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1. Introduction

These last years, research activities on multicomponent image compression have been
expanded, due to the development of multispectral and hyperspectral image sensors which
supply larger and larger amount of data. The end-users of such images become also more
numerous and have various needs and various applications. The future earth observation
systems, for instance, will use multi-, super- and hyper- spectral image sensors with higher
resolutions leading to bigger amount of transmitted data. However the channel bandwidth for
transmission is limited and therefore there is an interest of conceiving compression systems
(onboard and on the ground) of multicomponent images which are not application dependent
and which are compatible with the diversity of end-users’ needs. The components of a
multicomponent image generally represent the same scene with different views depending
on the wavelength. For data from different sensors, a preliminary step of image registration
is therefore required as there is a high degree of dependence (or redundancies) between
the various components: the usual spatial redundancy (between different pixels in each
component) and the spectral redundancy (between the components).
During the past two decades, different solutions have been proposed for multicomponent
image coding. A solution currently adopted consists of using two different transformations,
each with the goal of reducing only one of the two redundancies. In (Dragotti et al., 2000),
a 2-D discrete wavelet transform (DWT) is used to reduce the spatial redundancies in each
component while the Karhunen Loève transform (KLT) is applied to reduce the spectral
ones. In that paper, the quantization and entropy coding are achieved thanks to the well
known SPIHT (Set Partitioning in Hierarchical Trees) codec by Said and Pearlman (Said
& Pearlman, 1996) in its original version and in a modified version including VQ (vector
quantization). In the same way, with the use of the 2-D DWT of (Antonini et al., 1992)
(usually called the Daubechies 9/7), the authors of (Vaisey et al., 1998) use a lattice VQ
with a stack run coder as quantization and entropy coding. More recently in (Rucker et al.,
2005), the KLT associated with the Daubechies 9/7 2-D DWT and with EBCOT (Taubman,
2000; Taubman & Marcellin, 2002) for quantizing and entropy coding has been tested on
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2 Will-be-set-by-IN-TECH

hyperspectral images with different bit-allocations between components. It is shown that the
Post Compression Rate-Distortion (PCRD) optimizer of EBCOT applied across multiple bands
gives the best rate-distortion performance. Another solution consists of using a 3-D DWT for
reducing both the spatial and spectral redundancies with only one transform. This approach
is generally applied to hyperspectral images as in (Christophe et al., 2006). An overview of
3-D wavelet-based techniques and more can be found in (Fowler & Rucker, 2007). The two
above mentioned solutions are compatible with the JPEG2000 Part 2 standard. The JPEG2000
standard is well known and well spread today. Moreover the KLT used in JPEG2000 Part 2
is considered as the best existing lossy compression techniques for hyperspectral images at
medium and high bit rates (Du & Fowler, 2007; Penna et al., 2007). The KLT consists in a
Principal Component Analysis (PCA), well known of statisticians, where all the components
are kept. However, the rather great computational complexity of the KLT hinders its adoption
in practice — specially on satellite platforms — and recent works propose different solutions
in order to pass round this problem. One approach consists in reducing the complexity of
the covariance matrix computation. This is done by randomly sampling the entire image in
order to obtain a small sample of the pixels’ population on which the covariance matrix is
computed (Du & Fowler, 2008; Penna et al., 2007). Another approach consists in computing
a kind of KLT average on a set of images (the learning basis) issued from only one sensor
and using it on other images obtained with the same sensor. This sub-optimal transform
is called exogenous KLT in (Thiebaut et al., 2006) and the computational complexity of the
second approach is compatible with satellite platforms. Both approaches are fruitful: the
rate-distortion performance sacrifice compared with the true KLT is very slight, whereas the
computational burden is significantly reduced. In the second approach, the exogenous KLT
matrix is known by the decoder, hence there is no need to transmit it.
It is well known that the KLT can be suboptimal in transform coding when the data are not
Gaussian. Now, under only the high resolution quantization hypothesis, nearly everything
is known about the performance of a transform coding. Nevertheless, the optimal transform
computation is generally considered as a difficult task and the Gaussian assumption is then
used in order to simplify the calculation. Recently, the problem of computing the optimal
coding transform associated with scalar variable-rate quantizers for still images was resolved
under high-resolution quantization hypothesis, with mean square error as distortion and
without the Gaussian assumption (Narozny et al., 2005; 2008). However, for the JPEG2000
Part2 compression scheme, the previous optimal transform computation cannot be directly
applied to obtain the optimal spectral transform, because of the 2D DWT presence—see the
criterion (15) in Section 4, which depends on subband statistics—. In (Akam Bita et al.,
2010a), the authors solved both the problems of computing an optimal spectral transform
(OST), with the constraint of orthogonality and without any constraint but invertibility, for
that compression scheme, when the 2D DWT has fixed coefficients and under the only
high resolution quantization hypothesis. They showed that on hyperspectral images, the
orthogonal OST, called OrthOST, performs slightly but significantly better than a KLT at
low, medium and high bit-rates and that the gain obtained by removing the orthogonality
constraint in the computation of the OST is not significant. Further, it is not widely
known that even when the input data are Gaussian, the KLT is not optimal in the above
mentioned compression scheme. Indeed, after the 2D DWT, the variance of the wavelet
coefficients depends on the subband they belong to (even for Gaussian data) and the KLT
does not capture these various variances, while the EBCOT coder with its PCRD optimizer
performing simultaneously across all the codeblocks from the entire image take them into
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Discrete Wavelet Transform and Optimal Spectral Transform Applied to Multicomponent Image Coding 3

account. In (Akam Bita et al., 2010b), the authors introduced an orthogonal spectral transform
(called JADO for Joint Approximate Diagonalization under Orthogonality constraint) using
only second order statistics that has not this shortcoming, and that is optimal at high
bit-rates for the JPEG2000 Part 2 compression scheme, when the data are Gaussian. They
showed on natural hyperspectral images that JADO (resp. OrthOST) performs slightly but
significantly better than the KLT (resp. JADO). The main drawback of the OSTs is their heavy
computational cost, which is much higher than the one of a KLT or JADO (which both have
roughly the same complexity).
In order to reduce the complexity of a codec based on OrthOSTs, the authors of (Akam Bita
et al., 2008; 2010c; Barret et al., 2009) used the same strategy as in (Thiebaut et al., 2006):
they replaced the OrthOST, which must be computed for each new encoded image, with an
exogenous quasi optimal spectral transform. This last transform is an OrthOST computed once
and for all on a learning basis constituted of images from only one spectrometer and which
is then applied to any image to be coded stemming from the same spectrometer. Using either
the JPEG2000 codec called Verification Model version 9 (JPEG2000, 2001) or the Bit Plane
Encoder (BPE (CCSDS-1, 2007)) recommended for satellite image compression (Yeh et al.,
2005) by the CCSDS (Consultative Committee for Space Data Systems), they showed that this
strategy yielded good performances, sometimes better than the (non exogenous) KLT ones,
in terms of bit-rate versus distortions. Four different distortions were considered: Signal to
Noise Ratio (SNR), Maximum Absolute Difference (MAD), Mean Absolute Error (MAE) and
Maximum Spectral Angle (MSA). Indeed, it is well-known that providing the mean square
error as one distortion only is not sufficient to assess the quality of a codec for hyperspectral
images (Christophe et al., 2005). However in the simulations presented in (Akam Bita et al.,
2008; 2010c; Barret et al., 2009) when the VM9 is used, the computational complexity of the
EBCOT coder associated with its PCRD optimizer is very high, and when the BPE is applied
to encode each component of the transformed image, the complexity of the algorithm for
optimal allocation between components is also very high. In both cases, the computational
complexity is too high for a compression system on-board a satellite. In (Barret et al., 2011), the
authors present a low complexity hyperspectral image coder based on exogenous OrthOST
and zerotrees well adapted to OrthOST.
It is important to note that the point of view presented in this chapter — i.e., a compression
scheme for hyperspectral images that is independent of the end-user application — is no
longer justified at very low bit-rates (lower than 0.5 bits per pixel and per band). For more
details on low-bit rates hyperspectral compression see (Chang et al., 2010c).
In this chapter, we study the question of an optimal linear transform for reducing spectral
redundancies under high resolution and variable rate constrained quantization hypothesis,
when a 2-D DWT — with fixed coefficients — is applied to each component to reduce
spatial redundancies and one scalar quantizer per subband and per component is used.
This compression scheme, described in Section 2, is compatible with the JPEG2000 Part 2
standard. The asymptotic expression of the mean square error distortion associated with that
compression scheme is given in Section 3. In Section 4, we clarify the criterion minimized by
such an optimal spectral transform with mean square error distortion and we show the link
between the criterion and the mutual information contrast used in Independent Component
Analysis (ICA). In Section 5, we derive a criterion minimized by an OrthOST under Gaussian
data assumption. Moreover, we describe in Section 6 the quasi-Newton algorithms used for
the minimization of the criterion, either with the constraint of an orthogonal transform or
with no constraint but invertibility or with the constraint of an orthogonal transform and the
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assumption of Gaussian data. The two first algorithms are derived from an algorithm by Pham
ICAinf described in (Pham, 2004) that performs ICA. Then in Section 7, performances of these
transforms and comparisons with the KLT are given for multi- and hyper-spectral satellite
images, with the four above mentioned different measures of distortion. Finally, in Section 8
we introduce quasi-optimal OrthOSTs, called exogenous, that have not the main drawback of
heavy computational cost and we compare their performances in lossy coding with OrthOSTs.

2. Description of the separable compression scheme

2.1 Conventions and notations

We consider a multicomponent image X with N components X1, . . . , XN . Each component Xi

is a 2-D image with Nr rows and Nc columns. To simplify the notations and the mathematical
expressions, we assume that each component is written as a row vector by scanning all its
pixels row by row (for example). Then X is a N × L matrix, with L = Nr Nc. In the following,
depending on the context, we shall interpret Xi as a 2-D image or as a row vector of dimension
L. For a square matrix M, the expressions det M, tr M and diag(M) denote respectively its
determinant, its trace and the diagonal matrix obtained with its diagonal elements.
In the following compression scheme, the 2-D DWT has fixed coefficients (in our tests, the
Daubechies 9/7 DWT is always used), but the spectral linear transform is adapted to the data.
We denote W the invertible L × L matrix associated with the 2-D DWT.

2.2 The separable scheme

The separable scheme is compatible with the JPEG2000 Part 2 standard. It can be described as
follow:

• Coding. The same 2-D DWT is applied to each component Xi in order to reduce the spatial
redundancies and a linear transform A is applied between the components in order to
reduce the spectral redundancies. The result of the 2-D DWT applied to the entire image
X is XWT and the transformed coefficients are the elements of the matrix Y = AXWT . For
each component, the wavelet coefficients of each subband are regrouped according to a
fixed scan that does not depend on the component. This re-ordering corresponds to the
right multiplication of XWT by a permutation matrix PT . We can suppose without loss of
generality that P is the identity, otherwise we could replace W with PW. This partitioning

can be written XWT = [(XWT)(1) . . . (XWT)(M)], where M is the number of subbands.

Then, the transformed coefficients Y = [Y(1) . . . Y(M)] (where Y(i) = A(XWT)(i)) are
quantized and entropy coded with one quantizer per subband and per component (see
§ 7.1).

• Decoding. Let Yq denote the matrix with the same dimension as Y containing the
dequantized transformed coefficients. The mathematical inverse transforms are applied

to Yq in order to reconstruct an approximation X̂ = A−1YqW−T of the original image X.

We can remark that the order of the transformations (i.e., applying first the DWT then A, or
first A then the DWT) has no effect on the result, since Y = A(XWT) = (AX)WT . This is why
that scheme is called separable.

3. Expression of the distortion

In lossy or quasi-lossless coding, the quantization leads to irreversible loss of information,

therefore the decoded image X̂ is an approximation of the original image and in order to
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Discrete Wavelet Transform and Optimal Spectral Transform Applied to Multicomponent Image Coding 5

quantify the quality of the reconstructed image, it is necessary to introduce a measure of
distortion. In this section we give, under various hypotheses, the relation that links the

distortion between X and X̂ to the quantizers distortions, when the distortion is the mean
square error:

Da(X, X̂) =
1

NL
‖X − X̂‖2 with ‖X − X̂‖2 =

N

∑
i=1

L

∑
k=1

(Xi(k)− X̂i(k))
2. (1)

We begin by recalling the solution of the problem in a simple general case (Gersho & Gray,
1992; Taubman & Marcellin, 2002).

3.1 A simple general case

Lemma 3.1. Let X be a real random vector with N components and A be an invertible matrix of order
N. The transformed vector Y = AX is quantized and dequantized in Yq. The original vector X is

approximated by X̂ = A−1Yq and let b = Y − Yq be the quantization noise. Then, the end-to-end

distortion D = 1
N E(‖X − X̂‖2), where E denotes the mathematical expectation, satisfies the relation

D = 1
N tr

[
E(bbT)A−TA−1

]
.

Proof: We have X − X̂ = A−1b and ‖A−1b‖2 = bTA−TA−1b = tr[A−1bbTA−T ] =
tr[bbTA−TA−1], therefore D = 1

N E(‖A−1b‖2) = 1
N tr

[
E(bbT)A−TA−1

]
. �

Further, we may need the following assumption, that can be deduced from high resolution
quantization hypothesis (Gersho & Gray, 1992) (this point is recalled in Subsection 3.2).

H1: The components of the quantization noise are zero mean and uncorrelated.

Theorem 1. 1. With the hypotheses of Lemma 3.1 and assuming H1, the distortion becomes

D =
1

N

N

∑
i=1

αiDi, (2)

where Di = E(b2
i ) is the quantizer distortion of the ith component Yi of Y and, with ei the ith

canonical vector of R
N and (A−1)ij the element of A−1 located on row i and column j, we have

αi =
N

∑
j=1

(A−1)2
ji = ‖A−1ei‖

2. (3)

2. The assertion 1. holds without the assumption H1 if A−TA−1 is diagonal, e.g. if A is orthogonal.

Proof: The assumptions in 1. or 2. state that at least one of the two matrices A−TA−1 and
E(bbT) is diagonal. Hence the trace of their product is equal to the sum of the products of
their diagonal elements. �

3.2 Justification of the assumption H1

We recall here well known results that can be found e.g. in (Gersho & Gray, 1992). The
assumption H1 can be justified under the following conditions. C1: the random vector
Y = (Y1, . . . , YN)T has a continuous probability density function (pdf) fY; C2: separable
high-rate quantization is achieved, meaning that the quantization steps h = (hi)1≤i≤N of
the N components are small with respect to the variations of fY (i.e. fY(y + h) ≃ fY(y),
∀y ∈ R

N) and C3 : for any cell S of the separable N-D quantizer, the dequantized value Yq
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associated with S is the iso-barycenter of S. Indeed, if the three conditions C1, C2 and C3 hold,
then the pdf fY can be considered as quasi constant in the hypercube Yq + ∏

N
i=1[−hi/2 , hi/2].

Further, the conditional law of the quantization noise b = Y − Yq knowing the dequantized
value Yq satisfies fb|Yq (u) ≃ 1/ ∏

N
i=1 hi if u ∈ ∏

N
i=1[−hi/2 , hi/2], 0 otherwise. We see that

the conditional pdf fb|Yq does not depend on the quantized value Yq, hence it is equal to fb,
the pdf of b. Further the components of b are zero mean and (quasi) independent since their
joint density is approximatively equal to the product of their marginal densities.

3.3 The separable subband scheme

In the following, the symbols X, Y and Yq refer again to the matrices defined in Section 2 and
A denotes the matrix of the linear transform that associates Y with X. We are going to apply
the formulae of the general simplified case to the separable scheme. The actual distortion Da

given in relation (1) is an estimation of the distortion

D(X, X̂) = E[Da(X, X̂)] =
1

NL
E[‖X − X̂‖2]. (4)

Now, in order to express the relation (3) in terms of the DWT W and the spectral transform
A, it is important to note first that the canonical basis of the space of matrices of dimension

N × L is the family of matrices ei,k = eie
′T
k (1 ≤ i ≤ N, 1 ≤ k ≤ L), with ei (resp. e

′

k) the ith

(resp. kth) vector of the canonical basis of R
N (resp. R

L). Therefore, the weighting factor αi in
relation (3) depends here on the two indices i and k: αik = ‖A−1ei,k‖

2. Then, let

wi = ‖A−1ei‖
2 (1 ≤ i ≤ N), (5)

we have A−1ei,k = A−1eie
′T
k W−T and ‖A−1ei,k‖

2 = tr[A−1eie
′T
k W−TW−1e

′

keT
i A−T ] =

eT
i A−TA−1eie

′T
k W−TW−1e

′

k and finally

αik = ‖A−1ei,k‖
2 = wi‖W−1e

′

k‖
2. (6)

Therefore, according to Theorem 1, under assumption H1 we have

D(X, X̂) =
1

NL

N

∑
i=1

L

∑
k=1

wi‖W−Te
′

k‖
2 E[(Yi(k)− Y

q
i (k))

2]. (7)

Now, for any subband m (1 ≤ m ≤ M), let Km be the number of columns in Y corresponding
to that subband and let

πm =
Km

L
(1 ≤ m ≤ M) (8)

be the ratio of wavelets coefficients that belong to it. If k (1 ≤ k ≤ L) refers to a column indice
of the matrix Y located in that subband and if we assume that

H2 : for any component i (1 ≤ i ≤ N), the distortion E[(Yi(k)− Y
q
i (k))

2] = D
(m)
i does not

depend on the spatial position k in the subband m,

(which is the case under high resolution quantization hypothesis), then equation (7) becomes

D(X, X̂) =
1

N

N

∑
i=1

M

∑
m=1

πmwiωmD
(m)
i with ωm =

1

Km
∑
k

‖W−Te
′

k‖
2, (9)

where in the last summation, the range of k consists in the columns of Y with the subband m.
Or, by adopting a different perspective, if we assume that
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Discrete Wavelet Transform and Optimal Spectral Transform Applied to Multicomponent Image Coding 7

H3 : the weight ‖W−1ek‖
2 = ωm does not depend on the spatial position k in the subband m,

then equation (7) becomes

D(X, X̂) =
1

N

N

∑
i=1

M

∑
m=1

πmωmwiD
(m)
i with D

(m)
i =

1

Km
∑
k

E[(Yi(k)− Y
q
i (k))

2], (10)

where in the last summation, the range of k consists in the columns of Y with the subband m.

Remark 1. The condition H3 is satisfied by dyadic wavelets having Finite Impulse Response (FIR)
synthesis filters, when edge effects are neglected (for more details see e.g. (Usevitch, 1996; Woods &
Naven, 1992)).

Lastly, we can notice that the actual distortion Da given in equation (1) satisfies

Da(X, X̂) =
1

NL
tr[(X − X̂)(X − X̂)T ] =

1

NL
tr[A−1(Y − Yq)W−TW−1(Y − Yq)TA−T ],

therefore if we assume

H4 : the DWT is orthogonal, i.e. WWT = IL, with IL the identity matrix of dimension L,

then Da(X, X̂) = 1
NL tr[A−1(Y−Yq)(Y−Yq)TA−T ] = 1

NL ∑
M
m=1 tr[A−1(Y(m) −Yq(m))(Y(m) −

Yq(m))TA−T ].

Remark 2. The hypothesis H4 is roughly satisfied with the approximately orthogonal Daubechies
9/7 DWT (indeed, a simulation shows that the infinity norm of the diagonal, and respectively the off
diagonal, elements of WTW − IL is worth 0.42 and 0.16, for five levels of decomposition on a 1-D
signal of length 512).

Now, 1
Km

(Y(m) − Yq(m))(Y(m) − Yq(m))T is the actual autocorrelation matrix of the m-th
subband quantization noise. If we assume

H
′

1: in each subband, the actual autocorrelation matrix of the quantization noise is

diagonal, i.e., 1
Km

(Y(m) − Yq(m))(Y(m) − Yq(m))T = diag(D
(m)
1 , . . . , D

(m)
N ) (1 ≤ m ≤ M),

then we have

tr[A−1 diag(D
(m)
1 , . . . , D

(m)
N )A−T ] =

N

∑
i=1

wiD
(m)
i

Da(X, X̂) =
1

N

M

∑
m=1

πm tr[A−1 diag(D
(m)
1 , . . . , D

(m)
N )A−T ]

Da(X, X̂) =
1

N

N

∑
i=1

M

∑
m=1

πmwiD
(m)
i . (11)

Moreover, if we assume H4 and

H5 : the spectral transform A is orthogonal, i.e. AAT = IN ,

then
Da(X, X̂) = Da(Y, Yq). (12)

Let us state these results in the following theorem.
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Theorem 2. With the notations of Section 2.2, the end-to-end distortion of the separable scheme is
given by:

• equation (9) under the assumptions H1 and H2;

• equation (10) under the assumptions H1 and H3;

• equation (11) under the assumptions H
′

1 and H4;

• equation (12) under the assumptions H4 and H5.

Remark 3. 1. The assumptions H1 and H
′

1 are consequences of high resolution quantizations (see
Subsection 3.2). They can also be deduced from the condition of statistical independence of the
transformed components, since if the components of Y are independent, then the components of the
quantization noise Y − Yq, which is generally centered, are uncorrelated.

2. A method for the computation of the weighting wavelet coefficients ωm (1 ≤ m ≤ M) can be found
in (Usevitch, 1996; Woods & Naven, 1992).

3. Since the assumptions H
′

1, H1, . . . , H4, are only approximatively satisfied, the equalities (9–13)
are only approximations. However, we observed on many experiments that these approximations
are very good for bit-rates greater than 0.25 bits per pixel and per band.

We search the optimal spectral transform (that is the one which minimizes the total bit-rate
for a given end-to-end distortion) which adapts to the data, assuming high resolution
quantizations hypotheses and 2-D DWT with fixed coefficients, i.e., which do not adapt to
the data. As already mentioned, in our tests we always used the Daubechies 9/7 DWT. First,
we derive the criterion minimized by an optimal spectral transform. We emphasize the fact
that we do not assume Gaussian data and that generally in the literature this assumption
is made in order to clarify the criterion (coding gain) maximized by the optimal transform.
However, the Bennett’s formula and the optimal bit allocation between quantizers formula on
which our criteria are based are well-known and therefore it is straightforward to deduce these
criteria from well-known results. Our major innovation consists especially in the computation
of the optimal transforms, since this computation is generally presented as a difficult task in
classical transform coding and has never been done in the case of the separable scheme which
is JPEG2000 compatible.

4. Criteria for optimal transforms under high resolution quantizations

We recall the extension of the Bennett’s formula which can be stated as follows: if X is
a real random variable quantized under the high resolution hypothesis, then the bit-rate
of quantized variable Xq is well approximated by H(X) − 1

2 log2(cD), where H(X) is the
differential entropy of X, D is the distortion (expected mean square error) introduced by
the quantization and c is a constant depending on the quantization, e.g., for uniform scalar

quantization c = 12 (Gray & Neuhoff, 1998). Hence, if R
(m)
i denotes the quantizer bit-rate

associated with component i and subband m, the Bennet’s approximation gives

R
(m)
i ≃ H(Y

(m)
i )−

1

2
log2(cD

(m)
i )

and the total bit-rate R = 1
N ∑

N
i=1 ∑

M
m=1 πmR

(m)
i satisfies

R ≃
1

N

N

∑
i=1

M

∑
m=1

πm

[
H(Y

(m)
i )−

1

2
log2(cD

(m)
i )

]
. (13)
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Discrete Wavelet Transform and Optimal Spectral Transform Applied to Multicomponent Image Coding 9

The problem now consists in minimizing R under the constraint (given by Theorem 2)

1

N

N

∑
i=1

M

∑
m=1

πmωmwiD
(m)
i ≤ Dt (14)

for a given end-to-end distortion Dt. In other words, for a target end-to-end distortion Dt,

how can the quantizer distortions D
(m)
i be distributed in each subband of each component

in order to minimize the total bit-rate? It is a classical problem in compression, called
optimal bit allocation (Gersho & Gray, 1992), that can be solved as follows. According to
relation (13), when the spectral and spatial transforms A and W are given, the differential

entropies H(Y
(m)
i ) and the factors wi and ωm are given. Then, the total bit-rate is minimized

if and only if ∏
N
i=1 ∏

M
m=1(D

(m)
i )

πm
N is maximized, that is if and only if

[
N

∏
i=1

M

∏
m=1

(
D
(m)
i

) πm
N

] [
N

∏
i=1

wi

] 1
N
[

M

∏
m=1

ωπm
m

]
=

N

∏
i=1

M

∏
m=1

(
ωmwiD

(m)
i

) πm
N

is maximized. Now the mean inequality states the last expression (which is a geometric mean)
is not greater than the arithmetic mean corresponding to the left member of inequality (14),
with equality if and only if all the terms in the summation are equal. Hence, the minimization

holds when D
(m)
i = Dtω

−1
m w−1

i for all m and i. That leads to

R ≃
M

∑
m=1

πm

[
1

N

N

∑
i=1

{
H(Y

(m)
i ) +

1

2
log2 wi

}
+

1

2
log2 ωm

]
−

1

2
log2(cDt)

and since wi is the ith diagonal element of A−TA−1, the other terms ωm do not depend on A,
we obtain the following theorem.

Theorem 3. For the separable scheme when the 2-D DWT has fixed coefficients, if high resolution
quantizations hypotheses are assumed, then the optimal spectral transform A is an N × N matrix that
minimizes the criterion:

C2(A) =
N

∑
j=1

M

∑
m=1

πm H(Y
(m)
j ) +

1

2
log2 det diag(A−TA−1). (15)

Remark 4. Since ∑
M
m=1 πm = 1, the criterion C2(A) can be expressed as

C2(A) =
M

∑
m=1

πm

[
N

∑
i=1

H(Y
(m)
i )− log2 |det A|

]
+

1

2
log2

[
det diag

(
A−TA−1

)

det(A−TA−1)

]

=
M

∑
m=1

πmC
(m)
ICA(A) + CO(A), (16)

where, for 1 ≤ m ≤ M, C
(m)
ICA(A) = ∑

N
i=1 H(Y

(m)
i )− log2 |det A| is the criterion to minimize when

performing only ICA to the N components of the transformed coefficients that belong to the subband
m. Pham (Pham, 2004) used that criterion to perform the algorithm ICAinf.
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Remark 5. It results of Hadamard’s inequality, that the term CO(A) = 1
2 log2

det diag(A−T A−1)
det(A−T A−1)

is

always positive or null (Narozny et al., 2008) and vanishes if and only if A is a matrix whose columns
are pairwise orthogonal, therefore it can be seen like a kind of measure of deviation to orthogonality.

The relation (16) shows that the criterion C2(A) takes into consideration the fact that one
quantizer per subband and per component is allocated. It is also important to notice that
the criterion C2(A) involves the transformed coefficients Y. Therefore, even for the separable
scheme (where the order of processing between the 2-D DWT and the spectral transform does
not matter), the search of the optimal spectral transform must be done after the 2-D DWT.
Note that the separable compression scheme does not take into account the difference of
statistics between subbands, since the same spectral transform is applied to all the subbands.
Moreover it is well known that after a DWT some redundancies remain between adjoining
wavelets coefficients. In (Akam Bita et al., 2010a), the authors introduced the subband
compression scheme, that uses as many optimal spectral transforms as subbands in order to
capture the difference of statistics between subbands, and the mixed subband compression
scheme, that captures both redundancies between adjacent wavelet coefficients and the
difference of statistics between subbands. Their experiments on hyperspectral images showed
that these variants of the separable scheme, which are not JPEG2000 compatible, perform
finally worse than the separable scheme because of the increasing of memory size occupied
by the optimal spectral transforms in the bit stream.
Lastly, note that the algorithm that computes a KLT is customarily applied first to the image
before the DWT, but this would be equivalent to applying it after the DWT (i.e. to the DWT
coefficients) if the DWT is orthogonal (as is often the case or at least nearly so in practice1). But
then it will not distinguish subbands: the DWT coefficients are considered as coming from a
same (Gaussian) distribution, regardless of the subband they belong to. We feel that the higher
performance — shown in § 7 — of criterion (15) over the criterion 1

2 log2 ∏
N
j=1 var(Yj), which

leads to the KLT, is due primarily to the fact that it treats each subband separately rather than
that treating the distribution in each subband as non Gaussian. This is logical since, after
any DWT, the energy in each subband depends on the power spectrum of the input signal.
It is important to notice that there is no contradiction in the fact that the criterion (15) treats
each subband separately, while the same spectral transform A is applied to all the subbands.
The idea is then to introduce the distinction between subbands but retain the (approximate)
Gaussian assumption used by the KLT. The distribution of all the wavelet coefficients (with no
distinction between subbands) is a mixture of distributions of the coefficients in the subbands.
It can be shown that the kurtosis of the mixed distribution is higher than the average kurtosis
of the individual distributions. In particular, mixture of Gaussian distributions has always
a positive kurtosis, unless all the individual distributions are the same. Thus the wavelet
coefficients, regardless of the subband they belong to, have a positive kurtosis even if in
each subband their distribution is Gaussian. The above consideration suggests modifying the
criterion (15) by treating the transformed coefficients in each subband m as having a Gaussian
distribution with differing variance for different m. The transformation minimizing this modified
criterion is no longer optimal, but can be nearly so if the distribution in each subband is not too
far from Gaussian. This is not an unrealistic situation: the wavelet coefficients in a subband
is the (decimated) output of a bandpass filter which tends to produce more Gaussian output
than input, due to the reasoning (given e.g. in (Papoulis, 1984) section 8-5) that yields to the
proof of the Central Limit Theorem. The advantage of the modified criterion is that it avoids

1 See Remark 2.
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the entropy estimation and uses only second order statistics. Thus its minimization requires
much less computer resources than using (15).

5. A simplified criterion using only second order statistics

Let H−(Z) = log2

√
var(Z)2πe − H(Z) denote the negentropy of Z (which is the difference

of entropy between a Gaussian distribution with variance var(Z) and the distribution of Z), it
is non negative and vanishes if and only if Z is Gaussian. The criterion (15) can be rewritten
for orthogonal2 matrices

C⊥ (A) = −
N

∑
i=1

M

∑
m=1

πm H−(Y
(m)
i ) +

1

2

N

∑
i=1

M

∑
m=1

πm log2[var(Y
(m)
i )2πe]. (17)

An analysis of criterion (17) shows that it takes into account two phenomena: 1) the non

Gaussianity of the transformed coefficients Y
(m)
i for 1 ≤ m ≤ M and 1 ≤ i ≤ N — this

is controlled by the first term — and 2) the inhomogeneity of the variances in the subbands
— this is controlled by the second term. It is natural to explore the case where the second
phenomenon is the most important, since the DWT tends to render the variables more
Gaussian. In practice, this condition is generally roughly satisfied, except in the LL subband (a
subband of lowest resolution) for which the weighting coefficient πm is generally small. Thus,
if we neglect the variation, induced by the spectral transform A, of the first term in the right
member of equation (17), and if we consider only orthogonal matrices A, then the optimal
transform minimizes the new criterion

C′(A) =
1

2

N

∑
i=1

M

∑
m=1

πm log2[var(Y
(m)
i )]. (18)

Furthermore if we assume in each component the transformed coefficients have all the
same variance, regardless of the subband they belong to, then the criterion (18) becomes
1
2 log2

[
∏

N
i=1 var(Yi)

]
, leading to the KLT.

In the following, we express criterion (18) in terms of the covariance matrices of the wavelets

coefficients XWT =
[
(XWT)(1) (XWT)(2) · · · (XWT)(M)

]
located in the same subband. The

matrix (XWT)(m) is of dimension N × πmL. Its columns can be considered as different

realizations of a random vector of dimension N whose covariance matrix is denoted C(m).
Now, Y = AXWT can be written Y = [Y(1) · · · Y(M)], where Y(m) = (AXWT)(m) is a
matrix whose columns can also be considered as different realizations of a random vector
having AC(m)AT as covariance matrix. With these notations, we have ∏

N
j=1 var(Y

(m)
j ) =

det diag(AC(m)AT) and hence the new criterion becomes

C′(A) =
1

2

M

∑
m=1

πm log2 det diag(AC(m)AT) (19)

to be minimized with respect to A, under the constraint that it is orthogonal.

2 The orthogonality constraint will be justified in § 7 in which we find that minimizing (15) with and
without this constraint yields almost the same performances. With the orthogonality constraint, the
second term in (15) vanishes.
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The FG algorithm in (Flury & Gautschi, 1986) can be used to minimize the above criterion.
We have developed a slightly different algorithm (called JADO) which is briefly described in
Appendix 6.3.

6. Minimization of the criteria for the separable scheme

We explain now three algorithms that minimize the criterion (15), one with no constraint but
invertibility, another with the constraint of orthogonality and the third with the constraints
of orthogonality and Gaussian data. To simplify some mathematical expressions we shall use
the Neperian logarithm instead of the base two logarithm until the end of this section.

6.1 The algorithm OST

As in (Pham, 2004) and (Narozny et al., 2008), the algorithms of minimization are based on a
quasi-Newton method with the relative gradient and a simplified relative Hessian. Starting
with a current estimator A, the method consists of expanding C2(A + EA) with respect to the
matrix E = [Eij] up to the second order, in a neighborhood of E = 0N (the null matrix), and
then minimizing the resulting quadratic form in E to obtain a new estimate. Using the results
of (Pham, 2005) it is straightforward to deduce that the Taylor expansion up to the second

order of C
(m)
ICA(A + EA) can be approximated as follows

C
(m)
ICA(A + EA) = C

(m)
ICA(A) + ∑

1≤i 	=j≤N

E[ψ
Y
(m)
i

(Y
(m)
i )Y

(m)
j ]Eij

+
1

2 ∑
1≤i 	=j≤N

{E[ψ2

Y
(m)
i

(Y
(m)
i )]E[Y

(m)2
j ]E2

ij + EijEji}+ · · · , (20)

where the function ψ
Y
(m)
i

is equal to the derivative of − log p(y
(m)
i ) — p(y

(m)
i ) denoting the

probability density function of Y
(m)
i — and is known as the score function. Let M = A−TA−1.

In (Narozny et al., 2008), the Taylor expansion of CO(A + EA) is given up to the second order,
however it is quite involved and it is simplified into

CO(A + EA) ≈ CO(A)− ∑
1≤i 	=j≤N

Mji

Mii
Eji +

1

2 ∑
1≤i 	=j≤N

[
Mjj

Mii
E2

ji + EjiEij

]
+ · · · (21)

by neglecting the non diagonal elements of M = [Mij] in the second order terms of the Taylor
expansion.
Using the approximation (21), the equality (20) and the relation (16) we obtain

C2(A + EA)=C2(A) + ∑
1≤i 	=j≤N

[
M

∑
m=1

πmE
[
Y
(m)
j ψ

Y
(m)
i

(
Y
(m)
i

)]
−

Mij

Mjj

]
Eij

+
1

2 ∑
1≤i 	=j≤N

[
M

∑
m=1

πmE
2
ijE

[
Y
(m)2
j

]
E
[
ψ2

Y
(m)
i

(
Y
(m)
i

)]
+

Mii

Mjj
E2

ij + 2EijEji

]
. (22)

The quadratic form associated to this last expansion is positive definite. One iteration of the
algorithm is first to solve the following equation

[
Ψij 2

2 Ψji

] (
Eij

Eji

)
=

(
Φij

Φji

)
, (23)

162 Discrete Wavelet Transforms: Algorithms and Applications

www.intechopen.com



Discrete Wavelet Transform and Optimal Spectral Transform Applied to Multicomponent Image Coding 13

with Φij =
Mij

Mjj
− ∑

M
m=1 πmE[ψ

Y
(m)
i

(Y
(m)
i )Y

(m)
j ] and Ψij = ∑

M
m=1 πmE[ψ2

Y
(m)
i

(Y
(m)
i )]E[Y

(m)2
i ] +

Mii
Mjj

and then to replace the current solution A with A + EA. Since the diagonal elements of

E are undetermined, they are arbitrarily fixed to zero. For the practical computation of the
algorithm, we replace ψ

Y
(m)
i

with its estimator ψ̂
Y
(m)
i

that is described in (Pham, 2005) as well

as the estimator of the differential entropy. The mathematical expectations are replaced with
simple empirical means. We call OST (Optimal Spectral Transform) the algorithm described
above and OST the optimal transform returned by this algorithm.

6.2 The algorithm OrthOST

To minimize the criterion (15) with the constraint that the solution is an orthogonal matrix, it
is important to note, as in (Narozny et al., 2008), that if A is orthogonal, then A + EA remains
orthogonal when I + E is also orthogonal. This condition is satisfied up to the first order if E
is an antisymmetrical matrix, since then (I + E)T(I + E) = I + ETE . Using that condition, the
expansion (22) becomes

C(A + EA) = C(A) +
M

∑
m=1

∑
1≤i<j≤N

πm

{
E[Y

(m)
j ψ

Y
(m)
i

(Y
(m)
i )]− E[Y

(m)
i ψ

Y
(m)
j

(Y
(m)
j )]

}
Eij +

1

2 ∑
1≤i<j≤N

[
M

∑
m=1

πm

{
E[Y

(m)2
j ]E[ψ2

Y
(m)
i

(Y
(m)
i )] + E[Y

(m)2
i ]E[ψ2

Y
(m)
j

(Y
(m)
j )]

}
− 2

]
E2

ij. (24)

The matrix E is calculated in that case according to

Eij =
∑

M
m=1 πm

{
E[Y

(m)
i ψ

Y
(m)
j

(Y
(m)
j )]− E[Y

(m)
j ψ

Y
(m)
i

(Y
(m)
i )]

}

∑
M
m=1 πm

{
E[Y

(m)2
j ]E[ψ2

Y
(m)
i

(Y
(m)
i )] + E[Y

(m)2
i ]E[ψ2

Y
(m)
j

(Y
(m)
j )]

}
− 2

. (25)

Actually, A + EA obtained in this way is not a true orthogonal matrix. This can be overcome

by replacing A+ EA with eEA = (I+ E + E2/2!+ · · · )A, which is orthogonal and differs from
A + EA only by second order terms. We call OrthOST (Orthogonal Optimal Spectral Transform)
this algorithm and OrthOST the orthogonal transform returned by the algorithm. The case
where the spectral transform is constrained to be orthogonal is particularly interesting because
the weightings which depend on the linear transform are all equal to one.

6.3 The JADO (Joint Approximate Diagonalization under Orthogonality constraint) algorithm

Given K positive definite (complex) matrices C1, . . . , CK associated with positive weights w1,
. . . , wK , the JADO algorithm aims to find a unitary matrix B which minimizes

C(B) =
K

∑
k=1

wk log det diag(BCkB∗) (26)

where ∗ denotes the hermitian operator. This algorithm differs only slightly from FG

algorithm in (Flury & Gautschi, 1986). However, its derivation in (Flury & Gautschi, 1986)
is complex and difficult to understand. Here we provide briefly a much simpler derivation.
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The idea is to make successive Givens rotations, each time on a pair of rows of B, the ith row
Bi· and the jth row Bj·, say:

[
Bi·

Bj·

]
← Tij

[
Bi·

Bj·

]
, (27)

where Tij is a 2 × 2 unitary matrix, chosen so that the criterion is decreased. The processing

of all the
K(K−1)

2 pairs is called a sweep. The algorithm consists of repeated sweeps until
convergence is achieved.
The decrease of the criterion (26) induced by (27) is

K

∑
k=1

wk log

[
(Bi·CkB∗

i·)(Bj·CkB∗
j·)
/

det diag

(
Tij

[
Bi·

Bj·

]
Ck

[
B∗

i· B∗
j·

]
T∗

ij

)]
.

A natural idea is to chose Tij to maximize this decrease, but there is no closed form formulae

for that. Our idea is to maximize a lower bound of it instead. Since for a > 0, b ≥ 0, log(a/b) ≥
1 − b/a, the above decrease can be seen to be bounded below by

2(w1 + · · ·+ wK)− Tij;1·PT∗
ij;1· − Tij;2·QT∗

ij;2·, (28)

where Tij;1· and Tij;2· are the first and second rows of Tij and

P =
K

∑
k=1

wk

Bi·CkB∗
i·

[
Bi·

Bj·

]
Ck[B∗

i· B∗
j· ]; Q =

K

∑
k=1

wk

Bj·CkB∗
j·

[
Bi·

Bj·

]
Ck[B∗

i· B∗
j· ].

Since Tij;2· has unit norm and is orthogonal to Tij;1·, it must be of the form eiαTij;1·J where

α is some phase angle, x denotes the complex conjugate of x and J is the 2 × 2 matrix with 0

on the diagonal and 1,−1 on the anti-diagonal. Thus Tij;2·QT∗
ij;2· = Tij;1·JQJ∗T

∗
ij;1·, but since

the above left hand side is real (as Q is hermitian), it also equals Tij;1·JQJ∗T∗
ij;1·. Therefore

expression (28) can be rewritten as 2(w1 + · · · + wK) − Tij;1·(P + JQJ∗)T∗
ij;1·. Maximizing it

with respect to the unitary matrix T thus amounts to minimizing Tij;1·(P + JQJ∗)T∗
ij;1· with

respect to the vector of unit norm Tij;1·. The solution is that Tij;1· is (up to a factor of unit

modulus) the normalized left eigenvector of the smallest eigenvalue of P + JQJ∗. Since Tij;2·
is orthogonal to Tij;1· it is the other eigenvector. Finally, Tij is the matrix formed by the left

eigenvectors of P + JQJ∗. Its elements can be computed explicitly in closed form as follows.
We note that the off diagonal elements of JQJ∗ is the negative of those of Q while the diagonal
elements are those of Q in reverse order. Thus JQJ∗ = tr(Q)I − Q where tr denotes the trace.
Since the addition of a multiple of the identity matrix does not change the eigenvectors, Tij

is also the matrix formed by the left eigenvectors of P − Q. One can now recognize that
the rotation (27) is the same as an iteration in the G loop of the FG algorithm. However, it
differs from our JADO algorithm in that it repeats (27) with the same pair i, j (but with the
newly computed Bi· and Bj·) until convergence (the G loop) and only then another pair i, j
is considered. We feel that this is not efficient since the decrease of the criterion will be very
small near the end of the G loop. We call JADOST the transform returned by the algorithm.
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6.4 Computational complexity of the optimal transforms

We give here a rough estimation of the number of operations required for the computation
of the two first algorithms described above, taking into account only multiplications and
divisions. The differential entropies and the score functions are calculated according to a
method explained in (Pham, 2005). The computational complexity of each of these quantities
is O(NrL), where r is the number of bins in the binned kernel density estimation. In
general r ≪ L and for most cases r belongs to the interval [30 , 60]. At each iteration, the
criterion and the matrix E must be computed. The complexity of the criterion computation is
O(NrL + N3). For the calculation of the matrix E , we first need to compute the score function.
The complexity of the matrix E computation (including the score function computation) is
O(NrL + N2L). Finally, the complexity of one iteration is O(NrL + N2L + N3). In practice,
the convergence of the algorithm is usually obtained after p iterations, p ∈ [20 , 60]. Generally
N ≪ L and the total computational complexity is O(p(NrL + N2L)). The computational
complexities of OrthOST is the same. We recall that for the computation of a KLT, this
complexity is O(LN2). The JADOST and KLT computation complexities are roughly the same.

7. Experimental results

In this section we present the performances in image compression of the optimal transforms
described in the previous sections.

7.1 Description of the tests

Fig. 1. From up to down Moissac, Vannes, Toulouse, Port-de-Bouc

We tested two kinds of multicomponent images: multispectral ones and hyperspectral ones.
The multispectral images are3 PLEIADES simulations of French cities with N = 4 components
and coded on Nb = 12 bpppb: Moissac with Nc × Nr = 320 × 3152, Port-de-Bouc with

3 These images have been given by the French Space Agency CNES (Centre National d’Etudes Spatiales).
They are described on the web site http://smsc.cnes.fr/PLEIADES/.
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Nc × Nr = 320× 1376, Toulouse with Nc × Nr = 352× 3816, Vannes with Nc × Nr = 352× 3736,
. . . The hyperspectral images are4 AVIRIS images (Moffett, Cuprite and Jasper) with N = 224
components from the visible to the infrared and coded on Nb = 16 bpppb. They are
originally acquired with Nr × Nc = 512 × 624, but for the simulations we kept only the 512
leftmost columns. Some images used in our tests are shown in figures 1 and 2. As already

Fig. 2. From left to right: Moffett, Jasper and Cuprite

mentioned, the 2-D DWT used in all our experiments is the Daubechies 9/7 which proved
to be efficient in lossy image compression (Antonini et al., 1992; Taubman & Marcellin, 2002).
For simplicity, we used only uniform scalar quantizers with a dead zone twice as large as
the quantization step. The performances are evaluated in terms of bit-rate versus end-to-end
distortion. For hyperspectral images, we considered four distortions. A first one is the mean
square error (MSE) expressed in terms of the Signal to Noise Ratio, SNR = 10 log10(σ

2/D)

where D is the actual end-to-end MSE distortion and σ2 = ∑
N
i=1 ∑

L
n=1(Xi(n) − µ)2/(NL)

is the empirical variance of the initial image with the empirical mean of the image µ =
∑

N
i=1 ∑

L
n=1 Xi(n)/(NL). A second distortion is the maximal absolute difference (MAD =

max{|Xi(n) − X̂i(n)| : 1 ≤ i ≤ N and 1 ≤ n ≤ L}), a third one is the maximum spectral

angle MSA = max

{
acos

(
∑

N
i=1 Xi(n)X̂i(n)√

∑
N
i=1 X2

i (n)∑
N
i=1 X̂2

i (n)

)
: 1 ≤ n ≤ L

}
and the last one is the mean

absolute error (MAE = ∑
N
i=1 ∑

L
n=1 |Xi(n) − X̂i(n)|/(NL)). With these four distortions, one

can estimate the performances of a codec on usual applications of hyperspectral images, like
classifications and targets detections (Christophe et al., 2005). For multispectral images, we
considered only the MAD and the MSE distortions, the last one being expressed in terms
of Peak of Signal to Noise Ratio, PSNR = 10 log10[(2

Nb − 1)2/D], where D is the actual
end-to-end MSE distortion and Nb is the number of bits per pixel and per band (bpppb) of
the initial image. The bit-rate, expressed in bpppb, was measured on the actual bit stream
obtained with the JPEG2000 coder EBCOT (Taubman, 2000) and its PCRD optimizer applied
across components for optimal bit allocation. We used the Verification Model version 9.1
(VM9 (JPEG2000, 2001)) codec developed by the JPEG2000 group. The coefficients of A−1 (the
inverse matrix of the optimal spectral transform) and the mean of each component are stored
in the bitstream as float32 data (this costs 32(N + 1)/L bpppb). A difference exists between
the aimed bit-rate and the actual bit-rate obtained with the VM9. In our tests, this difference
does not exceed ± 0.001 bpppb and thus the precision of the PSNR is about ± 0.05 dB.

4 These images have been downloaded from the NASA web site http://aviris.jpl.nasa.gov/.
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7.2 Bit-rate versus distortion performances

In this subsection, we discuss and compare the bit-rate versus distortion performances of
different spectral transforms. Table 1 presents the bit-rate of different transforms versus the

PSNR (dB) MAD
bit-rate 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00

Moissac
Id 36.37 39.59 41.93 43.89 47.22 50.16 52.93 55.66 691 366 253 187 108 68 49 38
KLT 38.61 42.39 45.24 47.63 51.51 54.49 56.98 59.44 716 381 214 135 79 48 32 25
JADOST 38.54 42.30 45.14 47.52 51.39 54.42 56.98 59.47 700 357 298 137 79 46 31 24
OrthOST 38.67 42.50 45.35 47.72 51.55 54.55 57.11 59.60 818 399 229 145 78 47 33 24
OST 38.69 42.55 45.43 47.80 51.62 54.59 57.15 59.65 745 496 215 138 78 48 32 23

Port-de-Bouc
Id 30.36 33.68 36.14 38.25 41.93 45.27 48.43 51.52 1198 653 544 361 198 135 85 64
KLT 33.47 37.74 40.88 43.45 47.53 50.89 53.82 56.53 922 513 297 230 139 74 50 35
JADOST 33.26 37.56 40.73 43.32 47.47 50.91 53.93 56.68 922 504 324 256 135 75 52 32
OrthOST 33.42 37.80 41.05 43.71 47.90 51.31 54.28 56.99 885 513 305 237 122 77 51 31

OST 33.46 37.85 41.12 43.78 48.00 51.40 54.36 57.06 866 557 351 256 129 82 53 35
Vannes

Id 39.25 42.89 45.67 47.99 51.77 54.80 57.51 60.11 603 269 178 109 63 42 29 21
KLT 41.36 45.71 48.78 51.11 54.38 56.82 59.24 61.79 482 219 148 86 51 33 24 18
JADOST 41.83 46.15 49.16 51.42 54.61 57.09 59.53 62.06 368 214 134 84 48 29 24 19
OrthOST 41.90 46.27 49.29 51.54 54.71 57.18 59.62 62.16 354 190 135 91 46 30 25 18
OST 41.94 46.34 49.35 51.59 54.74 57.22 59.68 62.20 393 204 138 88 45 33 25 16

Strasbourg
Id 30.82 34.19 36.73 38.91 42.70 46.09 49.20 52.13 1357 877 546 353 205 118 86 60
KLT 32.51 36.59 39.77 42.49 46.99 50.58 53.51 56.08 1041 927 438 403 184 90 52 38

JADOST 32.47 36.51 39.65 42.33 46.78 50.36 53.33 55.92 1082 872 543 371 189 85 56 45
OrthOST 32.51 36.59 39.78 42.50 47.01 50.61 53.55 56.11 1010 948 449 404 178 87 50 38

OST 32.49 36.59 39.79 42.53 47.07 50.67 53.60 56.17 1149 904 455 289 162 81 55 42
Montpellier

Id 32.17 35.23 37.59 39.62 43.17 46.30 49.17 51.95 1216 630 406 292 168 117 77 54
KLT 34.09 37.75 40.60 43.03 47.20 50.69 53.63 56.18 747 488 340 248 143 75 49 34
JADOST 34.09 37.72 40.55 42.99 47.15 50.62 53.55 56.13 782 501 323 245 124 81 51 36
OrthOST 34.08 37.90 40.92 43.46 47.72 51.16 54.01 56.55 681 454 338 255 127 68 47 32

OST 34.14 37.99 41.01 43.56 47.79 51.21 54.06 56.60 704 483 332 239 127 68 46 33
Perpignan

Id 33.71 36.90 39.34 41.43 45.04 48.17 51.04 53.78 984 526 332 230 158 89 62 42
KLT 36.51 40.44 43.29 45.60 49.33 52.36 54.99 57.52 726 435 245 172 84 54 41 29
JADOST 36.55 40.51 43.37 45.69 49.43 52.44 55.07 57.60 715 388 234 172 90 58 39 30
OrthOST 36.59 40.59 43.48 45.83 49.61 52.66 55.30 57.82 721 371 232 165 94 54 37 30
OST 36.60 40.60 43.49 45.84 49.62 52.67 55.32 57.85 645 383 292 164 94 55 38 28

Table 1. Bit-rate (in bpppb) versus PSNR (in dB) and versus MAD of different spectral
transforms on multispectral images (best results are bolded). The bit-rate was computed with
the VM9.

two distortions PSNR and MAD on six multispectral images and Tables 2 and 3 show the
bit-rate of different transforms versus the four distortions SNR (in dB), MAE, MAD and
MSA (expressed in degree ◦) on three hyperspectral images. All the 2-D DWT was applied
with five levels of decomposition. We observe the well-known fact that spectral transforms
perform significantly better than the identity matrix (i.e., no spectral transform), especially
for hyperspectral images. Indeed, on six multispectral images (see Table 1) the average gains
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SNR (dB) MAE
bit-rate 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 0.50 0.75 1.00 1.50 2.00 2.50 3.00

Moffett
Id 25.45 30.37 33.97 36.94 41.78 45.76 49.15 52.01 24.32 16.93 12.52 7.62 5.02 3.48 2.51
KLT 44.21 47.68 50.08 51.97 54.76 57.10 59.21 61.04 3.83 3.03 2.49 1.82 1.39 1.07 0.85
JADOST 45.13 48.39 50.70 52.50 55.17 57.47 59.53 61.30 3.54 2.83 2.35 1.74 1.33 1.03 0.82
OrthOST 45.31 48.57 50.87 52.61 55.28 57.57 59.62 61.37 3.47 2.78 2.32 1.72 1.31 1.02 0.81
OST 45.32 48.56 50.87 52.62 55.30 57.64 59.77 61.63 3.47 2.78 2.32 1.72 1.30 1.00 0.79

Cuprite
Id 29.99 33.48 36.12 38.41 42.44 45.99 49.19 52.11 26.07 19.85 15.60 10.13 6.89 4.83 3.47
KLT 47.79 50.46 52.55 54.16 56.76 59.07 61.26 63.27 3.96 3.23 2.73 2.04 1.55 1.19 0.92
JADOST 48.22 50.85 52.86 54.42 56.97 59.27 61.44 63.43 3.80 3.13 2.65 1.99 1.51 1.16 0.90
OrthOST 48.25 50.88 52.89 54.44 56.99 59.29 61.46 63.44 3.79 3.12 2.65 1.98 1.51 1.16 0.90
OST 48.26 50.89 52.89 54.44 57.01 59.34 61.56 63.60 3.79 3.12 2.65 1.98 1.50 1.14 0.88

Jasper
Id 21.34 24.83 27.56 29.92 34.01 37.67 41.09 44.33 64.84 34.39 26.82 17.23 11.52 7.89 5.49
KLT 42.93 46.49 48.61 50.37 53.18 55.56 57.72 59.66 4.04 3.27 2.72 1.99 1.51 1.16 0.91
JADOST 43.56 46.89 48.97 50.67 53.43 55.78 57.91 59.83 3.87 3.15 2.63 1.94 1.47 1.13 0.89
OrthOST 43.66 46.94 49.02 50.73 53.47 55.81 57.94 59.85 3.85 3.13 2.62 1.93 1.46 1.13 0.88
OST 43.70 46.96 49.05 50.74 53.50 55.87 58.03 60.01 3.84 3.12 2.61 1.92 1.45 1.11 0.87

Table 2. Bit-rate (in bpppb) versus SNR (in dB) and versus MAE of different spectral
transforms on hyperspectral images. The bit-rate was computed with the VM9.

of the KLT, JADOST, OrthOST and OST on Identity are respectively 3.6 dB, 3.6 dB, 3.8 dB and
3.8 dB. On three hyperspectral images (see Table 2) the average gains of the KLT, JADOST,
OrthOST and OST on Identity are respectively 15.9 dB, 16.3 dB, 16.3 dB and 16.4 dB. Moreover,
we can notice that the optimal transforms OrthOST and OST perform always a little better
than the KLT at medium and high bit-rates: on six multispectral (resp. three hyperspectral)
images the average gains of OrthOST and OST on KLT are about 0.23 dB and 0.28 dB (resp.
0.43 dB and 0.49 dB). On the multispectral images, we observed that JADOST performs
roughly as the KLT for MSE distortion, sometimes slightly better, sometimes slightly worse, at
any rate. On six images, the average gain of JADOST on the KLT is negligible (about 0.02 dB)
at medium and high bit-rates (from 0.25 to 3 bpppb), whereas the average gain of OrthOST on
JADOST is about 0.21 dB at the same rates. Nevertheless, on hyperspectral images, JADOST
performs slightly but significantly better than the KLT for the four distortions tested at
medium and high bit-rates (see Tables 2 and 3) and nearly reaches the OrthOST scores with a
significantly lower computational complexity. The average gain of JADOST on the KLT (resp.
OrthOST on JADOST) is 0.37 dB (resp. 0.07 dB) on the range [0.25 bpppb , 3 bpppb]. Further,
we can remark that there is an insignificant difference of performances between OrthOST and
OST. This can be explained by the fact that transforms minimizing the criterion (16) must have
a small value for CO(A), i.e., they must be close to orthogonality (see Remark 5). Therefore
there is no advantage to use OST rather than the orthogonal transform OrthOST. In examining
the MAD distortion we observe that on the multispectral images tested, at medium bit-rates
(i.e. between 0.25 and 1.5 bpppb), OrthOST performs worse than the KLT (see Table 1). On
the other hand, on the three hyperspectral (AVIRIS) images tested, for all the distortions
measured, at medium and high bit-rates, JADOST and OrthOST perform always better than
the KLT (see Tables 2 and 3). This is a nice finding, since the optimality of OrthOST is justified
only for the MSE distortion and at high bit-rates.
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MSA (◦) MAD
bit-rate 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00

Moffett
Id 12.12 6.82 3.94 2.66 1.29 0.85 0.52 0.36 1676 781 492 1259 183 62 32 20
KLT 1.43 0.87 0.57 0.37 0.20 0.15 0.12 0.10 392 211 119 67 24 14 8 7
JADOST 1.15 0.59 0.42 0.27 0.19 0.14 0.11 0.09 279 120 67 44 18 12 8 6

OrthOST 0.96 0.47 0.31 0.25 0.18 0.14 0.11 0.09 261 77 49 33 18 10 8 6

OST 0.86 0.50 0.32 0.25 0.18 0.14 0.11 0.09 207 101 46 37 19 12 7 6

Cuprite
Id 5.30 2.81 2.20 1.57 1.01 0.59 0.40 0.26 659 360 253 185 110 62 61 40
KLT 0.42 0.25 0.22 0.15 0.12 0.08 0.07 0.06 154 135 100 54 26 16 10 8
JADOST 0.33 0.25 0.16 0.14 0.10 0.08 0.07 0.05 112 109 61 39 20 11 9 7

OrthOST 0.32 0.25 0.17 0.14 0.10 0.08 0.07 0.05 113 110 61 37 22 11 9 7

OST 0.35 0.24 0.16 0.14 0.10 0.08 0.07 0.05 113 109 58 42 17 11 9 7

Jasper
Id 18.20 12.53 7.88 5.70 3.87 2.14 1.41 1.01 1907 1220 732 559 241 160 84 55
KLT 0.91 0.53 0.43 0.34 0.26 0.20 0.15 0.12 225 151 82 57 30 15 10 7
JADOST 0.87 0.51 0.44 0.33 0.24 0.19 0.15 0.12 157 91 56 51 20 11 9 7
OrthOST 0.83 0.51 0.40 0.33 0.24 0.19 0.15 0.12 157 84 46 34 23 13 9 7
OST 0.79 0.51 0.41 0.32 0.24 0.18 0.14 0.11 156 86 48 34 22 14 8 6

Table 3. Bit-rate (in bpppb) versus MSA (in degree ◦) and versus MAD of different spectral
transforms on hyperspectral images for the separable scheme. The bit-rate was computed
with the VM9.

As already mentioned, the main drawback of the OrthOSTs returned by JADO and OrthOST

algorithms is their heavy computational costs. In the next section we introduce quasi-optimal
orthogonal spectral transforms.

8. Performances of exogenous quasi-optimal spectral transforms

8.1 Exogenous quasi-optimal spectral transforms

When one gets a set of images coming from one (and only one) spectrometer sensor, it is
possible to compute an exogenous OrthOST from a learning basis extracted from this set.
Generally, images from one spectrometer have the same number of bands and the same
number of rows. However, the number of columns may vary. To compute an exogenous
OrthOST, we first split the set of all images in two disconnected sets, one consisting of several
images and which becomes the learning basis L, the other constituted of the remaining images
and which becomes the test subset. Then, all the images of the learning basis are connected
band per band and row per row to construct a single virtual large image X having the same
numbers of bands and rows as any image from the spectrometer and a large number of
columns. This image is used as input of the OrthOST algorithm described in (Akam Bita
et al., 2010a) and the output is the exogenous OrthOST associated with the learning basis L.
The exogenous KLT and exogenous JADOST are calculated similarly.

8.2 Performance comparison between exogenous and non exogenous OrthOSTs

In our tests, we used 10 images5 (shown in Figure 3) from the imaging spectrometer MERIS
on-board the satellite ENVISAT. This fifteen spectral bands spectrometer operates in the solar

5 The images were acquired via the Data Disseminated System (http://dwlinkdvb.esrin.esa.it/DDS/)
thanks to ESA/ESRIN.
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Fig. 3. Fifth component (corresponding approximately to the band [555 nm, 565 nm]) of the
hyperspectral images MERIS, numbered 1–4, 6, 8, 10, 13, 15–16, from left to right

reflective spectral range of visible and near infrared light. Each band has a programmable
width and a programmable location in the 390 nm to 1040 nm spectral range. As mentioned
in (MERIS, 2006) the instrument scans the Earth’s surface by the push-broom method, CCD
arrays provide spatial sampling in the across-track direction, while the satellite’s motion
provides scanning in the along-track direction. The scene is imaged simultaneously across
the entire spectral range, through a dispersing system, onto the CCD array. Therefore there
is no problem of deregistration on the MERIS images. The ten images of our tests have all
the same dimensions: Nr = 128, Nc = 1121 and N = 15. They are originally coded on
Nb = 16 bpppb and they were acquired with the same fifteen spectral bands. To construct
exogenous KLT and exogenous OrthOST, we split the ten MERIS images in two disconnected
sets, one constituted of seven images (the learning basis), the other constituted of the three
remaining images (the test subset). We considered 13 various learning bases, denoted Li

(1 ≤ i ≤ 13) which are presented in Table 4. The bit-rate is computed with the Verification
Model version 9 (VM9 (JPEG2000, 2001)). Note that the exogenous transforms are fixed (i.e.,
they do not adapt to the encoded image), hence they are known by the decoder and have not
to be transmitted. However, in the lossy compression results given in Table 5 with the VM9,
the inverse of the spectral transform is coded in the bit-stream (it costs less than 0.001 bpppb).
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L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13

Meris1 × × × × × × × × ×
Meris2 × × × × × × × × ×
Meris3 × × × × × × × × ×
Meris4 × × × × × × × × × ×
Meris6 × × × × × × × × ×
Meris8 × × × × × × × × ×
Meris10 × × × × × × × × ×
Meris13 × × × × × × × × ×
Meris15 × × × × × × × × ×
Meris16 × × × × × × × × ×

Table 4. Various learning bases, denoted Li (1 ≤ i ≤ 13) and constituted of seven MERIS
images each

In Table 5 we present the performances obtained with two images when the learning basis
varies. Among all the tests we made, we chose to show the best and worst cases obtained
with an exogenous OrthOST. For this, the PSNR of a spectral transform is compared to that
obtained with the KLT by subtracting, and we considered that difference of PSNR at 1 bpppb.
The best and worst cases correspond respectively to the tested images MERIS2 and MERIS8.
We can see that for MERIS2, the exogenous OrthOST performs significantly better than the
KLT at all rates for both MSE and MAE global distortions. Whereas for both MAD and
MSA local distortions, exogenous OrthOST and KLT have roughly the same performance, the
winner depending on the bit-rate. A more interesting result is the worst case: at bit-rates
not greater than 1 bpppb, the worst exogenous OrthOST performs worse than the worst
exogenous KLT and this trend is reversed for bit-rates larger than 1.0 dB. Moreover, the loss
of PSNR compared to the KLT is 4.3 dB at 1 bpppb, however, the difference of PSNR between
the KLT and identity (i.e., no spectral transform) is particularly high here (30 dB). For the
other eight tested images, the loss of PSNR of the worst exogenous OrthOST with respect to
the KLT, is not greater that 2.5 dB, at all bit-rates. Moreover, it is always smaller than the loss
of PSNR of the best exogenous KLT with respect to the KLT. An example is shown in Fig. 4,
where the bit-rate is computed either with the VM9 or the Bit Plane Encoder (BPE) (CCSDS-1,
2007) recommended by the CCSDS (Yeh et al., 2005). In order to compute the bit-rate with
the BPE, we proceeded as follows: first, for each transformed component we computed a few
hundred points of the graph that links mean square error to bit-rate, then we applied the
algorithm by Shoham and Gersho (Shoham & Gersho, 1988) to optimally allocate distortions
between components for given maximal total bit-rates.
In average on the 10 images, the loss of PSNR of the worst exogenous OrthOST with respect
to the KLT is significantly smaller than the one of the best exogenous KLT (see Table 6). It
is no longer the case for exogenous JADOST. We observed the importance of the learning
basis, whose influence can range from 0 dB to −4 dB. In other words, when the learning basis
is well chosen (depending on the scene and not only on the spectrometer), one can expect
a loss of PSNR of an exogenous OrthOST with respect to the KLT not greater than 0.4 dB.
Whereas, when it is badly chosen, the same loss of PSNR should be limited to 4 dB. However,
these values are only indicative and should not be considered definitive, because they were
obtained on a set of 10 MERIS images, which was not proven to be statistically significant.
We observed good performances of exogenous OrthOST used with the VM9 and in (Akam Bita
et al., 2010c) the authors observed that, associated with the BPE and the optimal bit allocation
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PSNR (dB) MAD

bit-rate 0.25 0.50 0.75 1.00 1.50 2.00 3.00 0.25 0.50 0.75 1.00 1.50 2.00 3.00

MERIS2

Id 39.40 42.13 44.20 45.99 49.22 52.26 58.26 5878 3271 2369 2226 1258 850 443

KLT 54.87 63.81 69.60 73.66 79.29 83.02 88.39 1407 564 229 140 65 27 13

JADOST 55.65 65.04 70.53 74.49 80.02 83.66 88.92 1309 465 197 134 56 26 13

OrthOST 55.65 65.41 71.15 75.23 80.66 84.17 89.33 1354 397 189 119 48 22 12

exo3_KLT 54.11 62.36 67.79 71.85 77.77 81.86 87.53 1392 511 256 159 72 37 16

exo3_JADOST 55.11 64.01 69.53 73.46 78.82 82.78 88.23 1313 434 228 121 191 37 15

exo3_OrthOST 55.35 64.48 70.15 74.18 79.71 83.40 88.72 1267 476 240 134 53 28 13

exo5_KLT 54.08 62.37 67.89 72.04 78.05 82.11 87.69 1326 536 325 154 68 41 15

exo5_JADOST 55.12 64.01 69.54 73.48 79.08 82.88 88.30 1289 398 228 117 58 28 13

exo5_OrthOST 55.36 64.46 70.11 74.13 79.70 83.42 88.74 1314 497 257 134 49 26 12

exo7_KLT 54.69 62.92 68.09 72.00 77.79 81.84 87.52 1226 602 265 183 66 43 16

exo7_JADOST 55.22 63.97 69.14 72.88 78.32 82.26 87.86 1236 524 244 165 64 39 14

exo7_OrthOST 55.61 64.94 70.32 74.18 79.57 83.25 88.60 1418 504 238 128 56 28 13

exo12_KLT 54.13 62.37 67.83 71.95 77.99 82.07 87.66 1432 513 312 152 68 42 15

exo12_JADOST 55.13 64.02 69.54 73.50 79.08 82.87 88.30 1289 435 258 136 52 30 14

exo12_OrthOST 55.35 64.48 70.14 74.15 79.72 83.42 88.73 1305 481 221 139 47 30 13

MERIS8

Id 35.22 38.02 40.17 42.11 45.67 49.06 55.71 9723 5652 4123 3068 2050 1313 626

KLT 53.85 62.69 68.09 72.11 77.71 81.48 87.18 2638 1192 411 228 87 37 17

JADOST 54.21 63.68 69.39 73.44 78.83 82.35 87.91 2838 709 262 148 50 31 15

OrthOST 54.2 63.86 69.61 73.7 79.07 82.58 88.12 2773 705 305 130 51 26 15

exo2_KLT 52.22 59.49 64.16 68 73.95 78.34 84.79 3501 1504 608 400 149 51 24

exo2_JADOST 51.19 58.64 63.66 67.83 73.93 78.83 85.2 3536 1608 646 321 501 59 21

exo2_OrthOST 50.54 58.19 63.46 67.8 74.39 78.95 85.29 3446 1471 592 326 133 46 20

exo6_KLT 52.62 59.99 64.57 68.16 73.81 78.24 84.77 2813 973 471 255 115 59 23

exo6_JADOST 52.3 59.46 63.86 67.4 73.16 77.43 84.44 2670 1077 547 312 138 229 23

exo6_OrthOST 51.57 59.7 64.95 68.96 75.01 79.36 85.6 2871 1195 482 290 91 51 20

exo7_KLT 52.49 59.68 64.18 67.83 73.63 78.06 84.59 2887 1013 469 287 126 70 23

exo7_JADOST 52.28 59.45 63.85 67.44 73.31 77.92 84.6 2689 980 543 328 135 70 22

exo7_OrthOST 51.71 59.29 64.16 68.03 74.14 78.69 85.11 2768 1147 451 326 115 51 22

exo11_KLT 52.56 59.87 64.43 68.06 73.76 78.16 84.67 2885 876 459 255 104 68 24

exo11_JADOST 52.28 59.49 63.94 67.6 73.49 78.08 84.7 2610 961 525 290 126 67 23

exo11_OrthOST 51.89 59.59 64.64 68.73 75.01 79.44 85.68 2909 1130 441 346 131 47 19

MSA (in ◦ ) MAE
MERIS2

Id 34.94 24.67 19.57 14.91 10.70 8.05 4.37 503.5 377.8 302.7 248.5 173.7 123.3 62.17

KLT 8.63 2.91 1.62 1.36 0.42 0.23 0.14 87.50 31.02 15.88 10.03 5.41 3.58 1.93

JADOST 10.41 2.66 1.54 0.83 0.38 0.22 0.11 80.46 27.18 14.45 9.22 4.99 3.33 1.82

OrthOST 9.47 2.55 1.57 1.07 0.44 0.21 0.11 80.22 25.87 13.43 8.48 4.65 3.15 1.73

exo3_KLT 10.26 4.19 2.05 1.16 0.54 0.28 0.13 95.35 36.85 19.79 12.44 6.43 4.09 2.13

exo3_JADOST 8.42 3.33 1.75 1.19 0.51 0.30 0.13 85.27 30.56 16.17 10.35 5.66 3.69 1.97

exo3_OrthOST 9.07 3.27 1.63 1.10 0.38 0.25 0.11 83.01 28.91 15.06 9.52 5.17 3.44 1.86

exo5_KLT 10.12 3.89 2.06 1.38 0.54 0.30 0.13 95.60 36.72 19.50 12.18 6.24 3.98 2.10

exo5_JADOST 8.61 3.59 1.96 1.00 0.49 0.28 0.12 85.21 30.49 16.12 10.31 5.55 3.64 1.95

exo5_OrthOST 9.03 3.25 1.49 1.08 0.41 0.24 0.12 82.71 28.94 15.10 9.56 5.18 3.43 1.86

exo7_KLT 8.59 3.79 1.89 1.37 0.53 0.32 0.13 89.55 34.46 19.04 12.20 6.40 4.10 2.14

exo7_JADOST 9.72 2.95 1.67 1.29 0.47 0.27 0.13 84.59 30.68 16.86 11.01 6.03 3.91 2.06

exo7_OrthOST 10.33 2.78 1.56 0.90 0.43 0.24 0.12 80.62 27.32 14.70 9.49 5.24 3.49 1.89

exo12_KLT 9.41 4.17 2.46 1.23 0.54 0.29 0.13 95.20 36.77 19.67 12.30 6.28 3.99 2.10

exo12_JADOST 8.45 3.23 1.89 1.25 0.45 0.26 0.13 85.00 30.51 16.15 10.30 5.55 3.65 1.95

exo12_OrthOST 8.97 3.20 1.57 1.25 0.39 0.26 0.12 82.91 28.88 15.07 9.54 5.17 3.43 1.86

MERIS8

Id 35.69 29.24 28.75 19.75 15.56 10.93 6.22 796.1 584.5 461.4 373.3 250.6 170.83 80.01

KLT 8.34 2.81 1.54 1.02 0.5 0.28 0.14 95.77 33.84 18.52 11.93 6.47 4.25 2.22

JADOST 8.39 2.28 1.29 0.74 0.36 0.24 0.13 92.49 30.45 16.06 10.28 5.71 3.86 2.04

OrthOST 7.71 2.96 1.25 0.77 0.36 0.25 0.11 92.67 29.82 15.68 10.02 5.56 3.76 1.99

exo2_KLT 8.2 3.92 2.53 1.5 0.63 0.34 0.17 113.61 46.49 27.87 18.44 9.75 6.04 2.93

exo2_JADOST 10.53 4.81 3.14 1.44 0.68 0.39 0.17 128.47 52.80 29.90 18.97 9.61 5.71 2.79

exo2_OrthOST 12.27 4.97 2.61 1.53 0.81 0.34 0.16 138.68 56.09 30.87 19.22 9.33 5.65 2.76

exo6_KLT 8.31 4.16 1.84 1.29 0.71 0.41 0.17 109.55 44.79 26.67 18.02 9.84 6.09 2.94

exo6_JADOST 8.75 4.22 2.17 1.46 0.85 0.45 0.18 113.05 46.89 28.35 19.25 10.47 6.55 3.05

exo6_OrthOST 10.18 3.47 1.87 1.24 0.55 0.35 0.17 123.22 47.09 25.79 16.51 8.67 5.39 2.67

exo7_KLT 8.84 3.97 2.06 1.35 0.71 0.46 0.19 110.39 45.8 27.74 18.67 10.06 6.21 3

exo7_JADOST 8.10 3.58 2.00 1.76 0.71 0.45 0.17 113.27 46.72 28.58 19.26 10.32 6.30 3.00

exo7_OrthOST 9.89 4.05 2.28 1.76 0.68 0.38 0.19 120.79 48.94 28.22 18.41 9.52 5.8 2.82

exo11_KLT 8.18 4.12 1.95 1.3 0.68 0.46 0.18 110.01 45.14 27.14 18.32 9.93 6.15 2.97

exo11_JADOST 8.93 3.42 2.07 1.69 0.70 0.38 0.19 113.56 46.76 28.29 18.97 10.13 6.20 2.96

exo11_OrthOST 9.8 4.25 1.97 1.56 0.6 0.33 0.15 118.26 47.54 27.19 17.15 8.69 5.34 2.64

Table 5. Bit-rate (in bpppb) vs PSNR (in dB), vs MAD, vs MSA and vs MAE of various
spectral transforms on two images. The exoi_KLT, exoi_JADOST and exoi_OrthOST
correspond respectively to exogenous KLT, JADOST and OrthOST computed with the
learning basis Li. The best (resp. worst) results of exogenous transforms at 1.0 bpppb are
bolded (resp. in italics).
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Fig. 4. PSNR (in dB) versus bit-rate (in bpppb) for various spectral transforms (KLT, JADOST
OrthOST and (left) best exogenous KLT, best exogenous JADOST, best exogenous OrthOST
or (right) worst exogenous KLT, worst exogenous JADOST, worst exogenous OrthOST). The
image is MERIS15 and the bit-rate is computed with first row: the VM9, second row: the BPE.

bit-rate (in bpppb) 0.25 0.50 0.75 1.00 1.50 2.00 3.00

mean (in dB) {PSNR(KLT)− worst exogenous PSNR(OrthOST)} 0.67 1.19 1.56 1.68 1.49 1.15 0.86

mean (in dB) {PSNR(KLT)− worst exogenous PSNR(JADOST)} 0.56 1.32 1.99 2.29 2.25 1.89 1.40

mean (in dB) {PSNR(KLT) − best exogenous PSNR(KLT)} 1.02 1.83 2.34 2.51 2.27 1.82 1.4

Table 6. Comparison of the averaged losses of PSNR with respect to the KLT for the worst
exogenous OrthOST, the worst exogenous JADOST and the best exogenous KLT. The worst
and best exogenous transforms are selected at 1.00 bpppb. The averages are computed on the
ten images.
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algorithm by Shoham and Gersho (Shoham & Gersho, 1988) for quantization and entropy
coding, exogenous OrthOST still performs well (see Fig. 4). However, the VM9 and the
Shoham and Gersho algorithm both have a too high computational complexity for a coder
on-board a satellite. In (Gutzwiller et al., 2009), the authors propose an extension to
multicomponent images of the well-known 2-D SPIHT encoder that has not the shortcoming
of a high computational cost for bit-rate allocation.

9. Conclusion

In this chapter, we have studied the problem of finding optimal spectral transforms associated
with fixed 2D discrete wavelet transforms in coding of multi- and hyper-spectral images, for
a compression scheme that is compatible with the JPEG2000 Part 2 standard. We clarified
the criterion that gives, when minimized, an optimal transform under high-rate entropy
constraint scalar quantization hypothesis and when one scalar quantizer per subband and per
component is applied. We showed the link between the criterion and the mutual information
contrast used in independent component analysis. We derived a criterion minimized by an
orthogonal optimal transform when the data are Gaussian. Then we gave three algorithms
that return the spectral transforms that minimize the JPEG2000 compatible criterion, two
under the constraint of orthogonality — one of which assuming Gaussian data — and the
third with no constraint, but invertibility. Finally, we have tested the optimal transforms
on satellite multi- and hyper-spectral images and found that for hyperspectral images the
orthogonal optimal transform OrthOST and JADOST performs a little better than the KLT
for four distortion measures that permit to evaluate the performances of the codec in
applications of hyperspectral images like classifications or target detections. However the
computational complexity of the optimal transform is too heavy for actual applications. Last
we have presented the exogenous orthogonal quasi-optimal spectral transforms, that have a
significantly smaller complexity, and their performances in lossy coding. In future works, we
will study the problem of designing optimal spectral filters (i.e. a convolutive rather than an
instantaneous mixture) in lossy compression of multi- and hyper-spectral images.
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