
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

7

Quantum-Inspired Differential Evolutionary
Algorithm for Permutative Scheduling Problems

Tianmin Zheng1 and Mitsuo Yamashiro2

1SoftAgency Co., Ltd
2Ashikaga Institute of Technology

Japan

1. Introduction

In the world of combinatorial optimization, a wide range of combinatorial problems exist for
which the solution is permutative, such as knapsack problem, traveling salesman problem
(TSP), vehicle routine problem (VRP), quadratic assignment problem (QAP), dynamic pick-
and-place (DPP) model of placement sequence and magazine assignment in robots and
various types of scheduling problems. The objectives for these problems are usually to find
the best sequence to realize the optimal, for example, to minimize the maximum completion
time of jobs on machines or to find the shortest routing between several cities. These
problems are very different from the continuous space problem because we are interested in
sequence such as [1 2 3 4 5] which is permutative in nature. The solutions include a
permutation-based sequence as well as the fitness. It is not feasible to solve this kind of
problem using the approaches that solve only continuous problems.
As an important part of the permutation-based combinatorial optimization problems, the
permutative scheduling problems (PSP) account for a large proportion of the production
scheduling which is the core content of advanced manufacturing system. Among them, the
flow shop scheduling problem (FSP) and job shop scheduling problem (JSP) may be the best
known permutation-based scheduling problems. Both of FSP and JSP have earned a
reputation for being a typical strongly NP-complete combinatorial optimization problem
(Garey, et al., 1976) and have been studied by many workers due to their importance both in
academic and engineering fields.
By now, the meta-heuristic algorithms achieve global or sub-optimal optima within acceptable
time range are most popular for dealing with the permutation-based scheduling optimization
problem like flow shop and job shop scheduling. These approaches are initiated from a set of
solutions and try to improve these solutions by using some strategies or rules. The meta-
heuristics for PSP include genetic algorithm (GA) (Reeves & Yamada, 1998; Goncalves, et al.,
2005), immune algorithm (IA) (Doyen, et al., 2003; Xu & Li, 2007), tabu search (TS) (Nowicki &
Smutnicki, 1996; Pezzella & Merelli, 2000), simulated annealing (SA) (Hisao, et al., 1995), ant
colony optimization (ACO) (Ying & Liao, 2004; Zhang, et al., 2006), particle swarm
optimization (PSO) (Tasgetiren, et al., 2004; Liao, et al., 2007; Xia & Wu, 2006), local search
(Stützle, 1998), iterated greedy algorithm (Rubén & Stützle, 2007), differential evolution (Pan,
et al., 2008), and other hybrid approaches (Zheng & Wang, 2003; Qian, et al., 2008; Hasan, et al.,
2009). We should notice that these meta-heuristics can obtain satisfactory solutions, while

www.intechopen.com

Evolutionary Algorithms

110

require more computation time and vary dramatically according to their structure and
parameters. Recently, Han and Kim (2000, 2002, 2004) proposed some quantum-inspired
evolutionary algorithms (QEAs) for the knapsack problem. However, due to its encoding and
decoding scheme, the QEA can’t directly be applied to permutation-based scheduling
problems and the research of production scheduling problems based on QEA is just at
beginning. Research of PFSP for minimizing the makespan of jobs based on QEA is first
proposed by Wang, et al. (2005a, 2005b) and he made the simulations and proved that the QEA
has better performance than NEH algorithm. Quite recently, Gu, et al. (2008) proposed a
quantum genetic based scheduling algorithm for stochastic flow shop scheduling problem
with the random breakdown and Niu, et al. (2009) put forward a quantum-inspired immune
algorithm for hybrid flow shop with makespan criterion.
In our study, a novel quantum-inspired evolutionary algorithm called quantum-inspired
differential evolutionary algorithm (QDEA) is applied to deal with the FSP and JSP. This
chapter is divided into the following sections: section 2 presents the two different shop
scheduling problems; in section 3, the basic quantum-inspired evolutionary algorithm is
introduced and we put forward the algorithm framework based on QEA for solving the
permutation-based scheduling problem. Then, each part of proposed algorithm framework
is implemented by developing the novel QDEA which will be presented in section 4. In
section 5, we make the simulation and comparisons of proposed QDEA with other
algorithms for FSP and JSP. Finally, section 5 concludes the research.

2. Permutative scheduling problems

A flow shop is characterized by continuous and uninterrupted flow of jobs through multiple
machines in series and the solution for FSP is the processing sequence of jobs. A FSP
containing the same processing sequence of jobs for all machines is called as permutation
FSP (PFSP). In the permutation FSP with J jobs and M machines, each job is to be
sequentially processed on machine j = 1,2,…,n. At any time, each machine can process at
most one job and each job can be processed on at most one machine. The sequence in which
the jobs are to be processed is the same for each machine. Here we suppose π = {J1, J2,…,Jn} to
be any a processing sequence of all jobs and suppose c(Ji, k) and t(Ji, k) to be the completion
time and the processing time of job Ji on machine k, respectively. After initializing c(J1, 1) =
t(J1, 1), the mathematical formulae for the permutation FSP can be described as follows:

 c(J1, k) = c(J1, k - 1) + t(J1, k), k=2,…,m (1)

 c(Ji, 1) = c(Ji-1, 1) + t(J1, 1), i=2,…,n (2)

 c(Ji, k) = max{c(Ji-1, k), c(Ji, k-1)} + t(Ji, k), i=2,…,n, k=2,…,m (3)

so the scheduling objective such as minimizing the maximum completion time (makespan)
which is most widely adopted can be described as:

 Cmax = c(Jn, m) (4)

The PFSP with the makespan criterion is to find the permutation π* in the set of all
permutations ∏ satisfies the following criterion:

 Cmax (π*) ≤ Cmax (π) ∀ π ∈∏ (5)

www.intechopen.com

Quantum-Inspired Differential Evolutionary Algorithm for Permutative Scheduling Problems

111

For a deterministic n×m JSP, the n job J = {J1, J2, …Jn} must be processed exactly once on each
of m machines M={M1, M2, …Mn}. The processing of a job Ji on one machine Mj is called an
operation Oi,j, and each opeation mush have an integral processing time pi,j (pi,j > 0). There
are two important constraints make the JSP different from other scheduing problems like
PFSP: the operation precedence constraint and the machine processing constraint. The
operation constraint means that once order of operations of job is fixed then the processing
of an operation cannot be interrupted and concurrent; and the machine constraint is that
only a single job can be processed at the same time on the same machine. We denote Ci,j as
the completion time for operation of job Ji on machine Mj, so the value Ci,j = Ci,k + pi,j is a
completion time of Oi,j in relation of which Oi,k precedes to Oi,j in processing order. For
deterministic JSP, the pi,j is pre-set and the goal of scheduling in this study is to find the
completion time Ci,j for all Oi,j to minimize the value of Cmax = Max(Ci,k + pi,j), in which the Oi,k
precedes to Oi,j and Cmax stands for the time used in completing all operations required.

3. Quantum-inspired evolutionary framework for permutative optimization

3.1 The basic quantum-inspired evolutionary algorithm

The quantum-inspired evolutionary algorithm (QEA) is based on the concept and principles
of quantum computing, such as the quantum bit and the superposition of states. QEA can
explore the search space with a smaller number of individuals and exploit the search space
for a global solution within a short span of time. However, QEA is not a quantum algorithm,
but a novel evolutionary algorithm (EA). Like any other EAs, QEA is also characterized by
the representation of the individual, the evaluation function, and the population diversity.
Inspired by the concept of quantum computing, QEA is designed with a novel Q-bit
representation, a Q-gate as a variation operator, and an observation process based on Q-bits.
QEA uses a novel Q-bit representation which is a kind of probabilistic representation. A Q-
bit may be in the “1” state, in the “0” state, or in a linear superposition of two states. A Q-bit
individual as a string of Q-bits is defined as:

 1 2

1 2

m

m

q
α α α
β β β
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

A
A

 (6)

where|ǂi|+|ǃi|=1, i=1,2,…,m (Han & Kim, 2000, 2002, 2004). If there is, for instance, a two
Q-bits system with two pairs of amplitudes such as

1 / 2 1 / 2

1 / 2 3 / 2
q

⎡ ⎤−
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
 (7)

then the states of the system can be represented as

1 3 1 3

00 01 10 11
2 2 2 2 2 2 2 2

− + + − (8)

The above result means that the probabilities to represent the states 00 , 01 , 10 , 11 are
1/8, 3/8, 1/8, 3/8 respectively. By consequence, the two Q-bits system contains the
information of four states. Evolutionary computing with Q-bit representation can provide a
better characteristic of population diversity than other representations, since it can represent

www.intechopen.com

Evolutionary Algorithms

112

linear superposition of states probabilistically. Only one Q-bit individual is enough to
represent four states, but in binary representation at least four strings (00), (01), (10), (11) are
needed. By observing the states of Q-bit, the Q-bit will collapse into 0 or 1 . Then, a
quantum chromosome with a length of 2 will become a binary string by a certain
measurement method and we can use the binary string to solve the problem required.
The basic QEA includes 4 main steps (Han & Kim, 2000, 2002): initialization, observation,
evaluation and updating. The procedure of basic QEA is described in the Figure 1:

procedure of QEA{
 t ← 0
 initialize Q(t)
 observe Q(t) and produce P(t)
 evaluate P(t)
 store the best solution b among P(t)
 do{
 t ← t + 1
 observe Q(t -1) and produce P(t)
 evaluate P(t)
 update Q(t)
 store the best solution b among P(t)
 }while(t< MAX_GEN))
}

Fig. 1. The pseudo code of basic QEA

When we adopt the QEA to deal with some problems, we firstly initialize the quantum
population Q0 = [q0,1, q0,2,...,q0,n], where n is population size and the individual q0,i =
[q0,i,1, q0,i,2,...,q0,i,m] is the quantum chromosome represented by two-state Q-bits, where
m is the dimension of the problem. Then the step of observation makes binary solutions in
P(t) by observing the states of Q(t), where P(t) = [xt,1, xt,2,...,xt,n]. One binary solution xt,j,
j=1,2,…,n is a binary string of length, which is formed by selecting either 0 or 1 for each bit
using the probability amplitudes. The procedure of evaluation is similar to other EAs by
which each binary solution xt,j is evaluated to give a measure of its fitness and the optimum
individual b will be stored. In this step of updating, Q-bit individuals in Q(t) are updated by
applying quantum rotating gate defined as a variation operator of QEA, the following
rotation gate is usually used as a basic Q-gate in QEA:

 ()
() ()
() ()

'

'

cos sin

sin cos

i i ii i

i

i ii ii

U
α α αθ θ

θ
β βθ θβ

−
= =

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦
 (9)

ǉi = s(ǂi, ǃi)Δǉi, where Δǉi is the value of the rotation angle and s(ǂi, ǃi) is the rotation
direction.
As a conclusion, we can see in the basic QEA, the population provides plenty of diversity
even in the small population and it can be easily mixed with other algorithms. In the QEA,
the observation and updating are the core of the evolution. The observation operation
determines the solution for the specific problem and updating leads the search towards the
optimal. In this chapter, we propose a common algorithm framework for the permutative
scheduling based on QEA and give an implement to this algorithm framework for solving
FSP and JSP in the next section.

www.intechopen.com

Quantum-Inspired Differential Evolutionary Algorithm for Permutative Scheduling Problems

113

3.2 Quantum-inspired evolutionary framework for permutative scheduling problem

This study adopts the QEA to solve the permutative scheduling problem. As for the
evolution-based algorithm like QEA, the population of individuals needs to be initialized
according to the mechanism of QEA firstly, and effective updating operator also should be
adopted to perform the evolution. Then, since the quantum chromosomes can not be used to
represent the job permutations directly, a conversion rule is necessary to determine the
representation of solutions which is permutative. At last, in order to improve the solution
obtained through global search performed by QEA, some neighborhood based search can be
performed on the permutative solution to get satisfactory results. The algorithm framework
for permutation-based scheduling problems is shown in Figure 2. We will make a brief
discussion about the four important parts shown in Figure 2 before implement the
algorithm.

Fig. 2. The algorithm framework for permutation-based scheduling problems

1. The encoding scheme for Q-bits based population
About how to encode the chromosome composed of several Q-bit, the equation 6 is
most widely adopted for solving the scheduling problems (Wang, et al., 2005a, 2005b;
Gu, et al., 2008; Niu, et al., 2009). In these researches, only one string of the probability
amplitude is used to make the solution and the opposite one is just ignored. While,
when we update the quantum individual, according to the normalization condition,
these two probability amplitude strings should both be operated. If we just consider one
string of probability amplitudes, the other one is a kind of waste. This study will
introduce an encoding scheme by which we can make full use of quantum probability
information and meet the normalization condition without any unnecessary operation.

2. The updating strategy for quantum evolution
The updating strategy is the core of the QEA, and Han and Kim (2000, 2002, 2004) use the
lookup table to perform the updating of quantum gate. In the lookup table, the value and
direction of the rotating angle are determined by making the comparisons between the

www.intechopen.com

Evolutionary Algorithms

114

current solution and the global best solution. We notice the change of rotating angle is a
constant for all the problems, so it is easy to fall into local optimal since different problems
has different characteristic. Also, the lookup operation costs excessive search time on the
lookup table. The lookup table and its variants are also adopted by the researches (Wang,
et al., 2005a, 2005b; Gu, et al., 2008; Niu, et al., 2009). This study adopts a new updating
strategy which is more effective to replace the lookup table.

3. The conversion rule for representation of solution
The decoding scheme is based on the encoding scheme and the specific problem. In the
researches (Wang, et al., 2005a, 2005b; Gu, et al., 2008), the quantum chromosome is
converted to job sequence for FSP by using the random key representation proposed by
Bean (1994). In their approaches, the quantum chromosome is converted to the binary
chromosome firstly, then to the decimal chromosome, and to the job order at last.
Although this approach can convert the representation of quantum chromosome into
job order, however, with the increasing of the problem scale, the length of
corresponding quantum chromosome and the binary chromosome increases rapidly. In
this study, we will introduce a simple but efficient way for conversion.

4. The neighbourhood based search for exploitation on job sequence
Two schedules are neighbours if one can be obtained through a well-defined modification

of the other. Neighbourhood search methods provide good solutions and offer

possibilities to be enhanced when combined with other heuristics. These techniques

continue to add small changes (perturbations) and evaluate schedules until there is no

improvement in the objective function. Popular techniques that belong to this family

include the tabu search (TS), simulated annealing (SA), genetic algorithm (GA), and so on.

At each iteration, these procedures perform search within the neighbourhood and

evaluate the various neighbouring solutions. The procedure accepts or rejects a solution as

the next schedule based on a given acceptance-rejection criterion. This study will also

adopt the neighbourhood based search to improve the solution quality.

Through this algorithm framework, the quantum chromosomes are converted into the job

sequence and the algorithm can be designed for dealing with various types of permutation-

based scheduling problem. The parts 2 and 4 can be easily replaced since we can use different

updating strategies and neighbourhood based search for evolution. Also, the part 3 is

problem-dependent and should be adjusted according to different scheduling problems. In the

following section, we will propose a novel approach called QDEA by implementing each part

of this algorithm framework for the PFSP and JSP both of which are the typical permutation-

based production scheduling problem, and give the main procedure of proposed algorithm.

4. Proposed QDEA for permutative scheduling problem

In this section, based on the algorithm framework proposed above, we will implement each
part shown in Figure 2 and give the description of proposed QDEA in detail.

4.1 The implement of the QDEA
4.1.1 The initialization of the population

According to the principles of the basic QEA, each Q-bit has two probability amplitudes, so

the quantum chromosome consists of two strings of probability amplitude shown in

equation 6. In this study, we suppose the quantum chromosome to be represented as:

www.intechopen.com

Quantum-Inspired Differential Evolutionary Algorithm for Permutative Scheduling Problems

115

 q = [ǉ1 ǉ2 … ǉn] (10)

where ǉi is the quantum rotating angle with the range of [0, π / 2]. We operate on the rotating
angle and update it with the updating operation. In the decoding process, the solutions are
converted according to the observation method proposed below.
Equation 6 has been adopted to solve the PFSP by Wang, et al. (2005a, 2005b), the stochastic
FSP by Gu, et al. (2008) and hybrid FSP by Niu, et al. (2009). Although it is easy to
understand and has been widely adopted for dealing with other problems, however, this
kind of encoding scheme is not quite effective for the updating operation practiced by the
quantum gate. Since the updating operation is the key of the QEA and the essence of the
updating procedure is to influence the probability amplitude by changing the value of
rotating angle, so we can directly practice on the quantum chromosomes represented in
rotating angle. This provides a more effective way to deal with the Q-bits. Also, we can
simplify the operations performed on the quantum chromosomes by using only one
variable. Therefore, we consider that using the rotation angle to encode the quantum
chromosome outperforms that of probability amplitude.

4.1.2 Differential evolution for updating

The differential evolution (DE) is a kind of population based stochastic optimization
algorithm proposed by Storn and Price (1997, 1999), and also it’s a kind of evolutionary
algorithm which is similar to genetic algorithm. The DE adopts the real number encoding
scheme, mutation, crossover and selection operation based on differential vectors and has
excellent ability of overall search ability.
As with all other evolution based optimization algorithms, DE works with a population of

solutions, not with a single solution for the optimization problem. Population x of

generation g contains n solution vectors called individuals of the population and each vector

represents potential solution for the problem. The population is often initialized by seeding

it with random values within the given boundary constraints.

Suppose the population Qg = [q1,g, q2,g,…, qn,g] (n is the population scale, g is the current

evolutionary generation), individual qi,g = [ǉi,1,g, ǉi,2,g,…, ǉi,m,g] (m is the dimension of the

problem, i∈[1, n]). Suppose vi,g+1 is the corresponding individual obtained by practicing the

mutation operator on individual qi,g, and one type of mutation operators works as:

 vi,g+1 = qr1,g + F(qr2,g − qr3,g) (11)

where 1r , 2r , 3r ∈[1, n] and 1r ≠ 2r ≠ 3r ≠ i; qr1,g is called father basic vector, (qr2,g − qr3,g) is

called father differential vector; F is a real number and constant factor which controls the

amplification of the differential variation.
In order to increase the diversity of the parameter vectors, we also use the ui,j,g+1 (j∈[1, m])
vector which is obtained by practicing kinds of crossover operation between qi,g and
mutative individual vi,g+1 obtained by equation 11. The bin crossover we will use in this
study is showed in equation 12:

, , 1

, , 1
, ,

i j g

i j g
i j g

v for rand CR or j Jrnd
u

otherwiseθ
+

+

< =⎧⎪
⎨
⎪⎩

 (12)

where CR is the crossover factor and Jrnd is chosen randomly from the interval [1, m].

www.intechopen.com

Evolutionary Algorithms

116

We adopt the differential operation to perform the updating of the quantum chromosomes

which is an innovation in this study. Since the quantum chromosomes are encoded in

quantum angle, so the differential operations are directly practiced on the quantum angle

and can provide the updating with excellent overall search ability and diversity.

4.1.3 The representation of permutation-based solution

For the decoding process of the quantum chromosome, since the solution to permutative

scheduling problems is the order of all the elements (jobs for FSP, operations for JSP),

therefore, we should convert the quantum chromosome encoded in rotating angle to job or

operation sequences. In the decoding scheme adopted by Wang, et al. (2005a, 2005b) and Gu,

et al. (2008), the representation needs several conversions (Q-bit chromosome → binary

chromosome → decimal chromosome → job order) and the computation is complicated

when the problem scale becomes larger. We put forward a simple but efficient strategy for

conversion, which is also an innovation in this study.

• Initialization
1. Obtain quantum chromosome qi = [ǉi,1, ǉi,2,…,ǉi,n] from the Q-bit based
population; Calculate tempi = [cosǉi,1, cosǉi,2,…,cosǉi, n] and initiate two arrays first()
and last().

• Convertion
2. Generate a random number ǈ between [0,1] and compare it with cosǉi,e where e
∈ [1, n]. If cosǉi,e > ǈ, put e into first() , else put e into last(). Repeat until all Q-bits in qi
are operated.
3. Combine these two arrays first() and last() to one array permutation(), the element
in permutation() is the permutative sequence for solution.

• FSP representation
4. For PFSP, permutation() is the final solution.

• JSP representation
5. For JSP, get a element p from permutation() and perform the code(i) = mod(p, m) + 1,
where the "mod" is an operator of calculating the reminder p being divided by m and m is
the machine number. Repeat until all p in permutation() are operated. The code() is the
solution for JSP.

Fig. 3. The procedure of converting mechanism for solution representation

For the solution reprentation of permutative problems, we define the rotating angles of

element 1,2,…n are [ǉ1, ǉ2,…,ǉn], that the probability amplitude of element i is [cosǉi, sinǉi],

then determine the permutative sequence according to the steps shown in Figure 3.

An example of JSP (suppose machine constrains to be [2-1; 1-2; 2-1] for 3 jobs) for converting

mechanism is shown in Figure 4. For example, we have qi = [0.87, 0.68, 0.15, 0.42, 1.38, 1.09],

so the tempi = [0.64, 0.77, 0.98, 0.91, 0.18, 0.46]. Then generate ǈ as 0.76 which is larger than

cosǉi,1, so we put ‘1’ into last(). We continue generate ǈ as 0.37 which is smaller than cosǉi,2,

so we put ‘2’ into first(). After we operated on all 6 Q-bits, we have first() = [2 3 6] and last() =

[1 4 5]. By combining these two arrays, we have permutation() = [2 3 6 1 4 5]. By applying the

mod(p, m) + 1 operation, the JSP code becomes [3 1 1 2 3 2]. So each job number occurs m

www.intechopen.com

Quantum-Inspired Differential Evolutionary Algorithm for Permutative Scheduling Problems

117

times in the chromosome, and by reading the array code() from 1 to n×m, the i-th occurrence

of a job number refers to the i-th operation in the technological sequence of this job. Through

the operation-based representation, any permutation can be decoded to a feasible schedule

for JSP. In Figure 4, by scanning the elements in the job shop code, we can get the final

schedule of {O312, O112 , O121, O211, O321, O221}, where Oijk means the j-th operation of job i is

processed on the machine k.

 Q-bits | 0.87 | 0.69 | 0.16 | 0.42 | 1.39 | 1.09

 Permutation | 2 | 3 | 6 | 1 | 5 | 4

 JSP Code | 3 | 1 | 1 | 2 | 3 | 2

 Schedule | O312 | O112 | O121 | O211 | O321 | O221

Fig. 4. The example of converting mechanism for JSP

Here, suppose we have a scheduling problem with the scale of 30 jobs and 10 machines and

we can make a comparison like this way: for PFSP, since 24 < 30 < 25, so the length of the

quantum chromosome should be 30×5 = 150 at least by the method proposed by Wang, et al.

(2005a, 2005b) and Gu, et al. (2008), and three conversions are needed to get the final

solution. While, by our method, we just need a quantum chromosome with length of 30 and

practice the conversion only once; for JSP, since the solution is the operation sequence, so

the length of the quantum chromosome should be 30×10×5 = 1500 for these approaches, and

five conversions are needed to get the operation. While, by our method, we just need a

quantum chromosome with length of 300 and practice the conversion only three times.

Thus, the representation of the solution we proposed simplifies the decoding procedure for

the quantum chromsomes greatly and can provide a more effective way to deal with

permutative scheduling problems.

4.1.4 Hybrid QDEA with local search scheme

By adopting the proposed converting mechanism, the Q-bits based population can be

converted to permutative-based solution for scheduling effectively, so various types of

neighborhood based search can be easily embedded to develop effective hybrid algorithms.

For the permutative-based optimization problems, the Insert, Interchange, Swap, 2-opt and Or-

opt neighborhoods are often adopted. According to the analysis from Schiavinotto and

Stützle (2007), for the permutative-based search landscape, using Insert at most n-1 times,

one solution can transit to any other solution. Compared with other commonly used

neighborhoods, the diameter of Insert is one of the shortest ones, so here we adopt the

following local search scheme based on Insert neighborhood to perform thorough

exploitation in the promising permutation-based solutions.

We obtain the global best chromosome Best_g and suppose n to be the element (job for PFSP

and operation for JSP) number for a special problem. The pseudo code of the local search

adopted is given as follows:

www.intechopen.com

Evolutionary Algorithms

118

• Initialization
1. Initialize counter t = 0, calculating makespan of Best_g as M(Best_g).

• Perform the search
2. Remove. Generate i randomly and remove i-th job in Best_g and obtain a partial
sequence temp.
3. Insert. Insert the removed job into the best position j(j ≠ i) in temp and calculate
M(Best_g).

• Stopping condition check

4. If M(temp) > M(Best_g) and t < n1/2，then t ← t + 1 and go to step 2.

• Update
5. If M(temp) < M(Best_g), update Best_g = temp.

Fig. 5. The procedure of local search

Through the local search by using Insert neighborhood, we can obtain two job sequences

stand for the one before the operation and the one after the operation, the better one is saved

for the next generation iteration. It is should be noticed that the local search is directly

applied on the job permutation, not on the quantum chromosomes. So after the whole local

search completes, the corresponding Q-bit chromosome should be repaired since this

quantum chromosome will be used to perform the next updating by DE and should match

the permutation results obtained by the local search. The repair operation is simple since we

just need to exchange the corresponding position of the Q-bits.

element 1 2 3 4 5 6

qi 0.87 0.69 0.16 0.42 1.39 1.09

pi 2 3 6 1 4 5

qi, 0.87 1.09 0.16 0.42 1.39 0.69

pi, 2 5 6 1 4 3

Table 1. An example of repair for local search

For example, before the local search, the Q-bit chromosome qi and corresponding element
permutation pi obtained by conversion are shown in Table 1. After the local search, the
element permutation pi, becomes [2 5 6 1 4 3] in which the ‘3’ and ‘5’ change the 2-th and 6-th
position according to the Insert neighborhood, so we make the repair by changing the
corresponding 2-th and 6-th Q-bits in qi and obtain the qi,= [0.87, 1.09, 0.16, 0.42, 1.39, 0.69].
The qi, will be adopted to perform the updating by DE strategy in the next iteration.

4.2 The main procedure of QDEA

To implement the common algorithm framework introduced in section 3.2, we adopt the DE

strategy to perform the updating of quantum gate and introduce an effective converting

mechanism for representing the permutative solution. In this way, we propose the QDEA

for PFSP and JSP. Also, we develop the hybrid QDEA (HQDEA) by embedding the local

search scheme to perform the neighborhood based search. The main procedure of QDEA

(along with HQDEA) is as follows:

www.intechopen.com

Quantum-Inspired Differential Evolutionary Algorithm for Permutative Scheduling Problems

119

• Initialize control parameters
1. Set the value of control parameters for DE and the lower and upper of angle for
the QEA. Set maximum evolution generation iter and initialize iteration counter t
= 0.

• Initialize the population
2. Determine initial population Pop0 = [chrom0,1, chrom0,2,..., chrom0,n], where chrom 0,i =
[ǉ0,1, ǉ0,2,..., ǉ0,m], n is the population scale, m is the number of jobs and ǉ0,j∈ [0, π / 2].
In this step, the initial quantum chromosomes are generated randomly.

• Make the solution
3. Adopt the converting mechanism to make the solution for permutation-based
problem from the Q-bits based population.

• Evaluate the population
4. Obtain objective values by evaluating Pop0, store the best one into Best0; store the
best individual into Best_ǉ and best element sequence into Best_g. In this step, we
perform the evaluation operation based on element sequence and get the objective
values by calculating the permutative solution.

• Perform the evolution
5. Update the Popt-1 to Popt by using PSO strategy. In order to provide the search
with excellent diversity and guarantees the normalization of Q-bits, we need to make
sure that the individuals in Popt should be in the range between the lower(0) and
upper(0.5π), so if any individual is out of this range, it should be revised by using ǉt =
lower + rand × (upper − lower).
6. Adopt the converting mechanism to make the solution for permutation-based
problem from the Q-bits based population.
7. Evaluate Popt and get objective values, compare with the corresponding solution
in Bestt-1 and store the better one to Bestt. Update the Best_ǉ and Best_g.
8. Practice the local search operations on Best_g by using the Insert operator and
make the repair of the Q-bit chromosomes.

• Stopping condition check
9. If the stopping condition t > iter is met or the optimum is found, output the
optimum; else t ← t + 1 and go to step 5.

Fig. 6. The main procedure of proposed QDEA

When perform the evolution, the updating of PSO is practiced on the quantum chromosome
encoded in rotating angle and the local search is practiced on permutative element
sequence, respectively. It should be noticed that for the updating performed by the PSO, we
first need to save the Best_ǉ as ǉ_gbest along with the vt and ǉ_pbestt for each Q-bit before we
perform the updating next time.

5. Simulations and comparisons

The validation of proposed QDEA and HQDEA is conducted on the two demanding
problems of PFSP and JSP which both are the typical permutative scheduling problems.
Each experiment is conducted in two phases. The first phase is to introduce the benchmark
and measure adopted in the simulations and to experimentally obtain the operating
parameters for QDEA. The second phase is the comparison of the QDEA and HQDEA with
other established approaches reported in the literature.

www.intechopen.com

Evolutionary Algorithms

120

5.1 Simulations and comparisons on PFSP
5.1.1 Preparations for simulation

To test the performance of the proposed QDEA and HQDEA for PFSP, computational
simulation is carried out with some well-studied benchmarks. In this study, four problem
sets are selected. The first eight problems are called car1, car2 through car8 by Carlier (1978).
The second 21 problems are called rec01, rec03 through rec41 by Reeves (1995). The third
110 problems are from Taillard (1993) and the last problem sets are called DMU problems
from Demirkol, et al. (1998). Thus far these problems have been used as benchmarks for
study with different methods by many researchers.
In order to make comparisons by using different methods, we adopt the following measures
widely used in other literatures:
1. RE: the Relative Error of the average solution after we run the algorithm n times. The

BRE and ARE stand for the best and average relative percentage error to the Opt, where
Opt denotes the optimal solution value known thus far. The BRE and ARE can be
calculated as equation 13 (the S is short for solution):

,

1

1
() 100 (%)

n
best average

r

S Opt
BRE ARE

Opt n=

−⎛ ⎞
= × ×⎜ ⎟⎜ ⎟

⎝ ⎠
∑ (13)

2. APRD: the percentage relative deviation (PRD) of a best solution value Pbest found by an
algorithm from the optimal solution Popt can be calculated as:

 PRD = (Pbest − Popt) / Popt ×100% (14)

and APRD is the average PRD values for a set of instances.
3. ARPI: the relative percentage increase (PRI) is defined as: suppose the best solution

value found by an algorithm A denoted as PA, and the best solution value found by n
algorithms (include algorithm A) denoted as Pk, k = 1,2,...,n, then the PRI can be
calculated as:

 PRI = (PA − min(Pk, k = 1,2,...,n)) / min(Pk, k = 1,2,...,n) ×100% (15)

and APRI is the average PRI values for a set of instances.
Parameter selection may influence the quality of the results. For the differential evolutionary

strategy, two parameters should be set properly, one is the crossover factor CR and the other

is the weight factor F. In this study, we will make a comparison between the 25 combination

of CR∈ {0.1,0.3,0.5,0.7,0.9} and F∈ {0.1,0.3,0.5,0.7,0.9}. In order to determine the appropriate

values of parameters, a preliminary simulation is performed on 8 selected instances from the

Rec benchmark problem set. For the 25 group data, we run 20 times for each group and

calculate the average solution. We find that with the different group of parameters, the

results vary dramatically and what we want to do is to choose a group of F/CR with the

good and stable performance for all of 8 problems. The computational results indicate that

the best solution is obtained at values F = 0.1 and CR = 0.9, so these values are adopted for

all further experiments in this study.

At the same time, the different evolutionary strategy leads to different performance. For the
PFSP, we make the simulation by comparing the performance of different evolutionary
strategies proposed by Storn and Price (1999) in the form of DE/x/y/z, where x determine
the vector to be operated is randomly generated or the best one, i.e. rand/best; y means the

www.intechopen.com

Quantum-Inspired Differential Evolutionary Algorithm for Permutative Scheduling Problems

121

number of the differential variables, i.e. 1/2 and here z stands for the exp or bin crossover. In
this preliminary simulation, we want to make comparisons by using 10 evolutionary
strategies: DE1,2→DE/best/1/z; DE3,4→DE/rand/1/z; DE5,6→DE/rand−to−best/1/z;
DE7,8→DE/rand/2/z and DE9,10→ DE/best/2/z, where z has two values for crossover.
After we made the simulation, we notice that for the F/CR = 0.1/0.9, the DE7 strategy with
the bin crossover provides the best performance for different benchmark problems, so we
choose the DE7 strategy to perform the updating of the quantum chromosomes.
In the following QDEA algorithm, we set F = 0.1 and CR = 0.9, differential evolutionary
strategy by DE7 and maximum iterative time Imax = 500. Based on the preliminary
simulations, these values will give high probability to obtain better solutions. To test the
performance of the proposed QDEA and HQDEA, computational simulation is carried out
with the selected benchmark problems. The Visual C++ 6.0 is used to program the algorithm
and all the computations are conducted on a Celeron 1.59 GHZ with 512 MB memory. We
run the algorithm 20 times for each problem and use the statistical results for discussion.
Since many meta-heuristics and hybrid meta-heuristics have been adopted for solving the
PFSP in literature, we want to make some comparisons to demonstrate the superiority of our
QDEA. In this section, two types of recent and effective particle swarm optimization
algorithm will be compared with QDEA firstly. Then we make a comparison between
QDEA and quantum-inspired genetic algorithm (QGA) for both single objective and multi-
objective PFSP to show the effectiveness of the proposed encoding scheme, converting
mechanism and updating operation. And we also want to show our hybrid QDEA can
obtain better optimization results than other hybrid algorithms.

5.1.2 Comparison of QDEA with CPSO and DPSO

Particle swarm optimization has two versions: continuous PSO (CPSO) and discrete PSO

(DPSO). In this section, continuous PSO proposed by Tasgetiren, et al. (2004), discrete PSO

proposed by Liao, et al. (2007) are compared with QDEA. In the CPSO proposed by

Tasgetiren, et al., they proposed a SPV rule for solution representation and adopted the local

search and mutation operation to avoid the premature convergence; in DPSO, the evolution

is performed by defining the discrete particle and velocity trail, and the construction of a

particle sequence is proposed for the PFSP. The experiments are conducted on the DMU

problems from Demirkol, et al. (1998) (available from http://cobweb.ecn.purdue.edu/

~uzsoy2/benchmark/fcmax.txt) in accordance with these two algorithms. In these 40

benchmark instances, eight combinations with number of machines m = 15, 20 and number

of jobs n = 20, 30, 40, 50 are randomly generated and the best upper bounds for these

instances are also provided by authors. We use the QDEA to minimize the makespan of jobs

and the simulation results are given in Table 2.

In Table 2, the results are shown in the form of APRD. To be fair, the APRD of CPSO, DPSO

and QDEA are calculated within the same running time for each problem sets (Liao, et al.

2007): [1.25s, 1.55s, 3.30, 3.95s, 6.40s, 7.60s, 11.00s, 12.90s] by setting the population size Np

and number of iterations iter. From the results, we can see that DPSO is superior to CPSO for

most of problem sets both in average (Avg) and minimum (Min) APRD, and our QDEA is

much better than DPSO by comparing the APRD. Especially for Min APRD, the proposed

QDEA has overwhelming superiority than DPSO which means our algorithm can obtain

minimal makespan than DPSO. This simulation clearly demonstrates the excellent

population diversity and unique optimization performance of Q-bits based search.

www.intechopen.com

Evolutionary Algorithms

122

CPSO by Tasgetiren, et al DPSO by Liao, et al Proposed QDEA
n×m

Np×iter Avg Min Np×iter Avg Min Np×iter Avg Min

20×15 40×2,500 −6.54 −7.68 100×1,000 −6.47 −7.93 20×2,000 −7.37 −11.65

20×20 −4.93 −6.20 −4.92 −6.20 −6.25 −8.11

30×15 60×2,500 −7.22 −8.75 150×1,000 −7.37 −9.05 30×2,000 −7.96 −11.06

30×20 −5.67 −7.44 −5.79 −7.56 −6.52 −11.18

40×15 80×2,500 −7.80 −9.31 200×1,000 −8.06 −9.74 40×1,000 −8.16 −11.26

40×20 −5.60 −7.39 −5.61 −6.87 −5.43 −7.97

50×15 100×2,500 −6.47 −7.70 250×1,000 −6.71 −7.92 50×1,500 −6.68 −8.95

50×20 −7.23 −8.81 −7.18 −8.43 −7.20 −9.43

Average −6.40 −7.86 −6.44 −7.86 −6.94 −9.95

Table 2. Results of testing two PSOs and QDEA

5.1.3 Comparison of QDEA with QGA for single objective PFSP

To show the effectiveness of the coding scheme and the updating strategy proposed in this
study, we want to compare the QDEA with the quantum-inspired genetic algorithm (QGA)
developed by Wang, et al. (2005a) based on the Car and Rec benchmark problems (available
from http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/flowshop1.txt). The QGA adopts
the random key to represent the solution and the lookup table to perform the updating
which are all discussed in section 3.2. We firstly make the comparison on the single objective
of minimizing the makespan and the results are shown in Table 3.
From Table 3, we can see the QDEA is overwhelming over the QGA for all the Car and Rec
problems and even the AREs of QDEA are better than the BREs of QGA for most of
instances. Since we do not perform the local search on the permutative solutions and the
differences between QDEA and QGA are the coding scheme and the updating strategy only,
so we can conclude the coding scheme and the updating strategy proposed in this study is
more suitable for dealing with the permutation-based scheduling problems like the PFSP.
The allowed running times (in second) of QDEA are also listed in the Table 3 for reference.

5.1.4 Comparison of QDEA with QGA for multi-objective PFSP
In the real world manufacturing environment, practical problems often involve multiple
objectives that need to be considered concurrently, both from a process planning and a
scheduling perspective. To apply the proposed QDEA to multi-objective PFSP and compare
the performance with QGA (Wang, et al., 2005a), we conduct an experiment inspired from
the research made by Sridhar and Rajendran (1996). They developed a genetic algorithm for
the PFSP with triple objectives—makespan, total flow time, and total machine idle time. A
DELTA operator is used to determine whether the parents should be replaced by the
children and a single solution with equal weights for the three objectives is finally produced.
Based on equation 1 to equation 3, the total flow time Csum and total machine idle time Isum
can be obtained by calculating the Csum = ∑c(Ji, m) and Isum = { c(J1, k−1) + ∑{max{ c(Ji, k−1) −
c(Ji-1, k) , 0}}|k = 2,...,m} for i from 1 to n. Both evaluation operation and the updating
operation of QDEA and QGA should be modified for dealing with the multi-objective
problems. To establish a measure for these triple objectives, we include a modified version

www.intechopen.com

Quantum-Inspired Differential Evolutionary Algorithm for Permutative Scheduling Problems

123

QGA QDEA
P N,M Cmax*

BRE ARE BRE ARE Time

Car1 11,5 7,038 0.00 0.00 0.00 0.00 0.41

Car2 13,4 7,166 0.00 1.90 0.00 0.00 0.47

Car3 12,5 7,312 1.09 1.65 0.00 0.07 0.44

Car4 14,4 8,003 0.00 0.06 0.00 0.00 0.50

Car5 10,6 7,720 0.00 0.11 0.00 0.10 0.38

Car6 8,9 8,505 0.00 0.19 0.00 0.15 0.34

Car7 7,7 6,590 0.00 0.00 0.00 0.00 0.28

Car8 8,8 8,366 0.00 0.03 0.00 0.00 0.33

Rec01 20,5 1,247 2.81 6.79 0.00 0.47 0.87

Rec03 20,5 1,109 0.45 3.87 0.00 0.46 0.89

Rec05 20,5 1,242 2.25 3.00 0.24 0.45 0.88

Rec07 20,10 1,566 1.05 4.67 0.00 1.20 1.25

Rec09 20,10 1,537 4.03 6.40 0.65 2.70 1.23

Rec11 20,10 1,431 6.08 8.79 0.42 2.24 1.22

Rec13 20,15 1,930 5.08 7.98 1.64 3.17 1.55

Rec15 20,15 1,950 3.49 5.93 1.17 3.11 1.56

Rec17 20,15 1,902 6.51 9.10 2.35 4.20 1.55

Rec19 30,10 2,093 7.98 9.80 2.79 5.28 2.39

Rec21 30,10 2,017 6.94 10.05 2.01 4.19 2.38

Rec23 30,10 2,011 9.10 10.55 3.67 4.99 2.39

Rec25 30,15 2,513 7.16 10.06 3.18 5.10 3.13

Rec27 30,15 2,373 7.63 11.05 3.33 4.65 3.14

Rec29 30,15 2,287 12.42 14.06 2.61 6.01 3.15

Rec31 50,10 3,045 9.82 12.68 5.21 7.10 5.90

Rec33 50,10 3,114 6.20 9.54 1.10 3.48 5.81

Rec35 50,10 3,277 4.21 6.52 0.89 3.18 5.91

Rec37 75,20 4,951 15.54 17.49 8.15 9.10 7.80

Rec39 75,20 5,087 13.50 15.49 5.90 7.43 7.79

Rec41 75,20 4,960 16.92 18.84 8.10 9.02 7.79

AVE 5.18 7.12 1.84 3.03 2.47

Table 3. The comparisons between QDEA and QGA for minimizing makespan

of evaluation operation by assigning suitable weights to the three objectives in order to

obtain a single solution. In this study, the weights are determined in accordance with

Franminan, et al. (2002) to balance the effect of magnitude and the single solution is

calculated as 1/3×Cmax×n/2+1/3×Csum+1/3×Imax×n/10. When to update the quantum

www.intechopen.com

Evolutionary Algorithms

124

chromosome, the DELTA (Sridhar and Rajendran 1996) operator is used to make the

comparison between the current solution (denoted as CSt) and the previous best solution

(denoted as PSt-1) for t-th iteration of evolution. By evaluating CSt and PSt-1, the values of

two makespans of Ct,max and Ct-1,max, total flow times of Ct,sum and Ct-1,sum, and total idle times

of It,sum and It-1,sum can be obtained and the DELTA is defined as follows:

DELTA = w1(Ct,max − Ct-1,max) / min(Ct,max, Ct-1,max) + w2(Ct,sum − Ct-1,sum) / min(Ct,sum,
Ct-1,sum) + w3(It,sum − It-1,sum) / min(It,sum, It-1,sum) (16)

where w1 = w2 = w3 = 1/3. So if DELTA>0, it indicates CSt is better than PSt-1 and we update
the corresponding Q-bits; otherwise, we keep PSt-1 as the best solution for this iteration.
We program both of the QDEA and QGA by using above evaluation and updating strategy.
To have a fair comparison, we run these two algorithms in the same computer by using the
same soft of Visual C++ 6.0 and within the same running time. The 90 Taillard's problems
(Taillard, 1993) are adopted to perform the simulation and the PRI shown in equation 15 is
used for the performance measure. The comparison results of the proposed QDEA and QGA
along with the computation time for each problem set are summarized in Table 4.

QDEA QGA
n×m

Cmax Csum Isum Cmax Csum Isum

computation
time (s)

20×5 0.00 0.00 0.00 1.39 1.56 3.12 0.81

20×10 0.00 0.00 0.00 1.32 1.73 2.45 1.25

20×20 0.00 0.41 0.00 0.87 0.00 0.56 1.80

50×5 0.00 0.00 0.00 3.14 1.96 4.01 3.25

50×10 0.00 0.00 0.00 2.56 1.21 2.16 4.85

50×20 0.00 0.23 0.32 1.78 0.00 0.00 5.70

100×5 0.00 0.00 0.00 2.16 2.13 5.34 6.16

100×10 0.00 0.00 0.00 3.18 1.56 4.24 7.79

100×20 0.00 0.00 0.00 3.23 2.15 6.12 9.18

Average 0.00 0.07 0.04 2.18 1.37 3.11 4.53

Table 4. Results of testing two algorithms for multi-objective PFSP

We give the average value of PRI (APRI) for the three objectives. From the Table 4, it can be

observed that for the multi-objective FSP, the proposed QDEA performes as well as the

single one. Compared to the QGA, the QDEA can obtain the best value in general. Although

for the criterion of total flowtime and total idle time, the QDEA is slightly inferior to QGA

for several problem sets, the QDEA performs best among most of problems for these two

criterions and all of problems for minimizing the makespan, which also demonstrates that

the proposed QDEA has the prospects in the real world production scheduling applications.

5.1.5 Comparison of HQDEA with HGA, HQGA and HDE

To show the effectiveness of proposed hybrid QDEA embedded with the local search, we
carry on comparisons with some popular hybrid algorithms. In this section, we make the
comparisons between HQDEA and the hybrid genetic algorithm (HGA) proposed by Zheng

www.intechopen.com

Quantum-Inspired Differential Evolutionary Algorithm for Permutative Scheduling Problems

125

& Wang (2003), the hybrid quantum-inspired evolutionary algorithm (HQGA) proposed by
Wang, et al. (2005b) and the hybrid differential evolution (HDE) algorithm proposed by
Qian, et al. (2008) based on Car and Rec problems. HGA uses multi-crossover operators

HGA HQGAa HDE HQDEA
P N,M Cmax*

BRE ARE BRE ARE BRE ARE BRE ARE

Car1 11,5 7,038 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Car2 13,4 7,166 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Car3 12,5 7,312 0.000 1.504 0.000 0.000 0.000 0.000 0.000 0.000

Car4 14,4 8,003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Car5 10,6 7,720 0.000 0.938 0.000 0.000 0.000 0.000 0.000 0.000

Car6 8,9 8,505 0.000 2.132 0.000 0.000 0.000 0.000 0.000 0.000

Car7 7,7 6,590 0.000 1.003 0.000 0.000 0.000 0.000 0.000 0.000

Car8 8,8 8,366 0.000 1.281 0.000 0.000 0.000 0.000 0.000 0.000

Rec01 20,5 1,247 0.160 0.192 0.000 0.140 0.000 0.144 0.000 0.112

Rec03 20,5 1,109 0.000 0.271 0.000 0.170 0.000 0.000 0.000 0.009

Rec05 20,5 1,242 0.242 0.628 0.240 0.340 0.242 0.242 0.242 0.242

Rec07 20,1 1,566 0.115 1.149 0.000 1.020 0.000 0.230 0.000 0.000

Rec09 20,1 1,537 0.605 1.627 0.000 0.640 0.000 0.000 0.000 0.000

Rec11 20,1 1,431 0.000 1.532 0.000 0.670 0.000 0.000 0.000 0.000

Rec13 20,1 1,930 0.415 1.974 0.160 1.070 0.104 0.301 0.104 0.225

Rec15 20,1 1,950 0.615 2.385 0.050 0.970 0.000 0.308 0.000 0.158

Rec17 20,1 1,902 1.840 2.482 0.630 1.680 0.000 1.178 0.000 0.126

Rec19 30,1 2,093 1.113 2.676 0.290 1.430 0.287 0.559 0.287 0.435

Rec21 30,1 2,017 1.522 1.636 1.440 1.630 0.198 1.413 0.149 1.041

Rec23 30,1 2,011 0.497 2.188 0.500 1.200 0.448 0.482 0.348 0.597

Rec25 30,1 2,513 1.922 2.706 0.770 1.870 0.478 1.492 0.119 0.995

Rec27 301, 2,373 1.551 2.318 0.970 1.830 0.843 1.285 0.253 0.954

Rec29 30,1 2,287 2.610 3.629 0.350 1.970 0.306 0.791 0.000 0.824

Rec31 50,1 3,045 1.156 2.759 1.050 2.500 0.296 0.824 0.263 0.565

Rec33 50,1 3,114 0.450 1.188 0.830 0.910 0.000 0.434 0.000 0.297

Rec35 50,1 3,277 0.000 0.131 0.000 0.150 0.000 0.000 0.000 0.000

Rec37 75,2 4,951 4.312 5.096 2.520 4.330 1.818 2.727 1.717 2.771

Rec39 75,2 5,087 2.597 3.205 1.630 2.710 0.983 1.541 0.845 1.485

Rec41 75,2 4,960 4.133 5.599 3.130 4.150 1.673 2.649 1.190 1.965

AVE 0.892 1.801 0.502 1.082 0.265 0.572 0.175 0.428

Table 5. Results of testing three hybrid algorithms and HQDEA

a In HQGA, the results are accurate to the second decimal place.

www.intechopen.com

Evolutionary Algorithms

126

acting on the divided subpopulations and replaces the classical mutation by SA; in HQGA,
the Q-bit representation is converted to random key representation which genetic operation
are practiced on, and a permutation-based genetic algorithm is also applied after the
solutions are constructed; as for the HDE, it not only applies the parallel evolution
mechanism of DE to perform effective exploration, but also adopts problem-dependent local
search to perform exploitation. The statistic performances of the four algorithms for the
criterion of minimizing makespan are given in Table 5.
From the Table 5, we can see that for the Car problems with small scale, the HGA, HQGA,
HDE and HQDEA all can find the optimum; for the Rec problems with relatively large scale,
HQDEA also provide us with better performance which means the BREs and AREs are
much smaller than that of the HGA and better than or equal to HQGA and HDE for all the
problems. Also, we can notice that for the problem Rec01, Rec03, Rec07, Rec09, Rec11, Rec15,
Rec17, Rec29, Rec33 and Rec35, the HQDEA has found the best solution known up to now.
So the proposed HQDEA is a novel and effective approach for the PFSP.

5.2 Simulations and comparisons on JSP
5.2.1 Preparations for simulation

To test the performance of the proposed HQDEA for JSP, computational simulation is
carried out with some well-studied benchmarks. In this study, 43 benchmarks (available
from http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html) are selected. The
first 3 problems are called FT06, FT10 and FT20. The other 40 problems are called LA01,
LA02 through LA40.
In order to evaluate the performance of different algorithms for JSP, the following four
measures will be introduced:
1. Minimum makespan (MS): it is used for evaluating quality of solution. For the JSP, the

minimum makespan a certain algorithm can achieve is usually adopted to prove the
search ability of this algorithm.

2. Average convergence generation (CG): at each running of HQDEA, the optimal or the
sub-optimal solution will be found after a number of generations. For several
simulation replications, the number may be different, so this metric also reflects the
average convergence speed of an algorithm.

3. Average compulation time (CT): the average computation time (in second) for an
algorithm to find the optimal (or sub-optimal). Since different approaches run in
different machines, the comparisons based on the CPU times might not seem to be
meaningful. While, when make the comparison on the same PC, this metric can be used
to show the effectiveness of an algorithm.

4. Relative error (RE): same to the definition of equation 13 in section 5.1.1
The parameters are set same to the preliminary simulation results given in section 5.1.1.

5.2.2 Comparison of QDEA with QGA
Firstly, we want to compare the proposed QDEA (without the local search operation) with
the QGA developed by Wang, et al. (2005a) based on the three FT benchmark problems to
show the effectiveness of the coding scheme and the updating strategy for JSP. We program
both of these two algorithms with the same decoding procedure proposed in this study and
run them on the same PC, we set the population size to be the number of job for each
problem and the iteration time Imax to be 300 for both two algorithms, each instance runs 20
times and the results are shown in Table 6.

www.intechopen.com

Quantum-Inspired Differential Evolutionary Algorithm for Permutative Scheduling Problems

127

FT06 FT10 FT20

QDEA QGA QDEA QGA QDEA QGA

CG 187 204 192 178 217 254

MS 55 55 980 1125 1276 1465

RE 1.455 2.909 13.694 23.226 18.318 29.528

CT 0.480 1.208 4.518 19.888 4.478 19.795

Table 6. The results of QDEA and QGA on FT problems

From Table 6, we can see the QDEA is overwhelming over the QGA for all the three

problems, especially for the FT10 and FT20, QDEA obtained much better makespan within

about only 1/4 of the running time of QGA. Since we do not perform the local search on the

permutative solutions and the differences between QDEA and QGA are the coding scheme

and updating strategy only, so we can conclude that the coding scheme and updating

strategy proposed in this study is also suitable for dealing with the JSP.

5.2.3 Comparison of HQDEA with HQGA

In order to check the effectiveness of proposed HQDEA with local search for JSP, we run the

algorithm by combining the QDEA and local search and make the comparison with the

HQGA proposed by Wang, et al. (2005b). The results are shown in Table 7. From Table 7, we

notice the HQDEA can find all the optimums for three FT problems within 200 generations,

while the HQGA can not achieve the optimum of FT10 and FT20 even spend more time and

run more generations. The comparisons of relative error also shows the effectiveness of the

propose HQDEA.

FT06 FT10 FT20

HQDEA HQGA HQDEA HQGA HQDEA HQGA

CG 1.1 9 132 221 148 276

MS 55 55 930 937 1165 1178

RE 0 0 1.785 4.430 0.961 3.867

CT 0.220 0.356 140.344 193.061 170.993 190.728

Table 7. The results of HQDEA and HQGA on FT problems

5.2.4 Comparisons between HQDEA with other approaches

To further show the effectiveness of HQDEA, we carry on some comparisons with other

popular algorithms include the hybrid genetic algorithm (HGA) proposed by Goncalves, et

al. (2005), memetic algorithm (MA) by Hasan, et al. (2009), tabu search (TSSB) by Pezzella &

Merelli (2000), hybrid particle swarm optimization (HPSO) by Xia & Wu (2006) based on 40

LA benchmarks. We run the HQDEA using the same settings in section 5.2.2, and the results

are shown in Table 8. In Table 8, the 'BKS' refers to the best solution found by now for each

LA problems, 'average gap' is calculated as: (MS−BKS)/BKS×100% and 'No. of BKS

obtained' means how many BKS can be found by an algorithm.

www.intechopen.com

Evolutionary Algorithms

128

HQDEA
P N,M BKS HGA MA TSSB HPSO

MS RE CG

LA01 10,5 666 666 666 666 666 666 0.000 2
LA02 10,5 655 655 655 655 655 655 0.217 15

LA03 10,5 597 597 597 597 597 597 0.271 21

LA04 10,5 590 590 590 590 590 590 0.119 10
LA05 10,5 593 593 593 593 593 593 0.000 1

LA06 15,5 926 926 926 926 926 926 0.000 1
LA07 15,5 890 890 890 890 890 890 0.000 1

LA08 15,5 863 863 863 863 863 863 0.000 1
LA09 15,5 951 951 951 951 951 951 0.000 1

LA10 15,5 958 958 958 958 958 958 0.000 1

LA11 20,5 1222 1222 1222 1222 1222 1222 0.000 1
LA12 20,5 1039 1039 1039 1039 1039 1039 0.000 1

LA13 20,5 1150 1150 1150 1150 1150 1150 0.000 1
LA14 20,5 1292 1292 1292 1292 1292 1292 0.000 1

LA15 20,5 1207 1207 1207 1207 1207 1207 0.000 1

LA16 10,10 945 945 945 945 945 945 0.836 88
LA17 10,10 784 784 784 784 784 784 0.045 51

LA18 10,10 848 848 848 848 848 848 0.259 85
LA19 10,10 842 842 842 842 842 842 0.481 104

LA20 10,10 902 907 907 902 902 902 0.527 117
LA21 15,10 1046 1046 1079 1046 1047 1046 0.738 112

LA22 15,10 927 935 960 927 927 927 0.912 121

LA23 15,10 1032 1032 1032 1032 1032 1032 0.000 3
LA24 15,10 935 953 959 938 938 935 0.892 212

LA25 15,10 977 986 991 979 977 977 1.111 241
LA26 20,10 1218 1218 1218 1218 1218 1218 0.000 6

LA27 20,10 1235 1256 1286 1235 1236 1235 1.109 243

LA28 20,10 1216 1232 1286 1216 1216 1216 0.354 113
LA29 20,10 1157 1196 1221 1168 1164 1161 1.256 221

LA30 20,10 1355 1355 1355 1355 1355 1355 0.000 2
LA31 30,10 1784 1784 1784 1784 1784 1784 0.000 1

LA32 30,10 1850 1850 1850 1850 1850 1850 0.000 1
LA33 30,10 1719 1719 1719 1719 1719 1719 0.000 1

LA34 30,10 1721 1721 1721 1721 1721 1721 0.000 1

LA35 30,10 1888 1888 1888 1888 1888 1888 0.000 1
LA36 15,15 1268 1278 1307 1268 1269 1268 1.086 212

LA37 15,15 1397 1408 1442 1411 1401 1401 1.611 265
LA38 15,15 1196 1219 1266 1201 1208 1201 1.896 216

LA39 15,15 1233 1246 1252 1240 1240 1238 1.123 234

LA40 15,15 1222 1241 1252 1233 1226 1224 1.011 247
Average gap (%) 0.4190 1.0708 0.1091 0.0842 0.0404

No. of BKS obtained 28 27 33 31 35

Table 8. The comparisons between HQDEA and other algorithms

www.intechopen.com

Quantum-Inspired Differential Evolutionary Algorithm for Permutative Scheduling Problems

129

From Table 8, we can see for the LA01 to LA20, these 5 algorithms all can find optimum,
especially for most problems, the HQDEA just needs to run the algorithm once for searching
the optimization space. For the difficult problems with the middle and large scale, some
problems remain to be unsolved in the provided evolution iteration. While, the HQDEA has
obtained the 35 optimum out of 40 problems and achieved the minimum average gap of
0.0404 among these 5 algorithms. All these demonstrate that the HQDEA we proposed is a
novel, effective and robust approach for JSP. The relative errorｓ for HQDEA are also list in

Table 8 for reference.

6. Conclusions and future research

In this study, we proposed an improved quantum-inspired evolutionary algorithm called

quantum-inspired differential evolutionary algorithm (QDEA) for solving the flow shop

scheduling and job shop scheduling problems with permutation-based solutions. Based on

the QEA, we proposed a simple converting mechanism to determine permutative sequence

based on quantum chromosome encoded in the form of rotating angle. Then we studied the

applications of the QDEA by adopting the differential evolution strategy to perform the

updating of quantum gate and local search to perform thorough exploitation in the

promising permutative solutions. We adopt this novel QDEA to deal with the single

objective and the multi-objective permutation FSP and to minimize the makespan of JSP.

Compared to other algorithms, the simulation results demonstrated the effectiveness of our

algorithm. For the PFSP, the QDEA performed better than two PSO based algorithms

(Tasgetiren, et al., 2004; Liao, et al., 2007) and the QGA (Wang, et al., 2005a) for both of single

objective and multi-objective problem; the proposed hybrid QDEA also provides better

results than the hybrid algorithms include HGA (Zheng & Wang, 2003), HQGA (Wang, et

al., 2005b) and HDE (Qian, et al., 2008); for the JSP, we also obtained satisfactory results by

comparing QDEA with QGA and HQDEA with other state-of-the-art approaches

(Goncalves, et al., 2005, Hasan, et al., 2009, Pezzella & Merelli, 2000, Xia & Wu, 2006). All

these show the excellent diversity of the Q-bits based search and the effectiveness of the

local search.

This study has made a step towards establishing an efficient heuristic for the permutation-

based scheduling problems based on the quantum-inspired evolutionary algorithm. In this

study, we propose a common algorithm framework for permutation-based scheduling

problems, and the QDEA is in fact one implementation to this algorithm framework. As for

the future research work, we can extend this study in the following ways. For the part 2 of

algorithm framework, the parameter settings for the differential evolution strategy are

worth examining in detail firstly. Then, developing new hybrid strategy by combining Q-bit

based search and other evolution based methods to improve the performance also makes a

great sense. For the part 4 of algorithm framework, we can use other strategies like variable

neighbourhood search (VNS) to perform the neighbourhood based search and check the

performance. At last, for the application of this research, the proposed QDEA approach can

be extended to deal with flow and job shop scheduling problems with different constraints

and performance criteria; also we can apply this new method to other permutation-based

shop scheduling problems such as open shop scheduling problem (OSP) and make

comparisons with other algorithms.

www.intechopen.com

Evolutionary Algorithms

130

7. References

Bean J C. (1994) Genetics and random keys for sequencing and optimization. ORSA Journal
of computing, 6(2), 154-160.

Bin Qian, Ling Wang, Rong Hu, Wan-Liang Wang, De-Xian Huang and Xiong Wang. (2008).
A hybrid differential evolution method for permutation flow-shop scheduling. The
International Journal of Advanced Manufacturing Technology, 38(5-6), 757-777.

Carlier J (1978) Ordonnancements a Contraintes Disjonctives. Recherche Operationelle
/Operations Research, 12(4), 333-350.

Ching-Jong Liao,Chao-Tang Tseng and Pin Luarn. 2007. A discrete version of particle
swarm optimization for flowshop scheduling problems. Computers & Operations
Research, 34(10), 3099-3111.

D. Zheng and L.Wang (2003). An Effective Hybrid Heuristic for Flow Shop Scheduling. The
International Journal of Advanced Manufacturing Technology. 21(1), 38-44.

Demirkol E, Mehta S, Uzsoy R (1998) Benchmarks for shop scheduling problems. Eur J Oper
Res 109:137–141.

Doyen A, Engin O, Ozkan C (2003). A new artificial immune system approach to solve
permutation flow shop scheduling problems. Tukish Symposium on Artificial Immune
System and Neural Networks TAINN’03.

Framinan JM, Leisten R, Ruiz-Usano R. (2002) Efficient heuristics for flowshop sequencing
with the objectives of makespan and flowtime minimisation. European Journal of
Operational Research, 141, 559–69.

Garey M, Johnson D and Sethi R (1976) The complexity of flowshop and jobshop scheduling.
Mathematics of Operations Research, 24(1), 117-129.

Goncalves, J. F., Mendes, J. J. M., and Resende, M. G. C. (2005). A hybrid genetic algorithm
for the job shop scheduling problem. European Journal of Operational Research, 167(1),
77–95.

Han K-H. (2000) Genetic Quantum Algorithm and its Application to Combinatorial
Optimization Problem. In: IEEE Proc. Of the 2000 Congress on Evolutionary
Computation，San Diego，USA IEEE Press, July 2000.

Han K-H，Kim J-H. Quantum-inspired Evolutionary Algorithm for a class of Combinatorial

Optimization. IEEE Trans on Evolutionary Computation, 2002.
Han K-H，Kim J-H. Quantum-inspired Evolutionary Algorithms with a New Termination

Criterion H,Gate and Two-Phase Scheme. IEEE Trans on Evolutionary Computation
2004.

Hisao Ishibuchi, Shinta Misaki and Hideo Tanaka (1995) Modified simulated annealing
algorithms for the flow shop sequencing problem. European Journal of Operational
Research. 81(2), 388-398.

Jinwei Gu, Xingsheng Gu, Bin Jiao. (2008). A Quantum Genetic Based Scheduling Algorithm
for stochastic flow shop scheduling problem with random breakdown. Proceedings
of the 17th World Congress. The International Federation of Automatic Control Seoul,
Korea, July 6-11, 63-68.

Jun Zhang, Xiaomin Hu, X. Tan, J.H. Zhong and Q. Huang. (2006). Implementation of an
Ant Colony Optimization technique for job shop scheduling problem. Transactions
of the Institute of Measurement and Control, 28(1), 93-108.

Kuo-Ching Ying and Ching-Jong Liao (2004) An ant colony system for permutation flow-
shop sequencing. Computers & Operations Research. 31(5), 791-801.

www.intechopen.com

Quantum-Inspired Differential Evolutionary Algorithm for Permutative Scheduling Problems

131

Nowicki E, Smutnicki C (1996) A fast tabu search algorithm for the permutation flow-shop
problem. Eur J Oper Res 91,160–175.

Pezzella, F., & Merelli, E. (2000). A tabu search method guided by shifting bottleneck for the
job shop scheduling problem. European Journal of Operational Research, 120(2), 297–
310.

QK Pan, MF Tasgetiren, YC Liang (2008) A discrete differential evolution algorithm for the
permutation flowshop scheduling problem. Computers & Industrial Engineering,
55(4), 795-816.

Qun Niu, Taijin Zhou, Shiwei Ma. (2009). A Quantum-Inspired Immune Algorithm for
Hybrid Flow Shop with Makespan Criterion. Journal of Universal Computer Science,
15(4), 765-785.

Reeves, C R (1995) A genetic Algorithm for Flowshop Sequencing. Computers and Operations
Research, 22(1), 5-13.

Reeves CR, Yamada T (1998) Genetic algorithms, path relinking and the flowshop
sequencing problem. Evol Comput 6, 45–60.

Rubén Ruiz, and Thomas Stützle (2007) A simple and effective iterated greedy algorithm for
the permutation flowshop scheduling problem. European Journal of Operational
Research. 177(3), 2033-2049.

S. M. Kamrul Hasan, Ruhul Sarker, Daryl Essam and David Cornforth. (2009). Memetic
Algorithms for Solving Job-Shop Scheduling Problems. Memetic Computing, 1(1), 69-
83.

Schiavinotto T, Stützle T. (2007). A review of metrics on permutations for search landscape
analysis. Computers Operations & Research, 34(10), 3143–53.

Sridhar J, Rajendran C. (1996). Scheduling in flowshop and cellular manufacturing systems
with multiple objectives—a genetic algorithmic approach. Production Planning and
Control, 7, 374–82.

Storn R, Price K (1997) Differential evolution—a simple evolution strategy for fast
optimization. Dr. Dobb’s Journal, 78, 18–24.

Storn R, Price K. (1999). Differential Evolution - A simple and efficient adaptive scheme for
global optimization over continuous spaces. Technical Report, TR-95-012, ICSI.

Stützle, T (1998) Applying iterated local search to the permutation flow shop problem.
Technical report, AIDA-98-04, FG Intellektik, TU Darmstadt.

Taillard, E (1993) Benchmarks for basic scheduling problems. European journal of operational
research, 64(2), 278-285.

Tasgetiren MF, Liang YC, Sevkli M, Gencyilmaz G. (2004) Particle swarm optimization
algorithm for makespan and maximum lateness minimization in permutation
flowshop sequencing problem. In: Proceedings of the fourth international symposium on
intelligent manufacturing systems, urkey: Sakarya; 431–41.

Xiao-dong Xu & Cong-xin Li. (2007). Research on immune genetic algorithm for solving the
job-shop scheduling problem. The International Journal of Advanced Manufacturing
Technology. 34, 783–789.

Wang Ling, Wu Hao, and Zheng Da-Zhong (2005a) A quantum-inspired genetic algorithm
for scheduling problems. Lecture Notes in Computer Science, v 3612, n PART III,
Advances in Natural Computation: First International Conference, ICNC 2005.
Proceedings, 417-423.

www.intechopen.com

Evolutionary Algorithms

132

Wang L, Wu H, Tang F and Zheng DZ (2005b) A hybrid quantum-inspired genetic
algorithm for flow shop scheduling. Lecture Notes in Computer Science, 3645, 636-644.

Wei-jun Xia, Zhi-ming Wu. (2006). A hybrid particle swarm optimization approach for the
job-shop scheduling problem. The International Journal of Advanced Manufacturing
Technology. 29, 360–366.

www.intechopen.com

Evolutionary Algorithms

Edited by Prof. Eisuke Kita

ISBN 978-953-307-171-8

Hard cover, 584 pages

Publisher InTech

Published online 26, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Evolutionary algorithms are successively applied to wide optimization problems in the engineering, marketing,

operations research, and social science, such as include scheduling, genetics, material selection, structural

design and so on. Apart from mathematical optimization problems, evolutionary algorithms have also been

used as an experimental framework within biological evolution and natural selection in the field of artificial life.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Tianmin Zheng and Mitsuo Yamashiro (2011). Quantum-Inspired Differential Evolutionary Algorithm for

Permutative Scheduling Problems, Evolutionary Algorithms, Prof. Eisuke Kita (Ed.), ISBN: 978-953-307-171-8,

InTech, Available from: http://www.intechopen.com/books/evolutionary-algorithms/quantum-inspired-

differential-evolutionary-algorithm-for-permutative-scheduling-problems

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

