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1. Introduction 

In the preimplantation mammalian embryo, cells of the inner cell mass can differentiate into 
any cell type present in the more mature embryo. As of 1981, in mice and 1998 in humans, it 
has been recognized that embryonic stem cells (ESCs) with a prolonged proliferative capacity 
can be derived from the inner cell mass in vitro (Evans and Kaufman 1981; Thomson, 
Itskovitz-Eldor et al. 1998). ESCs are pluripotent cells that can contribute to all tissues in vivo 
and to the three primary germ layers as well as extraembryonic tissues in vitro. Because 
pluripotency is maintained in these cells even after prolonged periods of culture, human ESCs 
have great therapeutic potential for tissue regeneration. Indeed, embryonic and adult stem 
cells (SCs) hold great promise for regenerative medicine, tissue repair, and gene therapy. 
Careful molecular characterization of embryonic pluripotency should help to optimize and 
scale up the in vitro production of ESCs for clinical applications. 
The mechanisms regulating self-renewal and cell fate decisions in mammalian stem cells are 
poorly understood. As compared with differentiated cell types, stem cells express a 
significantly higher number of genes (represented by expressed sequence tags) of unknown 
function. The properties that distinguish stem cells from other cells are largely unknown, 
and the identification of signals that regulate stem cell differentiation remains fundamental 
to our understanding of cellular diversity. 
Embryonic and adult stem cells have many similarities at the transcriptional level. The 
overlapping set of expressed gene products represents a molecular signature of stem cells 
(Bhattacharya, Miura et al. 2004; Assou, Le Carrour et al. 2007). A list of human and mouse 
genes involved in stemness has been generated (Assou, Le Carrour et al. 2007) and includes 
92 stemness genes known to be expressed in mouse or human ESCs, e.g., OCT3/4, NANOG, 
Cripto/TDGFI, Cx43 and Galanin (Richards, Tan et al. 2004). Work in the field of 
embryogenesis has also contributed to our understanding of the function of these 
pluripotency-associated genes. The four most significantly overexpressed genes in 
undifferentiated embryonic tissues are Galanin, POU5FI, NANOG and DPPA4 (Zeng, Miura 
et al. 2004). In most studies, galanin has been highlighted as the most abundant transcript in 
ES culture as well as human and rodent embryonic tissues (Anisimov, Tarasov et al. 2002; 
Zeng, Miura et al. 2004). Both galanin and galanin receptors are expressed in ES cells, 
indicating a potential functional role for this protein (Tarasov, Tarasova et al. 2002). This 
chapter will be devoted to a description of the galanin expression profiles in embryonic 
tissues and stem cells as well as its possible functional role. 
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2. Galanin 

Galanin was first identified from porcine intestinal extracts in 1978 by Professor Viktor Mutt 
and colleagues at the Karolinska Institute, Sweden, using a chemical assay technique that 
detects peptides according to their C-terminal alanine amide structures. Galanin is so-called 
because it contains an N-terminal glycine residue and a C-terminal alanine (Hokfelt and 
Tatemoto 2008). The structure of galanin was determined in 1983 by the same team 
(Tatemoto, Rokaeus et al. 1983), and galanin cDNA was first cloned from a rat anterior 
pituitary library in 1987 (Vrontakis, Peden et al. 1987). Galanin is a biologically active 
neuropeptide that is widely distributed in the central and peripheral nervous systems and 
the endocrine system. The N-terminus of galanin is highly conserved between species 
(almost 90% among vertebrates, with the first 15 amino acids being identical, indicating the 
likely importance of this molecule (Vrontakis 2002). Consistent with this sequence 
conservation, the first 15 amino acids of galanin are sufficient for agonistic receptor binding.  
Galanin is proteolytically processed from a 124-amino acid precursor peptide, 
preprogalanin, along with a 59- or 60-amino acid peptide known as galanin message 
associate peptide (GMAP) (Rokaeus and Brownstein 1986; Vrontakis, Peden et al. 1987; 
Evans and Shine 1991). Preprogalanin is encoded by a single-copy gene organized into 6 
small exons (fig.1) spanning about 6 kb of genomic DNA (Kofler, Liu et al. 1996). The 
intron:exon organization of the galanin gene is conserved in all species studied thus far 
(Vrontakis 2002). Transcriptional studies of the galanin gene in multiple species concluded 
that the tissue-specific expression of this gene is achieved by enhancers as well as silencer  
 

 

Fig. 1. Organization of the rat preprogalanin gene. A: Schematic representation of the rat 
preprogalanin gene. B: the position of the six exons with respect to the rat preprogalanin 
cDNA  are shown. Abbreviations are as follows: ATG, translation initiation site; AATAAA, 
(Lang, Gundlach et al. 2007) the poly (A); TATA,TATA box;TSS, transcription start site; SIG, 
signal peptide; GAL, galanin; GAMP, galanin message associated peptide (Maria Vrontakis 
and Hong Zhang unpublished data) 
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sequences, which restrict expression to the appropriate cell type (Kofler, Evans et al. 1995; 
Corness, Burbach et al. 1997; Jiang, Spyrou et al. 1998; Rokaeus and Waschek 1998). We have 
sequence the 5’ flanking region of the rat galanin gene (Zhang, 1998) and have shown that 
the rat galanin promoter region contains some consensus sequences for known transcription 
factors. Up streamed of the modified TATA box, there is a conserved half-element (TGACG) 
for the protein CREB, which typically mediates gene expression by binding to the cyclic 
AMP response element (CRE).  In the rat galanin promoter region, there are also several AP-
1 binding sequences for the Jun/Fos protein families. Upstream of the CREB binding site 
there is a c-Ets element for the Ets factors. Furthermore, both negative and positive 
regulatory elements exist in the rat galanin gene. The negative regulatory elements 
appeared to be tissue specific since they are located differently in the different tissues. These 
negative transcription sites in the galanin promoter might be of importance for down 
regulating the gene during development. 
The functional role of galanin remains largely unknown, as is the case for most other 
neuropeptides; however, Galanin has been implicated in many biologically diverse 
functions, including nociception, waking and sleep regulation, cognition, feeding, regulation 
of mood and regulation of blood pressure. It also has roles in development and can act as a 
trophic factor. Galanin has been linked to a number of diseases, including Alzheimer’s 
disease, epilepsy, depression and eating disorders. Galanin appears to have neuroprotective 
activity, as its biosynthesis is increased 10- to 100-fold upon axotomy in the peripheral 
nervous system (whereas most neuropeptides are induced only 1.5- to 2-fold) or when 
seizure activity occurs in the brain. It may also promote neurogenesis (Mitsukawa, Lu et al. 
2008). Galanin frequently co-localizes with classical neurotransmitters such as acetylcholine, 
serotonin and norepinephrine as well as with other neuromodulators such as Neuropeptide 
Y, Substance P and Vasoactive peptide (Lang, Gundlach et al. 2007). Expression of galanin at 
the mRNA and peptide levels is elevated following estrogen administration, neuronal 
activation, denervation and/or nerve injury as well as during development. The wide 
spectrum of galanin's activities indicates that galanin is an important messenger for 
intercellular communication within the nervous system and the neuroendocrine axis. 
Galanin acts at specific membrane receptors to exert its effects. To date, three human and 
rodent galanin receptor subtypes have been cloned, namely, GalR1, GalR2 and GalR3 
(Branchek, Smith et al. 2000). High conservation between species exists among receptors of a 
given subtype but not between subtypes in an individual species (Howard, Tan et al. 1997; 
Iismaa, Fathi et al. 1998; Kolakowski, O'Neill et al. 1998). All three galanin receptor subtypes 
are members of the G protein-coupled receptor superfamily, but the subtypes show 
substantial differences in their functional coupling and subsequent signaling activities, 
contributing to the diversity of the possible physiological effects of galanin (Fig. 2). GalR1, 
the most abundant receptor subtype in adult tissues, is associated with the Gi family, which 
mediates the inhibition of cAMP synthesis by adenylate cyclase. Furthermore, it opens G-
protein-regulated inwardly rectifying potassium channels and stimulates mitogen-activated 
protein kinase (MAPK) activity. GalR2 acts through Gq/11 to regulate phospholipase C-
mediated events. GalR3 couples to Gi/Go and mediates the opening of G protein-coupled 
inwardly rectifying potassium channels (Lang, Gundlach et al. 2007). Since  the three 
galanin receptors exhibit distinct but overlapping patterns of expression in the central and 
peripheral nervous systems, a variety of ligands have been developed in an effort to 
elucidate the specific roles of each receptor (Langel and Bartfai 1998; Pooga, Jureus et al. 
1998; Lu, Lundstrom et al. 2005). Galanin agonists have been shown to have therapeutic 
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applications in the treatment of chronic pain. Conversely, galanin antagonists have 
therapeutic potential for the treatment of Alzheimer's disease, depression, and eating 
disorders. 
 

 

Fig. 2. Schematic illustration of the three galanin receptor subtypes and their intracellular 
transduction mechanisms. AC-adenyl cyclase , ATP-adenosine triphosphate, cAMP- cyclic 
adenosine monophosphate, DAG-diacyglycerol, IP3-inositol triphosphate, MAPK-mitogen 
activated protein kinase, PIP2-phosphatidyl 4,5-biposphate, PKC- protein kinase, PLC- 
phospholipase C. 

2.1 Galanin in the early embryo 
Galanin is one of the earliest neuropeptides to be expressed in the embryo. In the chicken 
embryo, galanin immunoreactive cells were first detected at E3.5 within the pharyngeal 
pouch region, the nodose ganglion, the primary sympathetic chain, the primitive splanchnic 
branches and the caudal portion of the Remark ganglion. These cells are derived from the 
neural crest. Indeed, galanin immunostaining appears at the same time as markers of neural 
crest cells. Transient galanin immunostaining was detected during the first week of 
development in cells displaying morphological features of migrating neuroblasts, but this 
expression domain had disappeared by E18 (Salvi, Vaccaro et al. 2001). At E4, galanin 
immunoreactivity was found in the spinal cord, medially in the motor column and in the 
intermediate zone. Neuroblasts appear coincident with galanin staining in the mesenchyme 
of the proventriculus/gizzard primordium (Salvi, Vaccaro et al. 1999; Salvi, Vaccaro et al. 
2001). The precise role of galanin during chicken development remains unclear. The fact that 
in these experiments, galanin was present in undifferentiated or partially differentiated cells 
and the primitive sympathetic system well before these neurons reach their peripheral 
targets suggests that galanin has a developmental role in proliferation and migration. 
Similar to the chicken, galanin-like immunoreactivity was detected in the mesenchyme and 
neural crest tissues of the early mouse embryo. At E10, we found that galanin-like 
immunoreactivity was readily detectable in the undifferentiated head and trunk 
mesenchyme (fig. 3) of mesenchymal or neural crest origin (Jones, Perumal et al. 2009), 
including the mesenchymal spiral ridges of the outflow tract of the heart and the 
endocardial cushions. The presence of galanin during these periods of morphogenesis 
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Fig. 3. Histochemistry profile of galanin like immunoreactivity in embryonic day 10 mouse 
embryo.  A; sagittal and B; parasagittal section. Srong immonostaining for galanin is 
detected in the cephalic mesenchyme, trunk mesenchyme/somites, brachial arches, dorsal 
aorta and heart. 

indicates a developmental role for this peptide in tissues of mesenchymal and neural crest 
origin in the early embryo. Galanin expression in mesenchymal cells during organogenesis 
was greater in tissues that depend on mesenchymal-epithelial interactions for their 
coordinated morphogenesis. Indeed, galanin staining is apparent during many instances of 
mesenchymal remodeling, e.g., during the formation of digits from limb buds, the formation 
of cartilage primordia in vertebrae and ribs, the formation of bones, the formation of the 
heart and in the mesenchyme of the kidney and genital organs (Jones, Perumal et al. 2009). It 
is surprising that at this early stage of development, galanin expression is largely outside the 
developing central nervous system. Thus, galanin might have different functions in the 
embryo and the adult. Although the functional significance of galanin expression in 
mesenchymal and neural crest cells is currently unclear, these data suggest a possible role 
for galanin in regulating stem/progenitor cell proliferation, migration and/or 
differentiation. This possibility is supported by our observation that galanin and its 
receptors are highly expressed in bone marrow mesenchymal stem cells (fig. 4) and facilitate 
cell migration both in vitro and in vivo (Louridas, Letourneau et al. 2009). Furthermore, the 
expression of galanin in neural crest cells may be relevant to our understanding of the 
molecular genetics of neuronal tumors. It has been shown that galanin and galanin receptors 
are expressed in cells of peripheral embryonic neuroectodermal tumors, such as 
glioblastomas and neuroblastomas (Berger, Tuechler et al. 2002; Berger, Santic et al. 2003; 
Berger, Santic et al. 2005). Perel et al. has suggested that galanin influences neuroblastoma 
development and tumor growth, counteracting differentiation as an autocrine/paracrine 
modulator (Perel, Amrein et al. 2002). 
Galanin expression is also present in the mouse embryo at E7.5, during the late gastrulation 
stage. Here, galanin is abundantly expressed in the node (fig. 5) and primitive streak (Blum,  
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Fig. 4. Immunohistochemistry of bone marrow mesenchymal stem cells stained with a 
polyclonal galanin antibody. Strong staining is observed in both the cytoplasm and the 
nucleus of the cells. 

 

 

Fig. 5. E7.5 Galanin RNA in situ. A; is a lateral view of the embryo. B; is a distal view of the 
embryo. Copyright: This image is from Tamplin OJ, BMC Genomics 2008; 9(1):511, an open-
access article, licensee BioMed Central Ltd 

Andre et al. 2007) and thus represents a marker for the node and the notochord 
(Schweickert, Deissler et al. 2008; Tamplin, Kinzel et al. 2008). Shortly thereafter, at E8, 
expression in the primitive streak disappears. Nevertheless, the expression of a 
neuropeptide in the gastrula, that is, in the absence of any neural tissue, is quite surprising. 
In their studies, Tamplin et al. used Foxa2 mutant mice to identify novel marker genes for 
the node. Foxa2 is a forkhead transcription factor that is absolutely required for the 
formation of the node and the development of the three germ layers. Galanin expression 
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was completely absent in the Foxa2 mutant embryos, indicating that galanin is a target of 
the Foxa2 gene as well as a regulatory factor involved in patterning. 
There are also reports of galanin mRNA expression in preimplantation embryos (Kang, Yeo 
et al. 2003; Kimber, Sneddon et al. 2008). In the first report (Kang, Yeo et al. 2003), the 
galanin gene sequence was examined for methylation changes in bovine embryos derived 
by in vitro fertilization (IVF). The authors observed that the galanin sequence maintained an 
undermethylated status until the morula stage. By the blastocyst stage, certain CpG sites 
became specifically methylated, which may be an epigenetic sign for the galanin gene to 
initiate a differentiation program. Such changes in DNA methylation status are very 
unusual in pre-implantation mouse development. Shortly after fertilization, the paternal 
pronucleus is subjected to active demethylation (Mayer, Niveleau et al. 2000), whereas the 
maternal genome simultaneously undergoes de novo methylation. Afterward, a passive 
replication-coupled demethylation process occurs in successive cleavage stages up to the 
blastocyst stage (Dean, Santos et al. 2001). This methylation reprogramming process allows 
the mouse zygote to gain totipotency and commence the formation of a new individual. In 
mammals, there are several periods of genome-wide reprogramming of methylation 
patterns during in vivo development. Typically, a substantial part of the genome is 
demethylated and then, after some time, remethylated in a cell- or tissue-specific pattern. 
Thus, galanin methylation appears to play a critical role in cell fate determination and 
differentiation during development. The study of epigenetic mechanisms underlying the 
establishment and maintenance of the pluripotent state as well as the differentiation process 
is an area of intense investigation in ESC biology.  
In the second study mentioned above (Kimber, Sneddon et al. 2008), Kimber et al. examined 
the expression of a number of genes known to be critical for early mouse development in 
human pre-implantation embryos. Developmental expression of a number of these genes 
(e.g., galanin, OCT3/4, CDX2, NANOG) was similar to that seen in murine embryos. 
Galanin mRNA was expressed in the cleavage stages (8-cell stage onward), suggesting a role 
for galanin in early cell fate decision in human embryos, which may have important 
implications for IVF treatment and the derivation of human ESCs (hESCs). Indeed, the same 
group reported that galanin mRNA and protein were both expressed in undifferentiated 
hESCs and human embryonal carcinoma cells but down regulated upon differentiation, 
shortly after the down regulation of OCT3/4, Nanog and FoxD3 (El-Bareg et al. 2007), 
implicating communication between these pluripotent genes in the pre-implantation human 
embryo and hESCs.  

2.2 Galanin in ESCs  
ESCs derived from the blastocysts of pre-implantation embryos are pluripotent and have the 
capability to generate all of the differentiated cell types present in the embryo. The 
mechanisms regulating self-renewal and cell fate decisions in mammalian stem cells are 
poorly understood. As compared with differentiated cells, stem cells express a significantly 
higher number of genes (represented by expressed sequence tags) of unknown function. The 
properties that distinguish stem cells from other cell types are largely unknown, and the 
identification of signals that regulate stem cell differentiation remains fundamental to our 
understanding of cellular diversity. Thus, an important step in the characterization of ESCs 
will involve the identification of a set of ESC-specific genes that function as markers or 
contribute to unique regulatory pathways. One approach to identify these signals is to 
generate stem cell gene expression profiles. Anisimov et al. used the genomic technique of 
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serial analysis of gene expression (SAGE) to define the molecular bases of pluripotency and 
self-renewal (Anisimov, Tarasov et al. 2002). SAGE is a prominent technique for the 
quantitative and qualitative characterization of a cell’s complete transcriptome (Velculescu, 
Madden et al. 1999). In their study, the authors performed SAGE on pluripotent mouse 
R1embryonic stem cells, sequencing a total of 140,313 SAGE tags. Because of the sensitivity 
of SAGE and the potential quantification of tags from contaminating cells, they cultivated 
ESCs without feeder layers in the presence of conditioned medium and leukemia inhibitory 
factor (LIF). After five passages, R1 ESCs maintained pluripotency and the ability to 
differentiate into cardiac myocytes, hematopoietic and neuron-like cells. One of the most 
abundant sequences in this SAGE catalogue was galanin. To determine whether the 
abundance of galanin was a characteristic of ES cells in general or possibly a feature limited 
to R1 ESCs cultivated under these defined conditions, they constructed other SAGE libraries 
from embryonal carcinoma (EC) P19 cells, embryonic germ (EG) cells and embryonic stem 
(ES) cells under different cultivation conditions. Galanin was highly expressed in each of 
these lines, indicating that high galanin expression is a distinguishing molecular feature of 
ESCs (Tarasov, Tarasova et al. 2002).  
In addition to galanin, all three galanin receptors (GalR1, GalR2 and GalR3) are expressed in 

mouse R1 ESCs. Quantification of their relative abundances showed that GalR1 is barely 

detectable in R1 ESCs, while GalR2 and GalR3 are relatively abundant (GalR2 & GalR3 >> 

GalR1). Similarly, GalR1 is almost undetectable in P19 EC cells but highly abundant in fetal 

tissues (E16). GalR2 and GalR3 have similar levels of expression in P19 EC and R1 ESCs, and 

both receptors are widely distributed among fetal tissues (Tarasov, Tarasova et al. 2002). 

Unlike GalR1 and GalR3, the biological activity of GalR2 is exerted through activation of Gq 

and phospholipase C. It has also been suggested to play a prominent role during nervous 

system development (Burazin, Larm et al. 2000). Thus, the presence of galanin transcripts 

and the relative abundance of GalR2 and GalR3 in ES and EC cells suggest that galanin may 

be biologically active in ESCs. 

Galanin function has been associated with LIF signaling. Addition of LIF into primary 

dorsal root ganglia (DRG) cultures significantly upregulated galanin expression (Ozturk and 

Tonge 2001). Similarly, LIF knockout mice have significantly lower levels of galanin (Sun 

and Zigmond 1996; Sun and Zigmond 1996). To determine whether the prominence of 

galanin in ESCs is mediated through an interaction with LIF, a series of further experiments 

were performed in which the medium containing LIF was substituted with non-conditioned 

maintenance medium without LIF. The absence of LIF actually increased galanin expression 

in R1 cells. Similarly, removing LIF had no effect on galanin expression in cultured hESCs 

(El-Bareg et al. 2007; Kimber, Sneddon et al. 2008), indicating that the abundance of galanin 

transcripts in ESCs is not regulated by LIF.  

Several differences between human and mouse ESCs have been identified, including an 

inactive LIF pathway in human ESCs. Similar to the mouse, the transcriptome profile of 

hESCs was obtained using SAGE (Richards, Tan et al. 2004). A list of candidate marker 

genes responsible for stemness in human ESCs has also been created, with galanin 

highlighted as one of the most abundant genes (Richards, Tan et al. 2004). Transcription 

factors with a defined role in the maintenance of pluripotency and whose expression is 

downregulated upon differentiation, including POU5F1 (Oct3/4), SOX2, Galanin, REX1, 

NANOG, and FLJ10713, were previously identified in mouse ESCs (Anisimov, Tarasov et al. 

2002; Ramalho-Santos, Yoon et al. 2002; Mitsui, Tokuzawa et al. 2003). 
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Using a large-scale oligonucleotide microarray, the profiles of 6 available human ESC lines 
were analyzed. The expression of defined genes was confirmed by reverse transcriptase 
polymerase chain reaction (RT-PCR), immunohistochemistry, focused microarrays and 
comparison to various databases maintained at the National Cancer Institute (Bhattacharya, 
Miura et al. 2004; (Zeng, Miura et al. 2004). A comparison of overexpressed genes identified 
92 genes common to all six lines. These 92 genes constitute a molecular signature of 
“stemness” in human ESCs. Galanin was the most abundant, along with Oct3/4, Nanog, 
Sox2 and FOXD3. However, the exact molecular mechanisms involved in self-renewal and 
pluripotency are still not very clear. 
In many respects, germ cell tumorigenesis resembles early embryogenesis. Embryonal 
carcinomas represent a histologic subgroup of testicular germ cell tumors, and EC cells may 
follow a differentiation trajectory in a manner similar to early embryogenesis. Using 
microarray analysis, the transcriptome of neoplastic tissues from the human testis was 
analyzed by Skotheim et al. (Skotheim, Lind et al. 2005). Selection for genes highly expressed 
in the undifferentiated, pluripotent embryonal carcinomas identified the major pluripotency 
markers, including Galanin, POU5F1(Oct3/4), NANOG, DPPA4. Again, Galanin was the most 
highly expressed gene. Galanin and POU5F1 were both up regulated at the protein level and 
thereby validated as diagnostic markers for undifferentiated tumor cells.  
Preliminary data support the hypothesis that galanin exerts an effect on self-renewal and 
pluripotency of ESCs along with POU5FI, NANOG and DPPA4 because it is temporarily 
down regulated upon ESC differentiation and is also more abundant in undifferentiated 
embryonal carcinomas relative to differentiated carcinomas. Differential DNA methylation 
of specific sites in the galanin gene might represent an epigenetic signal for the galanin gene 
to initiate a differentiation program. This occurrence may explain why galanin continues to 
be expressed in somatic cells of neural crest and mesenchymal origin in the early embryo. 
Both de novo methylation and maintenance DNA methylation are critical for early 
development, but they are required for differentiation rather than maintenance of the 
undifferentiated state. Human ESCs have been shown to possess a unique DNA methylation 
signature as compared with differentiated cells and cancer cells (Bibikova, Chudin et al. 
2006; Meissner, Mikkelsen et al. 2008; Amabile and Meissner 2009; Ball, Li et al. 2009; 
Meissner 2010), which supports the concept that a specific DNA methylation pattern may 
contribute to the pluripotent state. In particular, the pluripotency-associated genes Galanin, 
POU5F1(Oct3/4), NANOG and DPPA4 are largely unmethylated in ESCs and methylated in 
differentiated cells. 
Understanding the epigenetic regulation of ESCs will help to shed light on the molecular 
basis of normal development as well as the abnormal processes that underlie cancer.      

3. Conclusion  

In conclusion, the neuroendocrine peptide galanin is one of the most highly expressed genes 
in both human and mouse ESCs and the embryonic tissues of many species. Galanin is thus 
considered a marker of “stemness” and pluripotency. All three galanin receptors are present 
in ESCs, suggesting that the peptide may be biologically active. There are enough 
indications  to suggest a highly dynamic role of galanin in ESCs and in committing the fate 
of ES cells. The variety of cellular effect of galanin may depend on the environment 
surrounding the cells and possibly differential activation of its receptors. The switch from 
self-renewal to differentiation of ESCs might be triggered by a combination of other signals 
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and coordinated changes in recruitment of epigenetic modulators and transcription factors 
to the promoter region. The strength of the intracellular signaling may affect the negative or 
positive regulatory elements of the galanin gene to use different intracellular pathways to 
mediate different cell function in ES cells. 
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