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1. Introduction  

Since the first discovery of carbon nanotubes (CNTs) in 1991, CNTs have generated 
enormous research activities in many areas of science and engineering due to their 
combined exceptional mechanical, thermal and electronic properties. These properties make 
nanotubes ideal, not only for a wide range of applications but also as a test-bed for 
fundamental scientific studies (Baughman et al., 2002). They can be described as a graphite 
sheet rolled up into a nanoscale tube. Two structural forms of CNTs exist: single-walled 
(SWCNTs) and multi-walled (MWCNTs) nanotubes. CNT lengths can be as short as a few 
hundred nanometers or as long as several micrometers. SWCNT have diameters between 1 
and 10 nm and normally capped ends. In contrast, MWCNT diameters range from 5 to a few 
hundred nanometers because their structure consists of many concentric cylinders held 
together by van der Waals forces. CNTs are synthesized in a variety of ways, such as arc 
discharge, laser ablation, high pressure carbon monoxide (HiPCO), and chemical vapor 
deposition (CVD) (Dresselhaus, 1997). CNTs exhibit excellent mechanical, electrical, thermal 
and magnetic properties. The exact magnitudes of these properties depend on the diameter 
and chirality of the nanotubes and whether their structure is single- or multi-walled. Fig. 1 
shows a segment of a single graphene plane that can be transformed into a carbon nanotube 
by rolling up into a cylinder. To describe this structure, a chiral vector is defined as OA = na1 
+ ma2, where a1 and a2 are unit vectors for the hexagonal lattice of the graphene sheet, n and 
m are integers, along with a chiral angle θ, which is the angle of the chiral vector with 
respect to the x direction. Using this (n, m) scheme, the three types of nanotubes are 
characterized. If n = m, the nanotubes are called ‘‘armchair”. If m = 0, the nanotubes are 
called ‘‘zigzag”. Otherwise, they are called ‘‘chiral”. The chirality of nanotubes has 
significant impact on their transport properties, particularly the electronic properties. For a 
given (n, m) nanotube, if (2n + m) is a multiple of 3, then the nanotube is metallic, otherwise 
the nanotube is a semiconductor. Each MWCNT contains a multi-layer of graphene, and 
each layer can have different chiralities, so the prediction of its physical properties is more 
complicated than that of SWCNT (Jin & Yuan, 2003). 
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Fig. 1. The graphite plane of nanotube surface coordinates (Jin & Yuan, 2003). 

The basic structure of CNTs is comprised of sp2 carbons. This sp2 structure provides CNTs 
with higher mechanical properties compared to any materials, even diamonds. It is well 
known that the mechanical properties of CNTs exceed those of any existing materials. 
Although there is no consensus on the exact mechanical properties of CNTs, theoretical and 
experimental results have shown exceptional mechanical properties of CNTs with Young’s 
modulus of 1.2 TPa and tensile strength of 50–200 GPa (Coleman et al., 2006). 
Other excellent physical properties of CNTs have also attracted much attention. The 

properties are summarized and compared with other carbon allotropes in Table 1. Because 

of their unique properties, many promising applications and potential practical applications 

have been reported, such as field emission materials, catalyst support, electronic devices, 

nanotweezers, reinforcements in high performance composites, supercapacitors, hydrogen 

storage and high sensitivity sensors and actuators. These are just a few possibilities that are 

currently being explored. As research continues, new applications will also develop 

(Dresselhaus et al., 2004). 

 

Property Graphite Diamond Fullerene 
CNTs 
SWCNT MWCNT 

Specific gravity (g cm-3) 1.9-2.3 3.5 1.7 0.8 1.8 

Electrical conductivity (S cm-1) 4000 10-2-10-15 10-5 102-106 103-105 

Electron mobility (cm2 V-1 s-1) 2.0  1800 0.5 ~105 104-105 

Thermal conductivity (W m-1K-1) 298 900-2320 0.4 6000 2000 

Coefficient of thermal expansion (K-1) -1 ൈ ͳͲ଺  (1-3) ൈ ͳͲ଺ 6.2ൈ ͳͲିହ ~0 ~0 

Thermal stability (in air) (K) 450-650 <600 600 >600 >600 

Table 1. Different physical properties of carbon allotropes (Ma et al., 2010) 
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2. Processing of carbon nanotube composites 

CNT-based polymer composite materials are being utilized in an increasing number of 
applications including automotive, aerospace, defence, sporting goods and infrastructure 
sectors. This is due to their high durability, high strength, light weight, design and process 
flexibility, etc. Thermosets such as epoxy, unsaturated polyester, gels, as well as 
thermoplastics have been used as the matrix. The conductivity, strength, elasticity, 
toughness, and durability of formed composites may all be substantially improved by the 
addition of nanotubes. 
Especially electrically conductive CNT-polymer composites are used in anti-static packaging 
applications, as well as in specialized components in the electronics, automotive, and 
aerospace sectors. The incorporation of conductive filler particles into an insulating polymer 
matrix leads to bulk conductivities at least exceeding the anti-static limit of 10-6 S/m. 
Common conductive fillers are metallic or graphitic particles in any shape (spherical, 
platelet-like or fibrous) and size. However, the incorporation of CNTs allows lower 
percolation threshold compared to other conductive fillers (Fig. 2). The use of CNTs as a 
conductive filler in polymers is their biggest current application (Bal & Samal, 2007). 
 

 

Fig. 2. Illustration of CNT network percolation (vc) compared with carbon black 

The effective utilization of CNTs in composite applications depends strongly on the ability 
to homogeneously disperse them throughout the matrix without destroying their integrity. 
Therefore, it has become clear that the issues of dispersion, alignment, and stress transfer are 
crucial, and often problematic at nanoscale. However, in order to be able to utilize CNTs 
and their properties in real-world applications, CNT-based nanocompsites provide a 
pathway to realize the properties of these fascinating nanostructures at macroscopic levels 
by bridging over a range of length scales. 

2.1 Carbon nanotube dispersion 
The potential of using nanotubes as a constituent of polymer composites has not been 
presently realized mainly because of the difficulties associated with dispersion and 
processing. High aspect ratio, combined with high flexibility, increase the possibility of 
nanotube entanglement and close packing. The low dispersity comes from the tendency of 
pristine nanotubes to assemble into bundles or ropes like shown in Fig. 3 (Thess et al., 1996). 
Thus, a significant challenge in developing high-performance CNT-polymer composites is to 
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introduce the individual CNTs in a polymer matrix in order to achieve better dispersion and 
alignment and strong interfacial interactions, to improve the load and electron transfer 
across the CNT-polymer matrix interfaces. 
 

 

Fig. 3. (a) SEM image of entangled SWCNT agglomerates and (b) TEM image of a SWCNT 
bundle (Thess et al., 1996). 

2.1.1 Mechanical dispersion of carbon nanotubes 

Ultrasonication 

Although in most cases, it is very difficult to get a homogeneous dispersion of the CNTs in 
the polymeric matrix, ultrasonication is a very effective method of dispersion and de-
agglomeration of CNTs, as ultrasonic waves of high-intensity ultrasound generates 
cavitation in liquids. There are two major methods for delivering ultrasonic energy into 
liquids, the ultrasonic bath (Fig. 4. (a)) and the ultrasonic horn (Fig. 4(b)). Ultrasonication 
disperses solids primarily through a microbubble nucleation and collapse sequence. The 
ultrasonication bath has a higher frequency (40–50 kHz) than cell dismembrator horns (25 
kHz). Ultrasonication of fluids leads to three physical mechanisms: cavitation of the fluid, 
localized heating, and the formation of free radicals. Cavitation, the formation and 
implosion of bubbles, can cause dispersion (Lu et al., 1996). 
 

 

Fig. 4. (a) Bath type, (b) horn type sonicator and (c) Raman spectra of CNTs before and after 
sonication 

However, ultrasonication affects not only CNT dispersion but also its length and diameter 
(Fig. 4 (c)). After reducing their lengths during ultrasonication, SWCNTs rearrange into 
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superropes. These superropes have diameters more than 20 times the initial bundle 
diameter (Shelimova et al., 1998).  In MWCNTS, ultrasonication creates expansion and 
peeling or fractionation of MWCNT graphene layers. The destruction of MWCNTs seems to 
initiate on the external layers and travel towards the center. It has been reported that the 
nanotube layers seem quite independent, so MWCNTs would not only get shorter, but 
actually thinner with time (Lu et al., 1996). There have been attempts to develop less 
destructive ultrasonication methods. One example is ultrasonication with diamond crystals, 
a method that reportedly destroys the SWCNT bundles but not the tubes. Raman spectra 
showed typical SWCNT peaks even after 10 hours of treatment with this method (Haluska et 
al., 2001). 

Ball Milling 

Ball milling is a method that is usually used to grind bulk materials into fine powder. 
During milling, a high pressure is generated locally due to the collision between the rigid 
balls in a sealed container (Fig. 5). Cascading effect of balls reduces the size of material to 
fine powder. Balls are usually made by ceramic, flint pebbles and stainless steel. 
 

 

Fig. 5. Schematics of ball milling technique 

Ball milling has been successfully applied to CNT dispersion into polymer matrices. To 

obtain narrow length and diameter distributions of CNTs and to open the nanotubes for 

improved sorption capacity for gases, ball-milling is a very useful method (Awasthi et al., 

2002). However, it has also been observed that a large amount of amorphous carbon is 

created which clearly indicates that the tubes are damaged in different ways and that ball-

milling is a destructive method (Jia et al., 1999). 

Calendering (Three-Roll mill) 

Calendering, also commonly known as three-roll-milling (Fig. 5 (a)) is a dispersion 

technique that employs both shear flow and extensional flow created by rotating rolls of 

different speed to mix and disperse CNTs or other nanoscale fillers into polymers or other 

viscous matrixes. The first and third rollers (usually called the feed and apron rolls, 

respectively) in Fig. 5 (b) rotate in the same direction while the center roller rotates in the 

opposite direction. In order to create high shear rates, angular velocity of the center roll 

must be higher than that of feed roll (ω2 > ω1). As the resin suspension is fed into the 

narrow gap (δ) between feed and center rolls, the liquid mixture flows down covering 

(essentially coating) the adjacent rolls through its surface tension under intensive shear 

forces. At the end of each subsequent intended dwell time, the processed resin suspension is 

collected by using a scraper blade in contact with the apron roll. This milling cycle can be 

repeated several times to maximize dispersion. 
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Fig. 6. (a) Calendering machine (three-roll mill) used for CNT dispersion into a polymer 
matrix and (b) general schematic diagram of its mechanism. 

One of the unique advantages of this technique is that the gap width between the rollers can 

be mechanically or hydraulically adjusted and maintained, thus it is easy to obtain a 

controllable and narrow size distribution of particles in viscous materials. In some 

operations, the width of gaps can be decreased gradually to achieve the desired level of 

particle dispersion (Viswanathan et al., 2006). A typical calendering machine and its 

principle are shown schematically in Fig. 5. The employment of a calender to disperse CNTs 

in a polymer matrix has become a very promising approach to achieve relatively good CNT 

dispersion according to some recent reports (Thostenson & Chou, 2006a). 

However, the fed material should be in a viscous state when mixed with CNTs, thus this 

tool may not be applied to disperse CNTs into thermoplastic matrices, such as polyethylene, 

polypropylene and polystyrene. In contrast, CNTs can be conveniently dispersed into the 

liquid monomer or oligomer of thermosetting matrices, and nanocomposites can be 

obtained via in situ polymerization. 

Extrusion (Melt Compounding) 

Extrusion is a popular technique used to disperse CNTs into solid polymers, including most 

thermoplastics, where thermoplastic pellets mixed with CNTs are fed into the extruder 

hopper. In particular, twin-screw extruders (Fig. 7. (a)) are used extensively for CNT-

polymer mixing and compounding. The modular design of twin-screw extruder allows this 

operation to be designed specifically for the formulation being processed (Fig 7. (b)) 

(Bauhofer & Kovacs, 2009). For example, the two screws may be co-rotating or counter-

rotating, intermeshing or non-intermeshing. In addition, the configurations of twin-screw 

extruders themselves may be varied using forward conveying elements, reverse conveying 

elements, kneading blocks, and other designs in order to achieve each CNT-polymer mixing 

characteristics. This technique is particularly useful in producing CNT-polymer composites 

with high filler contents. However, care must be taken to prevent CNT damages due to 

excessive shear stresses imposed during the extrusion process. 

Polymer melt compounding is useful, especially in industry because it does not demand 

additional processes. However, the melt compounding studied and optimized so far has 

been mostly focused on micro-compounders at lab-scale. Scale-up of these techniques are 

not just a matter of size but also a matter of different rheological and thermodynamical 

issues (Oh & Hong, 2010). 
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Fig. 7. (a) Lab scale twin screw extruder and (b) screw modular design. 

2.1.2 Dispersion of carbon nanotube based on functionalization 

Covalent Functionalization 

Functionalization of CNTs is an effective way to minimize nanotube interaction, which 
helps to better disperse and stabilize the CNTs within a solvent or polymer matrix. There 
are several approaches for functionalization of CNTs, including covalent and non-covalent 
functionalizations. 
In the case of covalent functionalization, the structure of CNTs is disrupted by changing sp2 
carbon atoms to sp3 carbon atoms, and the physical properties of CNTs, such as electrical 
and thermal conductivities, are influenced. However, functionalization of CNTs with 
covalent bonding can improve dispersity in solvents and polymers. Generally, surface 
modification starts from acid treatment, which create –COOH and –OH functional groups 
on the CNT during oxidation by oxygen, reactive gas, sulfuric acid, nitric acid and other 
concentrated acids or their mixtures. The quantitative amounts of –COOH and –OH 
functional groups depend on oxidation conditions and oxidizing agent. Nanotube ends can 
be opened and residual catalyst and amorphous carbons are removed during the oxidation 
process (Spitalskya et al., 2010). 
Carboxylic functionalized CNT surfaces can be further used to chemically attach other small 

molecules or macromolecules through the reaction of the oxidation-induced functional 

groups. One of the common chemical reactions with acid functionalized CNT is the 

amidization, in which amide bond between amine group moieties is formed. One example is 

the use of amino-functionalized MWCNTs in epoxy systems to yield improved mechanical 

properties (Stevens et al., 2003). The improved mechanical performance in these 

functionalized systems may reflect both the enhanced dispersion and an improved surface 

interaction between CNT and polymer matrix. Further improvements in solubility can be 

achieved by fluorination, again leading to improvements in both the stiffness and strength, 

with the addition of 1 wt.% of oxidized and fluorinated SWCNTs. Also, it has been 

established that the electrical properties of MWCNTs change after fluorination, leading to a 

wide range of electrical structures, from insulating over to semiconducting and metallic-like 

behavior (Seifert et al., 2000). 

The chemically functionalized CNTs can produce strong interfacial bonds with many 
polymers, allowing CNT-based nanocomposites to possess high mechanical and functional 
properties. 
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Fig. 8. Schematic representation of amidization process which starts from oxidized CNTs 
(Spitalsky et al., 2010). 

Non-covalent Functionalization 

A non-covalent method used to modify CNT surface is popular functionalization method 
since it does not compromise the physical properties of CNTs. The electrostatic repulsion 
provided by adsorbed surfactants stabilizes the nanotubes against the strong van der Waals 
interactions between the nanotubes, hence preventing agglomeration. This repulsive and 
attractive force balance creates a thermodynamically stable dispersion, which results in 
separation of CNTs from the bundles into individual nanotubes. Anionic surfactants, such 
as sodium dodecylsulfate (SDS) and sodium dodecylbenzene sulfonate (NaDDBS), are 
commonly used to disperse CNT aggregation in polar media. The interaction between the 
surfactants and the CNTs depends on the nature of the surfactants, such as its alkyl chain 
length, headgroup size, and charge (Fig. 9) (Ma et al., 2010). 
 

 

Fig. 9. Schematic diagram of surfactants adsorbed nanotube (Sahoo et al., 2010). 

The physical interaction of polymers with CNTs to make specific formation can be explained 
by the ‘wrapping’ mechanism which is π-stacking interactions between the polymer and the 
nanotube surface. Usually, wrapping polymer consists of aromatic groups on main chain or 
substitutional groups. For example, polyvinyl pyrrolidone (PVP) or polystyrene sulfonate 
(PSS) wrapped CNT shows improved dispersity and electrical properties compared to those 
of the individual components (Cheng et al., 2008). 
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Small angle neutron scattering studies demonstrated a non-wrapping conformation of 
polymers in CNT dispersions. In these cases, different structures and compositions of 
copolymers efficiently act as stabilizers. The suggested mechanism of non-wrapping is that 
one of the blocks in block copolymers adsorbed to the nanotubes surfaces and another 
solvophilic blocks act as a steric barrier that leads to the formation of stable dispersions of 
individual CNTs above a threshold concentration of the polymer. A study of the 
stabilization effect produced by different diblock or multiblock copolymers led to the 
conclusion that selective interaction of the different blocks with solvent is essential in order 
to obtain stable colloidal dispersions of CNTs (Nativ-Roth et al., 2007). 

2.2 Control of carbon nanotube orientation 
Similar to conventional fiber-reinforced composites, both mechanical properties and 
functional properties, such as electrical, thermal and optical properties of CNT-polymer 
composites are directly related to the alignment direction of CNTs in the matrix. Recently, 
this topic has drawn much attention due to the advance in nanocomposite processing 
techniques and the limitaions of randomly oriented, discontinuous nanotube composites. 

2.2.1 Orientation of carbon nanotube by yarn formation 
Recent advances in fabrication of CNTs allow to grow up to several millimeters in length, 
and these CNTs are possibly aligned to continuous macroscopic SWCNT fibers (Fig. 10). 
This provides an opportunity for fabricating continuous nanotube reinforced composites. 
 

 

Fig. 10. SEM image of direct yarn formation from MWCNT forest (Zhang et al., 2004). 

It has been reported that free-standing arrays of millimeter long, vertically aligned 
multiwalled nanotubes exhibit supercompressibility, outstanding fatigue resistance, and 
viscoelastic characteristics. Continuously aligned nanotube reinforced polydimethylsiloxane 
(PDMS) composite shows remarkably enhanced compressive modulus and strength, 
anisotropic characteristics, and damping capability (Ci et al., 2008). 

2.2.2 Force field orientation 
The first method developed to fabricate aligned CNTs in polymer matrix was by ‘‘cutting’’ 
an CNT-epoxy nanocomposite. This process is simply explained by the nature of rheology in 
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composite media on nanometer scales and flow-induced anisotropy produced by the 
‘‘cutting’’ process. The fact that CNTs do not break and are aligned after cutting also 
suggests that they have excellent mechanical properties along the nanotube direction. 
However, the orientation of CNTs in CNT-epoxy composite is affected by the cut slice 
thickness, since the alignment effect is only effective near the slice surface (Ajayan et al., 
1994). 
A solution approach involved a SWCNT-dispersed surfactant solution (sodium dodecyl 
sulfate, SDS) injected through a syringe needle into a polyvinyl alcohol (PVA) solution. 
Because the PVA solution is more viscous than the SWCNT suspension, there is a shear 
contribution in the flow at the tip of the syringe needle, the flow-induced alignment is 
maintained by the PVA solution, and SWCNTs are rapidly stuck together as they are 
injected out from the syringe. By pumping the polymer solution from the bottom, meter-
long ribbons are easily drawn, and well-oriented PVA-CNT composite fibers and ribbons 
are formed by a simple process. It offers a method to align CNTs by a flow field (Vigolo et 
al., 2000). 
The more effective and convinient method in CNT orientation is uniaxially stretching of 

polymer-CNT composite films. CNT-polymer composite films and fibers produced by any 

process can be drawn uniaxially showing higher conductivity along the stretched direction 

than the direction perpendicular to it. Also, the mechanical properties such as elastic 

modulus and yield strength of composite fibers increased with draw ratio, and CNTs in the 

composite fibers were better aligned. It is also possible to prepare aligned CNT composite 

films by extruding the composite melt through a rectangular die and drawing the film prior 

to cooling. For example, as compared to the drawn polystyrene (PS) film, the tensile strength 

and modulus of the PS-MWCNT composite films were greater (Thostenson & Chou, 2002). 

However, PS-MWCNT composites prepared by spin casting at high speed showed that 

MWCNTs were aligned in specific angles relative to the radial direction: 45º and 135 º on 

average. The presence of 2.5 vol.% MWCNTs doubles the tensile modulus and transforms 

the film from insulating to conducting. It is also noted that the CNTs have higher orientation 

than the polymer matrix during melt-drawing of the polymer-CNT composites 

(Bhattachacharyya et al., 2003). 

2.2.3 Electric or magnetic field induced orientation 
Studies of SWCNT alignment using electric or magnetic fields have usually involved 
epoxies or polyesters as matrices because of their low viscosity before cure. Under the 
electric field, it was shown that both AC and DC electric fields can be used to induce the 
formation of aligned CNT networks spanning the gap between electrodes in contact with 
the dispersion. With increasing field strength, the quality of these networks and the 
resulting bulk conductivity of the composite material can be enhanced(Martin et al., 2004). 
However, at high CNT content, thus high viscosity of molten resin system, the magnetic 
field-induced alignment of polymeric materials is more effective in CNT alignment. This 
technique has been the focus of several research efforts, initiated by the first use of high 
magnetic field to align MWCNTs in a polyester matrix to produce electrically conductive 
and mechanically anisotropic composites. A high magnetic field is an efficient and direct 
means to align CNTs. For example, to align MWCNT dispersed in methanol suspension, a 
magnetic field greater than 7 T is demanded. For the CNT alignment in a polymer, even 
higher magnetic field would be demanded because of high viscosity. Under a high magnetic 
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field of 10 T, it has been shown that MWCNTs were aligned in the monomer solution during 
their polymerization and MWCNTs were aligned parallel to the magnetic field inside the 
polymer matrix (Camponeschi et al., 2007). Recently, magnetic field aligned polycarbonate 
(PC) and CNT-epoxy composites hae been reported and they suggested that aligning CNTs 
in polymer matrices can improve mass transport property as well as electrical conduction. It 
is also viewed that CNTs are better aligned in a PC matrix using magnetic field as compared 
to an electric field (Abdalla et al., 2010). 

2.2.4 Electrospinning induced orientation of carbon nanotube in polymeric nanofiber 
Among several approaches to align nanotubes, the electrospinning technique has recently 
ben used to incorporate CNTs in a polymeric matrix to form composite nanofibers, 
combining the benefits of nanofibers with the merits of CNTs. Due to the sink flow and the 
high extension of the electrospun jet, it is expected to align the nanotubes during the 
electrospinning process, as was also predicted by a mathematical model. However, the 
distribution and alignment of the nanotubes in the nanofibers are strongly associated with 
the quality of the nanotube dispersion prepared before addition of the spinnable polymer 
solution. Generally, well-dispersed MWCNTs were incorporated as individual elements 
mostly aligned along the nanofiber axis. Conversely, irregular nanotubes were poorly 
aligned and appeared curled, twisted, and entangled. It is also suggested that the nanofiber 
diameter, the interaction between the spun polymer and the nanotubes and wetting ability 
are important factors affecting the alignment and distribution of the nanotubes. This was 
demonstrated by the difference in the alignment of SWCNTs in polyacrylonitrile (PAN) and 
polylactic acid (PLA) nanofibers (Ko et al., 2003). More recent work to incorporate SWCNTs 
into PEO nanofibers by the electrospinning process showed SWCNTs were embedded in 
PEO in a more regular form since SWCNTs are much smaller and uniform in shape and size, 
as compared to MWCNTs. On the other hand, their stronger tendency to bundle up into 
coiled aggregates introduces a pronounced difficulty. Therefore, special attention is given to 
the dispersion process, which is essential for successful alignment of the nanotubes by the 
electrospinning process. Structural analysis of the composite nanofibers in terms of the 
distribution and orientation of both the nanotubes and the polymer matrix has been studied 
(Salalha et al., 2004). 
 

 

Fig. 11. (a) Simple schematic presentation of electrospinning and (b) TEM image of SWCNT 
aligned PEO nanofiber. Scale bar = 50 nm (Salalha et al., 2004) 

3. Electrical properties of carbon nanotube composites 

CNTs have clearly demonstrated their capability as fillers in conductive polymer 
composites. Percolation theory predicts that there is a critical concentration at which 
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composites of insulating polymers become electrically conductive. According to the 
percolation theory, conductivity of composite (ߪ௖) can be estimated from the following 
equation. 

௖ߪ  ൌ AሺV െ V௖ሻఉ (1) 

Where V is the CNT volume fraction, Vc is the CNT volume fraction at the percolation 
threshold, and A and β are fitted constant. The percolation threshold has been reported to 
ranging from 0.0025 wt.% to several wt.%. The percolation threshold for the electrical 
conductivity in CNT-polymer composites depends on degree of surface modification 
dispersion, alignment, CNTs aspect ratio, polymer types and processing methods. The 
electrical conductivity and percolation threshold of CNT-polymer composites are 
summarized in Table 2. 
 

Polym
er 

matrix 

CNT type Maximu
m filler 
content 
(wt.%) 

Processin
g or 

dispersio
n method 

Maximum 
electrical 

Conductivit
y (S/m) 

Percolation 
threshold 
(wt/%) 

Reference 

PS SWCNTs 2 Solution 
mixing 

10-3 0.27 Chang et 
al., 2006 

PS Aligned 
CNT 
array 

 Drop 
Casting 

1330  Peng et al., 
2009 

HDPE Acid- 
SWCNTs 

6 Extrusion 10-1 ~4 Zhang et. 
al., 2006 

LDPE Acid -
MWCNTs 

10 Ball mill ~2 ~1-3 Gorrasi et 
al., 2007 

PP MWCNTs 10.7 Melt 
mixing 

4.6 1.1 Miˇcuˇsík 
et al., 2009 

PMM
A 

SWCNTs 25 Coagulat
ion 

10-1 ~1 Narayan et 
al., 2009 

PMM
A 

MWCNTs 0.4 Solution 
mixing 

3ൈ103 0.003 Kim et al., 
2004 

PMM
A 

Aligned 
CNT 

- Drop 
casting 

1250 - Peng et al., 
2009 

PC MWCNT 15 Extrusion 20 1-2 Potschke et 
al., 2002 

PC PPE-
SWCNTs 

10 Solution 
mixing 

4.8ൈ102 0.11 Ramasubra
maniam et 

al., 2003 
Nylon 

6 
MWCNTs 10 Melt 

mixing 
0.1 2-2.5 Krause et 

al., 2009 
Nylon 

6,6 
MWCNTs 10 Melt 

mixing 
0.1 0.5-1 Krause et 

al., 2009 
PDMS MWCNTs 2.5 Ultrasoni

ca-tion 
0.02 1.5 Khosla A 

& Gray BL, 
2009 
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PI MWCNTs 1.5  3.83ൈ10-4 - Xiaowen et 
al., 2005 

PI Acid- 
MWCNTs 

7 Solution 
mixing 

3.8ൈ10-6 - Yuen et al., 
2007 

PU MWCNTs 27 Solution 
casting 

2ൈ103 0.009 Koerner et 
al., 2005 

PET SWCNTs 5 Melt 
mixing 

~1 0.024 Hernandez 
et al., 2009 

Epoxy Aligned 
SWCNT 

5 Solution 
casting 

~10-5 0.5 Qing et al., 
2008 

Epoxy Silane-
MWCNT 

1 Solution 
mixing 

1.67ൈ10-2 - Lee et al., 
2011 

Epoxy MWCNT 8 3-roll 
mill 

2.3ൈ104 0.0117 Iosif et al., 
2009 

Epoxy SDS-
MWCNTs 

0.5 Bulk 
mixing 

2.5ൈ10-7 - Santos et 
al., 2008 

Nafion SWCNTs 18 Solution 
mixing 

3.2ൈ103 - Landi et 
al., 2002 

Table 2. Electrical properties of CNT-polymer composites 

4. Smart, multifunctional applications of carbon nanotube composites 

CNT-based polymer composites have found numerous multifunctional applications owing 

to their capability to serve as reinforcing, lightweighting agents and a material platform for 

electrostatic discharging, electromagnetic interference shielding, radar absorbing, 

mechanical/chemical sensing, energy harvesting, and flame retardation. Smart applications 

can be categorized into sensing and actuation, and this chapter will primary focus on the 

review of research on electromechanical sensing using CNT-based polymer composites. The 

studies on sensors and actuators based on CNTs and their composites up to 2007 are well 

summarized by Li et al. (Li et al., 2008), and this chapter primarily presents more recent 

studies. 

4.1 CNT Nanocomposites for electromechanical sensing 
Electromechanical sensing and structural health monitoring typically utilize the 
piezoresistive behavior of the electrically conductive network formed by CNTs in polymer 
matrices, that is, the behavior characterized by a change in resistivity with respect to the 
structural deformation incurred by an external load. For example, when a CNT 
nanocomposite is subjected to a tensile load, the percolated CNT network is disrupted, 
resulting in an increase in resistivity. The variation in resistivity under a load is attributed to 
the variation in contact configurations and tunnelling distances among the contacting CNTs 
upon nanocomposite deformation. 
Initial studies on piezoresistivity of conductive CNT network involved free-standing CNT 
films or sheets, also known as “buckypapers.” CNT buckypapers are typically made by 
filtration, similar to the papermaking process, where the CNTs are uniformly dispersed in a 
solvent, usually with the aid of surfactants, and subsequently passed through a filtering 
paper on which the CNTs are eventually deposited, dried, and detached. The CNT sheets 
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were bonded to the surfaces of various substrates, including brass (Li et al., 2004; Vemuru et 
al., 2009), aluminium (Li et al., 2004), and fiberglass (Kang et al., 2006). While these substrates 
were loaded under tension or flexure, the resistance between two electrodes attached to the 
CNT sheet was measured in situ. Most of these studies employed isotropic, randomly 
oriented CNT networks, and showed that the resistance increase linearly under tension and 
decreased linearly under compression.  The isotropy allows multi-directional, multi-location 
strain measurements. 
It has been reported that CNTs can be added to various materials, including general-
purpose thermoplastics and thermosets, specialty polymers, such as polyvinylidene fluoride 
(PVDF) and shape memory polymers, elastomers, and concrete, and utilize the 
piezoresistivity of the nanocomposites for strain or pressure sensing. 

4.1.1 Thermoplastic-based nanocomposites 
The research group at the University of Cincinnati (Kang et al., 2006) reported 

comprehensive research work on strain sensing using buckypapers and SWCNT-

polymethylmethacrylate(PMMA) composites. Fig. 12(a) shows the strain response of a 

SWCNT buckypaper sensor, which shows higher sensitivity in the linear bending range. 

However, it shows saturated strain behavior above 500 microstrains, which is probably 

attributed to the slippage among CNT bundles due to the weak van der Waals interactions 

at nanotube interfaces. When the sensor is compressed, the individual CNTs do not slip as 

much as compared to the tension case, resulting in the lack of saturation. Fig. 12(b) shows 

the strain response of composite sensor at varying CNT loadings. Although the composite 

strain sensors show lower sensitivities than buckypaper, they show linear symmetric strain 

response trends in both compression and tension. The interfacial bonding between CNTs 

and the polymer reduces slip and effectively increases the strain in the sensor. 

 

 
(a) Buckypaper 

 
(b) SWCNT-PMMA composite 

Fig. 12. Piezoresistive response of: (a) buckypaper sensor and (b) SWCNT-PMMA composite 
sensor (Kang et al., 2006a, 2006b) 

Pham et al. (Pham et al., 2008) reported the development of conductive, MWCNT-filled, 
polymer composite films that can be used as strain sensors with tailored sensitivity. The 
electrical resistance of MWCNT-PMMA composite films subjected to tensile strains was 
measured, and the potential applications of the films as strain sensors with a broad range of 
tunable sensitivity were investigated. The surface resistivity of the films was observed to 
increase with increasing tensile strain, which is due to the reduction in conductive network 
density and increase in inter-tube distances induced by applied strains. The highest 
sensitivity achieved in this study was almost an order of magnitude greater than 
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conventional resistance strain gages (Fig. 13). A semi-empirical model, based on the 
percolation theory, was developed to identify the relationship between applied strain and 
sensitivity factor (Fig. 14). Not only can the sensitivity be tailored over a broad, but also it 
can be increased significantly be having the conductive filler content approach the 
percolation threshold. 
Zhang et al. (Zhang et al., 2006) presented a study on MWCNT-polycarbonate(PC) 
composites as multifunctional strain sensors, where a 5 wt.% composite showed 
instantaneous electrical resistance response to linear and sinusoidal dynamic strain inputs 
and a sensitivity of ~3.5 times that of a typical strain gage.  Billoti et al. (Billoti et al., 2010) 
presented a study on thermoplastic polyurethane (TPU) fibers containing MWCNTs, 
fabricated via an extrusion process, which demonstrated a tuneable level of electrical 
conductivity. The observation of Arrhenius dependence of zero-shear viscosity and the 
assumption of simple inverse proportionality between the variation of conductivity, due to 
network formation, and viscosity allow a universal plot of time variation of conductivity to 
be composed, which is able to predict the conductivity of the extruded fibers. The same 
nanocomposite fibers also demonstrated good strain sensing abilities, which were shown to 
be tunable by controlling the extrusion temperature. 
 

 

Fig. 13. Comparison of sensitivity factors between MWCNT-PMMA films and conventional 
resistance strain gages 

 

 

Fig. 14. Calculated and experimental sensitivity factors of MWCNT-PMMA films 

Abraham et al. (Abraham et al., 2008) reported the development and characterization of a 
CNT-PMMA nanocomposite flexible strain sensor for wearable health monitoring 
applications. These strain sensors can be used to measure the respiration rhythm which is a 
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vital signal required in health monitoring. A number of strain sensor prototypes with 
different CNT compositions have been fabricated and their characteristics for both static as 
well as dynamic strain have been measured. Bautista-Quijanoa et al. (Bautista-Quijanoa et al., 
2010) reported the electrical and piezoresistive responses of thin polymer films made of 
polysulfone (PSF) modified with 0.05–1% w/w MWCNTs. Gage factors were measured for 
films with 0.2–1% CNT weight loadings. The films were then bonded to macroscopic 
aluminum specimens and evaluated as strain sensing elements during quasi-static and 
cycling tensile loading. Excellent piezoresistive capabilities were found for films with 
MWCNT loadings as low as 0.5% w/w. 
CNTs were added to a piezoelectric polymer, PVDF, to for various smart applications, 

including strain sensing. Deshmukh et al. (Deshmukh et al., 2009) presented an experimental 

evidence of the creation of an electrostrictive response in PVDF by addition of small 

quantities of CNTs. It was demonstrated that the piezoelectric response of nanocomposites 

can be dramatically enhanced through addition of conductive nanoparticles such as CNTs 

without additional weight penalties. Most importantly, these improvements were achieved 

at much lower actuation voltages and were accompanied by an increase in both mechanical 

and dielectric properties. In the work by Kim et al. (Kim et al., 2008), CNTs were included in 

a PVDF matrix to enhance the properties of PVDF. The CNT-PVDF composite was 

fabricated by solvent evaporation and melt pressing. The inclusion of CNT allowed the 

dielectric properties of PVDF to be adjusted such that lower poling voltages can be used to 

induce a permanent piezoelectric effect in the composite. The CNT-PVDF composites were 

mounted on the surface of a cantilever beam to compare the voltage generation of the 

composite against homogeneous PVDF thin films. 

4.1.2 Thermoset-based nanocomposites 
The primary types of thermosets used as the matrices for strain sensing nanocomposites 

include epoxy, vinyl ester, and polyimide, among which epoxies are most popular. In the 

work by Wichmann et al. (Wichmann et al., 2009), electrically conductive epoxy based 

nanocomposites based on MWCNTs and carbon black were investigated concerning their 

potential for strain sensing applications with electrical conductivity methods. It was found 

that the nanocomposites exhibited a distinct resistance vs. strain behavior in the regime of 

elastic deformation, which is in good agreement with prevalent theories about charge carrier 

transport mechanisms in isolator/conductor composites. Applying an analytical model, it 

was shown that the piezoresistivity of nanocomposites may contribute valuable information 

about the conductive network structure and charge carrier transport mechanisms occurring 

in the nanocomposites. The authors also developed a direction-sensitive bending strain 

sensor consisting of a single block of MWCNT-epoxy composite by generating a gradient in 

electrical conductivity throughout the material (Wichmann et al., 2008). 

Zhang et al. (Zhang et al., 2007) demonstrated a simple, effective and real-time diagnostic, 

and repair technique featuring MWCNTs that are infiltrated into epoxy. It was shown that 

by monitoring volume and through-thickness resistances, one can determine the extent and 

propagation of fatigue-induced damage such as crack and delamination growth in the 

vicinity of stress concentrations (Fig. 15). The conductive nanotube network also provides 

opportunities to repair damage by enabling fast heating of the crack interfaces; the authors 

show up to 70% recovery of the strength of the undamaged composite. 
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Fig. 15. Detection of real-time fatigue crack growth: (a) snapshots of fatigue crack growth; 
(b) the change in electrical resistance across the crack interface 

Quasi-static and dynamic strain sensing of CNT-epoxy composites was studied by Anand 
and Mahapatra (Anand & Mahapatra, 2009), and de la Vega, et al. (de la Vega et al., 2011) 
characterized the local and global stress response of SWCNT–epoxy composites by 
simultaneous Raman spectroscopic and electrical measurements on nanocomposite 
specimens subjected to various levels of surface strain. Both the Raman G-band resonance 
frequency and the electrical resistance of the composite are found to change monotonically 
with strain until an inflection point is reached at 1.5% strain. 
Thostenson et al. (Thostenson et al., 2009) synthesized vinyl ester monomer from the epoxy 

resin to overcome processing challenges associated with volatility of the styrene monomer 

in vinyl ester resin. Calendering was employed for MWCNT dispersion in vinyl ester 

monomer and the subsequent processing of nanotube/vinyl ester composites. The high 

aspect ratios of the carbon nanotubes were preserved during processing, and an electrical 

percolation threshold below 0.1 wt.% carbon nanotubes in vinyl ester was observed. A 

systematic study of the effect of SWCNTs on the enhanced piezoresistive sensitivity of 

polyimide nanocomposites from below to above percolation was reported by Kang et al. 

(Kang et al., 2009). The maximum piezoresistive stress coefficient obtained just above the 

percolation threshold concentration (0.05 wt.%) exceeded those of metallic piezoresistive 

materials by two orders of magnitude. 

4.1.3 Elastomer-based nanocomposites 
Hwang et al. (Hwang et al., 2011) fabricated a piezoresistive composite using MWCNTs as a 

conductive filler and polydimethylsiloxane (PDMS) as a polymer matrix, which operated in 

the extremely small pressure range required for finger-sensing. To achieve a homogeneous 

dispersion of MWCNTs in PDMS, the MWCNTs were modified by a polymer wrapping 

method using poly(3-hexylthiophene) (P3HT). The percolation threshold of the composites 

was significantly lowered by the presence of P3HT. The electrical conductivity and 

piezoresistive sensitivity of the composite were found to strongly depend on the P3HT 

concentration. The well-dispersed P3HT-MWCNT/PDMS composite showed good 

piezoresistive characteristics in the 0–0.12 MPa pressure range. 

Wang et al. (Wang et al., 2010) studied the piezoresistivity of a multi-walled carbon nanotube 
filled silicone rubber composite under uniaxial pressure. The experimental results showed 
that the active carboxyl radical on multi-walled carbon nanotubes can effectively improve 

www.intechopen.com



 
Carbon Nanotubes - Synthesis, Characterization, Applications 388 

the homogeneous distribution and alignment of conductive paths in the composite. As a 
result, the composite presented positive piezoresistivity with improved sensitivity and 
sensing linearity for pressure, both of which are key parameters for sensor applications. 
Elastomeric composites based on ethylene-propylene-diene-monomer (EPDM) filled with 
MWCNTs showed improved mechanical properties as compared to the pure EPDM matrix 
(Ciselli et al., 2010). A linear relation was found between conductivity and deformations up 
to 10% strain, which means that such materials could be used for applications such as strain 
or pressure sensors. Cyclic experiments were conducted to establish whether the linear 
relation was reversible, which is an important requirement for sensor materials. 
High-elasticity CNT-methylvinyl silicone rubber (VMQ) nanocomposites with a high 
sensitivity and linear piezoresistive behavior was fabricated by dispersing conductive 
MWCNTs with different aspect ratios, AR = 50 and 500, into rubber matrix homogeneously 
(Dang et al., 2008). It was found that the percolation threshold of the nanocomposites 
containing AR = 50 MWCNTs was significantly lower than those containing AR = 500 
MWCNTs. Extremely sensitive positive-pressure coefficient effect of the resistance and 
excellent cyclic compression under low pressure were also observed in the MWCNT-VMQ 
nanocomposites with AR = 50 MWCNTs at relatively low loadings. 

4.2 CNT-based multiscale hybrid composite for electromechanical sensing 
Multiscale hybrid composites (MHCs) are defined as composites consisting of at least three 
constituents having more than two different length scales. The most common type consists 
of the resin (macro), continuous (unidirectional or woven) fiber fabric (micro), and 
nanoparticles (nano) (Fig. 16). Conventional continuous fiber-reinforced plastics (FRPs) are 
characterized by extremely high in-plane modulus and stiffness (fiber-dominated) and poor 
through-thickness properties (matrix-dominated). In MHCs, high-performance 
nanomaterials are added to improve the through-thickness properties and, at the same time, 
to impart multifunctionalities to the composites. 
 
 

 

Fig. 16. Concept of multiscale hybrid composites 
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Research on structural health monitoring of MHCs using the piezoresistivity of the 
percolated network of CNTs has been pioneered by the University of Delaware. A typical 
MHC manufacturing process involved dispersion of CNTs in the resin using a three-roll 
mill, followed by composite fabrication using vacuum-assisted resin transfer molding. The 
MHCs thus obtained were tested under various loading conditions to in situ monitor and 
detect various failure modes, including delamination, matrix damage and fiber breakage as 
shown in Fig. 17 (Thostenson & Chou, 2006b), and crack growth under fatigue (Gao et al., 
2009). Similar research was performed in parallel by Technische Universitat Hamburg-
Harburg (Boger et al., 2008). Kim et al. (Kim et al., 2010) applied 3D braided textile as 
reinforcement and used CNTs as the sensing components for structural health monitoring of 
3D braided composites. 
An alternative way to incorporate CNTs in FRPs is to surface treat or coat the fibers with 
CNTs, instead of dispersing them in the resin. Specific methods include dipping the fibers 
into a CNT solution (Gao et al., 2010), aid of coupling agents (Sureeyatanapas & Young, 
2009), lay-by-layer deposition (Loh et al., 2009), and direct growth of CNTs on the fibers 
using electrophoresis (Bekyarova et al., 2007). Another unique method is to embed 
continuous CNT fibers (Alexopoulos et al., 2010) or threads (Abot et al., 2010) in FRPs for 
large-area strain sensing. 
 

 
 

 
 

Fig. 17. Load-displacement and resistance response of: (a) a five-ply unidirectional 
composite with the center ply intentionally cut to initiate delamination; (b) a (0/90)s cross-
ply composite showing accumulation of damage due to microcracks (Thostenson & Chou, 
2006b) 

5. Conclusion 

CNTs have made inroads into multifunctional, smart applications, particularly strain 

sensing for structural health monitoring. A vast number of studies have focused on tailoring 

the mechanical and electrical properties of CNT-based nanocomposites by controlling CNT 

dispersion, orientation, and CNT-matrix interface at the nanoscale. The insights gained from 

the electromechanical behavior of CNT nanocomposites have open up a new field in 

structural health monitoring of multiscale hybrid composites. Although fundamental 

studies on processing-structure-property relationship in CNT nanocomposites need to be 

continued, allied efforts will need to be devoted to large-area strain mapping, cumulative 

stress/strain tracking, damage detection and life prediction algorithms, and data acquisition 

www.intechopen.com



 
Carbon Nanotubes - Synthesis, Characterization, Applications 390 

and analysis to fully utilize the smart sensing and actuation capabilities of CNT 

nanocomposites. 
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