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1. Introduction

This chapter aims to present some of the recent Bayesian approaches to speaker diarization
(SD). SD is the task of grouping an audio document into homogenous regions, where each
region should ideally correspond to the complete set of utterances that belong to a single
speaker. Rich transcription, speaker adaptation of speech recognition systems and speaker
recognition are some of the applications that require such a clustering procedure. Broadcast
News, meeting, and telephone conversations are the main domains that SD is applied to.
SD is a fully unsupervised clustering task. Not only we are not allowed to use any
target-speaker enrollment data to detect the target speakers through the acoustic stream,
but the number of speakers should be considered as an unknown, too. Moreover,
text-independence should also be assumed, meaning that no transcript is available, either.
Despite the effectiveness of several approaches and frameworks that have been proposed
and tested in literature, the most natural and systematic approach to SD is to treat it as a
model’s order selection task. Once the order is estimated (i.e. the number of speakers) the task
reduces to a familiar (but not trivial at all) machine learning task where the latent variables
(i.e. the speaker indicators of each utterance) of given cardinality should be estimated from the
observations. Therefore, a major issue we deal with is how to assess the number of speakers
in a way that is simultaneously robust and efficient.
Bayesian machine learning is a highly principled paradigm and can naturally tackle model
selection problems. It does so by applying consistently the rules of probability in order to infer
the desired quantities, including the order of the model. Its superiority over the frequentistic
statistical framework (e.g. Maximum Likelihood estimates, Classical Hypothesis testing) or
semi-Bayesian approaches (e.g. MAP estimation, penalized maximum likelihood criteria) in
model selection, averaging and density estimation has been verified in most (if not all) of the
speaker related tasks, including identification and verification.
Several drawbacks however still exist, most of which stem from the intractability of the
majority of the ideal Bayesian solutions. Many well known and effective machine learning
tools cannot be applied or require severe adaptation that may drastically increase their
computational complexity. Nevertheless, the introduction of powerful approximate inference
method (e.g. Variational Bayes, Expectation Propagation), novel Markov-Chain Monte
Carlo techniques, along with the rapid development of the Bayesian nonparametric models
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2 Will-be-set-by-IN-TECH

(Infinite-HMMs, Dirichlet process mixture models, a.o.) allows us to create new approaches
that are based on the statistical coherency of the Bayesian framework.
The rest of the chapter is organized as follows. In Section 2, some of the non- and
semi-Bayesian approaches to SD is reviewed, along with some definitions and general
algorithms strategies. In Section 3, the basic theory of Variational Bayes inference is presented
with emphasis on mixture models, while a Variational Bayes algorithm that uses supervectors
is examined in Section 4. In Section 5, we consider the use of infinite models to SD, while some
ideas about further applications of Bayesian inference in diarization are discussed in Section
6. Finally, an introduction to some novel features that are utilized in speaker verification and
recently in diarization are presented in the Appendix.

2. Short overview of speaker diarization approaches

In this section, a brief introduction to SD is presented, followed by some approaches that have
been proposed in literature. We will refer to several algorithmic approaches and discuss some
of their strengths and weaknesses. For a more complete overview of these methods we refer
to (Tranter & Reynolds, 2006).

2.1 Front-end features and preprocessing steps

Before we examine the several algorithmic approaches, let us review some aspects that
are common to all systems. The majority of SD systems use Mel-Frequency Cepstral
Coefficients (MFCC) as front-end features, although other feature spaces have been proposed,
such as Linear Frequency Cepstral Coefficients (LFCC) and Perceptual Linear Predictive
(PLP), (Hermansky et al., 1985). Some systems utilize prosodic features to augment the
cepstral representation (see Friedland et al. (2009)) while other approaches attempt to fuse
several spaces and increase the diarization accuracy, (Gupta et al., 2007). Depending on the
application field, one may consider techniques to normalize the MFCC stream, (Pelecanos &
Sridharan, 2001), (Xiang et al., 2002), (Hermansky et al., 1992). These techniques aim to remove
the linear channel effect and possibly the additive noise introduced by the recording chain,
and are compulsory when a speaker may speak with more than one recording chains. In SD,
such techniques may not be necessary; a standard assumption is that each speaker speaks only
under identical conditions, i.e. recording equipment and background noise. Moreover, since
the channel is unknown, these techniques unavoidably remove information that is related to
the speaker and therefore increase the similarity between different speakers.
In the multiple-microphone setting (e.g. meetings), two are the main approaches. The first is
to apply acoustic array processing techniques (i.e. beamforming) in order to mix the signals
into a unique enhanced signal, (Anguera et al., 2007). A second approach is to utilize the
estimated direction-of-arrivals (DOA) and fuse spatial and cepstral information, (Pardo et al.,
2007). In our review, we will focus on the former approach when multiple microphones are
in-hand.
A second step that is common to most of the algorithms is Speech Activity Detection (SAD).
Silent regions of duration more that 200ms should be detected and removed from the steam.
The official scoring method of NIST, the Diarization Error Rate (DER), penalizes false alarm
and missed detection rates linearly. A common approach to detect speech is to assume
that speech and silence follow a normal distribution each, in the log-energy domain. An
Expectation Maximization (EM) algorithm with two Gaussian components is then applied,
using the log energy as features. The energy feature stream is calculated using sliding
windows of typically 30ms duration, with 20ms overlap, so that it is aligned with the MFCC
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stream. Temporal smoothing techniques are then applied on the binary labels to discard
regions of less that 200ms duration. Hidden Markov Model (HMM)-based EM may also be
considered as well, in order to avoid the need of ad-hoc or morphological filtering techniques.
Apart from the energy, periodicity based methods have been proposed. These methods utilize
the facts that vowels exhibit strong (quasi-)periodicity and apply it to discriminate speech
from silence. Periodicity based approaches are usually more robust to noisy environments,
however they require more computational effort than the energy-based ones, (Ishizuka et al.,
2010).
Finally, in the Broadcast News field, most systems discriminate between acoustic classes like
speech, music, music and speech, and silence. To do so, supervised learning techniques are
applied. Each class is modeled with a GMM with 128 or 256 diagonal Gaussian components
using labeled training data. During the classification stage, regions that are classified as
non-speech are removed from the stream, after a proper temporal smoothing on the class-label
domain.

2.2 General algorithmic approaches

After the preprocessing steps described above, SD algorithms diverge into two main
directions. Those that apply segmentation to the MFCC stream, which might be uniform
or based on the speaker change detection algorithms (see (Chen & Gopalakrishnam, 1998)),
and those that do not apply such segmentation. Following the terminology of (Meignier et al.,
2006) we will refer to the former branch as step-by-step algorithms, while to the latter as
integrated algorithms. Both algorithmic approaches exploit a certain characteristic that the
speaker labels exhibit, which is the temporal continuity. To realize the minimum range of
this continuity, note that a speaker’s turn lasts no less than 1 or 2s while the MFCC rate is
10ms, typically. Step-by-step algorithms exploit this continuity in order to turn the problem
into a typical unsupervised clustering task. They represent each segments using a statistical
model (a single Gaussian or a GMM) and they apply clustering techniques to group them
into speakers. On the contrary, the integrated algorithms exploit the temporal continuity
by assuming that the transitions between speakers follow a stochastic process which can
be modeled by a (first-order and time-independent) Markov chain, where the probability of
self-transition is significantly greater than the one of departing from the current state. Since
the labels are not directly observed (in fact, they are the desired quantities) an observation
model should be added, to link each distinct label (or state) with the observations. The
overall model is therefore a HMM, where the observation model (i.e. the state-emission
probabilities) is usually a GMM for each state, that is capable of capturing the multimodality
of the state-conditional distribution.

2.3 Distance-based and model-based approaches to speaker clustering

However, what restrain us from using standard clustering or HMM techniques is the lack of
knowledge regarding the number of speakers, say K. If we a priori knew K then we would
apply an EM-algorithm to learn both the model and the latent variables (i.e. the label of
each MFCC frame). 1 Two are the main approaches to deal with this issue. The first approach,
which is extremely common to step-by-step algorithms, is to apply agglomerative hierarchical
clustering (AHC) to merge those segments being close enough, in a statistical sense. What is
required is a measure of similarity (or equivalently dissimilarity) and usually a predefined

1 This is partially true however; phoneme rate, pitch, intensity and other emotional variations that
speakers may exhibit during their speech may cause failure even in this setting.
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threshold. We refer to these approaches as distance-based. Most step-by-step approaches use
a two stage AHC procedure; at the first stage the segments (and consequently the clusters)
are modeled using a single Gaussian of full covariance matrix, while GMMs are deployed
only on the next stage, to merge those clusters that had not been merged during the first
step. Several of the similarity measures that are used in the second stage are discussed in the
Appendix, along with the MAP-EM algorithm that is applied to train the GMMs. Note also
that several hybrid algorithms exist as well. For example, the highly robust and tuning-free
approach proposed in (Ajmera & Wooters, 2003) uses a uniform segmentation stage and
applies a Viterbi re-segmentation algorithm each time a pair of clusters is merged. Finally,
several other alternative to AHC algorithms have been proposed, including Self-Organized
Maps, Spectral Clustering and the Mean-Shift algorithm, that produce competing or better SD
results, (Lapidot, 2003), (Ning et al., 2006), (Stafylakis et al., 2010b).

Fig. 1. Flow-chart of a baseline step-by-step algorithm

The main problem, however, regarding the distance-based approaches is their heuristic
nature, in the sense that they do not propose a method to score overall clustering hypotheses.
Note that the distance-based category of approaches may include even methods that rely on
similarity measures that are derived from model-selection. For example, the local-Bayesian
Information Criterion (BIC) ((Zhu et al., 2005), (Barras et al., 2004)) might be a model-based
dissimilarity measure, however it does not correspond to the difference between scores of
competing clustering hypotheses, (Stafylakis et al., 2010a). A desired property of a clustering
algorithm is to be capable of providing a score to every single possible configuration of the
latent variables. This is the essence behind the model-based approaches, (Fraley & Raftery,
1998). A model-based approach may be applied to a broad range of algorithms, which
includes the AHC as well. To do so, we need to consider the dissimilarity between any pair
of segments (or clusters of segments) as the increase or decrease of the overall score caused
by the action of merging this pair. The global and the segmental settings of BIC are such
examples, (Stafylakis et al., 2010a).

2.4 Penalized likelihood and its limitations

The most significant gain, however, from using model-based approaches is that it allows us to
make use of the most natural and powerful tool of learning with missing data, that is the broad
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class of EM algorithms, (Dempster et al., 1977), (Amari, 1995). The integrated approaches
typically use an evolving HMM (E-HMM), that is an HMM with increasing number of states.
For each number of states, the Viterbi of Baum-Welch algorithm is deployed to learn the
latent variables and estimate the emissions. To estimate the true number of speakers and the
corresponding clustering hypothesis, an appropriate model selection method is compulsory.
In the step-by-step approach, a form of EM algorithm can be applied instead of the AHC
algorithm, over the range of a priori plausible number of speaker and a model selection
method is required in order to select amongst them, (Mackay, 2003).
The penalized likelihood criteria have become very popular, for two main reasons. First of
all, they can be used to apply model selection without altering the non- or semi-Bayesian way
we estimate the parameters of the model with missing data. For example, in the E-HMM
approach to SD, one may use the standard Maximum Likelihood (or MAP estimate) and
penalize it according to the well-known BIC penalty term. The second reason is that under
some regularity conditions they are limits of the desired Bayesian quantity; the marginal
likelihood of the model. The BIC is derived by approximating the marginal likelihood of the
model with the Laplace method, and discarding those terms that do not scale with the number
of observations.
However, there are certain drawbacks regarding this semi-Bayesian approaches. For example,
there are several models for with the consistency of the BIC has not been proven. This includes
all the mixture models, including GMMs and HMMs as well. Even though in cases where
the regularity conditions hold, the Laplace approximation is usually inaccurate for small
sample sizes. Moreover, a MAP estimate is still point estimate, since the uncertainty about
the estimate is being ignored, (Mackay, 2003). Finally, many of the powerful Bayesian tools,
like the use of explicit priors or the use of hierarchies to tie several parameters cannot be
combined in a profound way with the BIC approximation. Therefore, it becomes evident that
a fully-Bayesian treatment of SD is required, which is the objective of the rest of this chapter.

3. Methods based on Variational Bayes approximate inference

In this chapter, the use of a fully Bayesian framework to SD is examined. The term Variational
Bayes (VB) refers to a set of methods (the most popular of which being the mean-field VB)
that approximate the desired quantities (e.g. marginal likelihoods, posterior probabilities,
predictive densities) by bounding the marginal likelihood of the model from below. The use
of VB is SD has been pioneered by F. Valente (Valente, 2005) and has been refined by P. Kenny
et al. (Kenny et al., 2010) by applying it to i-vectors. We should emphasize that VB is a general
purpose (approximate) inference method and its use is not limited to finite mixture models. On
the contrary, it can be applied to nonparametric models, too (e.g. Dirichlet Process Mixture
Models, (Blei & Jordan, 2005)).

3.1 Fundamentals of Variational Bayes

Let as consider a family of nested models M and let K denote the order of the model (e.g. the
number of components of a GMM, the number of states of an HMM, etc.). Let the parameter
space be denoted by Θ while the set of latent variables by X. The most probable order of the
model given Y is the one that maximizes P(K|Y) ∝ p(Y|K)P(K). Assuming uniform prior
over the hypothesis space (i.e. P(K) ∝ 1), we need to maximize the marginal likelihood of the
model with respect to (w.r.t.) K, i.e.

p(Y|K) =
∫

p(Y, X, Θ)dXdΘ (1)
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Alike BIC and other Laplace approximation based approaches, the VB framework defines
a lower bound of (1). It does so by (i) introducing the variational posterior q(X, Θ) (the
conditioning on Y is kept implicit) and (ii) applying the Jensen inequality, as follows

log p(Y|K) = log
∫

p(Y, X, Θ)

q(X, Θ)
q(X, Θ)dXdΘ ≥

∫

log

(
p(Y, X, Θ)

q(X, Θ)

)

q(X, Θ)dXdΘ (2)

The bound that (2) defines is known as the (negative) Variational free energy FK(q(X, Θ)),
while the difference between log p(Y|K) and FK(·) is equal to DKL(q(X, Θ)||p(X, Θ|Y)).
However, no further improvement can be attained without making some assumptions about
the functional form of q(X, Θ). The mean field VB pretends that X|Y and Θ|Y are independent,
and therefore assumes that q(X, Θ) admits a factorization of the form q(X, Θ) = q(X)q(Θ).
We say so, since this factorization is only a priori possible. A posteriori, the observation of
Y induces an (at least weak) correlation between X and Θ. However, this independence
assumption allows as to make the optimization problem tractable by applying calculus of
variations.

3.2 The VB-EM algorithm

By maximizing FK(q(X)q(Θ)) w.r.t. to q(X) and q(Θ) we end up with the VB-EM algorithm
described below

VB-E step: q(X) =
1

ZX
e<log p(Y,X|Θ)>q(Θ) (3)

VB-M step: q(Θ) =
1

ZΘ

e<log p(Y,X|Θ)>q(X) p(Θ|K) (4)

where < a >b denotes the expected value of a w.r.t b, while ZX and ZΘ are the corresponding
normalizing constants. Note that the existence of p(Θ|m) at the M-step induces no asymmetry
between X and Θ; the prior of X is incorporated through the complete-data likelihood
p(Y, X|Θ) = p(Y|X, Θ)p(X|m).
The severe distinction between ML-EM (or MAP-EM) and VB-EM is that while the former
proceeds with simple point masses δ(Θ, Θ̂) placed at the ML or MAP estimates of Θ, VB-EM
captures the uncertainty in these estimates, through the posterior distribution of Θ. Each
estimate of X is obtained by averaging w.r.t. to the posterior of Θ, and not by δ(Θ, Θ̂).
Furthermore, the benefits from using such a fully probabilistic approach are not restricted
to obtaining much richer inferences about Θ and X. Contrary to ML- and MAP-EM, VB-EM
aims to maximize the marginal likelihood of models, which is the key quantity in assessing K.
No penalty term is required; the marginal likelihood is all we need to obtain in order to select
between the rival models.
However, we should re-emphasize that the quantity being maximized by VB is FK(q(X, Θ))
and not log p(Y|K). We saw that the difference between the two terms is equal to
DKL(q(X|K)q(Θ|K)||p(X, Θ|Y, K)) > 0 which increases with K. Therefore, the approximation
of log p(Y|K) by FK(q(X, Θ)) induces a systematic bias towards simpler models and therefore
VB may underestimate the true number of speakers.

3.3 Hyperparameters: centering and strength

So far, we have assumed that the hyperparameters (i.e. the variables that parametrize
the prior) remain fixed during the VB-EM. Let us denote the set of hyperparameters by
H. By restricting ourselves to the conjugate family of priors, the hyperparameters can be
distinguished into two sets H = [Hc, Hs]. Those that parametrize expected values of elements of
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Θ (the prior centers, denoted by Hc) and those that determine the amount of virtual observations
carried into the prior, also known as the strength of the prior (e.g. the relevance factor r in (42)),
denoted by Hs. Priors with large strength are called informative, in the sense that their impact
on the posterior is significant, at least when dealing with small or medium T. In cases where
only vague, unreliable, or no information at all is available about Θ, a good strategy is to keep
the prior as non-informative as possible. Jeffreys’ priors, defined as follows

pJ(θ) ∝ |IΘ(θ)|1/2 (5)

where IΘ(θ) denotes the Fisher information matrix and θ an element of Θ, are flat in the
sense that they place equal probability mass on each natural volume element of the statistical
manifold, (Snoussi, 2005). They are also limits of conjugate priors, defined as below

p(θ|hc
θ , hs

θ) ∝ |IΘ(θ)|1/2 exp (−hs
θ DKL(h

c
θ ||θ)) (6)

by letting the strength go to zero. However, they are rarely proper, since
∫
|IΘ(θ)|1/2dθ usually

goes to infinity, and therefore inadequate for the model selection task. Hence, one may use
conjugate priors and place hs

θ equal to the minimum value (or the minimum integer) for which
(6) is proper.
A further issue regarding the strength of the prior is whether the overall amount of virtual
observations should remain fixed or be allowed to vary with K. For example, the standard
penalty term of BIC implies a strength that remains fixed. Hence, the more parameters we
add to the model, the less informative the (implied) prior will be for each single parameter.
However, this strategy can be restrictive for models having parameters whose prior requires
a minimum amount of strength to be proper (e.g. covariance matrices). In such cases,
this strategy bounds from above the overall number of parameters that can be used and,
consequently, the number of clusters. On the contrary, letting the strength grow with the
number of parameters can cause overestimation of the true order of the model.
In any case, if we choose to optimize the hyperparameters, a straightforward solution is to
solve the following maximization problem

H(i+1) = arg max
H

FK(q(X)q(Θ), H(i)) (7)

As an alternative, hierarchical priors may be considered. In this approach, one may attach
priors to the hyperparameters as well, that are governed by hyper-hyperparameters, and so
on. Thus, one may consider marginalizing w.r.t to the parameters instead of maximizing.
This approach is used in (Kenny, 2010) where a vague Gamma (hyper)-prior is attached to
the precision of the Gaussian prior, resulting in an overall student-t prior distribution of
the speaker factor. The experimental results of the 2010 speaker verification competition of
NIST showed that the inclusion of this additional level of hierarchy increases significantly the
verification accuracy.

4. A Variational Bayes approach to speaker diarization using supervectors

In this section, we examine in detail a VB approach to SD that utilizes supervectors in order
to represent speech segments. Supervectors are high-dimensional vectors that are formed
by concatenating the mean values of a GMM. The GMM is MAP-adapted from a Universal
Background Model (UBM), where only the means are allowed to be adapted (see Appendix).
Each supervector is then projected onto a space of lower dimensionality and VB inference in
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adopted to estimate the number of speakers and the assignment of segments to speakers. VB
methods that do not make use of the supervector representation can be found in (Valente,
2005),

4.1 Supervectors and modeling assumptions

As explained in the Appendix, supervectors are high-dimensional vectors that are capable
of capturing speaker characteristics in great detail, and are applied to speaker verification
and recently in diarization, too. A main assumption used in the proposed method is that a
supervector M can be described by a mid-dimensional vector w, as follows

M ≈ M0 + Vw (8)

where M0 the center of the acoustic space (i.e. the supervector of the UBM) and V a low
rank (say p) rectangular matrix. The columns of V are the eigenvectors and have been
extracted off-line. Furthermore, the columns of V are properly scaled with the corresponding
eigenvalues so that w ∼ N (0, Ip). Finally, let Σ be the diagonal covariance matrix of M0 (see
(Kenny et al., 2005) for a detailed derivation).
Let us assume (i) that a segmentation of the stream Y into segments has been applied. A
uniform segmentation of 1s duration is proposed in (Kenny et al., 2005), however, speaker
change detection techniques may be applied as well. The segmented MFCC stream is denoted
by Y = {ym}M

m=1. For a given number of speaker K, an K-dimensional indicator vector im is
used to indicate the speaker it belongs to, that is imk = 1, if and only if ym belongs to the kth
speaker. The collection of these vectors is denoted by I = {im}M

m=1. Moreover, the parameter

vector of the kth speaker is denoted by wk and their collection as W = {wk}K
k=1.

We further assume (ii) that an upper bound of the number of speakers (say Kmax) is given and
that the mixing coefficients π = {πk}K

k=1 (i.e. the prior probabilities of each speaker) can be
estimated by maximizing the marginal likelihood

∫

p(Y, W, I|π)dWdI (9)

w.r.t. π. This technique, known as Maximum Likelihood II (ML-II) clearly diverges from the
Bayesian framework. A fully-Bayesian approach attaches priors (e.g. Dirichlet) to {πk}K

k=1
and integrates out these parameters, too, instead of maximizing w.r.t. them. However, this
technique enables us to estimate K without resorting to comparison between the marginal
likelihood of several K, which can be time consuming when dealing with a large range of
candidate number of speakers. On the contrary, by using this technique, we can estimate K
simply by counting the number of mixture coefficients assigned non-zero values by ML-II,
(Corduneanu & Bishop, 2001).
Finally, we assume (iii) that the alignment of frames with GMM-level mixture components is
given. This assumption uses the final E-step of the EM algorithm as an estimate of the missing
data (i.e. the component indicators). Using this assumption, we not only have to deal with
the a single set of missing data, i.e. I = {im}M

m=1, but we are able to represent segments
with sufficient statistics and utilize closed-form expressions to calculate the desired statistical
quantities. This is due to the fact that the complete-data likelihood of a GMM belong to an
exponential family, while the incomplete-data likelihood does not.
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4.2 Working with the complete-data

To stress the benefits from the third assumption, let us derive some useful formulae that will
be used, namely the likelihood, the posterior and the marginal likelihood of a single GMM
that is represented by w. Let yu = {yt}t=1,2,... be the MFCC coefficients of a segments. We
parametrize the (centralized) statistics of each segment as

Nc = ∑
t

γt(c) (10)

F̃c = ∑
t

γt(c)
(

yt − µ0
c

)

(11)

and

S̃c = diag

(

∑
t

γt(c)
(

yt − µ0
c

) (

yt − µ0
c

)T
)

(12)

where γt(c) the posterior probability that yt belongs to the cth component, given by the
MAP-EM algorithm. This is our estimate of the missing data, that is already in-hand from
the MAP-EM algorithm. For notational compactness, let us define N the Cd × Cd diagonal
matrix, whose C diagonal block are defined as {Nc Id}C

c=1. Let also F̃ a Cd dimensional vector

(i.e. a centralized supervector) by concatenating all F̃c and finally, let S̃ be the Cd×Cd diagonal
matrix, whose C diagonal block are {S̃c}C

c=1.
To calculate the complete-data likelihood of a model with fixed parameters w given yu, the
following closed form expressions can be utilized

log p(zu|w) = G + H(w) (13)

where

G = −1

2
tr
(

Σ−1S̃
)

−
C

∑
c=1

Nc log |2πΣc|1/2 (14)

and

H(w) = wTVTΣ−1

(

F̃ − 1

2
NVw

)

(15)

and zu = (yu, γu) the (estimated) complete data.
The posterior distribution of w given zu is also Gaussian w ∼ N (w̃, Λ−1), where

w̃ = Λ−1VTΣ−1 F̃ (16)

and
Λ = Ip + VTΣ−1

NV (17)

the precision matrix of the posterior. Recall that w ∼ N (0, Ip) a priori.
Finally, the marginal likelihood p(zu|S = 1) is given by the following formula

log p(zu|S = 1) = log
∫

p(zu|w, S = 1)p(w)dw = G − 1

2
|Λ|+ 1

2
F̃TΣ−1VΛ−1VTΣ−1 F̃ (18)

The existence of the above closed-form expressions is a consequence of using the (estimated)
complete-data likelihood instead of the incomplete-data likelihood.
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4.3 The VB algorithm

In order to solve the intractable problem of estimating I and S, a VB can been developed.
Assume again that the variational posterior that can be factorized as Q(Y, I) = Q(Y)Q(I).
Note though that in this setting, all the posteriors are conditional on (i) the complete-data
{zm}M

m=1 and (ii) on a point-estimate of π. To update this estimate a further step should be
added to the general VB-EM iteration, which is the maximization of the marginal likelihood
w.r.t π. We initialize our variables by setting K equal to the maximum number of speaker
Kmax, and by setting π as uniform, i.e. πm = 1

K , m = 1, . . . , M.
The E-step is responsible for estimating the assignment I given the current posterior
distribution of the parameters {wk}K

k=1 and the current point-estimate π. Note that due to the

conditioning on π, the factorization Q(I) = ∏
M
m=1 Q(im) ({im}M

m=1 are conditionally i.i.d.).
Using the general update rule in (3) and after some matrix algebra, we end-up with

VB-E step: Q(im) =
K

∏
k=1

qimk

mk , where qmk =
q̃mk

∑
K
k′=1 q̃mk′

(19)

and

q̃ms = πk p(zm|w̃k) exp

(

−1

2
tr
(

VT
NmΣ−1VΛ−1

k

))

(20)

where p(zm|w̃k) and Λk are given in (13) and (17), respectively. Both quantities are estimated

during the M-step of the previous iteration. Moreover, note as tr
(

Λ−1
k

)

→ 0, i.e. no

uncertainty is assumed regarding the estimates, the E-step degenerates to the corresponding
step of the MAP-EM.
Similarly, the VB-M step is given according to the general rule in (4). After some matrix
algebra we obtain

VB-M step: Q(wk) ∼ N
(

w̃k, Λ−1
k

)

(21)

i.e. will be a normal distribution with mean w̃k and precision Λk given in (16) and (17),

respectively. Note again that the M-step of the MAP-EM is recovered by letting tr
(

Λ−1
k

)

→ 0.

Finally, the additional step for re-estimating π is derived by maximizing the marginal
likelihood w.r.t π. By rejecting irrelevant terms, the maximization problems becomes the
following

π̂ = arg max
π

M

∑
m=1

K

∑
k=1

qmk log πk, subject to
K

∑
k=1

πk = 1 (22)

which yields

π update step: π̂k =
1

M

M

∑
m=1

qmk (23)

By iteratively applying (19), (21) and (23) the algorithm converges to a maximum. After
convergence is reached, the assignment of segments to speakers I and consequently the
number of speakers K are estimated from (19) by simply assigning the mth segments to the
speaker that maximizes Q(im).
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4.4 Experiments

So far, the proposed system has been tested only against telephone conversation datasets.
This setting differs from the usual diarization systems, since we a priori know the number
of speakers (i.e. K = 2). Therefore, the strength of the proposed VB-system as a model
selection tool cannot be assessed from this series of experiments. However, the results show a
drastic reduction in terms of Diarization Error Rate (DER,%). In Table 1, the DER on NIST
2008 SRE Summed Channel Test Data made by the VB-system are presented, for several
front-end features. Details about the features can be found in (Kenny et al., 2010). The most

configuration mean DER(%) σ(%)

BUT features

1 VB without Viterbi 9.1 11.9
2 VB with Viterbi 4.5 8.5

3 VB with Viterbi and 2nd pass 3.8 7.6

CRIM features

4 VB with 2nd pass, no Viterbi 3.3 7.8

Raw cepstral features

5 VB with 2nd pass, no Viterbi 2.2 5.8

6 VB with 2nd pass, no Viterbi 1.9 5.6

Table 1. DER (%) NIST 2008 SRE Summed Channel Test Data using the VB-system. The standard
deviation of the Diarization Errors is denoted by σ.

successive front-end configuration includes 20 static-only MFCC, a 1024-component UBM and

a gender-independent factor analysis model with 300 eigenvoices. The 2nd pass means that
the speaker change points found by Viterbi resegmentation were used to initialize a second
run of Variational Bayes and this was followed by another Viterbi resegmentation.
In Table 1, the best performance of the VB-system is compared to (i) a baseline diarization
system (i.e. speaker change detector, BIC-based AHC with single Gaussians and Viterbi
resegmentation) augmented by a soft-clustering postprocessing stage, and (ii) a streaming
system that operates on speaker factors and was introduced in (Castaldo et al., 2008) as a
stream-based approach to performs online diarization. The conversation is seen as a stream
of fixed-duration time slices and the system operates in a causal fashion. Speakers detected
in the current slice are compared with previously detected speakers to determine if a new
speaker has been detected or previous models should be updated. Further details about the
implementation may be found in (Kenny et al., 2010).

System mean DER(%) σ(%)

Baseline with soft-clustering 3.5 8.0
Streaming with Viterbi 4.6 8.8

VB with raw cepstra, Viterbi and 2nd pass 1.0 3.5

Table 2. Best results obtained on the NIST 2008 SRE Summed Channel Telephone Data using the
baseline, the streaming and the VB systems.
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5. An HMM-based approach using hierarchical dirichlet processes

In this chapter, we present a recent SD approach that is based on Bayesian nonparametric
modeling, (Fox et al., 2009). This approach utilizes the HMM framework to model the
inter-speaker dynamics, mixture models for the emission probabilities and (averages of)
MFCC as front-end-features. Its main contribution is the use of infinite models on both of
the HMM levels, i.e. on the multimodal emission probabilities and on the states and the
transitions between them.

5.1 General about infinite models

The use of infinite models is a natural way to overcome the issue of how to determine a priori
the order of a model. First, consider the problem of determining the order of the GMM that
should be used to model the distribution of a speaker. A fully Bayesian modeling should
consider the order of the model as a random variable, and treat it in the same way it treats
the rest of the parameters; the order should be integrated out, too, just like the weights, the
means and the covariance matrices. On the HMM-level, a classical approach to determine the
number of states K is to apply Viterbi, Baum-Welch or VB-EM type of learning for each of the
candidate K by conditioning on K (i.e. on the hypothesis), and select the order that maximizes
the evidence (or an approximation) of the model. The Evolving-HMM and the VB approach
of (Valente, 2005) are typical examples of this framework. However, such exhaustive search
solutions may lack of efficiency, especially in cases where the hypothesis space is quite large
(e.g. Broadcast News). A more flexible solution is offered by infinite HMM, where the number
of states are not specified a priori, but is rather inferred in a more data-driven way.

5.2 Infinite mixture models and the Dirichlet processes

We begin the analysis by describing the Dirichlet process (DP), which is the building block
in most of the infinite models, (Ferguson, 1973). The DP can be considered as a infinite
extension of the Dirichlet distribution. In the same way the Gaussian process can be utilized
in Bayesian inference as a prior (i.e a measure) on functions, the DP can be used as a measure
on measures. Moreover, much like the derivation of the familiar Gaussian process from the
Gaussian distribution, the DP may be explicitly derived from the Dirichlet distribution by
letting its order go to infinity.
Let us assume that β = {βk}K

k=1 follows a symmetric Dirichlet distribution of order K and
strength α0, i.e.

β|α0 ∼ Dir(α0/K, . . . , α0/K
︸ ︷︷ ︸

K components

) (24)

where 0 < βk < 1, k = 1, . . . , K and ∑
K
k=1 βk = 1. Suppose we aim to construct a

generative model for GMMs. Then, β can be used as the weights of the model. We also
need an appropriate base measure G0. In the DP-GMM case, G0 is the prior distribution of the
components, e.g. a Normal-Inverse Wishart distribution if conjugacy is desired. By sampling
the measure G0 K times, i.e. θk ∼ G0, k = 1, . . . , K we get a set of K atoms that can be associated
with {βk}K

k=1. The distribution of θ given {βk, θk}K
k=1 can expressed as θ|Gk ∼ Gk where

GK =
K

∑
k=1

βkδθk
(25)
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where δθk
= δ(·, θk). The distribution GK can now be used in order to generate random

samples from GK . One should first sample θ|GK ∼ GK and then sample y|θ ∼ F(θ), where
F(·) is the Gaussian distribution.
Suppose now that we let K → ∞. Then, β|α0 follows a DP with concentration parameter α0.
The random draw from the DP becomes an infinite mixture, i.e.

G =
∞

∑
k=1

βkδθk
(26)

We say that G follows a DP and we denote it by

G ∼ DP(α0, G0) (27)

Let us consider N samples from G, denoted by {φn}N
n=1, φn|G ∼ G. What prevents K

from going to infinity as N → ∞ is a fundamental property of the Dirichlet distribution
Dir({gk}K

k=1). Starting from gk = 1, k = 1, . . . , K and letting gk → 0, the probability mass is
being increasingly concentrated on areas close to the K vetrices of the (K − 1)-simplex. Hence,
even if N → ∞, G remains discrete and the cardinality of the set finite.
The posterior of G, i.e. conditioned to a set {φn}N

n=1 is a DP, parametrized as follows

G ∼ DP

(

α0 + N,
1

α0 + N

[

α0G0 +
N

∑
n=1

δφn

])

(28)

or equivalently

G ∼ DP

(

α0 + N,
1

α0 + N

[

α0G0 +
K

∑
k=1

Nkδθk

])

(29)

where Nk = ∑
N
n=1 δ(φn, θk) and ∑

K
k=1 Nk = N.

It order to create samples from the DP, we may proceed as follows

φN+1|{φn}N
n=1 ∼ 1

α0 + N

(

α0G0 +
N

∑
n=1

δφn

)

(30)

i.e. there is no need to refer to G. What (30) shows is that as N grows, the probability of getting
previously unseen samples decreases linearly. Furthermore, the probability of the new sample
to be equal to θk is equal to (α0 + N)−1Nk. Finally, high values of α0 corresponds to high rates
of generating unseen atoms.
Given α0, the prior of the number of distinct atoms K after N samples is given by

p(K|α0, N) =
Γ(α0)

Γ(α0 + N)
s(N, K)αK

0 (31)

where s(N, K) are unsigned Stirling numbers of the first kind.
A intuitive and constructive interpretation of β is the stick-breaking process, (Sethuraman,
1994). For the finite case, we saw that β follows the Dirichlet distribution. In order to
create samples of β for the infinite case, however, the following sampling scheme is useful.
Considering a stick of unitary length. For k = 1, 2, . . .,

uk|α0 ∼ Beta(1, α0) (32)
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βk = uk

(

1 −
k−1

∑
k′=1

βk′

)

= uk

k−1

∏
k′=1

(1 − uk′ ) (33)

Therefore, uk is distributed as Beta(1, α0) and covers a fraction of uk of the remaining stick.
Hence, the overall length that covers is equal to βk, given by (33). Note that a usual notation
from the stick-breaking weights is β ∼ GEM(α0), where GEM stands for Griffiths, Engen and
McCloskey. The generative model is depicted in Fig. 2(a).

5.3 Infinite Hidden Markov Models and the hierarchical DP

Let us now examine how can we apply similar ideas to a dynamic network, namely the
(time-independent) HMM. An HMM can be considered as a collection of GMMs, that differ
only on their weights which correspond to the rows of the transition matrix A. Each row
Ak· = [Ak1, . . . , AkK ], k = 1, . . . , K is the conditional probability of xt+1 = l, l = 1, . . . , K given
xt = k. Moreover, the initial probabilities a = [a1, . . . , aK ] may also be treated in a similar way,
by defining the non-emitting zero state. This allows us to include all the transition parameters
in a unique matrix, defined as the augmented transition matrix A+ = [aT , AT ]T .
In the finite-state case, a standard Bayesian strategy is to place a common prior on each line of
A, e.g.

p(Ak·|γ) = Dir(γ/K, . . . , γ/K) (34)

Two are the drawbacks of this approach. The first is that the state-persistence that several
dynamic systems exhibit is not captured explicitly in this prior. As we show next, this can be
solve rather easily, by adding an extra hyperparameter to the diagonal of A that is capable of
biasing the dynamics towards self-transition. A further and more severe in our case drawback
is that such a prior cannot be extended to the infinite case. This is because the tying between
the weights Ak· = [Ak1, . . . , AkK ], k = 1, . . . , K that is offered by placing a common prior is
weak when K → ∞. What this prior implies is that each Ak· should simply be a independent
draw from a DP having a common concentration parameter γ and a common continuous base
measure H. Hence, the set of atoms between every pair of draws would be disjoint, leading
to no sparse solutions at all. As proposed in (Teh et al., 2006), what is required to tackle this

Fig. 2. Plate notations of the DP-mixtures. (a) The original DP-mixture model, (b) The
Hierarchical DP-mixture model
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problem is to add another level in the hierarchy. On the uppermost level, a single draw G0

from DP(γ, H) is generated, i.e.

G0|γ, H ∼ DP(γ, H) (35)

This draw is then used to parametrize the DP prior of each of the states, i.e.

Gk|α0, G0 ∼ DP(α0, G0), k = 1, . . . , ∞ (36)

The generative model is depicted in Fig. 2(b). Contrary to the previous approach, the base
measure of Gk (denote by G0) is not only common to all states, but is moreover discrete, since

G0|γ, H =
∞

∑
k=1

βkδθk
(37)

Hence, each Gk would be a (weighted) collection of the same set of atoms. Moreover, not
only the set is the same, but identically weighted by β = {βk}∞

k=1. Using the stick-breaking
construction, each row of the transition matrix is distributed as follows. For k = 1, 2, . . . and
k′ = 1, 2, . . .

ukk′ |α0 ∼ Beta

(

α0βk′ , α0

(

1 −
k′

∑
l=1

βl

))

(38)

Akk′ = ukk′
k′−1

∏
l=1

(1 − ukl) (39)

The expected values of each Ak· will be equal to βk. Moreover, the concentration α0 now
controls both the state-connectivity and the similarity between each Ak·. High values of α0

means that most of the samples will be generated directly from G0, which increases the state
connectivity and decreases the variability between {Ak·}K

k=1. Contrarily, for low values of α0

the HMM may exhibit sparse state-connectivity, i.e. each state may be accessible only via a
subset of the other states.

5.4 Hierarchical DP HMM with DP mixture models as emission probabilities

Let us recapitulate the above modeling. We showed that the Hierarchical DP is a natural
extension of the original DP, that is suitable in cases where the overall model is decomposed
to a collection of submodels that share some certain properties. HMMs are such models,
since they can be considered as collections of conditional mixtures, where the conditioning
is w.r.t. the current state. We emphasize that these mixtures should not be confused with
the possibility of modeling the emissions probabilities with mixture models. The emission
probabilities are governed completely by the base measure H(·). If we desire to include
finite mixtures (e.g. GMMs) then H(·) should be the Dirichlet-Normal-Inverse Wishart
prior distribution, if conjugacy is desired. The tth observation yt will then follow a GMM
distribution, yt|θxt ∼ F(θxt ). Thus, each atom θk will be a parametrization of a GMM, capable
of describing the multimodal distribution of a speaker.
For describing the distribution of a speaker, the use of DP-mixture models may be considered
as well. This means that both the HMM and its emissions may be considered as infinite (i.e.
nonparametric), which is the method proposed in (Fox et al., 2009). However, in order to
avoid fast transitions between states, a bias towards self-transitions is adopted, that allows
to distinguish between the underlying HDP-HMM states and the within-speaker multimodal
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emissions. Moreover, non-overlapping 250ms frames are used as front end features while a
minimum duration of 500ms is imposed on speaker segments. The resulting model, termed as
the Sticky-HDP-HMM produced state-of-the-art results even without any prior tuning. In fully
Bayesian approaches, tuning is related to the hyperparameters of the uppermost layer. We
also emphasize that the use of infinite models is SD has previously been proposed in (Valente,
2006). It uses a DP-mixture model for the emissions and an Infinite-HMM for modeling the
transition dynamics. However, the HMM used was degenerated (all rows of A are assumed
to be equal) making the hierarchical DP unnecessary. A VB algorithm was proposed, based
on the mean-field approximation, while a slight improvement was reported over the baseline
VB with finite mixtures.

5.5 Inference

Methods of inference of the Sticky-HDP-HMM is out of the scope of this review. The interested
reader is encouraged to examine the inferential procedures given in (Teh et al., 2006) and (Fox
et al., 2009).
In general, to infer such models, the most usual way is the family of Markov Chain Monte
Carlo (MCMC) methods. Like any sampling method, MCMC aims to estimate any desired
quantity by sample averages, generated according a proper measure. In cases where all of
the distributions are conjugate to their priors, Gibbs sampling is usually a sufficient and easy
to implement MCMC method. It proceeds with sampling each random variable, conditioned
on all the others, which are set to their current values. The Gibbs sampler is not a unique
technique in the models described above. This is because there are alternative generative
models by which the same process can be defined. Several Gibbs samplers have been
proposed, that vary according to their mixing rates and their implementation effort that
is required. A detailed implementation of these such samplers, along with a comparison
between them can be found in (Teh et al., 2006). Other approaches, that are better suited
the HMM framework are presented in (Fox et al., 2009). Finally, we mention the possibility
of applying variational inference to infinite models. Such approaches are analyzed in (Blei &
Jordan, 2005) and (Valente, 2006) and can be much faster that MCMC.

5.6 Experiments

The experiments of the Sticky-HDP-HMM presented in (Fox et al., 2009) are based on the
NIST-2007 meeting data and are being compared to (i) the non-sticky-HDP-HMM and to (ii)
the ICSI diarization system, (Wooters & Huijbregts, 2008). The latter system is based on AHC
and was the winner of the competition, scoring a 18.37% DER. It uses ML-GMMs to model
the emission probabilities, a penalty free BIC-like approach and a Viterbi algorithm after each
cluster merging. The comparison between the two HDP systems is presented in Table 3.
The number in the parentheses is the performance when running the 16th meeting for 50,000

Overall DERs (%) Min Hamming Max Likelihood 2-Best 5-Best

Non-Sticky HDP-HMM 23.91 25.91 23.67 21.06
Sticky HDP-HMM 19.01 (17.84) 19.37 16.97 14.61

Table 3. Best results obtained on the NIST-2007 Meeting Data using the Sticky and the Non-Sticky
HDP-HMM.

Gibbs iterations, instead of the fixed number of 10,000 iterations. The results clearly show
the usefulness of the state persistence parameter in avoiding the unrealistic fast transitions
between speakers that is translated to an approximate 20% relative improvement in DER.
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Compared to the ICSI system, the Sticky-HDP-HMM performed slightly worst, if we consider
the setting with 10.000 iterations. We should note though that no tuning has been applied, i.e.
the priors on the hyperparameters are very vague, and are therefore placing significant prior
mass over areas that are unrealistic for the specific application field. Hence, by assuming a
proper tuning of the uppermost hyperperameters, a further increase in the accuracy should
normally be expected.
Note finally, that due to the fully Bayesian paradigm, several alternative state-sequences may
be sampled from the posterior. As Table 3 shows, if the best per-meeting DER for the five
most likely samples is considered, our overall DER drops to 14.61%. Finally, the possibility of
providing multiple state-sequences, along with their posterior probability mass, is a desirable
property when applying fusion techniques. In such cases, the relative uncertainty of the
decisions made by each information stream should also be assessed in order to fuse the
streams in a fully probabilistic manner.

6. Conclusions and further research directions

In this chapter, we presented a introduction to some of the recent methods that have been
proposed in SD. We restricted ourselves to some novel fully-Bayesian approaches, that are
based on (i) finite mixtures with Variational Bayes inference methods, and (ii) nonparametric
(i.e. infinite) Bayesian approaches. These methods are applicable to numerous problems that
deal with clustered data and are gaining increasing attention in several fields. We analyzed
some of the theoretical advantages over non- or semi-Bayesian approaches and their strength
and flexibility in learning the clustered structures of the data.
Bayesian nonparametrics may be used to tackle several other tasks in speaker and audio
problems, as well. For example, speaker verification is another major task that can be treated
as a model selection problem (that is one versus two speakers), and the effectiveness of
fully-Bayesian approaches has recently been proven, (Kenny, 2010). Furthermore, SVM-based
verification is a field where Bayesian approaches can be examined. A severe problem with
SVMs is that their soft-outputs cannot be regarded as probabilistic. On the contrary, relevance
vector machines (RVM) are fully-probabilistic analogues to SVMs and as such they can be
used as an alternative discriminative framework, (Tipping, 2001). Speaker separation from
multiple (or single) microphones is another related task to SD. A Bayesian nonparametric
model, termed as infinite factorial HMM has been used to separate the speakers and infer
their number, (Van Gael et al., 2009). Such approaches can be used in SD as well, in
order to detect and identify overlapping speakers. Finally, several inference methods can
be tested in speaker technologies, such as the Annealing Importance Sampling (Neal, 1998)
and Expectation-Propagation (Minka, 2001) that produce state-of-the-art results in many other
fields.

7. Appendix: Super- and i-vectors feature spaces

We review here some of the new feature spaces that are used in most of the contemporary
speaker verification systems and recently in several SD systems as well. These features are
derived by (i) adapting a UBM with the observation vectors of a speech segment (using
the standard EM-MAP of (Reynolds et al., 2000)) and (ii) mapping the high-dimensional
concatenated mean vector (or supervector) to a mid-dimensional subspace, resulting in the
identity vector, or simply the i-vector. The transformation rule is derived offline, using
enrollment data, and aims to reduce the dimensionality of the new feature space, while
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discarding those directions that do not carry speaker discriminant information.
The major advantage of the new feature space is the mapping of variable-length utterances
onto a space of fixed dimensionality, through a well-tested statistical intermediate description
(i.e. the UBM-based adaptation scheme). Using the i-vector representation, several
kernel-based and other general purpose algorithms can be applied in order to perform
identification, verification, and clustering. Finally, the i-vectors of a speaker have a rather
Gaussian distribution since they represent mean values, projected onto a lower dimensional
basis and they take values on ℜp. Hence, several algorithms that have been developed
assuming Euclidean spaces (i.e. of constant metric tensor) can be applied without much
adaptation. This is in contrast to representations that lie on spaces where the natural statistical
divergences (e.g. KL, Hellinger) have complex expressions that are far from being (squared)
Euclidean distances, such as those that include weights or covariance matrices.

MAP-estimate based on UBM and the supervector representation

As discussed in section 2, a typical preprocessor applies MFCC extraction, delta-feature
calculation and voice activity detection. When performing speaker verification, normalization
methods such as mean and variance normalization, RASTA filtering and feature warping are
essential in order to compensate for the channel-effects, (Kinnunen & B, 2010).
An effective statistical representation of the stream Y = {yt}T

t=1 of front-end features is a
Gaussian Mixture Model (GMM). The model, however, is not trained from scratch. Instead
of a Maximum Likelihood (ML) estimate, the observations are used to adapt a well-trained
model (Universal Background Model, UBM) with parameters λubm = {π0

c , µ0
c , Σ0

c}C
c=1 that

denote weights, means and (diagonal) covariance matrices, respectively. The UBM is a GMM
that is trained offline with the standard ML-EM algorithm, using hours of speech data and a
huge number of speakers. The final estimate λ̃Y of the p.d.f. of Y is the Maximum A Posteriori
(MAP) estimate of λY , and is calculated by a MAP-Expectation-Maximization (MAP-EM)
algorithm. Moreover, only the mean-values are allowed to be adapted, which implies that
the mean values {m̃c}C

c=1 are sufficient to represent the model λ̃Y for a fixed UBM.
The E-step of the ith iteration is carried as

P(c|yt, λ̃
(i−1)
Y ) =

π0
c p(yt|µ̃(i−1)

c , Σ0
c )

∑
C
c=1 π0

c p(yt|µ̃(i−1)
c , Σ0

c )
(40)

followed by the corresponding M-step

µ̃
(i)
c = α

(i)
c ȳc + (1 − α

(i)
c )µ0

c (41)

where

α
(i)
c =

n
(i)
c

n
(i)
c + r

(42)

n
(i)
c =

T

∑
t=1

P(c|yt, λ̃
(i−1)
Y ) (43)

and

ȳc =
1

n
(i)
c

T

∑
t=1

P(c|yt, λ̃
(i−1)
Y )yt (44)
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The above expressions reveal that λubm and r are completely specifying the prior of {µc}C
c=1.

Its density is as follows

µc|r, Σc ∼ N
(

µ0
c ,

1

r
Σ0

c

)

(45)

where N (µ, Σ) denotes the normal p.d.f., with mean and covariance matrix µ and Σ

respectively. The parameter r corresponds to the strength of the prior of {µc}C
c=1, i.e. the

equivalent number of virtual observations that are backing the initial estimate µ0
c .

Apart from the increase in the robustness of the estimate of λY , a further severe benefit from
using a UBM is the common ordering that it establishes to the C open areas of the observations’
space. Consider the MAP estimates λ̃Ya

and λ̃Yb
given Ya and Yb respectively. Due to their

common initialization by λubm, λ̃Ya
and λ̃Yb

are directly comparable, in the sense that their
corresponding entries carry information about the same a priori area of the observations’
space, apart from the dimension. Such a correspondence cannot be achieved when the models
are trained using ML-EM algorithm, making several fast scoring methods and dimensionality
reduction techniques inapplicable. The concatenated vector MY ∈ ℜCd of the means {µ̃c}C

c=1
is termed supervector and can be considered as a novel fixed-size way for representing Y.

Likelihood ratios in verification and clustering

A standard way to score a new set of observation against a model λ̃s is based on the
normalized log-likelihood ratio between the λ̃s and λubm, i.e.

NLLR(λ̃s|Y, λubm) =
1

T

T

∑
t=1

log
p(yt|λ̃s)

p(yt|λubm)
(46)

The coupling between λ̃s and the UBM increases drastically the robustness of the ratio, and
allows fast scoring methods to be applied.
The NLLR can be deployed in order to apply both verification and clustering. In verification,
NLLR is normalized properly according to a set of cohort speakers and then a simple threshold
is applied to verify the claimed identity. Several score-level normalization methods have
been proposed (e.g. z-norm, t-norm, s-norm) and are aiming to compensate the speaker and
channel dependent behavior of the statistic NLLR.
In most step-by-step SD approaches, UBM-based models are used only after a first clustering
pass with single-Gaussian models. The clusters that are created are then used to initialize
further iterations of UBM-based hierarchical clustering. To define a similarity measure
between two clusters Ya and Yb, the Cross Likelihood Ratio (NCLR)

CLR(Ya, Yb) = NLLR(λ̃a|Yb, λubm) + NLLR(λ̃b|Ya, λubm) (47)

and the Normalized Cross Likelihood Ratio (NCLR)

NCLR(Ya, Yb) =
1

Ta
∑

yt∈Ya

log
p(yt|λ̃b)

p(yt|λ̃a)
+

1

Tb
∑

yt∈Yb

log
p(yt|λ̃a)

p(yt|λ̃b)
(48)

are both symmetric measures that have been applied successfully, (see (Le et al., 2007) for a
comparison). However, a predefined threshold is required to decide whether a pair of clusters
should be merged or not, (Zhu et al., 2005).
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Kernels based on supervectors

One of the drawbacks of a likelihood ratio-based verification and clustering algorithms is their
dependence on the data Y. This problem arises from the fact that the likelihood function of the
incomplete data

p(y|λ̃) =
C

∑
c=1

πc p(y|µc, Σc) (49)

does not belong to an exponential family and, therefore, a sufficient statistic does not exist,
(Wainwright & Jordan, 2008). On the contrary, the complete-data likelihood, i.e. the likelihood of
zt = (xt, yt) where X = {xt}T

t=1 denotes the alignment of Y to components - belongs to the
exponential family

p(x, y|λ̃) =
C

∑
c=1

δ(c, x)πc p(y|µc, Σc) (50)

and therefore several closed-form expressions can be utilized. The obvious problem is that
we do not know xt. However, their MAP estimate x̃t of xt is already in-hand, from the last
E-step of the EM algorithm. This is the rationale for the use of similarity measures between
utterances that are not based on likelihood-ratios. In (Campbell, Sturim & Reynolds, 2006), a
KL divergence-like kernel that is proposed

K(λ̃a, λ̃b) =
C

∑
c=1

(√
πcΣ−1/2

c (µ̃a
c − µ0

c )
)T (√

πcΣ−1/2
c (µ̃b

c − µ0
c )
)

(51)

Such kernels implicitly make use of the complete-data likelihood, and the corresponding
closed-form expressions. Once the kernel is defined, one may consider the use of Support
Vector Machines (SVMs) to perform verification. During training, the separating hyperplane
should be estimated, based on a labeled training set that consists of both positive and negative
examples {λ̃i, ti}N

i=1, where ti ∈ {−1,+1}. During verification, a sparse subset Λs of these

examples (i.e. the support vectors) {λ̃i, ti}i∈Λs
along with their weights {αi}i∈Λs

and the bias
term b are needed to perform verification, according to sgn( f (λ̃′)), where

f (λ̃′) = ∑
i∈Λs

αitiK(λ̃
′, λ̃i) + b (52)

denotes the function that defines the hyperplane. Several other kernels and additional
information regarding the SVM-based verification can be found in (Campbell, Campbell,
Reynolds, Singer & Torres-Carrasquillo, 2006).

From supervectors to i-vectors

In practice, the dimensionality of supervectors is very large to handle (e.g. dim(MY) = 77824
for (d, C) = (38, 2048)). Therefore, it is a natural field for applying dimensionality reduction
(DR) methods. A common method for DR is Principal Component Analysis (PCA). The
eigenvectors having the highest corresponding eigenvalues are termed eigenvoices, inspired
from the similar concept of eigenfaces in face recognition, (Turk & Pentland, 1991).
However, PCA is an unsupervised method, and as such, it does not take into account neither
the clustered structure of the enrollment data nor the classification purpose of the DR. Linear
Discriminant Analysis (LDA) is a popular supervised method for defining such bases and is
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the one that is used to extract the i-vectors. The supervector M (of κ = Cd dimensions) is
assumed to be generated from the following equation

M = M0 + Tw + e (53)

where M0 the supervector of the UBM, T a (κ × p)-dimensional matrix (where p ≪ κ, typically
p = 400), w a p-dimensional vector having a standard normal distribution, i.e. w ∼ N (0, Ip)
and e the approximation error. The matrix T is called total variability matrix and its columns
are forming the LDA-derived subspace with which M is expressed. The term total variability
matrix stems from the fact that the labeling used in LDA treats each speaker recording (i.e.
each set of utterances of a speaker from the same session) as a distinct class, (Dehak et al.,
2011). This strategy is in contrast to a former one, that applies Joint-factor Analysis (JFA) to
model separately between-speaker and within-speaker variability.
To calculate the i-vector w of an utterance u that consists of Y, assuming a UBM and a basis
T, one should (i) adapt the UBM using the standard MAP-adaptation scheme, and (ii) use the
centralized mean vectors to calculate the i-vector with the following formula

w =
(

Ip + TTΣ−1
e NuT

)−1
TTΣ−1

e Fu (54)

In (54), Fu denotes the centralized supervector of the utterance, i.e. Fu = Mu − M0, Nu a
κ × κ diagonal matrix, whose K diagonal blocks are defined as nc Id and nc given in (43), and
finally Σe a κ × κ diagonal covariance matrix, estimated during LDA, that models the expected
variance of the approximation error e.
These vectors may be considered as lying on a feature space that is well suited to tasks like
speaker verification, identification and diarization.
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