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1. Introduction

Since the engineering control of the deposition of nanometric gold plates on substrates
the Surface Plasmon Resonance (SPR) based sensor has become one of the most successful
label-free and commercially developed optical sensor, with applications to biology (Hoaa
et al., 2007; Kolomenskii et al., 1997; Kretschman & Raether, 1968; Lecaruyer et al., 2006).
This technique is currently employed in biomolecular engineering, drug design, monoclonal
antibody characterization, virus-protein interaction, environmental pollutants detection,
among other interesting problems. The basic principle of such transducer is the measurement
of the sudden absorbtion of light by the thin metallic layer, under particular illumination
conditions (p-polarization) and a specific angle of incidence of the illumination (Barchiesi,
Kremer, Mai & Grosges, 2008; Barchiesi, Macías, Belmar-Letellier, Van Labeke, Lamy de la
Chapelle, Toury, Kremer, Moreau & Grosges, 2008; Kretschman & Raether, 1968), leading to
a highly sensitive device (Kolomenskii et al., 1997; Lecaruyer et al., 2006). The conditions of
such absorption are linked to the plasmon resonance in metallic structure, and therefore a tiny
change of the optical properties of medium above the gold plate, produces an angular shift of
this absorption, due to the detuning of the resonance. The sensing principle relies therefore
on the shift of the plasmonic resonance caused by the surrounding dielectric environmental
change in a binding event.
The Plasmonic biosensors use the property of resonance between an illumination and the
metallic part of the sensor. This resonance is used to increase the sensitivity of the biosensor
and the threshold of detection. Actually, a given set of parameters of the biosensor can lead
to a maximum of the absorption of the incoming light. A slight change of its immediate
environment (presence/Absence of biomoecules to be detected) produces a strong change of
the detected light due to the detuning of the resonance. This property is also used in cancer
therapy or imaging, through metallic nanoparticles or nanoshells (Grosges, Barchiesi, Toury &
Gréhan, 2008). The design of specific shapes for nanoparticles can help to tune the resonance
for specific applications (Billot et al., 2006).
In the case of planar SPR (Surface Plasmon Resonance) biosensors, the reflected intensity
vanishes for a specific angle of incidence. The illumination is almost totally coupled in the
metal layer. A tiny change of the optical index of the upper medium, due to the presence
of biomolecules, produces a measurable shift of this minimum. Therefore, to improve the
efficiency of the sensor, the material and geometrical characteristics of the materials involved
in the biosensor must be adjusted correctly. Surprisingly, the optimization of such structures
has rarely been addressed (Ekgasit et al., 2005; Kolomenskii et al., 1997; Lecaruyer et al.,
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2006) and only recently with metaheuristic methods (Barchiesi, Macías, Belmar-Letellier, Van
Labeke, Lamy de la Chapelle, Toury, Kremer, Moreau & Grosges, 2008). Thus, the numerical
optimization is becoming a useful tool, especially with the aim to apply to the optimization of
nanostructured biosensors for which a large number of parameters has to be adjusted, making
unapplicable a classical experimental design plan.
In this chapter, the requirements of such numerical optimization are put to the front, before
introducing some optimization methods and discussing results. The first approach of
optimization is based on deterministic methods, where a specific behavior of the bio-sensor
is emphasized. For example, the influence of the thickness of the gold plate in SPR, all other
parameters being fixed. More general methods of optimization are based on heuristics, and
use the “random wizard,” known to find what is hidden: the best parameters, much more
efficiently than a systematic search, based on loops on each parameter. Among the various
metaheuristic approaches, we focus on two specifics. Both are based on the bio-mymicry
by numerical methods, by using life characteristics, stealing cross-over, mutation, selection,
cooperation. . .

2. Optimization requirements: stand back and deepen the knowledge on the model

To get significant and reliable numerical results in numerical optimization, the most important
requirement is having a realistic, efficient and numerically stable model. Even if this point
seems to be obvious, this constraint on the model for its use for numerical optimization is
not always fulfilled. Actually, numerical models entail endogenous (physically significant),
and exogenous inputs. Among the exogenous parameters, some of them are linked to
the mathematical model (the number of terms in series, the choice of scattering (S) or
transmission (T) formulation (Li, 1994; 1996). . . ) and many are related to the numerical
methods (the integration step size, the maximum degree of polynomials of interpolation,
the stop criterion, the method of inversion, the discretization, the number of terms in
series (Barchiesi et al., 2006; Barchiesi, Macías, Belmar-Letellier, Van Labeke, Lamy de la
Chapelle, Toury, Kremer, Moreau & Grosges, 2008; Grosges et al., 2007; Grosges, Borouchaki
& Barchiesi, 2008; Grosges et al., 2010; 2005). . . )
If trends are considered as sufficient to compare experiments and numerical simulations, the
exogenous inputs are often adjusted manually within the domain of physical (endogenous)
parameters used for the model.
Instead, for optimization, the model is used as a black box, and the exogenous inputs must
be adjusted automatically to produce stable and converged results. The model should be
used blindly and remaining always reliable. This aspect of development of a stable numerical
model is particularly critical in the case of resonance depiction, leading intrinsically to
numerical instabilities. We encountered such a problem with FDTD (Macías et al., 2004), with
evolutionary methods, the FDTD using regular Yee’s cells for computation, like DDA used
dipoles of the same size. This fact produced instabilities in the optimization, which prefers a
continuity of the computed result with discretization. Indeed, the plasmon resonance can be
described mathematically as the occurrence of a pole (in the complex plane) in the diffusion
matrix, and this property has to be correctly handled. The two following sub-section illustrate
two aspects of care to provide to the mathematical formulation.

2.1 The plasmon resonance and the model of biosensor

The SPR involves at least one metal layer, sometimes two, for improving the stick of the gold
layer (Barchiesi, Macías, Belmar-Letellier, Van Labeke, Lamy de la Chapelle, Toury, Kremer,
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Moreau & Grosges, 2008). The gold layer is the active part of the biosensor (Fig. 1). The
incoming illumination is characterized by its p polarized electric field Ei (the magnetic field is
parallel to the layer). The SPR biosensors use the Kretschmann configuration (Kretschmann,
1978), and therefore, the reflected (or specular) field intensity R = |Er|2 is detected. The
transmitted field Et is the probe of the biomolecules. Basically, a metal is highly reflecting.
However, the launch of plasmon corresponds to the maximum of energy transfer from the
illumination to the metal layer. The track of the plasmon resonance is therefore highlighted
by the detection of the minimum of the reflected intensity R(θ).

Fig. 1. Schematic of the SPR bio sensor, to be related to the Kretschmann
configuration (Kretschmann, 1978).

The active part of the biosensor under consideration is the gold layer. The plasmon fingerprint
corresponds to a strong decrease of R toward to 0 (Figs. 2). Therefore, the situation is slightly
different from the classical electromagnetical one. In electromagnetics, the physical quantities
of interest are the electromagnetic fields outside the material structures. The “input” is the
incoming field and the “output” is the reflected and the transmitted fields. The (S) matrix
relates the input to the output, for linear interaction of light with matter (Barchiesi, 1996; Li,
1996). On the contrary, in plasmonics, the system is the gold layer and the “output” of the
system is the field inside the plate. Nevertheless, the transition between the two worlds is
easy only if the property of resonance is correctly assessed. For this, the classical description
of resonance by “getting something from nothing” is considered. Therefore, the field inside
the gold layer must be related to the zero reflected field rather than the incoming field, through
a (S′) matrix. Assuming the reflected field expressed as proportional to the incoming field:
Er = r.Ei, the problem can be solved for plasmonics (Agarwal, 1973; Li, 1996; Raether, 1988;
Simon et al., 1975). The field inside the metal film can be expressed as a sum of two fields E2

and E2d each of them associated to ℜ(w2) > 0 and ℜ(w2) < 0, w2 being the normal to the slab
components of the wave vector in gold (Fig. 1, (Born & Wolf, 1993; Simon et al., 1975)):

E2 =
t12

1 + r12r23 exp(2ıw2e)
Ei (1)

E2d =
t12r23 exp(2ıw2e)

1 + r12r23 exp(2ıw2e)
Ei, (2)
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with the interface coefficients of transmission and reflection (Fresnel’s coefficients):

ri,i+1 =
n2

i+1wi − n2
i wi+1

n2
i+1wi + n2

i wi+1
and ti,i+1 =

2n2
i+1wi

n2
i+1wi + n2

i wi+1
(3)

To describe the resonance and to express the (S′) matrix, these fields should be expressed as
functions of the reflected field Er:

E2 =
t12

1 + r12r23 exp(2ıw2e)

1 + r12r23 exp(2ıw2e)

r12 + r23 exp(2ıw2e)
Er (4)

E2d =
t12r23 exp(2ıw2e)

1 + r12r23 exp(2ıw2e)

1 + r12r23 exp(2ıw2e)

r12 + r23 exp(2ıw2e)
Er (5)

The resonance corresponds to a pole of the scattering coefficients:

s′1 =
t12

r12 + r23 exp(2ıw2e)
and s′2 =

t12r23 exp(2ıw2e)

r12 + r23 exp(2ıw2e)
(6)

The pole occurs if the common term of these coefficients

s′0 =
t12

r12 + r23 exp(2ıw2e)
(7)

=
2n2

2w1(n
2
3w2 + n2

2w3)

(n2
2w1 − n2

1w2)(n
2
3w2 + n2

2w3) + (n2
3w2 − n2

2w3)(n
2
2w1 + n2

1w2)e2ıw2e
(8)

is infinite, therefore, if the transcendent denominator vanishes. Obviously, the pole
corresponds neither to the solution of n2

3w2 + n2
2w3 = 0 nor to that of n2

3w2 − n2
2w3 = 0.

Consequently, the solution of this last equation n1 sin(θ) = ±
√

n2
2n2

3/(n2
2 + n2

3), cannot be

likened to the condition of plasmon excitation in a gold plate. This last expression is actually
the solution for the excitation of a plasmon in a semi-infinite metal medium.
Two arguments help to better understand this result. First, it is logical to find a dependence
of the plasmon in a slab, as a function of the thickness of the layer e. Then, it is necessary to
find consistence between the cancelation of R and the concept of resonance.
The basic model of SPR entails a single layer of gold (thickness e, optical index n2) deposited
on a glass substrate (optical index n1) (Fig. 1). The above medium is water of optical index n3.
The illumination is made by a p polarized plane wave, incoming on the gold layer under total
internal reflection (TIR) configuration. θ is the angle between the illumination wave vector,
and the normal to the layer vector. Figure 2(a) shows the computed reflected intensity R =
|r|2. The minimum of R depends on the thickness of the gold layer, therefore this parameter
has to be optimized, to increase the efficiency of the biosensor in terms of contrast in R. The
figure 2(b) shows the effect of a slight change in the optical index of the medium of detection
n3: the position of the minimum is shifted toward larger angles. Therefore, to detect a change
in the optical index n3 of the above medium, the measurement of the shift of θ, corresponding
to R ≈ 0 is achieved (Bonod et al., 2003; Lecaruyer et al., 2006).
This setup is also called Kretschmann configuration (Kretschmann, 1978) and is an object of
study for undergraduates, as r and t can be easily calculated (Simon et al., 1975). The reflection
coefficient r has been used in Eq. 8 and can be written as:

r = r13(e, θ) =
nd

dd
=

r12 + r23e2ıw2e

1 + r12r23e2ıw2e
. (9)
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Fig. 2. Computation of the reflected field intensity R = |r|2. The computation uses n1 = 1.5,
n2(λ0 = 670 nm) = 0.137 + 3.797ı.

The vertical components of the wave vectors in each medium i can be expressed as a function

of the illumination angle θ: wi = 2π
λ0

√

n2
i − n2

1 sin2(θ) , where ni is the optical index (and

is a complex number for metal). This expression is not relevant for numerical study as the
denominators of each ri,i+1 can cancel. Instead, reducing to a common denominator and
simplifying the fraction is necessary before numerical optimization:

r =
n

d
=

(n2
2w1 − n2

1w2)(n
2
3w2 + n2

2w3) + (n2
3w2 − n2

2w3)(n
2
2w1 + n2

1w2)e
2ıw2e

(n2
2w1 + n2

1w2)(n
2
3w2 + n2

2w3) + (n2
3w2 − n2

2w3)(n
2
2w1 − n2

1w2)e2ıw2e
. (10)

n is exactly the same as the denominator of s′0 (Eq. 8) which cancels at the plasmon resonance.
Figure 3(a) illustrates the influence of the reduction to the same denominator of r. Obviously,
both formula (Eqs. 9 and 10) give the same square modulus: Rd = |nd/dd |2 is superimposed
with R = |n/d|2. Nevertheless, wrong conclusions could be drawn from the visual inspection
of |dp| and |np|. For instance, the plasmon resonance could be interpreted through the
increase of |dp| and the decrease of |np| and therefore by an apparent resonance behavior.
These variations, in the vicinity of the plasmon angle, seems to be produced by the Fresnel’s
coefficient r23, but the angle for plasmon resonance differs slightly from that corresponding to
the maximum of |r23|. |n| and |d| have very different bearing from |nd| and |dd|: |n| vanishes
instead of |d|. The first inconsistency or deficiency of the classical r = nd/np model is evident
in Fig. 3(a): at the plasmon resonance, the numerator |nd| is close to zero and the denominator
is far from zero or infinity. Nevertheless, Figs. 3(a) and 3(b), based on the r = n/d model,
shows clearly that the R shape is mainly related to the cancelation of the numerator n. T
is also plotted: it is the transmitted intensity of light and corresponds to evanescent wave
(n3 < n1 and sin(θ) > n3/n1) and therefore is null. Therefore, even if the field amplitude
differs from zero, T = 0. The increase of the square modulus of the fields in the gold layer is
not governed by the r23 maximum but on field which is reflected by the Gold/Water interface
(E2d in Fig. 1). This latter takes into account the thickness of gold instead of r23. The vertical
lines in Fig. 3(b) shows the angular position of the maximum of |r23|2 and of the minimum
of R. This last one is located between the positions of the maximum of |E2d| and of the local
minimum of |E2|. The plasmon launch can be explained by the coupling between these two
fields (rather the the reflection coefficients of each interface).
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Fig. 3. (a) Reflected intensity R = |r/n|2, and |nd/dd|2 (Eqs. 9,10) and numerators and
denominators: |n|, |d|, |np| and |dp|. (b) Plot of the amplitude of fields inside the gold layer
|E2| and |E2d| and of the reflection coefficient on each interface (Glass/Gold: r12 and
Gold/Water: r23. All plot are functions of the angle of incidence θ, and are computed for
n1 = 1.5, n2(λ0 = 670 nm) = 0.137 + 3.797ı, n3 = 1.33, e = 50 nm.

Therefore, the accurate solution of plasmon launch corresponds to n = 0 ie:

n = 0 = (n2
2w1 − n2

1w2)(n
2
3w2 + n2

2w3)
︸ ︷︷ ︸

T1

+ (n2
3w2 − n2

2w3)(n
2
2w1 + n2

1w2)e
2ıw2e

︸ ︷︷ ︸

T2

, (11)

rather than:

n2
3w2 − n2

2w3 = 0 ⇔ sin(θ23) = ±
√

1

n2
1

n2
3n2

2

n2
3 + n2

2

, (12)

which is often considered (Agarwal, 1973; Raether, 1988). Nevertheless, this solution is a
complex number, the optical index n2 of gold being complex too. Therefore, practically, the
resonance cannot be exactly reached, θ being real (Barchiesi, Kremer, Mai & Grosges, 2008;
Maystre & Nevière, 1977; Maystre & Nieto-Vesperinas, 1992; Neff et al., 2006). This solution
cancels the second term (T2) of the sum in Eq. 11 and reduces the value of the first one (T1) but
is clearly not the optimum (figure 3(b)).
The discussion is now made easier. The plasmon launch requires p polarisation of the
illumination and n3/n1 < sin(θ) (configuration which differs from that considered by
Agarwal for polaritons where n1 = n3 (Agarwal, 1973)).

• The plasmon resonance is measured by the strong attenuation of R = |r|2 for a specific
angle of incidence, close to that cancels the real part of the numerator of r.

• The real part of d vanishes for an angle of incidence far from the angle of plasmon
resonance, but its modulus is never null. Indeed, the denominator of R is not vanishing.

• The angle of incidence of the minimum of R corresponds to the value which cancel the
modulus of the numerator of r. The modulus of d slightly influence the result (Fig. 3(b)).

• near the resonance, |r23| is drastically increased. Nevertheless, the maximum of |r23|2
is not localized to that of plasmon resonance. Therefore, the classical approximation
based on this reflection coefficient is not relevant and cannot be used for optimization.
Moreover, this approximation lies in the conclusions we could draw too rapidly from a
model assuming infinite thickness of metal. Indeed, the finite thickness of gold, enables
the “coupling” of the surface plasmons.
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For the SPR model, let us consider both interfaces Glass/Gold and Gold/Water for the SPR:
n1 = 1.5, n3 = 1.33. Figure 4(a) shows the dispersion curve, deduced from the canceling of R
for a gold layer of thickness 50 nm. The bottom of the black well in the map is the location of
the plasmon, which abscissa are the angle of incidence θ and ordinates are the wavelength. At
first glance, the plasmon can be launched for each wavelength and under small variations of
θ. Therefore, the influence of the optical index n2 of gold seems to be weak. This fact explains
why the bulk values of the gold optical index can be used and gives results close the the experiments,
even if it is well known that this parameters depends strongly on the mode of gold deposition. The
white continuous curve delineate the bottom of the well. The cross are the values of θr23 for
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Fig. 4. (a) dispersion curve R(θ, λ0). The line shows the minimum of the well, the crosses
indicate the positions of r23(θ, λ0) = 0, the diamonds those of θ(max(|E3|)). The squares
correspond to the location of the maximum for the down going field in gold (E2d): this field
can be seen as reflected by the Gold/Water interface but takes into account the thickness of
the gold layer. (b) relative error between the above mentioned angles, and the angle
corresponding to the minimum of R.

the maximum of the Fresnel’s coefficient of the non coupled Gold/Water interface (ni is the
optical index n2 of gold and ni+1 = 1.33, n1 = 1.55 in Eqs. 3). The diamonds are the angle θ3

for which T = |t|2 is maximum, and the square are those θ2d, for the maximum of the field
reflected by the Gold/Water interface in the gold layer (taking into account the “coupling”).
Figure 4(b) shows the relative difference between the above mentioned angles, and θ(min(R)),
in %. Some conclusions can be drawn now:

• The relative error is not negligible for optimization but if only trends are awaited, all these
angles can be used. θr23 is greater than the plasmon angle, while θ2d and θ3 are better
approximation.

• The approximations are better if λ0 raises.

• The better approximation is always θ2d. One may conclude that the plasmon resonance
is mainly governed by the field reflected by the Gold/Water interface. This explains why
the SPR biosensor are sensitive to any change of the optical index of the above medium
(here water). Nevertheless, the thickness of gold is a critical parameter and therefore any
attempt to optimize the SPR by using |r23| would fail.

The figure 5 illustrates the possible cancelation of R (dark zones), as a function of the real part
and the imaginary part of n2

2, the permittivity of the slab with virtual metallic optical index.
For this, the thickness, the angle of incidence and the wavelength are fixed to e = 50 nm,
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λ0 = 670 nm and θ = 73o (see Fig. 3(b)) to guarantee the possibility of plasmon launching.
Despite all, r can be near zero for positive real part of the permittivity (n2

2). The region of

positive ℜ(n2
2) define Brewster angle.

Fig. 5. R as a function of the permittivity of the layer virtual metallic material n2
2 for

e = 50 nm, λ0 = 670 nm, θ = 73.2o , n1 = 1.5, n3 = 1.33 (Eq. 10).

The model of plasmon resonance is now well established. Nevertheless, the biosensor system
is based on the detection of the angular shift of the minimum of R when n3 varies. Therefore,
the sensitivity of the biosensor must be investigated to determine if the simple minimization
of R is sufficient.

2.2 The sensitivity of the SPR biosensor

The sensitivity of the SPR biosensor is related to the mode of detection. Basically, the quality
of the plasmon resonance depends on the above mentioned parameters: the thickness of gold
e, the wavelength λ0 (and therefore the optical index of gold n2) and the angle of incidence θ.
But practically, a model of sensor must take into account the mode of detection of the angular
shift of the plasmon resonance, under slight variations of the above optical index n3 (Fig. 1).
The detection of the angular shift is either monitored on the minimum of R(θ) = |r23(θ)|2
(S1 = ∆θ(min(R))), or on the maximum of slope max(|dR/dθ|) of the same curve (S2 =
∆θ(max(|dR/dθ|))). Figure 6 shows an illustration of these two modes as a function of the
thickness e of the gold layer, with n3 = 1.330, δn3 = 0.001, n2(λ0 = 670 nm) = 0.137 + 3.797ı,
n1 = 1.5:

S2 = ∆θ

(

max

(∣
∣
∣
∣

dR

dθ

∣
∣
∣
∣

))

= θ

(

max

(∣
∣
∣
∣

dR

dθ
(n3 + δn3)

∣
∣
∣
∣

))

− θ

(

max

(∣
∣
∣
∣

dR

dθ
(n3)

∣
∣
∣
∣

))

(13)

The maximum of the visibility of the recorded signal is V = (max(R)− min(R))/(max(R) +
min(R)). Near the plasmon resonance min(R) ≈ 0, but V decreases as a function of the
detuning. Therefore V can be related directly to the quality of the plasmon resonance:
Figs. 6(b) and 2 show that the maximum of visibility is reached when the plasmon occurs
(e ≈ 52 nm for λ0 = 670 nm). Moreover, even if maximizing the product V.S2 could be the
natural target of optimization, the slight variations of the sensitivity curves can lead us to
work directly on R. From here, we will try to find the best conditions of plasmon excitation
i.e. R close to zero. Moreover, in both modes of detection, the sensitivity of the biosensor
is governed by the shift of the peak and therefore exhibit the same behavior (Fig. 6(b)).
Both sensitivities are increasing functions of the thickness. Therefore, the best conditions of
detection are supposed to correspond to parameters closest to those of the ‘best” plasmon

112 New Perspectives in Biosensors Technology and Applications

www.intechopen.com



Numerical Optimization of Plasmonic Biosensors 9

65 70 75 80

−1.5

−1

−0.5

0

0.5

1

θ (°)

 

 

←
 m

in
(R

) 
 

max(|dR/dθ|) → 

R

d R / d θ

(a)

35 40 45 50 55 60

0.6

0.8

1

1.2

1.4

e (nm)

 

 

10.∆ θ(min (R)) ( °)

V

10.∆ θ(max(|dR/dθ|)) (°)

(b)

Fig. 6. (a) R and dR/dθ illustrating the two modes of detection as a function of θ. (b)
Sensitivity of the biosensor as a function of the thickness of gold e, if the index of the medium
of detection increases from δn3 = 0.01. The sensitivities correspond to the angular shift of the
plasmon resonance and to the shift of the maximum of the angular derivate of R. The
visibility is V = (max(R)− min(R))/(max(R) + min(R)). The parameters are n3 = 1.33,
λ0 = 670 nm, n2 = 0.137 + 3.797ı, n1 = 1.5.

resonance, where sensitivity is high enough as well as visibility, ie when the pole is close to
the real axis.
Consequently, in the following, the goal of optimization will be the minimization of R, which
is directly related to the quality of the plasmon resonance.

2.3 The optimization of the gold layer thickness

We have found the conditions of plasmon launch (Eq. 11). The optimization target of the
plasmon resonance is therefore the smallest value of R = |r|2. Practically, to launch an efficient
plasmon for the SPR biosensor, the parameters to be optimized are the angle of incidence θ,
the thickness of gold e, and the incoming wavelength λ0, the optical index of gold depending
on the wavelength n2(λ0). In principle, the wavelength can be imposed by the technical
choice of the source of illumination and therefore, only two parameters remain free. The
problem consists in finding the solutions of |n| = 0 (Eq 10). Even if this equation appears to
be transcendent, the thickness of gold can be extracted:

e = − ı

2w2
log

(

− r12

r23

)

= − ı

2w2
log

(

− (n2
2w1 − n2

1w2)(n
2
3w2 + n2

2w3)

(n2
3w2 − n2

2w3)(n
2
2w1 + n2

1w2)

)

(14)

If n2 = n3, this expression reduces to that of Eq. (2.28) in Ref. (Agarwal, 1973). Particular
attention should be paid to the definition of the logarithm of complex number. It is not
surprising that the mathematical solution for this thickness is a complex number. Therefore,
the physical thickness e being real, the Poincaré’s plot of e in the complex plane, is an
obvious tool for deterministic optimization (Barchiesi, Kremer, Mai & Grosges, 2008). Both
optimizations in Figs. 7 face a different methodology: Figure 7(a) consists in finding jointly
the best values for e and θ, by minimizing R for each wavelength. Figure 7(b) is a Poincaré’s
plot (Barchiesi, Kremer, Mai & Grosges, 2008), in the phase plane of e, considering its complex
value. These plots can help to choose the best set of parameters: thickness e, wavelength λ0,
and the angle θ. The best thickness is closest to the real axis (the imaginary part of e is not
physical). For example, a good set of parameters is e = 52 nm, λ0 = 750 nm and θ = 68.2o .
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This type of plot gives also information on the sensitivity of the model to the real part of e.
For instance, the shelf, close to the maximum of the θ = 68.2o curve, near λ0 = 670 nm,
corresponds to a zone of low sensitivity of the biosensor to the imaginary part of the thickness
of gold, and therefore, a zone of stability. The same curve, near λ0 = 750 nm, exhibits an
infinite derivative, and therefore much less sensitivity to the thickness e.
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Fig. 7. Optimisation of angle θ and gold thickness e, the minimum of R is also plotted.
Poincaré’s plot of the best thickness e (Eq. 14), for various angles of incidence, as a function of
the wavelength λ0 ∈ [400; 1200] nm.

It appears that even if the sensitivity of the SPR biosensor to the various parameters is a
complex problem, it could be described by the model. The purpose of the next subsection
is to evaluate the sensitivity of the model to the various parameters, through a comprehensive
statistical method, where all parameters are considered simultaneously. This approach could
help to evaluate the specifications for the design of biosensors.

2.4 Sensitivity of the model

The sensitivity of the model can help to evaluate what are the critical parameters in the
process of fabrication of the biosensor. A Monte-Carlo method is one of the well known
tools for the study of model’s sensitivity. This method is based on the random generation
of the endogenous parameters and on the statistical analysis of the output of the model. In
the present case, a tolerance on R ∈ [0, 10−3] is fixed as well as physically acceptable interval
for parameters (the input intervals in Tab. 1). To improve the efficiency of the Monte-Carlo
method, an adaptation of the boundaries is proposed. A new random generation of N families
p of random parameters is repeated at each step of a loop, until the number of families
ps making sure that R(ps) ∈ [0, 10−3] is greater than N. The boundaries of the space of
search for each parameter are updated at each iteration, using the successful results of the
previous loop. This adaptive boundary Monte-Carlo method enables to increase the number
of “good” parameters ps, at each step, and therefore increases the convergence speed. For
example, N = 60.000 requires less than 100 iterations in the loop. In the case of non adaptive
Monte-Carlo method, the number of iterations is mostly greater than 1000. The pseudo-code
of the adaptive Monte-Carlo algorithm is given (Algorithm 1).
The figure 8 shows the results that are summarized in the last column of Tab. 1 and the
histograms for each parameters. The best value of the above realization of the Monte-Carlo
software is also obtained: R = 6.348−5 for e = 52.1 nm, λ0 = 688 nm, θ = 70.5o and
n3 = 1.331. The histograms reveals a “mode” in the [600; 700] nm zone, which corresponds to
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Require: α (threshold of tolerance on R), N (the number of random parameters set
at each iteration). The initial boundaries of the hypercube D of acceptable
parameters are set: Bmin = {min(e), min(λ0), min(θ), min(n3)} and Bmax =
{max(e), max(λ0), max(θ), max(n3)}.

1: [Initial random parameters set p generated from uniform distribution in D: U(D)]
2: {y} ← R({p})
3: [Selection of the {p} that verify {y} < α]

{ps} ← {p\{y} < α}
4: while [The sample size of ps is lower than N] do
5: Bmin ← min(ps), Bmax ← max(ps)
6: [Random generation of parameters {p} (uniform distribution in [Bmin, Bmax] :

U([Bmin, Bmax]))]
7: {y} ← R({p})
8: [Selection among the {p} which verify {y} < α]

{pi
s} ← {p\y < α}

9: {ps} ← {ps}
⋃{pi

s}
10: end while
11: min({ps}), max({ps}). . .

Algorithm 1. Pseudo-code of the adaptive Monte-Carlo algorithm. The numerical model of
the SPR is denoted R and is considered stable in D.

Parameter Input interval Output interval mid-height size of the peak

e(nm) [10; 80] [43; 56] [51.5; 52.5]
θ(o) [60; 80] [68; 76] [70.3; 70.8]

λ0(nm) [600; 700] [600; 700] [680; 695]
n3 [1.33; 1.34] [1.330; 1.339] [1.330; 1.331]

Table 1. Parameters of the model, physically acceptable interval and tolerance revealed by
the Monte-Carlo procedure. The output intervals correspond to R < 10−3, and the statistical
interval is defined by the mid-height size of the histogram of each parameter (Fig. 8).

λ0 = (682 ± 10) nm, a thickness of gold e = (52 ± 1) nm, θ = (70.2 ± 0.5)o leading to a high
sensitivity for n3 (the peak is narrow). The sensitivity (or tolerance to variations) of parameters
are obtained from the above results, and are indicated after the sign ±. This study indicates
that the tolerance on the thickness of gold must be better than 1 nm, that on the optical index
of gold being deduced from the dispersion curve of gold in the interval [665; 700] nm i.e.
ℜ(n2

2) ∈ [−16.5;−14] and ℑ(n2
2) ∈ [1.04; 1.06]. This last result of this sensitivity study can be

considered with confidence, knowing that optical characteristics of gold are very dependent
modes of deposition. Thus, the real part of permittivity is a less critical parameter for the
optimization of the biosensor, than its imaginary part. This result may explain the agreement
between theory and experiment, generally obtained in plasmonics, even considering the
bulk optical constants, and even the more or less accurate fits of these quantities (Drude of
Drude-Lorentz for example) (Kolomenskii et al., 1997; Neff et al., 2006; Raether, 1988). Despite
all, these models of dispersion cannot be used if accurate optimization is awaited, the data
obtained from specific measurements would be more appropriate. Another output of the
sensitivity study deserves to be highlighted: the shape (less than 0.001) of the peak in Fig. 8(d)
gives preliminary informations on the sensitivity of the biosensor to slight changes in the
optical index of the medium of detection.

115Numerical Optimization of Plasmonic Biosensors

www.intechopen.com



12 Will-be-set-by-IN-TECH

44 46 48 50 52
0

0.5

1

1.5

2

2.5

3

e
1
 (nm)

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y
 (

%
)

(a)

70 71 72 73 74 75 76
0

1

2

3

4

5

θ (°) 

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y
 (

%
)

(b)

620 640 660 680 700
0

2

4

6

8

λ
0
 (nm)

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y
 (

%
)

(c)

1.332 1.334 1.336 1.338
0

1

2

3

4

n
3
 

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y
 (

%
)

(d)

Fig. 8. Sensitivity study of the model of SPR. The involved parameters are the thickness of
gold e, the angle of incidence θ, the wavelength of illumination λ0 from which depends the
optical index of gold n2, and the optical index of the medium of detection n3.

3. Some metaheuristic optimization methods for plasmonics

The model being established and characterized, the best values of the parameters are of
interest. Models in plasmonics involve resonance and therefore the SPR is a good candidate
to help to develop specific methods of optimization. Among them, two metaheuristics have
been recently proposed (Barchiesi, 2009; Kessentini et al., 2011). The first one is selective
and the second one is collaborative. The goal is to develop methods of optimization which
could be efficient for problems in plasmonics with more degrees of freedom, especially the
nanostructured biosensors. Nevertheless, to illustrate the optimization methods, we focus
our study on the minimization of R(e, θ) to find the best set of parameters (e, θ) which is the
most efficient to launch plasmon in the gold layer of the SPR biosensor. The wavelength of
illumination is assumed to be fixed (so the index of gold), since it is imposed by choosing a
laser source. In the following, we consider λ0 = 670 nm. Of course this problem can always be
solved by a systematic double loops study, but more general problems in plasmonics involve
more than two parameters, and the goal is to develop a rapid method of optimization for this
more general case.
The present problem being of dimension N = 2 (two parameters are searched: p = (θ, e)), a
plot of R illustrates the topology of the function R(e, θ). Figure 9 exhibits the track of plasmon
in the map of R, its location and shape. As expected, the best parameters for the plasmon
launch, are located in a wells which shape depends on the wavelength.
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Fig. 9. Fitness function for the optimization: R(θ, e), for n1 = 1.5, n2 = 0.1373 + 3.7975ı
(λ0 = 670 nm), n3 = 1.33.

In this case, the solution of the optimization can be easily determined. This problem is
therefore a test for the following optimization methods.

3.1 Evolutionary method: a selective method

Among the numerous optimization schemes, the evolutionary methods are parts of the
metaheuristics, based on the mimicry of nature, with the numerical mutation of the
parameters considered as genes, and the selection of the bests for the breeding of the next
generation (Schwefel, 1995). However, despite the apparent simplicity of the statistical
method, its effectiveness depends on the addressed problem. Here, in plasmonics, the
detection of sharp resonances through looking for a minimum of a complex function is
under consideration. The balance between speed and diversity of research, particularly the
ability to avoid local minima but to find the global optimum, must be studied carefully. In
this section, we describe the classical evolutionary scheme (Schwefel, 1995) and one of its
improvement (Barchiesi, 2009).
The target is the minimization of the fitness function R(e, θ) in a domain of acceptable
parameters, n3 being fixed (Fig. 1). This minimum corresponds to the best transfer of energy
from the illumination to the gold layer.
The evolutionary scheme consists in four steps: initialization, recombination, mutation and
selection. This process is repeated for several generations. A first population (parents) with
μ parameters set (or elements) pm=1..μ = (θm, em), is randomly generated. Then the parents

breed to give birth to offspring (λ children): p′
m=1..λ = (θi, ei) (cross-over). The children

mutation is used to increase the diversity of search. The selection of the μ best parameters
enables to retain only the best performing in terms of fitness function. The selection is made
through an elitist or non-elitist process, the first one involving also the parents in the choice of
the best ones (the performance of the μ + λ elements is compared). A funny remark deserves
to be made at this step: the elitist process is immoral because it will allow reproduction
between children and parents to the next generation. The evolutionary algorithm requires
strategy parameters s which enable to control the convergence of mutation (Schwefel, 1995).
The pseudo-algorithm 2 presents the steps of computation. The classical evolutionary
algorithm 2 (SEM) is generic, and the crossover and mutations are unattached on the quality
of the elements. Therefore, depending on the mathematical properties of the N-dimensional
function R, the convergence can slow down, especially if the solution is in a narrow wells. The
classical recombination uses fixed weights (Donnel & Waagen, 1995) or uniformly distributed
weights for each element (Yang et al., 1997).
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Classical Evolutionary Method (SEM)

Require: D domain of the N acceptable
parameters e, θ. . . .

Require: Fixed parameters of the model R.
Require: λ, μ, T (maximum of generations),

SC stop criterion, ρ number of elements
to be recombined, strategy parameters

τ1 ← (2.N)−1/2, τ2 ← (2.
√

N)−1/2

σ ← 1
1: [Initial population, with normal

distribution of probability G or uniform
law U in D]
sm=1..μ ← σ.D
pm=1..μ ← G(D) or U(D)
ym=1..μ ← R(pm=1..μ)

2: while |y1 − yμ|/|y1 + yμ| > SC do
3: [Blind cross-over with random choice

of integers n through U({1, ..., μ})]
s′m=1..λ ← ρ−1 ∑ρ sn,

p′m=1..λ ← ρ−1 ∑ρ pn

4: [Normal law mutation, Gi are
normalized normal distribution of
probability (Schwefel, 1995)]
s′′m=1..λ ← s′m=1..λ. exp(τ1.G2 + τ2.G2)
p′′m=1..λ ← p′m=1..λ + G3.s′′m=1..λ

5: [Selection (sort operator S()) of the μ
best elements for the initial population
of the next step]

6: if [Non Elistist] then
7: ym=1..λ ← R(p′′j )

pm=1..μ ← S({p′′m=1..λ})
8: else if [Ellistist] then
9: ym=1..μ+λ ← R({p′′j , pj})

pm=1..μ ← S({p′′m=1..λ, pm=1..μ})
10: end if

sm=1..μ ← s′′m=1..μ

11: end while

Adaptive Non Uniform Hyper Elitist
Method (ANUHEM)

Require: D domain of the N acceptable
parameters e, θ. . . .

Require: Fixed parameters of the model R.
Require: λ, μ, T (maximum of generations),

SC stop criterion, ρ number of elements
to be recombined.

1: [Initial population with U:
multidimensional uniform law in
D]
pm=1..μ ← U(D)
ym=1..μ ← R(pm=1..μ)

2: while |y1 − yμ|/|y1 + yμ| > SC do
3: [Hyper-Elitist cross-over with

random choice of integers n through
U({1, ..., μ})]
p′m=1..λ ← ∑ρ y−1

n pn/ ∑ρ y−1
n

4: [Adaptive Non-Uniform mutation
using topology of solutions]
b ← std(pm=1..μ)/std(ym=1..μ)

σ ← 1 − U([0; 1])(1−g/T)b

p′′m=1..λ ← Ub(D, σ) {[Ub(D, σ):
multidimensional non uniform law in
D with constraints p′′ ∈ D]}
yμ+1..μ+λ ← R(p′′j )

5: [Selection (S) of the μ best elements
for the initial population of the next
step]

6: if [Non Elistist] then
7: pm=1..μ ← S({p′′m=1..λ}),
8: else if [Ellistist] then
9: pm=1..μ ← S({p′′m=1..λ, pm=1..μ})

10: end if
11: end while

Algorithm 2. Pseudo-codes of Evolutionary Methods. R is the fitness function.

An alternative method, keeping the information on the quality of parameters during the
breeding step has been proposed (Barchiesi, 2009). This Hyper-Elitist scheme (ANUHEM) is
based on the balance between the variety of search (which is necessary to prevent attraction to
local minima of R) through the non uniform law, and the dominance of high quality elements.
The hyper elitist breeding using weighted recombination (barycentric crossover), prevents the
lost of a small number of solutions near the global minimum of R. Instead, the non-uniform
mutation counterbalances this strong attraction, and enables to keep the variety of search in
D. The corresponding pseudo-code is on the right of Algorithm 2, to facilitate the comparison.
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The ANUHEM is partially inspired by the Cooperative-Competitive scheme applied to
radial basis functions networks in Ref. (Whitehead & Choate, 1996). Five cases have to be
distinguished, considering ρ = 2 to simplify the discussion:

• If the two recombined elements are close to a global minimum of R: the weighting
facilitates the convergence towards this minimum.

• If the two recombined elements are close to two separate local minimums, the offspring is
near the “best” of the two ones.

• If only one recombined elements is near the global minimum, the other one may be near a
local minimum of R: the recombined element is attracted by the global minimum.

• If the two recombined elements are away from the global minimum: the effect of the
weighting used in recombination is lessened. The whole search space is surveyed, like
with the Schwefel’s recombination.

• If the two elements are close to a local minimum of R: the convergence of the algorithm to
this minimum is prevented by mutation.

The mutation process in SEM uses the Gaussian distribution and the adaptation of its
standard deviation, to produce offspring. Other algorithms use Cauchy or Lévy probability
distributions (Lee & Yao, 2004; X. Yao & Lin, 1999). To avoid useless evaluations of R after
the mutation process, which can generate offspring that are out of the domain of possible
parameters, an uniform probability law is preferred. This choice is also governed by the
strong local capacity escape of the uniform mutation operator (Gunter, 1997). To avoid
the possible convergence toward a local minimum, the operator used in the ANUHEM is
actually a “Non-Uniform” mutation proposed by Michalewicz (Michalewicz, 1992) and used
for example in (Alfaro-Cid et al., 2005; Zhao et al., 2007). However, in this study, the operator
has been somewhat modified as following, to deal with the detection of poles:

p′′
n = p′

n +
[
(Un − p′

n).B(0.5, 2)

−(p′
n − Ln).(1 − B(0.5, 2))

]

.
(

1 − U(1−g/T)b
)

, (15)

where Un and Ln are the upper and lower bounds of the allowed parameters (domain D of
physically acceptable values), B(0.5, 2) is the Bernouilli’s distribution with probability p = 0.5
and evaluated for each parameter, U is the normalized uniform distribution (in [0, 1]), g the
generation of the evolutionary loop, T is the maximal generation number (arbitrary fixed at
the beginning of the evolutionary loop) and b is a system parameter determining the degree
of non uniformity (Zhao et al., 2007). In Ref. (Zhao et al., 2007), an adaptive scheme was
proposed. Three possible test parameters were tested to generate offspring from the same
parent, and the best one was the survivor. In this study, such a parameter cannot be fixed,
due to the inhomogeneity of the fitness function. The inhomogeneity of R is given by the
ratio of the standard deviation of the initial population to the standard deviation of the fitness
function:

b =
std(pi)

std(R(pi))
. (16)

and the non uniform distribution is given by:

Ub = 1 − U(1−g/T)b
. (17)
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b is related to the “slope” of the solutions, in other words, to the spreading (or dispersion)
of the initial population with regards to their quality, and is therefore adapted for each
generation. b can differ for each of the two parameters (e, θ) and therefore takes into
account the “sensitivity” of R to the variations of both parameters. At the beginning of the
evolutionary loop, b is close to (Un − Ln) and the mutation is very sensitive to the variations
of the fitness function and therefore to the quality of parameters. When the evolutionary
algorithm converges to the global optimum, the local slope of the wells decreases like b, and
the mutation operator exploration is more efficient in the wells.
Finally, in both methods (SEM and ANUHEM), the elitist selection is made among the initial
and mutated elements, at each step of the evolutionary loop. Therefore, this elitist selection
uses the evaluation of the quality of the parents and of the offspring (method (λ + μ)− ES).
This hyper-elitist method requires the evaluation of the fitness function with any element pn

and p′′n . Thus, these methods require time as the model used in the fitness function R must be
evaluated μ + λ times per generation. The goal is therefore to decrease the required number
of generations to reach convergence to one of the global minimums (and to detect the possible
resonances).
The termination criterion is based on the convergence of the evolutionary method, the value
of the global minimum being unknown in the general case. Therefore the stopping criterion
is: ∣

∣
∣
∣

R(eμ, θμ)− R(e1, θ1)

R(eμ, θμ) + R(e1, θ1)

∣
∣
∣
∣
< TC = 10−3 (18)

When the termination criterion is reached, the evolutionary loop is stopped and a
Nelder-Mead Method can be used to achieve the convergence toward the minimum of
the wells of the function and to obtain the final set of parameters. Before evaluating
the performances of both schemes on SPR, we introduce another method that is more
collaborative than selective: the Particle Swarm Method.

3.2 Particle Swarm method: a collaborative method

The Particle Swarm Optimization (PSO) was first introduced by Kennedy and Eberhart in 1995
and imitates the swarm behaviour to search the globally best solution, which is considered as
pollen for bees swarm (Kennedy & Eberhart, 1995). The swarm of parameters searches the
best solution of a problem through collaboration. This metaheuristic method is based on the
time dependent movement of parameters in the search space, toward the optimum. Actually,
selection processes are not used in PSO, instead, reasonable displacements are chosen, based
on the experience of parameters. The PSO (Kennedy & Eberhart, 1995) as well as Evolutionary
Methods (Schwefel, 1995) are direct search, stochastic methods, used to find an optimal
solution of a problem, described by a model, considered as a black box. So the model should
be as stable as possible in the field of original research acceptable parameters. Divergences are
not tolerable in the search intervals, under penalty of a failure of optimization. Contrariwise,
discontinuities in the model are accepted, and test functions have been developed to check
the optimization methods in that case. In plasmonics, as we noted above, one can always
transform the model so that the goal becomes finding a minimum in a narrow well.
For all optimization methods, and especially metaheuristics, a universal scheme does not
exist. Many improvements have been proposed, particularly to make them more effective
for solving specific problems (Hu & Eberhart, 2002; Kennedy & Mendes, 2002; Liang et al.,
2006; Mendes et al., 2004; Veenhuis, 2006). The main issues that have to be addressed are
following:
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• balancing between efficiency and rapidity: the decrease of the time of execution is critical,
especially if the model requires huge computational time; but this conducts inevitably to
increase the probability of attraction to any of the local optimum. The diversity of search
is counterbalanced by the convergence time of the optimization;

• preventing the useless evaluations: in the evolutionary methods, the blind breeding of
parameters can conduct to reduce the efficiency of method, as well as the outflow of
domain for PSO.

The PSO is basically cooperative method where the set of parameters p at step t
(corresponding to generation g in evolutionary methods) is considered as a moving particle
(or bee) in the N-dimensional space of search. The particles of a swarm communicate good
positions to each other and adjust their own positions p and velocities v at each step t:

v(t + 1) = ωv(t) + r1c1(pb(t)− p(t)) + r2c2(pb − p(t)) (19)

p(t + 1) = p(t) + v(t + 1) (20)

where r1 and r2 are random variables between 0 and 1, pb(t) is the particle best position, pb

is the global best, ω is the inertial weight and c1 and c2 are the acceleration coefficients. The
parameters ω, c1 and c2 could be constant or time dependent (i.e. updated at each step).
After computing the new velocity, the particle moves toward a new position following Eq. 20.
The particle new velocity v(t + 1) combines its previous value and the distances between the
particle current position and its own best found position i.e. its own best experience pb(t)
and the swarm global best pb. The first term of Eq. 19 is an inertia term which prevents the
only local search and therefore preserves diversity in the exploration of D. Nevertheless, the
inertia weight, introduced by Shi and Eberhart (Shi & Eberhart, 1998), is linearly decreasing
from 0.9 to 0.4, in classical PSO. The acceleration coefficients c1 and c2 are generally fixed to
c1 = 0.738 and c2 = 1.51, values that have been determined as optimal for the resolution of
simple problems (Clerc, 2009) but significant efforts have been worn for improving the choice
of these exogenous parameters (Zhan et al., 2009), leading to an adaptive method, by the
estimation of the search state at each step. Four search states have been identified: exploration,
exploitation, convergence and jumping out (Zhan et al., 2009) and adapted strategies are used
to update the inertia weight and the acceleration coefficients. Finally, to avoid local optima,
an elitist learning of the convergence state will permit the jump out of the likely local optima.
Nevertheless, some general rules have been established to choose the cognitive parameter c1

and the social parameter c2 : c1 + c2 < 4 with possible priority to cognition (Carlisle & Dozier,
2001).
In the present study, we use standard PSO as reference with c1 = c2 = 2, that seems to be the
most efficient choice of exogenous parameters. And we also propose an adaptive method
based on the same principle as in the ANUHEM method (Barchiesi, 2009): the ANUPSO
(Adaptive Non Uniform Particle Swarm Method) (Kessentini & Barchiesi, 2010a; Kessentini
et al., 2011). Actually, for the plasmonic problems, a compromise between diversity search
and convergence speed-up to the global optimum must be found. Consequently, the proposed
adaptive PSO algorithm, will exploit topological information gathered about fitness function
R(p) at each iteration. The initialization of variables and speed for each particle is carried
following the scheme proposed by Clerc (Clerc, 2009):

v(1) = 0.5(max(D)− min(D)) and p(1) = U(D) (21)
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Then, the adaptation of the exogenous parameters is ensured through the non-uniform law
(Eq. 17), with b(t) defined in Eq. 16 :

ω(t) = max(b(t)) and c1 = 2Ub−1 , c2 = 2Ub−1 (22)

The domain of variation of ci is set to include the classical values used for PSO that are
mentioned above, as well as the constraint c1 + c2 < 4. All the adaptive parameters are
therefore monitored by the topology of the fitness function R. Actually, b(t) can be seen as
the slope of the solutions, i.e. the spreading/ dispersion of the population with regards to
their quality. b(t) can differ for each component of p(t) and therefore takes into account the
sensitivity of R to the variations of all parameters of p. The only exogenous parameter is
T. b(t) determines the degree of non-uniformity (Zhao, 2008): the diversity of parameters
increases instead the average speed of the diversity decreases, when b(t) increases.
The proposed adaptive PSO (ANUPSO) can be compared to the method proposed in (Zhan
et al., 2009) where the authors outlined the necessity of updating the acceleration coefficients
following the three phases of optimization that are expected during the PSO loop (exploration,
exploitation or convergence phase). Through the value of b(t) :

• ω, the inertial coefficient, is close to one in the exploration phase, then decreasing, then
increasing in the exploitation state. This preserves the diversity of solutions and prevents
the convergence to a local minimum. Finally it decreases toward 0 in the convergence state
(when many particles are close to those for the global minimum).

• ci, the acceleration coefficients tends toward 0 when t reaches T (Zhao, 2008)). Therefore
T controls convergence and remains the only non-adaptive parameter of the method.

The values of b(t), for each parameter, governs the convergence speed-up as follows:

• In the exploration state,b(t) is close to one as well as c1(t) and c2(t). The value of b(t) gives
equal weight to the different contributions of the velocity. If the speed of the particle is too
high, the particle (obtained at the generation t) leaves the search space and is therefore
replaced by a random particle, through an uniform law, as in the initialization step. This
contributes to the diversity at this stage.

• In the exploitation state, b(t) increases and also the convergence speed-up (Zhao, 2008)

• In the final state of convergence, b(t) decreases again and the wells of the objective function
R are more carefully exploited.

An illustration of the performances of the the four methods is following.

3.3 Numerical study of the selective and collaborative methods

The problem under investigation is the SPR, assuming only two optimized parameters, as
considered above. The best values of the thickness e of the gold layer, and of θ, the angle of
illumination are searched, the goal being the minimization of R(θ, e) (Figure 9). The model
is used as a black box for each method of optimization, the optimization is repeated at least
10.000 times to compute the statistics of success (converging before T generations to a solution
close to the optimum) and of the number of evaluations of the model R. Let us underline
again, that such method of optimization is designed to deal with much more complex
models, and dim(D) >> 2. Therefore, the optimization must avoid useless evaluations of
a time consuming model. The table 2 shows the performances of SEM, ANUHEM, PSO and
ANUPSO. The domain of search is D = [1; 80] nm × [arcsin(

√
ǫ3/ǫ1); π/2]. This domain is

wide enough to set default behavior of the methods. The evolutionary method will give trivial
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solutions, out of the initial domain, corresponding to a null thickness of gold for example. The
classical PSO freezes the too fast particles that would get out the domain D. Therefore, these
particles are lost for the iteration of the search process. Some solutions have been proposed to
overcome this problem, but are out of the scope of this study (Kessentini & Barchiesi, 2010b).
Moreover, keeping in mind the objective of limiting the number of evaluations, we limit the
number of generations (or iterations) to T = 400. This is vert constringent with regards to
the classical way of bench, for which this exogenous parameter is not limited. Of course,
the success rate approaches 100% for all methods, if T > 1000 in this case. We also fix μ = 5,
λ = 25 and therefore the number of particles in swarm to 30. This small number of parameters
is also an encumbrance for the optimization methods. This simple test, event if only two
parameters have to be optimized, pushes the methods in trenches (Tab. 2).

SEM ANUHEM ANUPSO PSO

success (%) 90% 100% 100% 100%
mean number of evaluations 6800 172 167 962

Table 2. Elitist SEM and ANUHEM, with λ = 25 and μ = 5. ANUPSO and PSO, success rate
and mean number of evaluations in case of success. To be considered as successful, the
number of generation must be less than T = 400 to be considered as successful. The PSO
uses N = 30, c1 = 2, c2 = 2 and ω linearly decreasing from 0.9 to 0.4. The best parameters are
e = 51 nm and θ = 71o .

Table 2 shows that the classical methods are of course non universal and especially not
convenient for plasmonics. Both improvements, using non-uniform law seem to be efficient.
The best methods, under the above mentioned strong constraints are clearly the ANUPSO and
the ANUHEM. Let us note that the selection scheme is elitist in this study. If not, the success
rate would be worse and the number of evaluations would be increased. This illustration
shows that an ideal and versatile method of optimization does not exist. Instead, some
improvements have to be made to hope to reach a sufficient level of reliability. Despite all,
the systematic study of double loop would require at least ten times evaluations to get the
same accuracy on the optimized values.
Some of these heuristic methods have been used successfully, to optimize metal nanoparticles
for the cancer therapy and imaging (Grosges, Barchiesi, Toury & Gréhan, 2008) and
multilayered SPR (Barchiesi, Macías, Belmar-Letellier, Van Labeke, Lamy de la Chapelle,
Toury, Kremer, Moreau & Grosges, 2008) and we hope to succeed in appliance to the more
complex nanonatennas (www.nanonatenna.eu).

4. Conclusion

The numerical optimization of biosensors is necessary to spare time and money. In the case
of plasmonics biosensors, modeling accurately the sensor is still a challenge. However, the
numerical optimization requires a stable and accurate model, to be used as a black box for
optimization. Even, if the model seems simple: the above model of SPR has been used for
illustration, we have shown that the plasmon resonance is a tedious phenomenon, and a
deep understanding of the model is necessary before optimization. On the other hand, the
optimization methods themselves have to be carefully improved and tested before application
to plasmonics. This still remains an open domain for physicists, biologists and theoreticians,
but hopefully, solutions seem now begin to emerge.
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