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1. Introduction

This chapter concerns numerical problems that are solved by parallel regular computations
performed in rectangular meshes that span over irregular computational areas. Such parallel
problems are more difficult to be optimized than problems concerning regular areas since the
problem cannot be solved by a simple geometrical decomposition of the computational area.
Usually, a kind of step-by-step algorithm has to be designed to balance parallel computations
and communication in and between executive processors. The Finite Difference Time Domain
(FDTD) simulation of electromagnetic wave propagation in irregular computational area,
numerical linear algebra or VLSI layout design belong to this class of computational problems
solved by unstructured computational algorithms (Lin, 1996) with irregular data patterns.
Some heuristic methods are known that enable graphs partitioning necessary to solve such
problems (NP-complete problem (Garey et al., 1976)), but generally two kinds of such
methods are used: direct methods (Khan et al., 1995) and iterative methods (Khan et al.,
1995; Kerighan & Lin, 1970; Kirkpatrick et al., 1983; Karypis & Kumar, 1995; Dutt & Deng,
1997). Direct methods are usually based on the min-cut optimization (Stone & Bokhari, 1978).
The iterative methods are mainly based on extensions of the algorithms of Kernighan-Lin
(Kerighan & Lin, 1970), next improved by Fidducia-Mattheyses methods (FM)(Fiduccia &
Mattheyses, 1982). There are also many kinds of various program graph partitioning packages
like JOSTLE (Walshaw et al., 1995), SCHOTCH (Scotch, 2010) and METIS (Metis, 2008) etc. All
of them enable performing efficient graph partitioning but there are two unresolved problems
that have been found out. In the case of very irregular graphs, partitioning algorithms
used in these packages can produce a partition that can be divided into two or more graph
parts placed in various disjointed locations of the computofational area. As it follows from
observed practice, there are no prerequisites to create such disjoint partitions, because in
almost all cases it increases a total communication volume during execution in distributed
systems. The second disadvantage is that the partitioning methods mentioned above do not
take into account any architectural requirements of a target computational system. It is very
important especially in heterogeneous systems, where proper load balancing allows efficient
exploiting all computational resources and simultaneously, it allows reducing the total time
of computations.
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In (Smyk & Tudruj, 2006) we have presented a comparison of two algorithms:
redeployment algorithm and CDC (Connectivity-based Distributed Node Clustering)
algorithm (Ramaswamy et al., 2005). The first one is an extension of the FM algorithm and it is
divided into three main phases. In the first phase, a partitioning of the FDTD computational
area is performed. It provides an initial macro data flow graph to be used in further
optimizations. The number of created initial macro nodes is usually much larger than the
number of processors in the parallel system. Therefore, usually a merging algorithm phase is
next executed. Several merging criteria are used to balance processor computational loads and
to minimize total inter-processor communication. The obtained macro data flow graphs are
usually adjusted to current architectural requirements in the last algorithm phase. A simple
architectural model can be used for this in a computational cells redeployment. The second
algorithm is a modification of the CDC algorithm known in the literature (Ramaswamy et al.,
2005). It is decentralized and is based on information exchange on the whole computational
area executed between neighboring nodes. In this chapter we present a hierarchical approach
for program macro data flow graph partitioning for the optimized parallel execution of the
FDTD method. In the proposed algorithm, we try to exploit the advantages of two mentioned
above algorithms. In general, the redeployment algorithm is used to reduce the execution
time of the optimization process, while the main idea of the CDC algorithm enables obtaining
an efficient partitioning.
The chapter is composed of five parts. In the first part, the main idea of the FDTD problem
and its execution according to macro data flow paradigm is described. In the next three parts,
the redeployment and the CDC algorithms are described. We present experimental results
which compare both of these algorithms. We also present a special memory infrastructure
(RB RDMA) used for efficient communication in distributed systems. In the last part of this
chapter we present an implementation of the hierarchical algorithm of FDTD program graph
partitioning.

2. FDTD implementation with the macro data flow paradigm

Finite Difference Time Domain (FDTD) method is used in simulation of high frequency
electromagnetic wave propagation. In general, the simulated area (two or three-dimensional
irregular shape) can contain different characteristic sub-areas like excitation points, dielectrics
etc. (see Fig. 1). The whole simulation is divided into two phases. In the first phase, whole
computational area must be transformed into a discrete mesh (a set of Yee cells).
Each discrete point, obtained in this process, contains alternately (for two dimensional
problem) electric component Ez of electromagnetic field and one from two magnetic
components Hx or Hy (Smyk & Tudruj, 2006). In the second phase of the FDTD method,
we perform wave propagation simulation (see Fig. 2). In each step of simulation, the
values of all electric vectors (Ez) or the magnetic components (Hx, Hy) are alternately
computed. Electromagnetic wave propagation in an isotropic environment is described by
time-dependent Maxwell equations (1):

∇× H = γE + ε
∂E

∂t
, ∇× E = −µ

∂H

∂t
(1)

and can be easily transformed into their differential forms (2)
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Fig. 1. Model of the 2 Dimensional FDTD Simulation.

Fig. 2. FDTD Simulation in Action.
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(2)

This computational process can be executed in parallel way. In this case, FDTD computations
in the mesh are divided into fragments assigned to computational partitions. Each partition
contains a number of computations that are mapped onto separate processing elements of
a parallel machine. For regular shapes of the computational area (e.g. rectangular), it
can be done by a stripe or block partitioning that allows obtaining almost ideal balance
of computations on all available processors with minimal communication volume of data
transmissions. For computational areas with irregular shapes, such an approach will not
provide satisfactory partitioning. It needs a more advanced analysis of data dependencies. In
this case, FDTD computation is represented by a data flow graph (Fig. 3) which is iteratively

277Optimization of Parallel FDTD
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Fig. 3. Data Flow Graph for Two Iterations of the FDTD Problem for Irregular Computational
Area.

transformed into a macro data flow graph. The number of macro nodes corresponds to
given number of processing elements in an executive computer system. Such transformation
from a data flow graph to a macro data flow graph takes into consideration both proper
load of all processing nodes and the minimal number of data transmissions. To solve this
problem, we have decided to design the FDTD method programs based on the macro data
flow paradigm using an algorithm which is a combination of two algorithms described above:
the redeployment (R) and the CDC algorithms. We call this algorithm RCDC (Redeployment
with Connectivity-based Distributed Node Clustering). It is described in the last section.

3. Macro data flow graph optimization with cell redeployment algorithm

In this section, an outline of the redeployment algorithm will be presented. In the first step, we
create a data flow graph of computations which represents basic data dependencies (see Fig. 3
and 4). This data flow graph will be used by a redeployment algorithm to define and optimize
a macro data flow graph with n macro data nodes, where n is the number of processors.
At the start, we create M macro nodes (where M is number of computational cells). Each
computational cell is assigned to a separate macro node. Computations in each simulation
sub-area are represented by one macro node. According to macro data flow paradigm, a macro
node can be executed only if all external input data have arrived to the physical processor on
which this macro node has been mapped. In the redeployment algorithm we do not perform
any geometrical analysis of computational area. The whole optimization process is based on
analysing data dependencies in the computational FDTD mesh.
The optimization algorithm is composed of three steps: simulation area partitioning, macro
nodes merging and redeployment of cells. During the partitioning step we define macro
data flow nodes for a given computational area. First, we determine computational “leader”
nodes in the FDTD mesh. We have implemented two methods for choosing leaders. In the
first method, we create a coarse regular mesh (LM) of cells spanned over the computational
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Fig. 4. Data Flow Graph for Two Iterations of the FDTD Problem (zoomed left bottom corner
of Fig. 3).

mesh (CM). If cell A from LM is covered by cell B from CM, the cell B is qualified to be
a leader. In an alternative method (P1), leaders are chosen only from circumference of the
simulated area. Next, computational cells (that have not been earlier qualified as leaders)
are gradually included into macro nodes assigned to the nearest leader. Additionally, all
data-dependent macro nodes are connected by weighted edges. The weight represents the
communication volume. The number of macro data flow nodes significantly exceeds the
assumed number of processors. Additionally, already created macro data flow nodes can
vary in their computational load. Such a macro data flow graph will be further optimized in
the next phase, which is a merging phase. It enables reducing a total number of macro nodes
to be equal to the number of processors with simultaneous coarse load balancing. Two macro
nodes A and B are merged if: node A has the smallest execution time in the whole macro data
flow graph and node B fulfills one chosen criterion from those shown in Table 1.
In the final phase, the program macro flow graph obtained after merging must be transformed
so as to reduce program execution time by load balancing in executive processors for a given
system configuration. Standard MDFG (macro data flow graph generated for all iterations of
the FDTD problem) will be transformed into a Macro Node Communication Graph (MNCG
- macro data flow graph generated for one iteration of the FDTD problem). The MDFG can
be “compressed” into a MNCG because in each iteration, the pattern of data dependency is
the same. So, in our algorithm, we can analyze only data dependencies in one iteration. After
that, we identify the set of all cliques existing in the MNCG. A clique is a set of all macro nodes
that are directly connected by edges with one, "central" macro node.
The main idea of this phase of the algorithm is based on equalizing execution time among all
cliques. To achieve it, we will redeploy chosen subsets of computational cells between two
selected cliques. The number of cells that can be redeployed is determined by the difference
between average execution time of one clique and average execution time of one step in the
MDFG. The whole redeployment phase is constantly monitored by execution time checking,
so our optimization method in a step-by-step way tries to find the best data distribution
among the executive processors, in which a given simulation problem will be performed.

279Optimization of Parallel FDTD
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Id Rule priority Description

MR0 Computational load
balancing

Two least loaded adjacent nodes will be
merged

MR1 Computational load
balancing

The most loaded node will be merged with
the least loaded adjacent node

MR2 Computational load
balancing

The least loaded node will be merged with
the most loaded adjacent node

MR3 Communication
optimisation - edge

cut reduction

Two most loaded adjacent nodes will be
merged

MR4 Communication
optimisation - edge

cut reduction

The node with the biggest communication
volume will be merged with its neighbour
with the biggest communication volume

MR5 Communication
optimisation - edge

cut reduction

The node with the smallest
communication volume will be merged

with its neighbour with the biggest
communication volume

MR6 Communication
optimisation - edge

cut reduction

The node with the smallest
communication volume will be merged

with its neighbour with the smallest
communication volume

MR7 Communication
optimisation - edge

cut reduction

The node with the biggest communication
volume will be merged with its neighbour
with the biggest communication volume

MR8 Computational load
balancing with edge

cut reduction

The least loaded node will be merged with
the adjacent node with the biggest

communication volume
MR9 Computational load

balancing with edge
cut reduction

The least loaded node will be merged with
the adjacent node with the lowest

communication volume

Table 1. Chosen Merging Rules for Redeployment Algorithm.

The optimization algorithm requires precising three input parameters which describe problem
configuration: a macro data flow graph, the speed of computational node and the throughput
of available communication system. A simplified scheme of the redeployment algorithm
is presented in Fig. 5. After all redeployment steps, we must re-compute an execution
time for a modified MNCG graph. If new execution time is bigger than the old one, the
redeployment is not profitable, and two cliques chosen for the redeployment operation are
marked as examined. Because moving the computational cells between these two cliques is
not profitable, they will not be chosen for next redeployment operation. If the execution time
is better, the last redeployment operation can be validated. The optimization algorithm will
be finished in the three following cases:

1. All cliques are marked as examined – it is not possible to perform any new redeployment
operation.
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2. The assumed number of consecutive redeployment steps, does not produce any increase
of speedup – it is not possible to perform any redeployment with success (it is useful for
large number of cliques).

3. The CliqueB parameter is close to 1, where CliqueB is a value, which determines clique
balance in the MNCG graph, computed from the following equation:

CliqueB =
absolute(L− S)

total number o f cliques

where: L (S) is the number of cliques whose maximal execution time is larger (smaller) than
the average execution time for the MNCG. If none of these conditions are met, then next two
cliques are chosen and the redeployment step is repeated.

4. CDC - partitioning algorithm

The CDC (Connectivity-based Distributed Node Clustering) algorithm is a graph partitioning
algorithm which is used to divide peer to peer networks into a given number of clusters.
Unlike the redeployment method, the CDC is a decentralized algorithm. In this algorithm,
only the nearest vicinity of nodes is needed to be analyzed to perform efficient partitioning
operation whereas in the redeployment algorithm we must know the shape of whole
computational area.
The CDC algorithm consists of two phases:

1. Phase 1 - choosing leader nodes (called originators (Ramaswamy et al., 2005)) – it can be
done similarly as in the redeployment algorithm, but here the number of originators must
be exactly equal to the number of computational nodes. In order to fulfill this condition, we
have implemented another method of choosing originators. In our new method, we sort all
computational cells by their coordinates (first by Y co-ordinate and after by X coordinate).
After that we set every P cells to be originators, where

P =
total number o f computational cells

number o f processors

2. Phase 2 - It is an iterative phase. It begins, when each node, which was previously chosen
as an originator, sends a messages to its neighbor nodes. In all next iterations, each node
that has received any messages in the previous iteration, re-sends the messages to their
neighbors. Each message consists of following attributes:

• source originator id (OID) – it indicates also unique identity of a cluster. This attribute
is set by originator node, and it cannot be changed by any other nodes.

• weight (W) – it describes a distance from originator node with a given OID number.
The originator node sets W to 1.

• time to live (TTL) – it describes, how many times this message will be resent.

The whole optimization process is parameterized using several factors. The most important
are: MinWeight and MaxTTL. Both of them are used to reduce the total number of messages
during the execution of the CDC algorithm. Parameter MaxTTL is an initial value for TTL
attribute of each message. As value of MaxTTL increases, the number of generated messages
increases as well. MinWeight parameter determines the minimal value for a message. If
attribute W in a message M is smaller than MinWeight parameter, the message M will be

281Optimization of Parallel FDTD
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Fig. 5. Scheme of the Redeployment Phase of the Algorithm.
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1 . Ce l l C r e c e i v e s a message M
2 . Table T on c e l l C i s updated T [M. OID]= T[M. OID]+ M.W
3 . A new message (Mnew) on the c e l l C i s cr eated
4 . Mnew. OID = M. OID
5 . Mnew. TTL = M. TTL−1
6 . Mnew.W = Mnew.W/( Degree of c e l l C)
7 . i f Mnew. TTL>0 and Mnew.W>= MinWeight then
8 . the message Mnew w i l l be re−sent to a l l neighbors of C c e l l
9 . i f Mnew. TTL<0 or Mnew.W<MinWeight then

1 0 . the message Mnew w i l l be destroyed
1 1 . i f any messages e x i s t then
1 2 . goto 1

Fig. 6. Second Phase of the CDC Algorithm.

destroyed. Each node contains a table T with total sum of weights from all received messages
sourced by originators. The CDC algorithm in phase 2 is presented in Fig. 6. Phase 2 is
repeated until all messages are destroyed. After that, each cell is attached to a cluster C,
where C is equal to the index of the element from T with maximal value.

5. Experiment results

Both of these methods have been implemented, executed and tested for several shapes
of simulation area and for several system configurations. To perform it we have
introduced a simple architectural model of the executive system (Bharadwaj et al., 1996).
It includes homogenous multiprocessor systems and is described by two values: processor
computational speed, communication performance, see Table 2. The RB RDMA (Rotating
Buffers-based Remote Direct Memory Access) is a special kind of communication facility. It
enables data transmissions with a very small engagement of processor time (Smyk & Tudruj,
2003; 2004; Hitachi, 1997), which is usually done in the background of computations. The
transmissions proceed without any data buffering by the operating system, so the overheads
of this kind of communication is very small.

5.1 Rotating buffers infrastructure RB RDMA

The logical structure of the memory used in the rotating buffers facility is presented in Fig.
7. The RB RDMA infrastructure was designed for Hitachi SR2201 supercomputer, but it can
be easily adapted to various distributed parallel computational systems like Cell/BE PS3 for
example or even to cluster systems with network cards supporting DMA communication (or
other compatible).
Local memory of a computational node is logically divided into two parts LAM (Locally
Accessed Memory) with data used only for local computations with direct access from
application program level and GAM (Globally Accessed Memory) with data used for data
exchange. Access to GAM is available (from local and remote sites) only through the rotating
buffers memory infrastructure.
GAM area is divided into N separate sub-area pairs: RCA (Remote Confirmation Area) and
RDM (Remote Data Memory), where N is the number of remote processors. Each pair is
used to perform communication between two given remote processors. The numbers of
rotating buffers in the send and receive memory parts are fixed and denoted by NSB and NRB,

283Optimization of Parallel FDTD
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Fig. 7. Memory Structure in Rotating-Buffers Method (For One processing Node on the
HITACHI SR2201 supercomputer).

respectively. All buffers which are defined in a RDM area are used only for data transmission.
To avoid possible data overwriting, an additional control has to be introduced. This control is
based on the RCA areas which are assigned independently to each RDM area. Each RCA area
is intended to send and receive additional control messages which determine if the buffers
from a RDM are ready to receive new data. A RCA consists of only two sets of one buffer
each (by analogy to a RDM where the number of buffers can change, here the NSB and NRB
numbers are always equal 1). They are used to exchange synchronized messages between two
processors.
The control flow in the rotating buffers method for one processing node is presented in Fig. 8.
Data are exchanged between a local processor and a remote processor K. On both these nodes,
the described above control and communication infrastructure was created. Additionally, for
each processor two pointers K.SPTR and K.RPTR are created. They are used to indicate a
next free buffer in which new data (to be sent to processor K) will be placed (K.SPTR) or new
data just received from K will be written (K.RPTR). These two pointers determine control for
a rotating access to available buffers and introduce periodical synchronization between two
communicating nodes, which assures that no data which are transferred from one node to
another, will be lost (overwritten).

5.2 Redeployment algorithm efficiency

First, we have tested the speedup of macro data flow graph execution after program profiling
without and with the use of cell redeployment optimization algorithm, see Figure 9.
We can observe that the best speedup was obtained for computational systems with shared
memory (FF, MF, SF) and in two cases with RB RDMA communication (MM, SM). It is
independent of the number of processors, with or without redeployment of computational
nodes, and even of the efficiency of a single computation node. We can see the significant
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Architecture symbol Computational speed of
a single processor

Communication speed
between two processors

FF Fast – 1GFlops Fast – Shared memory
FM Fast – 1GFlops Medium – RB RDMA

FS Fast – 1GFlops Slow – MPI

MF Medium – 0.3 GFlops Fast – Shared memory
MM Medium – 0.3 GFlops Medium – RB RDMA

MS Medium – 0.3 GFlops Slow – MPI

SF Slow – 0.02 GFlops Fast – Shared memory
SM Slow – 0.02 GFlops Medium – RB RDMA

SS Slow – 0.02 GFlops Slow – MPI

Table 2. Symbols and Architectural Model Parameters.
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increase of speedup for 256 processors. We can also notice that for systems with RB RDMA
communication and with fast processors (FM) slightly worse speedup was obtained. It
can be explained by bad relation between computational and communication parameters
of the system, which could not match program requirements. It is especially noticeably
in the case of systems with slow communication (FS, MS) where sometimes the speedup
decreased dramatically. We can observe also that a noticeable increase of speedup (~10%
for 256 processors) appears when a redeployment operation has been applied. It means,
that the balancing of execution time is possible only for configurations with large number
of processors and with relatively fast communication systems.

5.3 Redeployment algorithm versus CDC

In next experiments, we have compared the efficiency of the redeployment algorithm with
our implementation of the CDC algorithm. The results are presented in Figure 10.
We can see that the speedup of CDC in almost all cases has been much better than that of
the redeployment optimization what would indicate the superiority of the CDC algorithm.
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Unfortunately, we have observed some unfavorable features of this algorithm. The first one
is that the execution time of this algorithm (Figure 11) was from 25 to 50 times longer in
comparison to redeployment algorithm. It can completely eliminate the use of CDC algorithm
for computational areas with large number of cells. In our experiments, we could not simulate
areas larger than 1000 cells. It is because large number of messages are generated. We
observed also that CDC algorithm is very sensitive to two simulation parameters: MinWeight
and initial value of TTL time. These parameters are decisive for messages lifespan and
unfortunately, their values considerably depend on the shape of computational area.

6. Hierarchical algorithm

Based on the results presented in the previous section, we can observe that the redeployment
algorithm is much faster than the CDC algorithm. The convergence time of the redeployment
algorithm is almost two times shorter in comparison to CDC. However, for system
configurations with a big number of processors, the parallel speedup of the FDTD programs
obtained using the redeployment method is lower than that obtained with the use of the
CDC algorithm. A difficult problem in CDC is setting the initial values of the parameters
MinWeight and TTL time. It is especially true for a large number of executive processors.
Taking into considerations all pros and cons of the two methods we propose a hierarchical
method of FDTD program optimization (Redeployment with Connectivity-based Distributed
Node Clustering - RCDC). This method consists of two main steps. In the first step, we apply
the standard redeployment algorithm. In the second step, we switch to a modified CDC
method. The standard redeployment algorithm step is used here to reduce the number of
nodes in the input data flow graph (in fact to reduce the optimization time), while the CDC
algorithm step will be exploited to obtain the best possible parallel simulation speedup.
Efficiency of the RCDC algorithm strongly depends on the choice of the time point in which
switching between these two algorithms should take place. Because the parallel simulation
speedup provided with the CDC algorithm is usually significantly better than that obtained
by the redeployment, we decided to modify the standard redeployment algorithm so as to
execute it in two phases: generation of an initial MDFG based on wave propagation area
partitioning and the MDFG nodes merging with load balancing to obtain the given number
of macro nodes. In fact, the number of macro nodes obtained in the second phase is from
5 to 20 times bigger than the assumed number of executive processors. The final reduction
of the number of macro nodes together with communication optimization (to minimize and
balance internodes data transmissions.) will be performed during the CDC step. In our
implementation, the CDC algorithm does not take into account load balancing in the executive
processors, so after this step, some load imbalance is possible. To avoid it, we have introduced
the last phase with redeployment of computational cells.
The final scheme of the RCDC algorithm is as follows (see Fig. 12):

1. Generation of initial MDFG based on wave propagation area partitioning;

2. MDFG nodes merging (with initial load balancing) and optimization with re-deployment
of computational cells;

3. CDC optimization (communication optimization).

A crucial problem in the RCDC algorithm is a decision when we should switch from phase
2 to 3. To answer this question, we can consider several independent methods. In the first
method, we can compute the diameter of our MDFG and if it corresponds (it means that
the most distant macro nodes can send and receive messages to/from each others in the
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    Phase 2b  -   Redeployment algorithm Result: Coarse grain MDFG with  

                                                                                   optimized computational  

            load 

Generation of initial MDFG 

based on wave  propagation 

area partitioning 

MDFG nodes merging (with 

initial load balancing)  and 

optimization with re-deployment 

of computational cells 

 

CDC optimization  

(communication optimization) 

 

Fig. 12. RCDC Hierarchical Algorithm Scheme.
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Problem
configuration

Computational
area size

Computational
area type

Number of
processors

1 Small Regular 50
2 Large Irregular 50

3 Small Regular 25

4 Large Irregular 25
5 Small Regular 10

6 Large Irregular 10

Table 3. Problem Configurations Used in the Experiments.
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Fig. 13. Comparison of the Parallel Simulation Speedup for Redeployment, CDC and RCDC
Algorithms.

sense of the CDC algorithm) with MinWeight and/or TTL time parameters, we can start
phase 3. This method needs some additional computations but its estimation can be precise
only for regular graphs. In case of very irregular graphs, it can distort information about
the graph structure, which can cause that the optimization time for phase 3 will be much
bigger. In the second method, we can assume a time of the optimization after which phase
3 is entered. In the third method, we can assume a static number of macro nodes created
in our MDFG after which the phase 2 will be terminated and a passage to phase 3 will take
place. In our implementation, we have assumed the use of this method. It does not introduce
any additional costly computations in phase 2 and it allows us to find a coarse estimation
of the parameters (MinWeight, TTL time) needed for phase 3. The number of macro nodes
obtained in phase 2 is very important for the rest of the algorithm. If it is too large, the total
optimization time will take too much time, and if it is too small, the obtained speedup can be
unsatisfactory. We have assumed that dependently on the structure of the MDFG (regular or
irregular), switching from phase 2 to 3 is done when the number of macro nodes is from 5 to
20 times bigger than the assumed number of computational macro nodes.
As it can be expected, the RCDC hierarchical method produced better partitioning in
comparison to redeployment and the CDC methods. It is especially visible for configurations
with large number of processors (see Figure 13, configurations 2 and 4).
For small computational areas (configurations 5 and 6), no significant differences between
all discussed algorithms are observed. Additionally, we can see that when the number
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Fig. 14. Comparison of the Algorithm Execution Time for Redeployment, CDC and RCDC
Algorithms.

of processors grows, the RCDC algorithm has much more degrees of freedom and it can
produce better partitioning. Even though, in our implementation of the CDC method, we
have not considered problems concerned with load balancing, the partitioning efficiency was
satisfactory. It is because, the granularity of the input graph was very fine and computational
load in each cell was equal to others. In case of the RCDC, we must carefully switch between
the redeployment and the CDC algorithm phases. The redeployment algorithm will be
stopped if the number of macro nodes in MDFG divided by k (where k is a positive integer)
is equal to the number of processors. If it is fulfilled, we can switch to phase 3 of the RCDC
algorithm. The execution time of the optimization by the RCDC algorithm is much shorter
than CDC method and slightly bigger than the redeployment algorithm, see Figure 14. It can
be dynamically adjusted to the k value. When the k value grows, the behavior of the RCDC
algorithm is closer to the CDC method. Otherwise it works like the redeployment algorithm.

7. Conclusions

In this chapter, we presented a hierarchical approach to the optimized program macro
data flow graph design for execution of FDTD simulations in parallel systems. The
presented RCDC algorithm combines two independent methods for the FDTD data flow
graph optimization: the cell redeployment and CDC algorithm. There are several differences
between these two methods. The first method is fully centralized and the macro data flow
graph is created in three phases: computational area partitioning, merging and redeployment.
The CDC method is decentralized with only local current knowledge of the simulation area.
In the RCDC algorithms we wanted to merge both of these methods in order to obtain more
efficient parallel simulation speedup (comparable to the speedup obtained in the CDC) and
to shorten the execution time of the optimization. It turned out that such a hierarchical
combination of the two algorithms has improved partitioning of data flow graphs for the
FDTD problem and additionally such a hierarchical optimization takes significantly less time
than the CDC method.
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