhao, X. L., Niinomi, M., Nakai, M., Miyamoto, G., & Furuhara, T. (2011). Microstructures 
and Mechanical Properties of Metastable Ti-30Zr-(Cr, Mo) Alloys with Changeable 
Young’s Modulus for Spinal Fixation Applications. Acta Biomater., Vol. 7, pp. 3230-
3236. 

Zhao, X. L., Niinomi, M., Nakai, M., Ishimoto, T., & Nakano, T. (2011), Development of High 
Zr-containing Ti-based Alloys with Low Young’s Modulus for use in Removable 
Implants, Mater. Sci. Eng. A, in press. 

www.intechopen.com



Biomaterials Science and Engineering

Edited by Prof. Rosario Pignatello

ISBN 978-953-307-609-6

Hard cover, 456 pages

Publisher InTech

Published online 15, September, 2011

Published in print edition September, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

These contribution books collect reviews and original articles from eminent experts working in the

interdisciplinary arena of biomaterial development and use. From their direct and recent experience, the

readers can achieve a wide vision on the new and ongoing potentials of different synthetic and engineered

biomaterials. Contributions were not selected based on a direct market or clinical interest, than on results

coming from very fundamental studies which have been mainly gathered for this book. This fact will also allow

to gain a more general view of what and how the various biomaterials can do and work for, along with the

methodologies necessary to design, develop and characterize them, without the restrictions necessarily

imposed by industrial or profit concerns. The book collects 22 chapters related to recent researches on new

materials, particularly dealing with their potential and different applications in biomedicine and clinics: from

tissue engineering to polymeric scaffolds, from bone mimetic products to prostheses, up to strategies to

manage their interaction with living cells.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Mitsuo Niinomi (2011). Low Modulus Titanium Alloys for Inhibiting Bone Atrophy, Biomaterials Science and

Engineering, Prof. Rosario Pignatello (Ed.), ISBN: 978-953-307-609-6, InTech, Available from:

http://www.intechopen.com/books/biomaterials-science-and-engineering/low-modulus-titanium-alloys-for-

inhibiting-bone-atrophy



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


