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Imitation Learning Based Talking Heads 
in Humanoid Robotics 

Enzo Mumolo and Massimiliano Nolich 
DEEI, Universitá  degli Studi di Trieste 

Italy

1. Introduction 

The main goal of this Chapter is to describe a novel approach for the control of Talking 
Heads in Humanoid Robotics. 
In a preliminary section we will discuss the state of the art of the research in this area. In the 
following sections we will describe our research results while in the final part some 
experimental results of our approach are reported. With the goal of controlling talking 
heads in mind, we have developed an algorithm which extracts articulatory features from 
human voice. In fact, there is a strong structural linkage between articulators and facial 
movements during human vocalization; for a robotic talking head to have human-like 
behavior, this linkage should be emulated. Exploiting the structural linkage, we used the 
estimated articulatory features to control the facial movements of a talking head. Moreover, 
the articulatory estimate is used to generate artificial speech which is - by construction - 
synchronized with the facial movements. 
Hence, the algorithm we describe aims at estimating the articulatory features from a spoken 
sentence using a novel computational model of human vocalization. Our articulatory 
features estimator uses a set of fuzzy rules and genetic optimization. That is, the places of 
articulation are considered as fuzzy sets whose degrees of membership are the values of the 
articulatory features. The fuzzy rules represent the relationships between places of 
articulation and speech acoustic parameters, and the genetic algorithm estimates the degrees 
of membership of the places of articulation according to an optimization criteria. Through 
the analysis of large amounts of natural speech, the algorithm has been used to learn the 
average places of articulation of all phonemes of a given speaker. 
This Chapter is based upon the work described in [1]. Instead of using known HMM based 
algorithms for extracting articulatory features, we developed a novel algorithm as an 
attempt to implement a model of human language acquisition in a robotic brain. Human 
infants, in fact, acquire language by imitation from their care-givers. Our algorithm is based 
on imitation learning as well. 
Nowadays, there is an increasing interest in service robotics. A service robot is a complex 
system which performs useful services with a certain degree of autonomy. Its intelligence 
emerges from the interaction between data gathered from the sensors and the management 
algorithms. The sensorial subsystem furnishes environment information useful for motion 
tasks (dead reckoning), auto-localization and obstacle avoidance in order to introduce 
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reactiveness and autonomy. Humanoid robotics has been introduced for enabling a robot to 
give better services. A humanoid, in fact, is a robot designed to work with humans as well 
as for them. It would be easier for a humanoid robot to interact with human beings because 
it is designed for that. Inevitably, humanoid robots tend to imitate somehow the form and 
the mechanical functions of the human body in order to emulate some simple aspects of the 
physical (i.e. movement), cognitive (i.e. understanding) and social (i.e. communication, 
language production) capabilities of the human beings. A very important area in humanoid 
robotics is the interaction with human beings, as reported in [2]. Reference [2] describes the 
Cog project at MIT and the related Kismet project which have been developed under the 
hypothesis that humanoid intelligence requires humanoid interactions with the world. In this 
chapter we deal with human-humanoid interaction by spoken language and visual cues, i.e. 
with talking heads in humanoid robotics. In fact, human-like artificial talking heads can 
increase a person's willingness to collaborate with a robot and helps create the social aspects 
of the human-humanoid relationship. The long term goal of the research in talking heads for 
a humanoid is to develop an artificial device which mechanically emulates the human 
phonatory organs (i.e. tongue, glottis, jaw) such that unrestricted natural sounding speech is 
generated. The device will be eventually contained in an elastic envelop which should 
resemble and move as a human face. Several problems have to be addressed towards this 
goal. First of all the complex phenomena in the human vocal organs should be mechanically 
emulated to produce a good artificial speech. Second, the control of the mechanical organs 
must be temporally congruent with human vocalization and this can be very complex to 
manage. The result is that at the state of the art the quality obtained with mechanical devices 
is only preliminar, yet interesting. For these reasons, and waiting that the mechanical talking 
heads reach a sufficient quality, we just emulate a talking head in a graphical way while the 
artificial speech is algorithmically generated. 
It is worth emphasizing now the objective of this Chapter, which is the description of a novel 
algorithm to the control of a humanoid talking head and to show some related experimental results. 
This means that we estimate a given set of articulatory features to control the articulatory organs of a 
humanoid head, either virtual or mechanical. Two applications are briefly described: first, a system 
which mimicry human voice and, second, a system that produces robotic voice from unrestricted text, 
both of them with the corresponding facial movements.
Although almost all the animals have voices, only human beings are able to use words as 
mean of verbal communication. As a matter of fact, voice and the related facial movements 
are the most important and effective method of communication in our society. Human 
beings acquire control methods of their vocal organs with an auditory feedback mechanism 
by repeating trials and errors of hearing and uttering sounds. Humans easily communicate 
each other using vocal languages. Robotic language production for humanoids is much 
more difficult. At least three main problems must be solved. First, concepts must be 
transformed into written phrases. Second, the written text must be turned into a phonemic 
representation and, third, an artificial utterance must be obtained from the phonemic 
representation. The former point requires that the robot is aware of its situational context. 
The second point means that graphemic to phonemic transformation is made while the 
latter point is related to actual synthesis of the artificial speech. 
Some researchers are attempting to reproduce vocal messages using mechanical devices. For 
instance, at Waseda University researchers are developing mechanical speech production 
systems for talking robots called WT-1 to WT-5, as reported in [3, 4, 5, 6, 7, 8, 9, 10, 11]. The 
authors reported that they can generate Japanese vowels and consonants (stops, fricatives 
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and nasal sounds) reasonably clearly, although not all the utterances sound natural yet. On 
the other hand, the researchers of the robot Kismet [12] are expanding their research efforts 
on naturalness and perception of humanness in robots. An important step toward talking 
heads development is to estimate accurate vocal tract dynamic parameters during 
phonation. It is known, in fact, that there is a very high correlation between the vocal tract 
dynamic and the facial motion behavior, as pointed out by Yehia et al. [13]. For a mechanical 
talking robot, the artificial head should have human like movements during spoken 
language production by the robot, provided that the artificial head is tied to the vocal tract 
by means of some sort of elastic joint. In any case, the mechanical vocal tract should be 
dynamically controlled to produce spoken language. This requires enough knowledge of the 
complex relations governing the human vocalization. Until now, however, there has been no 
comprehensive research on the speech control system in the brain, and thus, speech 
production is still not clearly understood. This type of knowledge is pertaining to 
articulatory synthesis, which includes the methods to generate speech from dynamic 
configuration of the vocal tract (articulatory trajectory). 
Our algorithm is based on imitation learning, i.e. it acquires a vocalization capability in a 
way similar to human development; in fact, human infants learn to speak through 
interaction by imitation with their care-givers. In other words, the algorithm tries to mimic 
some input speech according to a distance measure and, in this way, the articulatory 
characteristics of the speaker who trained the system are learned. From this time on, the 
system can synthesize unrestricted text using the articulatory characteristics estimated from 
a human speaker. The same articulatory characteristics are used to control facial movements 
using the correlation between them. When implemented on a robot, the audio-synchronized 
virtual talking head give people the sense that the robot is talking to them. As compared to 
other studies, our system is more versatile, as it can be easily adapted to different languages 
provided that some phonetic knowledge of that language is available. Moreover, our system 
uses an analysis-by-synthesis parameter estimation and it therefore makes available an 
artificial replica of the input speech which can be useful in some circumstances. 
The rest of this chapter is organized as follows. In Section 2 some previous work in 
graphical and mechanical talking heads is briefly discussed. In Section 3 the imitation 
learning algorithm based on fuzzy model of speech is presented, and the genetic 
optimization of articulatory parameters is discussed. In Section 4 some experimental results 
are presented; convergence issues, acoustical and articulatory results are reported. In this 
Section also some results in talking head animation are reported. Finally, in Section 5 some 
final remarks are reported. 

2. Previous work on talking heads 

The development of facial models and of virtual talking heads has a quite long history. The 
first facial model was created by F.Parke in 1972 [14]. The same author in 1974 [15] produced 
an animation demonstrating that a single model would allow representation of many 
expressions through interpolated transitions between them. After this pioneer work, facial 
models evolved rapidly into talking heads, where artificial speech is generated in synchrony 
with animated faces. Such developments were pertaining to the human-computer 
interaction field, where the possibility to have an intelligent desktop agent to interact with, a 
virtual friend or a virtual character for interacting with the web attracted some attention. As 
regards these last points, Lundeberg and Beskow in [16] describe the creation of a talking 
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head for the purpose of acting as an interactive agent in their dialogue system. The purpose 
of their dialogue system is to answer questions on chosen topics using a rich repertoire of 
gestures and expressions, including emotional cues, turntalking signals and prosodic cues 
such as punctuators and emphasisers. Studies of user reactions indicated that people had a 
positive attitude towards the agent. The FAQBot describes in [17] a talking head which 
answers questions based on the topics of FAQs. The user types in a question, the FAQBot's 
AI matches an answer to the question, and the talking head speaks, providing the answer to 
the user. 
Other applications of talking head have been envisaged in many other field, such as the im-
provement of language skills, education and entertainment as reported in [18]. As regards 
entertainment, interactive input devices (e.g. Facial Animation, instrumented body suits, 
data gloves and videobased motion-tracking systems) are often used to drive the animation. 
In [19, 20] approaches for acquiring the expressions of the face of a live actor, and to use that 
information to control facial animation are described. Also the MIT Media Laboratory 
Perceptual Computing Section has developed systems that allow realtime tracking and 
recognition of facial expressions as reported in [21, 22]. 
The field of assistive technology has been also explored: in [23] a set of tools and 
technologies built around an animated talking head to be used in daily classroom activities 
with profoundly deaf children has been described. The students enters commands using 
speech, keyboard and mouse while the talking head responds using animated face and 
speech synthesis. On the other hand, if accurate face movements are produced from an 
acoustic vocal message uttered by a human, important possibilities of improving a 
telephone conversation with added visual information for people with impaired hearing 
conversation are introduced [24]. 

2.1 Social implication of a talking head in humanoid robotics 

A brief description of social implication of talking heads is worth of because many current 
research activities are dealing with that. Socially-situated learning tutors with robot-directed 
speech is discussed in [25]. The robot’s affective state and its behavior are influenced by 
means of verbal communication with a human care-giver via the extraction of particular 
cues typical of infant-directed speech as described in [26]. Varshavskaya in [27] dealt with 
the problem of early concept and vocal label acquisition in a sociable robot. The goal of its 
system was to generate "the kind of vocal output that a prelinguistic infant may produce in 
the age range between 10 and 12 months, namely emotive grunts, canonical babblings, and a 
formulaic proto-language". The synthesis of a robotic proto-language through interaction of 
a robot either with human or a robotic teacher was also investigated in [28]. 
Other authors (for example [29, 30, 31, 32]) have investigated the underlying mechanisms of 
social intelligence that will allow it to communicate with human beings and participate in 
human social activities. In [33] it was described the development of an infant-like humanoid 
robot (Infanoid) for situating a robot in an environment equivalent to that experienced by a 
human infant. This robot has a human-like sensori-motor systems, to interacts with its 
environment in the same way as humans do, implicitly sharing its experience with human 
interlocutors, sharing with humans the same environment [32]. Of course, talking heads 
have a very important role in this developments. 
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2.2 Graphical talking heads 

In achieving the above goals, facial animation synthesis often takes two approaches: 3D 
mesh based geometry deformations and 2D image manipulations. In a typical 3D mesh 
approach, a mesh model is prepared which contains all the parameters necessary for the 
subsequent animations. Noh and Neumann describe in [34] several issues of graphical 
talking heads. The model is animated by mesh node displacements based on motion rules 
specified by deformation engine such as vector muscles [35, 36], spring muscles [37, 38], free 
form deformations [39], volume morphing [40], or simple interpolation [41]. If only the 
frontal movements are required, like in application based on mouth animation only, a 2D 
image-based approach is sufficient. 2D based approaches are also attractive for lip reading. 
Ezzat et al. described in [42] a text to audiovisual translator using image warping and 
morphing between two viseme images. Gao et al. described in [43] new mouth shapes by 
linear combinations of several base images. Koufakis et al. describe in [44] how to use three 
basis images captured from different views and synthesize slightly rotated views of the face 
by linear combination of these basis images. Cosatto et al. in [45] describe their algorithm 
based on collecting various image samples of a segmented face and parameterize them to 
synthesize a talking face. By modeling different parts of the face from different sample 
segments, synthesized talking faces also exhibit emotions from eye and eyebrow movements 
and forehead wrinkles. Methods that exploit a collection of existing sample images must 
search their database for the most appropriate segments to produce a needed animation. 
Other work, in particular that described in [43, 44, 46] used Mesh based texture mapping 
techniques. Such techniques are advantageous because warping is computed for relatively 
few control points. 
Finally, there have been attempts to apply Radial Basis Functions (RBF) to create facial 
expressions. In [47] one of these approaches is described. Most approaches warped a single 
image to deform the face. However, the quality obtained from a single image deformation 
drops as more and more distortions are required. Also, single images lack information 
exposed during animation, e.g., mouth opening. Approaches without RBF using only single 
images have similar pitfalls. 

2.3 Mechanical talking heads in humanoid robotic 

When applied to a robot, mechanical talking heads give people a compelling sense that the 
robot is talking to them at a higher level as compared to virtual ones. At Waseda University 
the talking robots WT-1 to WT-5 [3, 4, 5, 6, 7, 8, 9, 10, 11] have been reported to the scientific 
community starting from 2000. The WT1 to 5 talking heads have been developed for 
generated human vocal movements and some human-like natural voices. For emulating the 
human vocalization capability, these robots share human-like organs as lungs, vocal cords, 
tongue, lips, teeth, nasal cavity and soft palate. The robots have increasing features, as an 
increasing number of degree of freedom (DOF) and the ability to produce some human-like 
natural voices. The anthropomorphic features were further improved in WT-4 and WT-5. 
WT-4 had a human-like body to make the communication with a human more easily, and 
has an increased number of DOF. This robot aimed to mimic continuous human speech 
sounds by auditory feedback by controlling the trajectory and timing. The mechanical lips 
and vocal cords of WT-5 have similar size and biomechanical structure as humans. As a 
result, WT-5 could produce Japanese vowels and consonant sounds (stops, fricatives and 
nasals) of 50 Japanese sounds for human-like speech production. Also at Kagawa University 
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researchers dealt with talking heads from about the same years [48, 49, 50, 51]. They 
developed and improved mechanical devices for the construction of advanced human vocal 
systems with the goals to mimicry human vocalization and for singing voice production. 
They also developed systems for open and closed loop auditory control. 

3. An algorithm for the control of a talking head using imitation learning 

The block diagram of the algorithm described in this paper is reported in Fig. 1. According 
to the block diagram, we now summarize the actions of the algorithm. 

Figure 1. Block diagram of the genetic-fuzzy imitation learning algorithm 

First, the operator is asked to pronounce a given word; the word is automatically selected 
from a vocabulary defined to cover all the phonemes of the considered language. Phonemes 
are described through the 'Locus Theory' [52]. 
In particular, the transition between two phonemes is described using only the target one. 
For example we do not consider that in the transition, say, 'no', the phoneme /o/ comes 
from the phoneme /n/ but only an average target configuration of phoneme /o/ is 
considered. 

Figure 2. Membership degrees of phoneme transitions coming from 'any' phoneme. The 
membership degrees for the utterance 'no' are shown. 

Each phoneme is therefore described in terms of articulatory as described in Fig. 2. The 
number corresponding to the articulatory feature is the degree of membership of that 
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feature. These degrees of membership are obtained through genetic optimization, as 
described shortly. For example, in Fig. 3 a string of membership values for the utterance 
/no/ obtained with genetic optimization is reported. 

Figure 3. String of membership degrees for the utterance 'no' 

To summarize, the learning mechanism of the articulatory parameters works as follows: the 
operator, acting as care-giver, pronounces a word and the robot generates an artificial 
replica of the word based on the articulatory and acoustic estimation. This process iterates 
until the artificial word matches the original one according to the operator's judgement. At 
this point the robot has learnt the articulatory movements of the phoneme contained in the 
word. The operator must repeat this process for a number of words. After these phases, the 
speech learning process is completed. 
The synthesis of the output speech is performed using a reduced Klatt formant synthesizer 
[53], whose block diagram is represented in Fig. 4. 

Figure 4. Simplified Klatt model used in this work 

Figure 5. Acoustic parameters of a vowel sound for the first 20 ms 

This system is basically composed by a parallel filter bank for the vocal tract modeling for 
unvoiced sounds and a cascade of filters for the vocal tract modeling for voiced sounds. It is 
controlled by fifteen parameters, namely the first three formants and bandwidths, the 
bypass AB, the amplitude AV for voiced sounds and the amplitudes AF, AH and A2F-A6F 
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for the fricative noise generator, updated every 5 ms. For instance, in Fig. 5 we report the 
parameters of a vowel sound in the very first interval, 20 ms long. 
Since the fuzzy rules, however, describe the locus of the acoustical parameters, a model of 
the parameters profiles has been introduced. The profile of each synthesis parameter 'p' is 
described with four control features, namely the initial and final intervals I(p) and F(p), the 
duration D(p) and the locus L(p), as reported Fig. 6. 

Figure 6. Synthesis parameters profiling in terms of Initial, Final, Duration and Locus fuzzy 
variables, I(p), F(p), D(p) and L(p), respectively 

The I(p) control feature determines the length of the starting section of the transition, whose 
slope and target values are given by the D(p) and L(p) features.  The parameter holds the 
value specified by their locus for an interval equal to F(p) ms; however, if other parameters 
have not completed their dynamic, the final interval F(p) is prolonged. The I(p), F(p), and 
D(p) parameters are expressed in milliseconds, while the target depends on what synthesis 
control parameter is involved; for example, for frequencies and bandwidths the locus is 
expressed in Hz, while for amplitudes in dB. It is worth noting that the initial values of the 
transition depend on the previous target values. 

3.1 Phoneme and Control Parameters Fuzzification 

As mentioned above, the phonemes are classified into broad classes by means of the manner 
of articulation; then, the place of articulation is estimated by genetic optimization. Therefore, 
each phoneme is described by an array of nineteen articulatory features, six of them are 
boolean variables and represent the manner of articulation and the remaining thirteen are 
fuzzy and represent the place of articulation. 
Representing the array of features as (vowel, plosive, fricative, affricate, liquid, nasal | any, 
rounded, open, anterior, voiced, bilabial, labiodental, alveolar, prepalatal, palatal, vibrant, 
dental, velar), the /a/ phoneme, for example, can be represented by the array: 

[1,0, 0, 0,0,0|1, 0.32,0.9, 0.12,1,0,0,0, 0, 0,0,0,0] 

indicating that /a/ is a vowel, with a degree of opening of 0.9, of rounding of 0.32, and it is 
anterior at a 0.12 degree. The /b/ phoneme, on the other hand, can be considered a plosive 
sonorant phoneme, bilabial and slightly velar, and therefore it can be represented by the 
following array: 

[0,1, 0, 0,0,0|1, 0,0,0,0.8, 0.9,0, 0, 0,0,0,0, 0.2]. 

The arrays reported as an example have been partitioned for indicating the boolean and the 
fuzzy fields respectively. Such arrays, defined for each phoneme, are the membership values 
of the fuzzy places of articulation of the phonemes. 
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On the other hand, the I, D, F and L fuzzy variables, defined in a continuous universe of 
discourse, can take any value in their interval of definition. The fuzzy sets for these variables 
have been defined as follows: 

Figure 7. Fuzzy sets of the D(p) fuzzy variable 

• Duration D(p). The global range of this fuzzy variable is 0-130 ms, with trapezoidal 
membership functions as shown in Fig. 7. In Fig. 7 such values are indicated as follows: 

Very Short, Medium Short, Short, Medium, 
  Medium Long, Long, Very Long (1) 

• Initial Interval I(p).  As D(p), this fuzzy variable is divided into trapezoidal membership 
functions in a 0-130 ms interval. The fuzzy values are indicated, in this case: 

Instantaneous, Immediate, Quick, Medium,  
 Medium Delayed, Delayed, Very Much Delayed (2) 

• Final Interval F(p).   The numeric range is 0—130 ms and the fuzzy values are the same 
as indicated for the Initial Interval I(p). 

• Locus L(p). The fuzzy values of this variable depend on the actual parameter to be 
controlled. For AV, AH and AF the fuzzy values are: 

Zero, Very Low, Low, Medium Low, Medium, 
 Medium High, High, Very High (3) 

and their membership functions are equally distributed between 12 and 80 dB with the 
trapezoidal shape shown in Fig. 7. The other gain factors, namely A2F-A6F and AB, take one 
of the following values: 

Very Low, Low, Medium Low, Medium, 
 Medium High, High, Very High (4) 

in the range 0-80 dB with the same trapezoidal shape as before. The values of L(F1), L(F2) 
and L(F3) are named as in (4), with trapezoidal membership functions uniformly distributed 
from 180 to 1300 Hz, 550 to 3000 Hz and 1200 to 4800 Hz for the first, second and third 
formant respectively. For example, the fuzzy sets of L(F1) are shown in Fig. 8. 

Figure 8. Fuzzy sets of the F1 locus 
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Finally, the loci of the bandwidths Bl, B2 and B3 take one of the fuzzy values described in 
(4), and their trapezoidal membership functions are regularly distributed in the intervals 30-
1000 Hz for Bl, 40-1000 Hz for B2 and 60-1000 Hz for B3. 

3.2 Fuzzy Rules and Defuzzification 

By using linguistic expressions which combine the above linguistic variables with fuzzy 
operators, it is possible to formalize the relationship between articulatory and acoustic 
features.
We report as an exemplification, the semplified fuzzy rule of the transitions Vowel-Fricative. 

IF  PO  IS  ANY AND  PI  IS  SONORANT THEN  { 
B(AV)   IS MEDIUM-HIGH 

}
IF  PO  IS  ANY AND  PI  IS   ^SONORANT THEN { 

B(AV)   IS  ZERO  
}

IF PO IS ^LAB AND PI IS ANY THEN {  D(F1) IS MEDIUM-LONG ; 
D(F2) IS MEDIUM-LONG ; 
D(F3) IS MEDIUM-LONG  

}
IF PO IS LAB*SON AND PI IS ANY THEN  { I(AV) IS IMMEDIATE ; 

D(F1) IS MEDIUM ; 
D(F2) IS MEDIUM ; 
D(F3) IS MEDIUM  

}
IF PO IS LAB*^SON AND PI IS ANY THEN { D(F1) IS MEDIUM-SHORT ; 

D(F2) IS MEDIUM-SHORT ; 
D(F3) IS MEDIUM-SHORT 

}
IF PO IS ANY AND PI IS OPEN THEN { B(F1) IS MEDIUM 

}
IF PO IS ANY AND PI IS ^OPEN THEN { B(F1) IS VERY-SHORT 

}
IF PO IS ANY AND PI IS ANTERIOR THEN { B(F2) IS MEDIUM-HIGH 

}
IF PO IS ANY AND PI IS ^ANTERIOR THEN { B(F2) IS LOW 

}
IF PO IS ANY AND PI IS ROUND THEN { B(F3) IS LOW 

}
IF PO IS ANY AND PI IS ^ROUND THEN { B(F3) IS MEDIUM 

}
Since the manner of articulation well partitions the phonemes in separated regions, the rules 
have been organized in banks, one for each manner. 
That is, calling PO and PI the actual and the future phonemes respectively, the set of rules is 
summarized in Fig. 9. The rule decoding process is completed by the defuzzification 
operation, which is performed with the fuzzy centroid approach. 
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Concluding, as shown in Fig. 9, there are several transitions which are performed with the 
same set of rules. For example, all the transition toward fricatives and liquid phonemes are 
realized with the same bank of rules. This is because the related transitions can be 
approximated with a strong discontinuity, and thus they can be considered independent 
from the starting phonemes; the symbol 'CO' used in these banks stands, in fact, for a 
generic consonant sounds. Other banks are missing; this is because they are concerned with 
transitions which occur very rarely in Italian language. 

3.3 Genetic optimization of articulatory and acoustic parameters 

Let us take a look at Fig. 1. Genetic optimization estimates the optimum values of the 
degrees of membership for the articulatory features used to generate an artificial replica of 
the input signal by comparing the artificial with the real signal. The optimal membership 
degrees of the articulatory places minimize the distance from the uttered signal; the inputs 
are the number of phonemes of the signal and their classification in terms of manner of 
articulation.
One of the most important issues of the genetic algorithm is chromosome coding. The chro-
mosome used for the genetic optimization of a sequence of three phonemes is shown in Fig. 10. 

Figure 9. Outline of the bank of fuzzy rules. P0 and P1 represent the actual and target 
phonetic categories. CO denotes a generic consonant 

It represents the binary coding of the degrees of membership. Typical values of mutation 
and crossover probability are around 0.1 and 0.7 respectively. 
An important aspect of this algorithm is the fitness computation, which is represented by 
the big circle symbol in Fig. 1. For the sake of clarity of the Section, we now briefly 
summarize the mel-cepstrum distance measure. 

3.3.1 Mel-Cepstrum distance measure 

Our distance measure uses the well known band-pass Mel-scale distributed filter bank 
approach, where the output power of each filter is considered. We can interpret the output 
of a single band-pass filter as the k-th component of the DFT of the input sequence x(n): 

(5)
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Since we are interested in the center frequencies of the band-pass filters, the k-th frequency 
is moved, with respect to eq. (5), by ir/N. Therefore: 

(6)

Since x(n) is real, the sequence X(n) is symmetric; hence only the first N/2 points are 
sufficient. The inverse transform of the last relation is thus: 

(7)

Figure 10. The binary chromosome obtained by coding 

In conclusion, setting N = N/2, the Mel-cepstrum coefficients can be computed with the 
following relation:  

(8)

where X(k) is the logarithm of the output energy for the k-th triangular filter, N is the 
number of filters and M is the number of Mel-cepstrum coefficients. As reported above, the 
computation of the cepstral coefficients is performed using a band-pass filter bank 
distributed on a Mel frequency scale. The Mel scale is a non linear scale, motivated by 
perceptual studies of the frequency response characteristics of the human auditory system. 
Within the audible frequency range, a pure tone or the fundamental frequency of a complex 
sound produces a psychological effect on the listener. The psychological effect of a given 
frequency is measured in [Mel] according to the following definition: A 40 dB tone at l000Hz 
produces a 1000 Mel effect. Different frequencies produce different effects. It was 
experimentally evaluated that a 2000 Mel response is obtained for a 3100 Hz tone, while a 
500 Mel response is obtained at 400 Hz. The relation between frequency in Hz and Mel it 
was found to be well described by a linear scale in Hz below 1000 Hz and a logarithmic 

scale above 1000 Hz: .

The mel-cepstral distance measure is then defined by: 

(9)

where cia and ci° are the i-th mel cepstral coefficients of the artificial and original phrase. 
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3.3.2 Fitness computation and articulatory constraints 

The fitness, which is the distance measure between original and artificial utterances and is 
optimized by the genetic algorithm, is an objective measure that reflects the subjective 
quality of the artificially generated signal. The mel-cepstrum measure is used to compare 
the artificial signal generated by the fuzzy module and the speech generation module 
against the original input signal. The original and the artificial utterances are first aligned 
and then divided into frames and the average squared Euclidean distance between spectral 
vectors obtained via critical band filters is computed. The alignment between the original 
and artificial utterances is performed by using dynamic programming [54], with slope 
weighting as described in [55] and shown in Fig. 11. 
Therefore, using the mapping curve between the two signals obtained with dynamic 
programming, the mel-cepstral distance D between original and artificial utterances 
represented respectively with X and Y is computed as follows: 

Figure 11. Slope weighting performed by dynamic programming 

where T is the number of frames, K is the number of cepstrum coefficients, is
the non-linear mapping obtained with dynamic programming, is the length of the map, 

cx(i,j) is the j-th Mel-cepstrum of the i-th frame of the original utterance, cy(i,j) is the j-th Mel-
cepstrum of the i-th frame of the artificial utterance, and m(k) are the weights as shown in 
Fig. 11. 
The fitness function of the Place of Articulation (PA), i.e.   the measure to be maximized by 
the genetic algorithm, is then computed as: 

Therefore, the goal of the genetic optimization is to find the membership values that lead to 
a maximization of the fitness, i.e. the minimization of the distance D(X, Y), namely PA = 
argmax {Fitness (PA)}, where PAi is the degree of membership of 
the i-th place of articulation, N is the number of phonemes of the input signal. However, in 
order to correctly solve the inverse articulatory problem, the following constraints, due to 
the physiology of the articulations, have been added to the fitness: 

• it is avoided that a plosive phoneme is completely dental and velar simultaneously; 

• it is avoided that a nasal phoneme is completely voiced; 
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• it is avoided that all the membership degrees are simultaneously less than a given 
threshold;

• it is avoided that two or more degrees of membership are simultaneously greater than 
another threshold. 

The fitness is therefore given by: 

where Pj is the j-th penalty function and Nc is the number of constraints. 
In conclusion, the optimization of places of articulation (PA) can be expressed as follows: 

4. Experimental results 

Our imitation learning algorithm has been tested considering several different aspects. 
Initially, we have considered the convergence issue. In Fig. 12 a typical convergence 
behavior is represented, where 1/Fitness (PA) against number of generation is shown. 
Basing on the results shown in Fig. 12, the experimental results presented in the following 
are obtained with a population size of 500 elements, mutation rate equal to 0.1 and crossover 
probability of 0.75. 

Figure 12. Convergence diagram, i.e. 1/Fitness (PA) versus number of generation for six 
different learning experiments. In the left panel the mutation rate µ is varied and the 
population size is maintained constant to 200 elements. In the right panel the population 
size S is varied and the mutation rate is maintained constant to 0.02

As outlined in Section 3, the speech learning mechanism works as follows: the operator pro-
nounces one word and the talking robot generates an artificial replica of the word based on 
the articulatory and acoustic estimation. This process iterates until the artificial word 
matches the original one according to the operator judgement. More precisely, the robot 
learns how to pronounce a word in terms of articulatory movements using several 
utterances from the same talker. In Fig. 13 is shown a typical fitness error behavior 
considering different utterances of the same word and both non-iterative and iterative 
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learning: in non-iterative learning (left panel), the optimization process starts randomly in 
each optimization process; in iterative learning (right panel) the optimum obtained using 
the previous utterance of the same word is used as a starting point for the new optimization 
process using the new utterance of the word, obtaining usually a better fitness error. 
Iterative learning has another important feature: it allows us to obtain a mean behavior of 
the articulatory parameters for a given word and a given talker. The operator must repeat 
this iterative learning process for a number of words. After these phases, the speech learning 
process is completed. 
Coming back to Fig. 13, it is worth noting that the three descending curves are related to 
three subsequent different pronunciations of the same word. 

Figure 13. Convergence diagram for non-iterative (left panel) and iterative (right panel) 
learning algorithm. Using non-iterative learning, each learning process starts from random 
initial conditions. Using iterative learning, the new learning process starts from the optimal 
parameters obtained from the learning of another utterance of the same word. Each curve of 
this figure is related to the Italian word 'nove' pronounced three times; averaged values are 
depicted 

In Fig. 14 and in Fig. 15 are reported some experimental results related to the analysis of the 
Italian word 'gentile' ('kind'). In the upper panel of Fig. 14 the dynamic behavior of the first 
three formant frequencies is reported. The vertical lines denote the temporal instants of the 
stationary part of each phoneme. It is worth noting that this segmentation is done on the 
synthetic signal but it can be related to the original signal using the non—linear mapping 
between the original and synthetic word obtained by dynamic programming. In the lower 
panel of Fig. 14 the behavior of low and high frequencies amplitudes are shown. 
The trajectories of the places of articulation, estimated with the algorithm, and reported as 
an example in Fig. 15, can be used to shape the various organs of a mechanical vocal tract, 
and consequently, by means of a mechanical linkage, of the mechanical talking head. 
Since the facial motion can be determined from vocal tract motion by means of simple linear 
estimators as shown by Yehia et al. in [13], we used the same parameters to control a 
graphical talking head. Yehia et al. in [13] built an estimator to map vocal-tract positions to 
facial positions. Given a vector y of vocal-tract marker positions to a vector x of facial 
positions, an affine transformation is defined by 

(10)



Humanoid Robots, Human-like Machines 490

with µx = E[x] and µy = E[y] the expected values of x and y. Arranging all the frames of 
vocal-tract and facial data training sets in singles matrices Y and X, where Mtr is the number 
of vectors contained in the training set, an estimation of Tyx is given by 

 (11) 

where Y0 and X0 are given by Y and X subtracting the corresponding expected value from 
each row respectively. Using this linear estimation and the articulatory parameters of our 
algorithm, we animated a graphical talking head. 
To generate an artificial face, a synthetic 3D model was used and visualized in OpenGL 
under controlled illumination as shown in Fig. 16. The Geoface 3-D facial mesh [56] was 
used for the experiment and tesselated to a high degree for utmost smoothness in the 
surface normal computation. Some muscles around the mouth have been added in order to 
obtain the correct facial movements during articulation of vowels and consonants. 

Figure 14. Acoustic analysis of the Italian word 'gentile' obtained with the genetic-fuzzy 
imitation learning algorithm 
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Figure 15. Places of articulation of the Italian word 'gentile' estimated with the genetic-fuzzy 
imitation learning algorithm 

Figure 16.  In the left panel is shown the mesh model of the talking head.   In the right panel, 
a skin has been added to the model 

Figure 17. Some frames of the Italian utterance "tanto gentile e tanto onesta pare" as 
pronounced by the talking head 
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The linear model between the articulatory movements and the facial movements, as 
described by eq. (11), has been estimated on the basis of the MOCHA-TIMIT data base. 
MOCHA-TIMIT [57] is a database of articulatory features that considers a set of 460 
sentences designed to include the main connected speech processes in English, pronounced 
by two speakers, a male and a female. This database includes articulatory and acoustic data 
recorded in studies on speech production. Some instruments, namely EMA and EPG, have 
been used for the production of MOCHA-TIMIT. EMA (electromagnetic articulography) is a 
technique which allows articulatory movements to be monitored by means of small 
electromagnetic coils attached to vocal-tract structures in the mid-sagittal plane. Possible 
measurement points are situated on the tongue, the upper and lower lips, the mandible, and 
the velum. In addition, coils are generally attached to fixed structures such as the bridge of 
the nose and the upper central incisors to provide a maxillary frame of reference. 
Alternating magnetic fields generated by transmitter coils make it possible to measure the 
position of each receiver coil relative to two orthogonal axes in the midsagittal plane, with a 
measurement bandwidth typically ranging from DC up to about 250 Hz [58]. EPG 
(electropalatography) is a technique for recording the timing and location of tongue-palate 
contact patterns during speech [59]. It involves the subject wearing an artificial plate 
moulded to fit the upper palate and containing a number of electrodes mounted on the 
surface to detect lingual contacts. 
A set of common phonemes between English and Italian language pronounced by the male 
speaker has been extracted from MOCHA-TIMIT database, and the movements of the lips 
related to the articulatory features has been recorded in the form of eq. (11). 
In Fig. 17 are shown three picture of the talking head pronouncing the Italian utterance: 
"Tanto gentile e tanto onesta pare" . Informal audio-visual tests show that the algorithm is 
able to produce correct results. 

5. Discussion and Final remarks 

The estimation of articulatory static and dynamic configuration is one of the most difficult 
problems in voice technology. Several approaches have been attemped during the past 
years, and most of the difficulties are due to the fact that the articulatory-acoustic relation is 
not unique: different articulatory configurations can produce the same signal. The problem 
can be faced with suitable constraints which are needed to avoid the unrealistic 
configurations. One on the last work in this area has been reported in [60], which estimated 
articulatory parameters by finding the maximum a posteriori estimate of articulatory 
parameters for a given speech spectrum and the state sequence of a HMM—based speech 
production model. 
This model consists of HMMs of articulatory parameters for each phoneme and an 
articulatory-to-acoustic mapping that transforms the articulatory parameters into the speech 
spectrum for each HMM state. The authors constructed the model by using simultaneously 
observed articulatory and acoustic data for sentence utterances, which was collected by 
using an electro-magnetic articulo-graphic (EMA) system. 
Our system does not use EMA at all, trying to get the right articulations with several penalty 
factors. For this reason, the audio-video result is not always correct and it needs a judgment 
by the operator. 
We emphasize the following final remarks. 
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• Our algorithm generates allophonic variations of the phonemes.   In other words, since 
the described procedure performs a sort of interpolation among the acoustical 
parameters, the actual phonemic realization depends on the phonetic context. 

• Our fuzzy model can be easily modified and tuned because the fuzzy rules are 
expressed in a linguistic manner. 

• Many further optimizations are possible, in terms of genetic algorithm and in terms of 
the fuzzy rules which could be automatically estimated instead of being defined from 
phonetic knowledge on its own, as we did. 

• Our algorithm could be used as a design tool of mechanical talking heads because the 
artic ulatory parameters can be easily added or deleted from the fuzzy rules and their 
effects of the modification can be immediately verified. 

• Finally, is has to be noted that in this paper we implemented only the rules pertaining 
to the Italian language.   This does not limit the generality of our method:  if a different 
language has to be considered, new banks of fuzzy rules could be added and the 
previous banks could be modified. 

6. Conclusions 

In this Chapter we have dealt with the articulatory control of talking heads, which can be 
either graphical or mechanical. A novel approach for the estimation of articulatory features 
from an input speech signal is described. The approach uses a set of fuzzy rules and a 
genetic algorithm for the optimization of the degrees of membership of the places of 
articulation. The membership values of the places of articulation of the spoken phonemes 
have been computed by means of genetic optimization. Many sentences have been 
generated on the basis of this articulatory estimation and their subjective evaluations show 
that the quality of the artificially generated speech is quite good. As compared with other 
works in acoustic to articulatory mapping, which generally compute the vocal tract area 
functions from actual speech measurements, our work present a method to estimate the 
place of articulation of input speech through the development of a novel computational 
model of human vocalization. 
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