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1. Introduction 

Modern imaging systems provide a huge amount of images nowadays. These images are of 
different original quality. Some of them are practically ready for exploitation, e.g., visual 
inspection, object recognition, etc. Other ones need to be pre-processed as, e.g., by filtering, 
edge detection, segmentation, compression (Pratt, 2007; Bovik, 2000; Al-Shaykh&Mersereau, 
1998), etc. In the latter case, it is desirable to know noise type and characteristics (Pratt, 2007; 
Elad, 2010). Such information is exploited by modern methods and algorithms of image 
denoising (Elad, 2010; Sendur&Selesnick, 2002; Donoho, 1995; Mallat, 1998), edge detection 
(Pratt, 2007; Touzi, 2002) for setting proper thresholds that depend on noise statistics.  
In some practical situations, noise type and basic characteristics are known in advance. An 
example is radar imaging by synthetic aperture radar (SAR) with known number of looks 
and image forming mode (Oliver&Quegan, 2004). However, there are quite many practical 
situations where noise type and/or characteristics are not known in advance. Images 
acquired by digital cameras can serve as an example where noise properties are determined 
by camera settings, illumination conditions (Liu et al., 2008; Foi et al., 2007), etc. Then, noise 
characteristics are to be estimated for each particular image subject to further processing, for 
example, filtering or compression (Liu et al., 2008; Foi et al., 2007; Lukin et al., 2011). Similar 
situation holds for hyperspectral imaging where noise properties and signal-to-noise ratio 
(SNR) depend upon sub-band and they vary considerably in different component (sub-
band) images (Curran&Dungan, 1989; Uss et al., 2011).  
Note that below we mainly focus on considering multichannel images where the general 
term “multichannel” relates to color, multi- and hyperspectral imaging, dual and multi-
polarization radar imaging, multitemporal sensing, where multiple images of the same 
scene or terrain are obtained. While for one or a few images it is sometimes possible to carry 
out manual (interactive) image analysis for the determination of noise type and 
characteristics, it becomes impossible or too labour-consuming to perform such actions for 
multichannel data, especially if estimation is to be done on-board or under conditions of fast 
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acquisition and processing of images. Then, one has to apply blind or automatic estimation 
(Vozel et al., 2009). 
It is often assumed that the noise is i.i.d. and either pure additive or pure multiplicative 
(Petrovic et al., 2007; Ramponi&D’Alvise, 1999). Then, the task of estimating its parameters 
(variance or relative variance) simplifies since there exist quite many methods able to 
provide enough accurate estimation (Lukin et al., 2008 and references therein). However, the 
aforementioned assumption does not hold for a wide range of images formed by modern 
sensors. Recently, it has been clearly demonstrated ( Liu et al., 2008; Foi et al., 2007, Lukin et 
al., 2011) that even for RGB colour images (for which the model of i.i.d. pure additive noise 
is still the most popular (Plataniotis&Venetsanopoulos, 2000), this model is not adequate 
enough. Similarly, for sub-band images of hyperspectral data, the presence of signal-
dependent component in addition to additive component has been proved (Uss et al., 2011; 
Aiazzi et al., 2006) where the signal-dependent component occurs to be dominant for the last 
generation hyperspectral sensors.  
This means that it is necessary to estimate the characteristics of mixed or signal-dependent 
noise. The corresponding methods are mainly based on forming scatter-plots of local 
estimates of noise variance (in scanning windows or blocks of a rather small size) on local 
mean and carrying out robust regression (polynomial curve fitting) into these scatter-plots. 
Among the methods that belong to this group, it is worth mentioning techniques described 
in (Liu et al., 2008; Foi et al., 2007; Aiazzi et. al., 2006; Abramov et. al., 2010). They are similar 
in basic steps as scatter-plot forming and the use of robust fitting curves, but differ in 
details. A question of how a curve is to be fit in the best or appropriate manner is not 
discussed in detail. Thus, the main goals of this paper are to consider different approaches 
to robust regression, to compare their performance, to discuss possible limitations and 
restrictions, and to give some practical recommendations. Although the problem of robust 
regression has been studied for several applications (DuMouchel&O’Brien, 1989), to our best 
knowledge, its use in robust estimation of signal-dependent noise characteristics has not 
been analyzed thoroughly. Also note that our intention is to attract attention to the problem 
statement with providing some initial practical solutions rather than developing deep 
theory.  

2. Origins and properties of signal-dependent and mixed noise 

By signal-dependent we mean here such a noise that its statistical characteristics (variance, 
probability density function (PDF)) depend upon information signal (image) in one or 
another manner. There are quite many known types of signal-dependent noise. Poisson 
noise (Foi et al., 2007) is the case for which noise variance is equal to the true value of image 
pixel and noise PDF shape also changes being almost Gaussian for large true values but 
considerably differing from Gaussian for rather small ones. Another example is film-grain 
noise commonly assumed locally Gaussian but with variance increasing with image true 
value (local mean in homogeneous image regions) (Öktem&Egiazarian, 1999). Speckle is one 
more example for which pure multiplicative model is widely exploited where noise is not 
Gaussian and its variance quickly increases for larger true values (proportionally to squared 
local mean in homogeneous image regions) (Oliver&Quegan, 2004; Touzi, 2002; 
Ramponi&D’Alvise, 1999). Thus, typically a dependence of signal dependent noise variance 
on true value 2 ( )tr

sd f I   is monotonically increasing ( trI  is true value). The examples 
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given above show that such properties of noise can originate from different sources, in the 
first order, from a method of image pixel value obtaining (photon counting, coherent 
processing of registered signals) or properties of material (carrier) used for data registration.  
Mixed noise model (Astola&Kuosmanen, 1997) holds if there are several different sources. 
The most known example is, probably, mixed additive and impulse noise where the latter 
component can originate from coding/decoding errors at image transmission via 
communication channels. Another example is noise in modern sensors where there are such 
sources as dark noise, thermal noise, photon-counting noise (Kerekes&Baum, 2003). For 
some sources, noise is signal independent (as dark noise) and for other sources it is signal 
dependent (as photon-counting noise). However, in aggregate, under assumption of 
independent noise sources one gets mixed noise for which noise variance occurs to be 
dependent on image true value as, e.g., 2 2 tr

sd dc kI    where 2

dc  is variance of dark 
current noise and k is proportionality factor (Foi et al., 2007). For side look aperture radar 
images (Lukin et al., 2007), slightly another model of dependence holds 2 2 2( )tr

sd dc k I   . 
Again, dependences 2 ( )tr

sd f I   are basically monotonously increasing.  
However, this is not always true. Different nonlinear transformations of initial data that 
mainly belong to a wide class of homomorphic and variance stabilizing transforms are often 
used with special purposes. The intentions of using such transformations are various. For 
example, logarithmic type transforms can be applied to speckled radar images to convert 
pure multiplicative to pure additive noise with providing better pre-conditions for applying 
a wide set of denoising techniques (Oliver&Quegan, 2004; Solbo&Eltoft, 2004). Similarly, 
Anscombe transform is often used to convert Poisson noise to additive with practically 
constant variance (Anscombe, 1948). Modified Anscombe-like transforms have been 
designed to provide variance stabilization for mixed additive and Poisson-like noise in 
astronomy (Murtagh et al., 1995). Gamma correction is one more example of such nonlinear 
transformations exploited in digital cameras to improve visual perception of obtained 
images (Pratt, 2007).  
While in the cases of logarithmic and Anscombe transforms it is assumed that original noise 
type is known and additive noise with constant variance is provided after image 
homomorphic transforms, the situation with the Anscombe-like transform (Murtagh et 
al.,1995) and gamma-correction is more complicated.  
For carrying out Anscombe-like transform properly, it is needed to know or to estimate 
parameters or dependence 2 2 tr

sd dc kI   . Then, the task reduces to the model described 
above. In turn, what happens if the standard Anscombe transform is applied to an image 
corrupted by mixed additive and Poisson noise is considered in the paper (Lukin et al., 
2009b). It is demonstrated that dependence of noise variance on local mean becomes 
monotonously decreasing.  
Gamma correction (especially in combination with clipping effects (Foi et al., 2007) can lead 
to even more specific behaviour of dependence 2 ( )tr

sd f I  . It occurs that in the area of 
small true values 2

sd  increases, then, for larger trI , there is an area of almost constant 
values of 2

sd  and finally, for trI  close to an upper limit of dynamic range of image 
representation, 2

sd  starts to decrease (Liu et al., 2008; Lim, n.d.; Lukin et al., 2011). 
Thus, the dependence 2 ( )tr

sd f I   is most often monotonously increasing but in special 
cases it can be also monotonously decreasing or having maximum. This means that there 
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should be some model of 2 ( )tr
sd f I   to be fit in a scatter-plot with further estimation of its 

parameters. Polynomial models with a limited order seem to be a good choice although the 
use of other quite simple functions is also appropriate. If available, a priori information for 
model choosing is to be used. Another aspect is availability of methods and algorithms for 
robust fit of the corresponding curves.  
One more question is introducing some restrictions. Since we deal with estimation of noise 
variance, it should be non-negative by definition. This means that a fitted function ˆ( )trf I  is 
to be non-negative for entire range of possible values of trI . Whilst for some functions as, 
e.g., exponents of different type the non-negativity condition is satisfied automatically, this 
is not true for polynomial fitting. Therefore, fitting with restrictions is required in practice 
and this additionally complicates the task. Although selection of regression function is 
important, below we do not concentrate on it and consider quite simple cases of polynomial 
fit.  It is also worth mentioning here that there exist methods for blind identification of 
noise/degradation type (Vozel et al., 2006). Recall that these techniques allow identifying 
additive, multiplicative, impulsive noise, blur and all their possible combinations. However, 
for the general case of signal-dependent noise considered in this chapter this approach is 
often useless since noise statistics, as discussed above, can be specific. In particular, these 
methods are unable to identify Poisson and mixed Poisson and additive noise cases.  

3. Robust regression approaches 

Several times we have used above the terms “robust regression” and “robust fit” without 
explaining what is meant by “robust” and why conventional methods of curve fitting into 
scatter-plots (data) cannot be used. Robustness is treated here in two senses according to 
Huber (Huber, 1981). First, regression is to be robust with respect to outliers in data. The 
reasons why outliers appear will be explained in the next subsection. Second, by robustness 
we also mean the requirement to a method to provide reasonably accurate blind estimation 
of signal-dependent noise parameters for a wide set of images subject to analysis and a wide 
range of possible variation of noise statistics.  

3.1 Properties of local estimates and ways of scatter-plot pre-processing 
Any method for blind estimation of mixed noise parameters starts from obtaining local 
estimates of noise variance. For this purpose, square shape local windows (blocks) are 
commonly used. Blocks can be fully overlapping, partially or non-overlapping. In the latter 
case they are shifted with respect to each other by N pixels in horizontal and/or vertical 
directions where N denotes block side size. Accuracy of noise parameter estimation 
provided in the case of non-overlapping blocks is slightly worse (by about two times in the 
sense of estimated parameter variance), but processing is faster. The method parameter N 
also influences accuracy. Recommendations concerning its selection are given in (Lukin et 
al., 2008a) and will be briefly discussed below.  
Suppose one has a set of blocks tessellating an analyzed image. Then, local estimates of 
noise variance are to be obtained for each block or for blocks selected for analysis. Consider 
first the case of estimate obtaining for all blocks. There are several ways to obtain local 
estimates. The most known is to calculate  

 2 2 2
1 1

,

ˆ ( /( )) ( )
l

l ij l
i j G

N I I


   , (1) 
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where 1

,

( / )
l

l ij
i j G

I N I


   denotes the local mean for the l-th block, Gl is the area occupied by 

the l-th block, Iij is the ij-th pixel of an analyzed image, l=1,…,Nbl, Nbl is the number of blocks 
that depends upon image and block size and a way of image tessellating by blocks. Here 
and below we consider one-channel images assuming that similar operations are carried out 
for each component image of multichannel data processed sequentially or in parallel).  
There are also other algorithms for obtaining local variance estimates. In particular, robust 
estimators of data scale can be used for this purpose as, for example (Lukin et al., 2005) 

 2 2
1 483ˆ ( . ( ( ) ))

l l

l ij ij
ij G ij G
med I med I
 

  , (2) 

where med(X) denotes median value for data sample X. However, to apply the local estimate 
(2) one has to be sure that noise is Gaussian. Otherwise, biased estimates are obtained even 
in homogeneous image regions. Generally speaking, robust scale estimators 
(Crnojevic&Petrovic, 2010) can be used for local variance estimation if PDF of signal 
dependent noise is a priori known and it does not depend on local mean. However, this 
rarely happens in practice. For example, if signal-dependent noise is Poissonian or 
Poissonian noise is one component of mixed noise, then noise PDF changes with local mean 
(in homogeneous image regions).  
Other ways to estimate local variance in blocks are possible as well. For example, estimators 
operating in orthogonal transform domain as, e.g., discrete cosine transform (DCT) can be 
used (Lukin et al., 2010b). However, these estimators produce biased estimates of noise 
variance even in image homogeneous regions if noise is spatially correlated (Lukin et al., 
2008a, 2010b). Note that we intend on considering both the cases of i.i.d. and spatially 
correlated noise assuming that no or a limited a priori information is available on noise 
spatial correlation properties. In practice, noise is often spatially correlated, the reasons for 
this phenomenon are discussed in (Ponomarenko et al., 2011). To avoid problems dealing 
with possible biasedness of local estimates, below we focus on considering the estimation 
algorithm (1) as the basis of scatter-plot forming. Besides, we basically follow 
recommendations on block size setting given in (Lukin et al., 2008a). According to them, 
N≥5 for i.i.d. noise and N≥7 for spatially correlated noise. However, it is not worth using 
N>9 in both cases. Thus, N=7, 8, and 9 are good practical choices if a priori information on 
noise spatial correlation characteristics is not available or is limited. 
Several times above it has been mentioned “in homogeneous image regions”. This is 
because just for blocks that belong to homogeneous image regions it is possible to obtain the 
so-called normal estimates of noise local variance. By normal we mean that such estimates 
are quite close to the corresponding true value keeping in mind that closeness is determined 
by block size, PDF of noise and its spatial correlation properties (Lukin et al., 2006, 2008a). 
Closeness can be characterized by variance of local variance estimates 2

var ( )trg I  . For a 
given trI , variance 2

var  of normal estimates is directly proportional to ( )trf I  and it 
decreases if N increases. For spatially correlated noise, 2

var  is larger than variance of local 
variance estimates for i.i.d. noise for the same trI , PDF of noise and N.   
Let us demonstrate some of aforementioned properties of local estimates for a very simple 
test image corrupted by mixed noise (Lukin et al., 2009b). Consider the following case. The 
test image has the size 512x512 pixels and is composed of 16 horizontal strips each of width 
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32 pixels. For each strip, trI  is constant and is equal to 20 (for the uppermost strip), 30, 
40,…,170, i.e. for an n-th strip its mean is equal to 10+10n, n=1,…,16. The dependence of 
mixed noise variance is 2 2 tr

sd add I   , i.e. additive and Poison noise components are 
simulated where the latter component is dominant since additive noise variance 2

add  is set 
equal to 10 (then 2 tr

add I   for all strips). The noisy image is presented in Fig. 1,a.  
The obtained scatter-plot is represented in Fig. 1,b (points in scatter-plot have coordinates 

2ˆl  for vertical axis and lI  for horizontal axis, N=7, non-overlapping blocks).  
 

 

Fig. 1.a Noisy test image 

 

 

Fig. 1.b Scatter-plot of local estimates for the noisy test image in Fig. 1,a 
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As it is seen, the obtained points mostly concentrate along the line 2 2 tr
sd add I    also 

presented at the scatter-plot in Fig. 1,b for convenience of analysis. These points, in fact, 
form sixteen clusters with the center coordinates approximately equal to (10+n, 20+n), 
n=1,…,16. These clusters are not of equal size. The clusters that correspond to larger n have 
larger size in both directions (especially, in vertical one) demonstrating that accuracy of 
estimates of local variance in blocks is worse. 
The presented scatter-plot also shows that there are abnormal local estimates (outliers) of 
local variance placed rather far from any (including the nearest) cluster. These abnormal 
estimates are observed for blocks that do not fully belong to a given strip, i.e. if a given 
block falls into edge between strips. In a more general case, abnormal local estimates take 
place if a block is positioned in heterogeneous image region where by heterogeneity we 
mean edges, details, and textures. 
Below we skip a more detailed analysis of statistics of abnormal local estimates. Only the 
following is worth stating. First, a percentage of abnormal local estimates basically depends 
upon structure (complexity) of an analyzed image and usually it is sufficiently larger than 
for the simple test image in Fig. 1,a (Lukin et al., 2010a). Second, according to experience of 
blind estimation of additive noise variance or multiplicative noise relative variance (Lukin et 
al., 2010a), the presence of such abnormal local estimates in any case influence final 
estimation even if quite robust procedures are applied to joint processing of the set of 
estimates. Usually, for more complex images and smaller variance of noise the provided 
accuracy is worse. Third, abnormal estimates give no information on noise properties and 
one has to rely on normal estimates. However, without special analysis (see (Lukin et al., 
2010a) for details) it is difficult to predict in advance for what positions of blocks the normal 
or abnormal estimates will be obtained.  
Intuitively, the presence of outliers should lead to worse accuracy of mixed noise 
parameter estimation. There are, at least, three ways to diminish the influence of 
abnormal estimates:  
1. to apply aforementioned robust regression in curve fitting to scatter-plots;  
2. to determine cluster centres and to carry out curve fitting using only them;  
3. to reject introducing into a scatter-plot the estimates for blocks if they are predicted to 

be abnormal.  
Below we concentrate on considering two former ways. For the way 2, it is possible to apply 
image pre-segmentation (Klaine et al., 2005). Although there are many methods for image 
segmentation (Yu-jin Zhang, January 2006), here one needs a method that does not exploit 
any a priori information on noise type and characteristics. In particular, one can use the 
method (Klaine et al., 2005) that allows estimating the cluster number and centers. Let us 
denote them as clN  and 1, ,...,clm clC m N , respectively. Assume that a k-th block is referred 
to an m-th cluster if the corresponding central pixel of the block is referred to m-th cluster 
(level) in the segmented image. Thus, we obtain subsets of blocks for each cluster. 
For each cluster, a robust method should be applied to determine its center. This method is 
applied to both a subset of local mean estimates and a subset of local variance estimates. 
Details can be found in (Lukin et al., 2008b). Thus, one gets cluster center coordinates 

2
1ˆ , ,...,clm clm N   for vertical axis and 1ˆ , ,...,clm clI m N  for horizontal axis, respectively. 

2 2
1ˆˆ( ; ), ,...,clm clm clI m N  . An advantage of this approach is that after estimation of cluster 

centers the influence of abnormal estimates is reduced radically. The obtained estimates of 
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cluster centers are shown by red in Fig. 1,b and, as it is seen, they are placed close to the true 
curve. Then, it is possible to fit a curve (straight line) for getting the estimates 2ˆa  and 2ˆ .  
Let us give an example. It is taken from the paper (Abramov et al., 2010). The noisy test 
image RSA is presented in Fig. 2,a. It has been corrupted by mixed additive and 
multiplicative Gaussian noise mimicking side-look aperture radar images: 

 2 2 2 2 2 2( ) , ( )tr tr
sd add addI kX X I        , (3) 

where 2

  denotes relative variance of multiplicative noise. The simulated values are 
2 2

9 0 005, .add    . While forming a scatter-plot, 2( )trI  has been replaced by X  for 
horizontal axis in order to have an opportunity to fit a first-order polynomial (such “tricks” 
are possible if one is confident that dependence is as (3)). The pre-segmented image is 
represented in Fig. 2,b.  
 

   
a                                                                  b 

Fig. 2. Noise test image RSA (a) and the result of its pre-segmentation (b) 

The obtained scatter-plot is represented in Fig. 3,a. The cluster centers are marked by red 
squares. For larger X, clusters are of larger size as in the previous case of signal-dependent 
noise with variance monotonously increasing with trI . Abnormal estimates are observed as 
well especially for the clusters with relatively small X. Green line shows the true 
dependence 2

9 0 005.sd X    whilst the red one corresponds to the curve fitted by the 
method (Lukin et al., 2008b) which is LMS fit using cluster centers. As seen, the curves are 
quite close but anyway they differ from each other. 

3.2 Scatter-plot and curve fitting peculiarities for real life data 
Above we have analyzed test images which are quite simple (they contain rather 
homogeneous image regions of rather large size). In this subsection, we consider some 
examples for real life data. The first example is taken from TerraSAR-X data, the image is 
presented in Fig. 4,a.  
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Fig. 3. a Scatter-plot of local estimates for the noisy test image in Fig. 2,a 
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                                     (a)                                                                           (b) 

Fig. 4. Real life SAR image (a) and the scatter-plot of local variance estimates after pre-
segmentation (b) 

This is a one-look amplitude SAR image of agricultural region in Germany (Rosenheim, 
http://www.infoterra.de) with fully developed speckle for which multiplicative noise is 
dominant and its PDF is close to Rayleigh. Since we neglect the influence of additive noise, 
the line that passes through the coordinate origin has been fitted. The estimated 2ˆ  is equal 
to 0.22, i.e. the estimate is quite close to the value 0.273 typical for speckle with Rayleigh 
PDF. This example shows that, if there is reliable a priori information on noise properties, 
one possible practical restriction of regression when additive noise variance is supposed 
equal to zero. 
Even more interesting results are given in Fig. 5. Fig. 5,a presents the 168-th sub-band image of 
hyperspectral AVIRIS data Moffett Field 1 (http://aviris.jpl.nasa.gov). Recall that it has been 
supposed that for hyperspectral data signal-dependent noise is characterized by the 
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dependence 2 2 tr
sd dc kI   . Thus, the scatter-plot of local variance estimates has been 

obtained (see Fig. 5,b) and regression has been carried out using three techniques. The first is 
Robust fit (RLMS) available in Matlab (black line). The second is standard LMS fit carried out 
for cluster centers (red line), and the third one is weighted LMS (WLMS) (Abramov et al., 2010) 
also applied to cluster centers. The estimates of additive noise variance are equal to 26.3, 54.9, 
and 43.9, respectively. The estimates of the parameter k are equal to 0.68, -0.00024, and 0.3, 
respectively. Whilst for additive noise variance estimates differ from each other but not too 
much, the estimates of k are very different. Moreover, for the LMS regression the obtained 
estimate is negative. If we suppose that the dependence is monotonically increasing, the 
estimate should be positive and this can be imposed as restriction to curve fitting algorithm.  
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                                 (a)                                                                              (b)  

Fig. 5. Real life sub-band image of hyperspectral data (a) and the scatter-plot of local 
variance estimates with fitted lines (b) 

It is interesting that for the same 168-th sub-band but for another hyperspectral data set 
(Lunar Lake) the estimates of additive noise variance are 27.8, 28.5 and 24.1, respectively (for 
the RLMS, LMS, and WLMS methods). The estimates of k are 0.07, 0.08, and 0.1. Thus, in 
this case, the estimates almost coincide for all three methods, and this indirectly indicates 
that these estimates are accurate enough. Meanwhile, these results do not give answer to a 
question what method is more accurate. The presented examples show only that different 
regression techniques can produce either quite similar or very dissimilar estimates of mixed 
noise parameters. Thus, numerical simulation for a set of test images of different complexity 
and a set of mixed noise parameters is needed to get imagination on what regression 
methods are better and to provide practical recommendations. 

4. Numerical simulation results 

To carry out numerical simulations, we have to select methods for analysis and 
comparisons, quantitative criteria, test images and sets of mixed noise parameters. Let us at 
the very beginning give brief description of regression techniques.  
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4.1 Considered regression techniques 
In our study, we have considered the following regression techniques. The first technique is 
the RobustFit method realized in Matlab that is applied to scatter-plot of local estimates 
without their pre-processing. The second is the standard LMS fit applied to cluster centers. 
For this technique, robustness to outliers is provided due to robust determination of cluster 
centers. The third technique is weighted LMS (Abramov et al., 2010) applied to cluster 
centers. Its basic idea is to assign weights inversely proportional to the number of points in 
each cluster keeping in mind that accuracy of cluster center determination increases if the 
number of such points becomes larger. The fourth technique is Ransac (Fischler&Rolles, 
1981) that employs lines fitting for arbitrary pairs of cluster centers, forming a confidence 
interval and rejecting cluster centers that occur to be out of the confidence interval. In this 
way, the cluster centers assumed to be determined with the worst accuracy are removed. 
The fifth technique is the so-called double weighted LMS (DWLMS) that has two stages. At 
the first stage, WLMS is applied and then, at the second stage, the cluster centers that are far 
from the fitted line are taken into account with smaller weights to additionally improve 
accuracy. 
As it is seen, four the latter techniques operate with the cluster centers and this means that 
accuracy of cluster center determination affects the final accuracy of these techniques. To get 
initial imagination on the influence of cluster center estimation accuracy, let us carry out 
simple analysis of estimation accuracy of mixed noise parameters for the case of curve 
fitting for two points. It is worth mentioning here that such line can be fitted uniquely and 
such fitting is the main operation at the first stage of Ransac technique.   

4.2 Accuracy of line fitting for two points 
Suppose that we have two points (e.g., cluster centers) that have coordinates x1+Δx1, y1+Δy1 
and x2+Δx2, y2+Δy2 where x1, y1 and x2, y2 denote the true values whilst Δx1, Δy1 and Δx2, 
Δy2 are the errors of point (cluster center) determination. Assume also that the following 
conditions are valid: 

2 2 1 1
0 0,y y y y       and 

2 2 1 1
0x x x x      . We suppose also 

that 2

2

1
y

y


 , 1

1

1
y

y


 , 2

2

1
x

x


 , 1

1

1
x

x


 , i.e. the errors are comparatively small (validity of 

these assumptions in practice will be discussed later). Then, fitted line parameters a and b 
are to be determined from the following simple equation system  

 1 1 1 1

2 2 2 2

( )

( )

y y a b x x

y y a b x x

     
      

, (4) 

Then one has  

 2 2 1 1 2 1 2 1 2 1 2 1

2 2 1 1 2 1 2 1 2 1

2 1

2 1

1

( ) ( ) ( )ˆ
( ) ( )

( )

y y y y y y y y y y y y
b

x x x x x x x x x x
x x

x x

              
  

             
   

, (5) 

and, under introduced assumptions on relatively small errors  

 
2 1 2 1 2 1 2 12 1 2 1

2 1 2 1 2 1 2 1 2 1

1 1
( )ˆ y y y y y y y yx x x x

b
x x x x x x x x x x

                 
        

        
 (6) 
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Let us introduce notations 
2 1

x x x     , 
2 1

y y y     . In this case 

 2 1 2 1 2 1 2 1 2 1

2 1

1ˆ
true true true

true
true

y y x yx x
b b b b

x x x x x x x x x x

y b x
b

x x

      
        

      
  

 


, (7) 

where trueb  is the true value of parameter b. Hence 

 
2 1

truey b x
b

x x

  
 


. (8) 

Then, assuming that 
1

2

y , 
2

2

y , 
1

2

x , and 
2

2

x  are variances of the corresponding cluster 
center coordinates, it is easy to obtain variance of parameter b estimate as  

  1 2 1 2

2 2 2 2 2

2

2

2 1

( )

( )

y y true x x
b

b

x x

   
    


  



. (9) 

This expression shows the following. Since trueb  is usually smaller than unity and 
coordinates x are estimated with rather high accuracy, the main contribution to errors of b 
estimation results from Δy1 and Δy2. Moreover, if these errors do not have zero mean (below 
and in (Lukin et al., 2008a) it is demonstrated that this happens often), biased estimation of b 
takes place. An important conclusion is also that 2

b  is inversely proportional to 2

2 1
( )x x . 

This is intuitively clear that more distant points “fix” a fitted line better, but this property is 
in no way exploited in robust regression. One more conclusion is that for smaller trueb   

variance 2

b  also decreases. Meanwhile, the ratio 
2

2

b

trueb

  characterizing relative error increases.  

Similarly, it is possible to estimate parameter a as  

  1 1 2 2 1 1 2 2

1

2

ˆ ( )a y y y y b x x x x            . (10) 

Then one gets   

   1 2 1 2 1 2 1 2 1 1 2 2

1 1

2 2

ˆ ( ) ( ) ( )true true

true

a y y b x x y y b x x b x x x x

a a

                   

  
 (11) 

where truea  is the true value of parameter a and  

 
1 2 1 2 1 1 2 2

2 1

1

2
( ) ( )true

true

y b x
a y y b x x x x x x

x x

    
                   

. (12) 

Then variance of estimation is  

 1 2

1 2 1 2

2 2 22

2 2 2 2 2 1 2

2 2

2 1 2 1

41

4

( )( )
( )

( ) ( )
true x x

a y y y y

bx x

x x x x

 
      
    

      
   

. (13) 
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Analysis of this expression shows the following. As can be easily predicted, 2

a  increases if 
variances 

1

2

y , 
2

2

y , 
1

2

x , and 
2

2

x   become larger. Thus, it is desirable to use cluster 
centers determined with the best accuracy. Besides, again estimation variance decreases if 
points are selected as distantly as possible (with larger 2

2 1
( )x x  and smaller 2

2 1
( )x x , i.e. 

if 
1

x  is as close to zero as possible). Finally, 2

a  is smaller if absolute values of trueb  
approach to zero (this property shows that the estimates of parameters a and b are mutually 
dependent). It is also easy to show that nonzero mean values of Δx1 and Δx2 and, especially, 
of Δy1 and Δy2 result in biased estimation.  
The performed analysis shows why it is desirable to carry out weighted robust fit into pre-
processed scatter-plot data. However, there are quite many ways to do this. Comparative 
analysis results will be presented in the next section. 

4.3 Test images and accuracy criteria 
The study has been performed for three test images, namely, the RSA image given in Fig. 2 
and the standard test images Peppers and Goldhill, all of size 512x512 pixels. The test 
images Peppers and, especially, Goldhill are more complex than the RSA image. Thus, their 
joint and comparative analysis allows analyzing the influence of image complexity on 
accuracy of mixed noise parameter estimation.  
Simulations, without loosing generality, have been carried out for the model for mixed 
additive and multiplicative noise tr

ij ij ij ijI I n    where tr
ijI  denotes noise-free image, ij  

defines multiplicative noise component obeying Gaussian distribution with unity mean and 
relative variance 2

 , and ijn  describes additive noise component with zero mean Gaussian 
distribution with variance 2

a .  
As a quantitative criteria, the estimation bias  

 2 2ˆx x x    , (14) 

variance  

  2
2 2 2ˆ ˆx x x    , (15) 

and aggregate error  

 2 2

x x x    , (16) 

have been used. Sub-index x denotes belonging of the corresponding parameter for additive 
(a) or multiplicative (μ) noise. Notation   means averaging by realizations. To provide 

statistically stable results the number of realizations was 100. 

4.4 Simulation result analysis  
Two sets of mixed noise parameters have been used in simulations. The first that can be 
called non-intensive noise is σa2 = 10, σμ2 = 0.005. The second case is σa2 = 100, σμ2 = 0.05 
where for both sets multiplicative noise becomes dominant for image true values over 45. 
The obtained results are given in Table 1. The optimal parameter for the RSC technique is 
given after /.  
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Let us start from considering the simplest test image RSA. As it is seen, the bias a  is very 
small (the absolute value of the ratios a / σa2 are less than 0.009 for all five considered 
regression techniques. Meanwhile, the values 2

a  considerably differ for the analyzed 
methods and just 2

a  mainly contributes to a  (except the results for DWLMS). The values 
 

Image 
Para-

meters
Method a  2

a  a  4
10

   2 8
10

  8
10

  

RSA 

σ a
2  

=
 1

0 
σ μ

2  
=

 0
.0

05
 RLMS 0.0181 0.0080 0.0083 -1.1 0.48 1.7 

LMS 0.038 0.027 0.028 -1.5 1.0 3.0 

WLMS 0.094 0.0312 0.040 -1.8 1.0 5.0 

RSC / 7 0.0199 0.031 0.0315 -1.4 1.0 3.0 

DWLMS -0.086 0.0069 0.014 -0.93 0.1 1.0 

σ a
2  

=
 1

00
 

σ μ
2  

=
0.

05
 

RLMS 1.02 0.84 1.89 -23 59 590 

LMS -1.28 2.48 4.12 -14 96 280 

WLMS -0.93 3.64 4.50 -16 140 390 

RSC / 9 -1.27 3.84 5.45 -14 150 330 

DWLMS -1.63 0.71 3.35 -13 38 20 

Peppers 

σ a
2  

=
 1

0 
σ μ

2  
=

 0
.0

05
 RLMS 15.5 2.76 243.5 -4.5 3.5 24 

LMS 19.16 1.25 368.43 -3.1 1.0 11 

WLMS 15.4 2.23 239.36 -3.5 2.0 14 

RSC / 9 20.8 39.1 469 -4.2 5.0 23 

DWLMS 12.04 0.83 145.87 -1.8 1.0 4.0 

σ a
2  

=
 1

00
 

σ μ
2  

=
0.

05
 

RLMS 31.2 78.4 1052 -24 70 630 

LMS 18.6 83.1 429.15 -12 79 230 

WLMS 14.53 58.13 269.33 -11 49 170 

RSC / 7 13.6 46.9 232 12 40 180 

DWLMS 8.42 5.86 76.77 -8.2 22 89 

Goldhill 

σ a
2  

=
 1

0 
σ μ

2  
=

 0
.0

05
 RLMS 32.01 1.9 1027 -5.8 0.56 33 

LMS 27.89 1.55 779.3 -3.7 1.0 14 

WLMS 27.91 1.58 780.54 -4.8 1.0 23 

RSC / 6 28.1 8.5 801 -4.8 1.0 25 

DWLMS 18.96 0.86 360.43 -1.5 1.0 3.0 

σ a
2  

=
 1

00
 

σ μ
2  

=
0.

05
 

RLMS 62.0 170.7 4015 -2.1 67 520 

LMS 29.74 66.11 950.8 -14 49 210 

WLMS 29.37 79.91 942.61 -13 67 240 

RSC / 8 24.0 94 671 -8.8 93 170 

DWLMS 17.42 9.95 313.46 -8.6 37 110 

Table 1. Comparative results analysis for test  images 
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a  and the ratios ( a )1/2/σa2 characterizing aggregate relative accuracy are small for all 
techniques (smaller than 0.02 that can be considered acceptable in practice). 
For the multiplicative component, the bias for all methods is negative and the absolute 
values of the ratios  / σμ2 are not larger than 0.036. The ratios (  )1/2/σμ2 do not exceed 
0.048. This does not cause serious problems in practice (Abramov et al., 2004). The main 
contribution to   results from estimation bias although contribution of 2

  is also 
sufficient.  
The same conclusions hold for the case σa2 = 100, σμ2 = 0.05. The difference is that the 
absolute values of all quantitative criteria are larger. However, the ratios ( a )1/2/σa2 are still 
small enough (less than 0.024). The ratios  / σμ2 and (  )1/2/σμ2 are of the same order. 
Thus, the provided accuracy is acceptable for practice (Lukin et al., 2009a). 
Consider now the test image Peppers that is slightly more complex than RSA. Let us start 
with the case σa2 = 10, σμ2 = 0.005. For additive noise component, the bias a  is large and 
positive for all robust regression techniques. The values of the ratios a / σa2 vary from 1.2 
for DWLMS to about 2.1 for RSC. This shows that additive noise variance is overestimated. 
Estimation bias contribution to aggregate error a  is dominant.   
On the contrary, multiplicative noise variance is underestimated (for all methods   is 
negative and its contribution to   is dominant. The absolute values of the ratios  / σμ2 
are not larger than 0.07. The ratios (  )1/2/σμ2 do not exceed 0.1. The best results are 
provided by the method DWLMS.  
For the case σa2 = 100, σμ2 = 0.05, the values of bias a  are large enough and positive for all 
analyzed robust regression techniques. However, the ratios a / σa2 are smaller than in the 
previous case. Again, the influence of bias (systematic error) on a  is dominant.  The 
absolute values of the ratios  / σμ2 and (  )1/2/σμ2 are smaller than in the previous case. 
The technique DWLMS provides the best accuracy.   
Finally, consider the test image Goldhill. If σa2 = 10, σμ2 = 0.005, large positive valued bias is 
observed for estimates of additive noise variance. Multiplicative noise variance is estimated 
well enough, although it is slightly underestimated. Sufficient bias takes place for the 
estimates of additive noise variance if σa2 = 100, σμ2 = 0.05. Multiplicative noise variance is 
again underestimated. The best accuracy is provided for the method DWLMS whilst the 
worst accuracy is observed for RMLS in almost all cases.  
Summarizing the obtained results, it is possible to conclude the following:  
1. the estimates of additive noise variance are usually biased and overestimated;  
2. the estimates of multiplicative noise variance are also biased but underestimated;  
3. bias contributes to aggregate error more than estimation variance, thus, its reduction is 

the first order task; 
4. estimation accuracy is worse for more complex images; the ratios (  )1/2/σμ2 and 

( a )1/2/σa2 are larger for the case of less intensive noise, thus it is more difficult to 
provide appropriate accuracy just for non-intensive noise situations;     

5. the method DWLMS usually provides the best accuracy.  
To our opinion, the main drawback of all considered techniques is overestimation (positive 
bias) of additive noise component. There could be three main reasons for this phenomenon. 
The first is self-noise in test images. The second is the influence of local image content on 
local variance estimates. The third is the influence of heavy tail of distributions (abnormal 
estimates) present in clusters. Therefore, it is worth trying to decrease this bias. However, 
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the decision to use the smallest local estimates (Liu et al., 2008) does not seem the best 
solution since such estimates can be by several times smaller than the true value of mixed 
noise variance for a given local mean.  

5. Real life data testing 

Testing of the methods performance has been also carried out for real life AVIRIS images for 
which the assumed model of mixed noise is described as 2 2 tr

sd add kI   . Thus, we have to 
estimate 2

add  and k . The scatter-plot example has been earlier given in Fig. 5.  
We have applied the Robustfit method component-wise to two AVIRIS images, namely, 
Lunar Lake and Moffett Field 1. For the Moffett Field image, it has produced quite many 
(more than 15%) negative values of the estimates 2ˆadd  and a very wide range of these 
estimates (from -180000 to 190000). For the Lunar Lake image, no negative valued estimates 

2ˆadd  have been obtained but the largest values have been up to 62000. Clearly, such 
accuracy is inappropriate since they do not agree with the estimates for other methods.  
If pre-segmentation method (Klaine et al., 2005) is applied to each component image with 
removal of heterogeneous blocks from further consideration and then Robustfit is used, the 
estimates 2ˆadd  become in better agreement with the estimates produced by other 
techniques. At least, the number of negative valued estimates reduces and the limits of their 
variation become considerably narrower.  
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Fig. 6. Estimates of k for Robustfit (green) and DWLMS (blue) techniques (a) and 
dependence of min max/I I  on sub-band index (b) 
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The estimates of k  for the Lunar Lake data for the Robustfit method with pre-segmentation 
by the method (Klaine et al., 2005) are presented in Fig. 6,a (green color). As it is seen, 
mostly they are larger than unity and only for a small percentage of sub-bands, mostly with 
indices larger than 160, the estimates of k  are smaller than unity. These results are not in 
agreement with results in other papers dealing with estimation of noise characteristics in 
AVIRIS hyperspectral images (see Uss et al., 2011, and references therein). Just 
overestimation of k  can lead to underestimation of 2

add  and negative values of its 
estimated mentioned earlier. 
This example shows that it is worth imposing restrictions on non-negativity of both the 
estimates of 2

add  and k . The DWLMS technique with imposed restrictions has produced 
quite many zero estimates of 2

add . The provided estimates of k  occur to be considerably 
smaller (shown by blue color curve in Fig. 6,a) than for the Robustfit. Meanwhile, the shapes 
of these curves are very similar. 
We have also analyzed dynamic range of data in sub-band images with determining the 
minimal and maximal values minI  and maxI  in each sub-band image. The ratios min max/I I  
for all 224 sub-bands of hyperspectral data Lunar Lake are represented in Fig. 6,b. It is seen 
that for most sub-bands the ratios are not zero. Thus, the histograms of sub-band image 
values have specific behaviour compared to most optical test images (that usually have 
quite many values close to zero). Then, it is difficult to expect that there are clusters that 
have relatively small ˆ

cl mI  and, according to analysis in subsection 4.2, the estimation 
accuracy reduces. 
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Fig. 7. Estimates of k for DWLMS technique (a) and dependence of maxI  on sub-band 
index (b) 
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It can be observed from Fig. 6,a that the estimates for neighbour sub-bands (close values of 
sub-band wavelengths) are close to each other. The estimates of k  are also in correlation 
with sub-band image dynamic range. This is seen from analysis of plots in Fig. 7. The first 
plot (Fig. 7,a) shows dependence of k̂  on sub-band index for the AVIRIS data Moffett Field 
1 (the estimates have been obtained by the DWLMS method with imposed restrictions). The 
second plot presents dependence of maxI  on sub-band index. It is seen that the curves have 
quite similar shapes. 

6. Conclusions and future work  

The study carried out above allows drawing a set of conclusions and giving a list of possible 
directions of future work.  
First, estimation of mixed and signal-dependent noise parameters is only at the beginning of 
its development. The scatter-plot or cluster-center representations are the basis for other 
operations (curve regression) applied at next stages in any case. The problem of standard 
scatter-plot approach is that it usually contains abnormal estimates that influence estimation 
accuracy for any robust regression technique applied. Thus, it is desirable “to cope” with 
abnormal local estimates at initial stage of data processing attempting to reject them. 
However, it is not an easy task if parameters of mixed noise are unknown. In turn, there are 
also problems for cluster-center based representation. The questions that arise are: a) how to 
select cluster number? b) how to estimate their center positions with appropriate accuracy? 
c) how to predict accuracy of such estimation?  
Second, the studies with simulated noise for test images have shown that even the local 
estimates considered normal can be considerably biased. This drawback is especially of 
value for additive noise component if its variance is not large. The relative bias 
characterized by a / σa2 can be quite large. The main reason is the influence of image 
content. This means that one way to improve estimation accuracy is to design more accurate 
and robust methods for estimating local variance with diminishing the influence of image 
information content.  
Third, the weighted methods of LMS regression using cluster centers have demonstrated 
their advantages. However, the potential benefits of these methods seem to be not exploited 
in full extent. Currently only the number of points in clusters and distances from cluster 
centers to initially fitted curve are used in weight adapting. It seems expedient to take other 
properties of clusters into account as well. One such property could be cluster size 
characterized in a robust manner. The positions of cluster centers and distances between 
them can be taken into account as well. Analysis of these aspects can be one more direction 
of future research.  
Fourth, a priori information on mixed or signal-dependent noise is of great importance. We 
have carried out our experiments supposing that a model of mixed noise is a priori known 
and it is valid. In practice, it can be only known that noise is signal-dependent but a 
character (properties) of such dependence can be unknown. Then, a question arises what 
curve to fit? Polynomials of low order seem to be a natural choice at the first glance. 
However, one should keep in mind that a fitted polynomial might have intervals of negative 
values which, according to definition of noise local variance, is not acceptable. One simple 
way out is to replace negative values of a fitted polynomial by zeroes but is this the best 
way? Thus, the following problems and questions still remain: 1) how to impose restrictions 
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on fitted curves and their parameters? 2) what models of curves to apply? 3) what order of 
curves (polynomials) to use?  
Fifth, our experiments with simulated noise have been performed only for i.i.d. noise. 
Spatial correlation of noise leads to several specific outcomes. In particular, statistics of local 
estimates changes. Certainly, this influences the performance of entire procedure of mixed 
noise parameters’ estimation. This means that the studies for mixed noise with essential 
spatial correlation are to be carried out in future. Besides, if estimation is performed for 
hyperspectral data, considerable correlation of noise statistics in neighbour sub-bands is 
worth using to improve estimation accuracy.  
Sixth, the goal of estimating mixed noise parameters is to use the obtained estimates at later 
stages of image processing. Operations used at later stages can be homomorphic transforms, 
edge detection, filtering, lossy compression, etc. Since any estimation is not perfect, the 
estimation errors influence performance of methods and algorithms applied at later stages. 
Degree of such negative influence is to be investigated and this will allow formulating 
practical requirements to accuracy of parameter estimation for mixed noise.  
We also see other directions of research and studies. Whilst for particular cases of mixed 
and signal dependent noise there exist variance-stabilizing transforms, the general theory 
of such transforms is far from completeness. Note that the use of variance-stabilizing 
transforms simplifies applying many existing image processing methods and algorithms. 
In this sense, the recent studies (Foi, 2009) show perspectives and directions of future 
work. 
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