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1. Introduction

Many systems in the real world are more accurately described by nonlinear models. Since
the original work of Kalman (Kalman, 1960; Kalman & Busy, 1961), which introduces the
Kalman filter for linear models, extensive research has been going on state estimation
of nonlinear models; but there do not yet exist any optimum estimation approaches for
all nonlinear models, except for certain classes of nonlinear models; on the other hand,
different suboptimum nonlinear estimation approaches have been proposed in the literature
(Daum, 2005). These suboptimum approaches produce estimates by using some sorts of
approximations for nonlinear models. The performances and implementation complexities
of these suboptimum approaches surely depend upon the types of approximations which
are used for nonlinear models. Model approximation errors are an important parameter
which affects the performances of suboptimum estimation approaches. The performance of a
nonlinear suboptimum estimation approach is better than the other estimation approaches for
specific models considered, that is, the performance of a suboptimum estimation approach is
model-dependent.
The most commonly used recursive nonlinear estimation approaches are the extended
Kalman filter (EKF) and particle filters. The EKF linearizes nonlinear models by Taylor
series expansion (Sage & Melsa, 1971) and the unscented Kalman filter (UKF) approximates
a posteriori densities by a set of weighted and deterministically chosen points (Julier, 2004).
Particle filters approximates a posterior densities by a large set of weighted and randomly
selected points (called particles) in the state space (Arulampalam et al., 2002; Doucet et al.,
2001; Ristic et al., 2004). In the nonlinear estimation approaches proposed in (Demirbaş,
1982; 1984; Demirbaş & Leondes, 1985; 1986; Demirbaş, 1988; 1989; 1990; 2007; 2010): the
disturbance noise and initial state are first approximated by a discrete noise and a discrete
initial state whose distribution functions the best approximate the distribution functions of the
disturbance noise and initial state, states are quantized, and then multiple hypothesis testing
is used for state estimation; whereas Grid-based approaches approximate a posteriori densities
by discrete densities, which are determined by predefined gates (cells) in the predefined state
space; if the state space is not finite in extent, then the state space necessitates some truncation
of the state space; and grid-based estimation approaches assume the availability of the state
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transition density p(x(k)|x(k − 1)), which may not easily be calculated for state models with
nonlinear disturbance noise (Arulampalam et al., 2002; Ristic et al., 2004). The Demirbaş
estimation approaches are more general than grid-based approaches since 1) the state space
need not to be truncated, 2) the state transition density is not needed, 3) state models can be
any nonlinear functions of the disturbance noise.
This chapter presents an online recursive nonlinear state filtering and prediction scheme for
nonlinear dynamic systems. This scheme is recently proposed in (Demirbaş, 2010) and is
referred to as the DF throughout this chapter. The DF is very suitable for state estimation of
nonlinear dynamic systems under either missing observations or constraints imposed on state
estimates. There exist many nonlinear dynamic systems for which the DF outperforms the
extended Kalman filter (EKF), sampling importance resampling (SIR) particle filter (which is
sometimes called the bootstrap filter), and auxiliary sampling importance resampling (ASIR)
particle filter. Section 2 states the estimation problem. Section 3 first discusses discrete noises
which approximate the disturbance noise and initial state, and then presents approximate
state and observation models. Section 4 discusses optimum state estimation of approximate
dynamic models. Section 5 presents the DF. Section 6 yields simulation results of two
examples for which the DF outperforms the EKF, SIR, and ASIR particle filters. Section 7
concludes the chapter.

2. Problem statement

This section defines state estimation problem for nonlinear discrete dynamic systems. These
dynamic systems are described by

State Model

x(k + 1) = f (k, x(k), w(k)) (1)

Observation Model

z(k) = g(k, x(k), v(k)), (2)

where k stands for the discrete time index; f : RxR
mxR

n → R
m is the state transition function;

R
m is the m-dimensional Euclidean space; w(k) ∈ R

n is the disturbance noise vector at time
k; x(k) ∈ R

m is the state vector at time k; g : RxR
mxR

p → R
r is the observation function;

v(k) ∈ R
p is the observation noise vector at time k; z(k) ∈ R

r is the observation vector at time
k; x(0), w(k), and v(k) are all assumed to be independent with known distribution functions.
Moreover, it is assumed that there exist some constraints imposed on state estimates. The DF
recursively yields a predicted value x̂(k|k− 1) of the state x(k) given the observation sequence

from time one to time k − 1, that is, Zk−1 ∆
= {z(1), z(2), . . . , z(k − 1)}; and a filtered value

x̂(k|k) of the state x(k) given the observation sequence from time one to time k, that is, Zk.
Estimation is accomplished by first approximating the disturbance noise and initial state with
discrete random noises, quantizing the state, that is, representing the state model with a time
varying state machine, and an online suboptimum implementation of multiple hypothesis
testing.

3. Approximation

This section first discusses an approximate discrete random vector which approximates a
random vector, and then presents approximate models of nonlinear dynamic systems.

4 Discrete Time Systems
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3.1 Approximate discrete random noise

In this subsection: an approximate discrete random vector with n possible values of a
random vector is defined; approximate discrete random vectors are used to approximate
the disturbance noise and initial state throughout the chapter; moreover, a set of equations
which must be satisfied by an approximate discrete random variable with n possible values
of an absolutely continuous random variable is given (Demirbaş, 1982; 1984; 2010); finally, the
approximate discrete random variables of a Gaussian random variable are tabulated.
Let w be an m-dimensional random vector. An approximate discrete random vector with n
possible values of w, denoted by wd, is defined as an m-dimensional discrete random vector
with n possible values whose distribution function the best approximates the distribution
function of w over the distribution functions of all m-dimensional discrete random vectors
with n possible values, that is

wd = min
yǫD

−1{
∫

Rn
[Fy(a)− Fw(a)]2da} (3)

where D is the set of all m-dimensional discrete random vectors with n possible values, Fy(a)
is the distribution function of the discrete random vector y, Fw(a) is the distribution function
of the random vector w, and R

m is the m-dimensional Euclidean space. An approximate
discrete random vector wd is, in general, numerically, offline-calculated, stored and then used
for estimation. The possible values of wd are denoted by wd1, wd2, ...., and wdn ; and the
occurrence probability of the possible value wdi is denoted by Pwdi

, that is

Pwdi

∆
= Prob{wd = wdi}. (4)

where Prob{wd(0) = wdi} is the occurrence probability of wdi.
Let us now consider the case that w is an absolutely continuous random variable. Then, wd is
an approximate discrete random variable with n possible values whose distribution function
the best approximates the distribution function Fw(a) of w over the distribution functions of
all discrete random variables with n possible values, that is

wd = min
yǫD

−1{J(Fy(a))}

in which the distribution error function (the objective function) J(Fy(a)) is defined by

J(Fy(a))
∆
=

∫

R

[Fy(a)− Fw(a)]2da

where D is the set of all discrete random variables with n possible values, Fy(a) is the
distribution function of the discrete random variable y, Fw(a) is the distribution function of the
absolutely continuous random variable w, and R is the real line. Let the distribution function
Fy(a) of a discrete random variable y be given by

Fy(a)
∆
=

⎧

⎨

⎩

0 if a < y1

Fyi if yi ≤ a < yi+1, i = 1, 2, . . . , n − 1
1 if a ≥ yn.

Then the distribution error function J(Fy(a)) can be written as

J(Fy(a)) =
∫ y1

−∞
F2

w(a)da +
n−1

∑
i=1

∫ yi+1

yi

[Fyi − Fw(a)]2da +
∫ ∞

yn

[1 − Fw(a)]2da.
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Let the distribution function Fwd
(a) of an approximate discrete random variable wd be

Fwd
(a)

∆
=

⎧

⎨

⎩

0 if a < wd1
Fwdi

if wdi ≤ a < wdi+1, i = 1, 2, . . . , n − 1
1 if a ≥ wdn.

It can readily be shown that the distribution function Fwd
(a) of the approximate discrete

random variable wd must satisfy the set of equations given by

Fwd1
=2Fw(wd1);

Fwdi
+ Fwdi+1

=2Fw(wdi+1), i = 1, 2, . . . , n − 2; (5)

1 + Fwdn−1
=2Fw(wdn);

Fwdi
[wdi+1 − wdi]=

∫ wdi+1

wdi

Fw(a)da, i = 1, 2, . . . , n − 1.

The values wd1, wd2, ..., wdn, Fwd1
, Fwd2

, ...,Fwdn
satisfying the set of Eqs. (5) determine the

distribution function of wd. These values can be, in general, obtained by numerically solving
Eqs. (5). Then the possible values of the approximate discrete random variable wd become
wd1, wd2, ..., and wdn ; and the occurrence probabilities of these possible values are obtained
by

Pwdi
=

⎧

⎨

⎩

Fwd1
if i = 1

Fwdi
− Fwdi−1

if i = 2, 3, . . . , n − 1
1 − Fwdn

if i = n.

where Pwdi
= Prob{wd = wdi}, which is the occurrence probability of wdi.

Let y be a Gaussian random variable with zero mean and unit variance. An approximate
discrete random variable yd with n possible values was numerically calculated for different
n’s by using the set of Eqs. (5). The possible values yd1, yd2, ..., ydn of yd and the
occurrence probabilities Pyd1

, Pyd2
, ..., Pydn

of these possible values are given in Table 1, where

Pydi

∆
= Prob{yd = ydi}. As an example, the possible values of an approximate discrete

random variable with 3 possible values of a Gaussian random variable with zero mean and
unit variance are -1.005, 0.0, and 1.005; and the occurrence probabilities of these possible
values are 0.315, 0.370, and 0.315, respectively. Let w be a Gaussian random variable with
mean E{w} and variance σ

2. This random variable can be expressed as w = yσ + E{w}.
Hence, the possible values of an approximate discrete random variable of w are given by
wdi = ydiσ + E{w}, where i = 1, 2, 3, ..., n; and the occurrence probability of the possible value
wdi is the same as the occurrence probability of ydi, which is given in Table 1.

3.2 Approximate models

For state estimation, the state and observation models of Eqs. (1)and (2) are approximated by
the time varying finite state model and approximate observation model which are given by

Finite State Model

xq(k + 1) = Q( f (k, xq(k), wd(k))) (6)

Approximate Observation Model

z(k) = g(k, xq(k), v(k)), (7)

6 Discrete Time Systems
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n yd1 yd2 yd3 yd4 yd5 yd6 yd7 yd8 yd9 yd10

Pyd1
Pyd2

Pyd3
Pyd4

Pyd5
Pyd6

Pyd7
Pyd8

Pyd9
Pyd10

1 0.000
1.000

2 -0.675 0.675
0.500 0.500

3 -1.005 0.0 1.005
0.315 0.370 0.315

4 -1.218 -0.355 0.355 1.218
0.223 0.277 0.277 0.223

5 -1.377 -0.592 0.0 0.592 1.377
0.169 0.216 0.230 0.216 0.169

6 -1.499 -0.768 -0.242 0.242 0.768 1.499
0.134 0.175 0.191 0.191 0.175 0.134

7 -1.603 -0.908 -0.424 0.0 0.424 0.908 1.603
0.110 0.145 0.162 0.166 0.162 0.145 0.110

8 -1.690 -1.023 -0.569 -0.184 0.184 0.569 1.023 1.690
0.092 0.124 0.139 0.145 0.145 0.139 0.124 0.092

9 -1.764 -1.120 -0.690 -0.332 0 0.332 0.690 1.120 1.764
0.079 0.106 0.121 0.129 0.130 0.129 0.121 0.106 0.079

10 -1.818 -1.199 -0.789 -0.453 -0.148 0.148 0.453 0.789 1.199 1.818
0.069 0.093 0.106 0.114 0.118 0.118 0.114 0.106 0.093 0.069

Table 1. Approximate Discrete Random Variables the best Approximating the Gaussian
Random Variable with Zero Mean and Unit Variance

where wd(k) is an approximate discrete random vector with, say, n possible values of the
disturbance noise vector w(k); this approximate vector is pre(offline)-calculated, stored and
then used for estimation to calculate quantization levels at time k + 1; the possible values of
wd(k) are denoted by wd1(k), wd2(k), ...., and wdn(k) ; Q : R

m → R
m is a quantizer which

first divides the m-dimensional Euclidean space into nonoverlapping generalized rectangles
(called gates) such that the union of all rectangles is the m-dimensional Euclidean space, and
then assigns to each rectangle the center point of the rectangle, Fig. 1 (Demirbaş, 1982; 1984;
2010); xq(k), k > 0, is the quantized state vector at time k and its quantization levels, whose
number is (say) mk, are denoted by xq1(k), xq2(k), ...., and xqmk

(k). The quantization levels

of xq(k + 1) are calculated by substituting xq(k) = xqi(k) (i = 1, 2, . . . , mk) for xq(k) and

wd(k) = wdj(k) (j = 1, 2, . . . , n) for wd(k) in the finite state model of Eq. (6). As an example,

let the quantization level xqi(k) in the gate Gi be mapped into the gate Gj by the lth-possible

value wdl(k) of wd(k), then, x(k + 1) is quantized to xqj(k + 1), Fig. 1. One should note that
the approximate models of Eqs. (6) and (7) approach the models of Eqs. (1) and (2) as the gate
sizes (GS) → 0 and n → ∞. An optimum state estimation of the models of Eqs. (6) and (7) is
discussed in the next section.

4. Optimum state estimation

This section discuses an optimum estimation of the models of Eqs. (6) and (7) by using
multiple hypothesis testing. On the average overall error probability sense, optimum
estimation of states of the models of Eqs. (6) and (7) is done as follows: Finite state model

7Real-time Recursive State Estimation for Nonlinear
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Fig. 1. Quantization of States

of Eq. (6) is represented by a trellis diagram from time 0 to time k (Demirbaş, 1982; 1984;
Demirbaş & Leondes, 1985; Demirbaş, 2007). The nodes at time j of this trellis diagram
represent the quantization levels of the state x(j). The branches of the trellis diagram represent
the transitions between quantization levels. There exist, in general, many paths through this

trellis diagram. Let Hi denote the ith path (sometimes called the ith hypothesis) through the

trellis diagram. Let xi
q(j) be the node (quantization level) through which the path Hi passes

at time j. The estimation problem is to select a path (sometimes called the estimator path)
through the trellis diagram such that the average overall error probability is minimized for
decision (selection). The node at time k along this estimator path will be the desired estimate
of the state x(k). In Detection Theory (Van Trees, 2001; Weber, 1968): it is well-known that the
optimum decision rule which minimizes the average overall error probability is given by

Select Hn as the estimator path i f M(Hn) ≥ M(Hl) f or all l �= n, (8)

where M(Hn) is called the metric of the path M(Hn) and is defined by

M(Hn)
∆
= ln{p(Hn)Prob{observation sequence | Hn}}, (9)

where ln stands for the natural logarithm, p(Hn) is the occurrence probability (or the a
priori probability) of the path Hn, and Prob{observation sequence | Hn} is the conditional
probability of the observation sequence given that the actual values of the states are equal
to the quantization levels along the path Hn. If the inequality in the optimum decision rule
becomes an equality for an observation sequence, anyone of the paths satisfying the equality
can be chosen as the estimator path, which is a path having the biggest metric.
It follows, from the assumption that samples of the observation noise are independent, that
Prob{observation sequence | Hn} can be expressed as

Prob{observation sequence | Hn} =
k

∏
j=1

λ(z(j) | xn
q (j)) (10)

8 Discrete Time Systems
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where

λ(z(j)|xn
q )(j))

∆
=

{

1 if z(j) is neither available nor used for estimation
p(z(j)|xn

q (j)) if z(j) is available and used for estimation,
(11)

in which, p(z(j)|xn
q (j)) is the conditional density function of z(j) given that the actual value

of state is equal to xn
q (j), that is, x(j) = xn

q (j); and this density function is calculated by using
the observation model of Eq. (2).
It also follows, from the assumption that all samples of the disturbance noise and the initial
state are independent, that the a priori probability of Hn can be expressed as

p(Hn) = Prob{xq(0) = xn
q (0)}

k

∏
j=1

T(xn
q (j − 1) → xn

q (j)), (12)

where Prob{xq(0) = xn
q (0)} is the occurrence probability of the initial node (or quantization

level) xn
q (0), and T(xn

q (j − 1) → xn
q (j)) is the transition probability from the quantization

level xn
q (j − 1) to the quantization level xn

q (j)), that is, T(x
j
q(i − 1) → xn

q (j))
∆
= Prob{xq(j) =

xn
q (j)|xq(j − 1) = xn

q (j − 1)}, which is the probability that xn
q (j − 1) is mapped to xn

q (j) by

the finite state model of Eq. (6) with possible values of wd(j − 1). Since the transition from
xn

q (j − 1) to xn
q (j) is determined by possible values of wd(j − 1), this transition probability is

the sum of occurrence probabilities of all possible values of wd(j − 1) which map xn
q (j − 1) to

xn
q (j).

The estimation problem is to find the estimator path, which is the path having the biggest
metric through the trellis diagram. This is accomplished by the Viterbi Algorithm (Demirbaş,
1982; 1984; 1989; Forney, 1973); which systematically searches all paths through the trellis
diagram. The number of quantization levels of the finite state model, in general, increases
exponentially with time k. As a result, the implementation complexity of this approach
increases exponentially with time k (Demirbaş, 1982; 1984; Demirbaş & Leondes, 1985;
Demirbaş, 2007). In order to overcome this obstacle, a block-by-block suboptimum estimation
scheme was proposed in (Demirbaş, 1982; 1984; Demirbaş & Leondes, 1986; Demirbaş, 1988;
1989; 1990). In this estimation scheme: observation sequence was divided into blocks of
constant length. Each block was initialized by the final state estimate from the last block. The
initialization of each block with only a single quantization level (node), that is, the reduction
of the trellis diagram to one node at the end of each block, results in state estimate divergence
for long observation sequences, i.e., large time k, even though the implementation complexity
of the proposed scheme does not increase with time (Kee & Irwin, 1994). The online and
recursive state estimation scheme which is recently proposed in (Demirbaş, 2010) prevents
state estimate divergence caused by one state initialization of each block for the block-by-block
estimation. This recently proposed estimation scheme, referred to as the DF throughout
this chapter, first prunes all paths going through the nodes which do not satisfy constraints
imposed on estimates and then assigns a metric to each node (or quantization level) in the
trellis diagram. Furthermore, at each time (step, or iteration), the number of considered state
quantization levels (nodes) is limited by a selected positive integer MN, which stands for
the maximum number of quantization levels considered through the trellis diagram; in other
words , MN nodes having the biggest metrics are kept through the trellis diagram and all the
paths going through the other nodes are pruned. Hence, the implementation complexity of
the DF does not increase with time. The number MN is one of the parameters determining
the implementation complexity and the performance of the DF.

9Real-time Recursive State Estimation for Nonlinear
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5. Online state estimation

This section first yields some definitions, and then presents the DF.

5.1 Definitions

Admissible initial state quantization level : a possible value xqi(0)
∆
= xdi(0) of an

approximate discrete random vector xq(0)
∆
= xd(0) of the initial state vector x(0) is said

to be an admissible quantization level of the initial state vector (or an admissible initial
state quantization level) if this possible value satisfies the constraints imposed on the state
estimates. Obviously, if there do not exist any constraints imposed on the state estimates,
then all possible values of the approximate discrete random vector xq(0) are admissible.

Metric of an admissible initial state quantization level: the natural logarithm of the
occurrence probability of an admissible initial quantization level xqi(0) is referred to as the

metric of this admissible initial quantization level. This metric is denoted by M(xqi(0)), that
is

M(xqi(0))
∆
= ln{Prob{xq(0) = xqi(0)}}. (13)

where Prob{xq(0) = xqi(0)} is the occurrence probability of xqi(0).

Admissible state quantization level at time k: a quantization level xqi(k) of a state vector

x(k), where k ≥ 1, is called an admissible quantization level of the state (or an admissible
state quantization level) at time k if this quantization level satisfies the constraints imposed
on the state estimates. Surely, if there do not exist any constraints imposed on the state
estimates, then all the quantization levels of the state vector x(k), which are calculated by Eq.
(6), are admissible.

Maximum number of considered state quantization levels at each time: MN stands for the
maximum number of admissible state quantization levels which are considered at each time
(step or iteration) of the DF. MN is a preselected positive integer. A bigger value of MN yields
better performance, but increases implementation complexity of the DF.
Metric of an admissible quantization level (or node) at time k, where k ≥ 1: the metric of an
admissible quantization level xqj(k), denoted by M(xqj(k)), is defined by

M(xqj(k))
∆
=max

n
{M(xqn(k − 1)) + ln[T(xqn(k − 1) → xqj(k))]}

+ ln[λ(z(k)|xqj(k))], (14)

where the maximization is taken over all considered state quantization levels at time k − 1
which are mapped to the quantization level xqj(k) by the possible values of wd(k − 1); ln

stands for the natural logarithm; T(xqn(k − 1) → xqj(k)) is the transition probability from

xqi(k − 1) to xqj(k) is given by

T(xqi(k − 1) → xqj(k)) = ∑
n

Prob{wd(k − 1) = wdn(k − 1)}, (15)

where Prob{wd(k − 1) = wdn(k − 1)} is the occurrence probability of wdn(k − 1) and the
summation is taken over all possible values of wd(k − 1) which maps xqi(k − 1) to xqj(k); in

10 Discrete Time Systems

www.intechopen.com



other words, the summation is taken over all possible values of wd(k − 1) such that

Q( f (k − 1, xqi(k − 1), wdn(k − 1))) = xqj(k); (16)

and

λ(z(k)|xqj(k))
∆
=

{

1 if z(j) is neither available nor used for estimation
p(z(k)|xqj(k)) if z(j) is available and used for estimation,

(17)

in which, p(z(k)|xqj(k)) is the conditional density function of z(k) given that the actual value

of state x(k) = xqj(k), and this density function is calculated by using the observation model
of Eq. (2).

5.2 Estimation scheme (DF)

A flowchart of the DF is given in Fig. 3 for given Fw(k)(a), Fx(0)(a), MN, n, m , and GS; where

Fw(k)(a) and Fx(0)(a) are the distribution functions of w(k) and x(0) respectively, n and m are

the numbers of possible values of approximate random vectors of w(k) and x(0) respectively;
GS is the gate size; and z(k) is the observation at time k. The parameters MN, n, m , and
GS determine the implementation complexity and performance of the DF. The number of
possible values of the approximate disturbance noise wd(k) is assumed to be the same, n , for
all iterations, i.e., for all k. The filtered value x̂(k|k) and predicted value x̂(k|k − 1) of the state
x(k) are recursively determined by considering only MN admissible state quantization levels
with the biggest metrics and discarding other quantization levels at each recursive step (each
iteration or time) of the DF. Recursive steps of the DF is described below.
Initial Step (Step 0): an approximate discrete random vector xd(0) with m possible values of
the initial state x(0) is offline calculated by Eq. (3). The possible values of this approximate
random vector are defined as the initial state quantization levels (nodes). These initial state

quantization levels are denoted by xq1(0), xq2(0), ..., and xqm(0), where xqi(0)
∆
= xdi(0) (i =

1 2 ...m). Admissible initial state quantization levels, which satisfy the constraints imposed
on state estimates, are determined and the other initial quantization levels are discarded. If
the number of admissible initial quantization levels is zero, then the number, m, of possible
values of the approximate initial random vector xd(0) is increased and the initial step of the
DF is repeated from the beginning; otherwise, the metrics of admissible initial quantization
levels are calculated by Eq. (13). The admissible initial state quantization levels (represented
by xq1(0), xq2(0), ..., and xqN0

(0)) and their metrics are considered in order to calculate state
quantization levels and their metrics at time k = 1. These considered quantization levels are
denoted by nodes (at time 0) on the first row (or column) of two rows (or columns) trellis
diagram at the first step k = 1 of the DF, Fig. 2.
State estimate at time 0: if the mean value of x(0) satisfies constraints imposed on state estimates
such as the case that there do not exist any estimate constraints , then this mean value is taken
as both x̂(0|0) and x̂(0|0 − 1); otherwise, the admissible initial state quantization level (node)
with the biggest metric is taken as both the filtered value x̂(0|0) and predicted value x̂(0|0− 1)
of the state x(0), given no observation.
Recursive Step (Step k): An approximate discrete disturbance noise vector wd(k − 1) with
n possible values of the disturbance noise w(k − 1) is offline obtained by Eq. (3). The
quantization levels of the state vector at time k are calculated by using the finite state model
of Eq. (6) with all the considered quantization levels (or nodes) xq1(k − 1), xq2(k − 1) ...

xqNk−1
(k − 1) at time k − 1; and all possible values wd1(k − 1), wd2(k − 1), ..., wdn(k − 1)

of the approximate discrete disturbance noise vector wd(k − 1) . That is, substituting the
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Fig. 2. Two Row Trellis Diagram of Admissible State Quantization Levels

considered state quantization levels xqi(k − 1) (i = 1, 2, . . . , Nk−1) for xq(k − 1) and the

possible values wd(k − 1) = wdj(k − 1) (j = 1, 2, . . . , n) for wd(k − 1) in the finite state
model of Eq. (6), the quantization levels of the state at time k are calculated (generated). The
admissible quantization levels at time k, which satisfy constraints imposed on state estimates,
are determined and non-admissible state quantization levels are discarded. If the number
of admissible state quantization levels at time k is zero, then a larger n, MN or smaller GS
is taken and the recursive step at time k of the DF is repeated from the beginning; otherwise,
the metrics of all admissible state quantization levels at time k are calculated by using Eq.
(14). If the number of admissible state quantization levels at time k is greater than MN, then
only MN admissible state quantization levels with biggest metrics, otherwise, all admissible
state quantization levels with their metrics are considered for the next step of the DF. The
considered admissible quantization levels (denoted by xq1(k), xq2(k), ...,xqNk

(k)) and their
metrics are used to calculate the state quantization levels and their metrics at time k + 1. The
considered state quantization levels at time k are represented by the nodes on the second row
(or column) of two rows (or columns) trellis diagram at the recursive step k and on the first row
(or column) of two rows (or columns) trellis diagram at the recursive step k + 1, Fig. 2; where
the subscript Nk, which is the number of considered nodes at the end of Recursive step k, is less
than or equal to MN; and the transition from a node at time k − 1, say xqi(k − 1), to a node at

time k , say xqj(k), is represented by a directed line which is called a branch. Estimate at time
k: the admissible quantization level (node) with the biggest metric at time k is taken as the
desired estimate of the state at time k, that is, the node with the biggest metric at time k is the
desired predicted value of x(k) if z(k) is neither available nor used for estimation; otherwise,
the node at time k with the biggest metric is the filtered value of x(k). If there exist more than
one nodes having the same biggest metric, anyone of these nodes can be taken as the desired
estimate.
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If the number of 

admissible quantization 

levels =0 Then

Else

    Estimate of state at

time k is the admissible 

quantization level with the 

biggest metric

Z(k)

Calculate 

the mean

decide that there do not 

exist any estimates satisfying the 

constraints for given n, m, GS and 

MN; and use the DF with different 

n, m, GS, or  MN

Fig. 3. Flowchart of the DF
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Fig. 4. Average Filtering Errors for Eqs. (18) and (19)

6. Simulations

In this section, Monte Carlo simulation results of two examples are given. More examples are
presented in (Demirbaş, 2010). The first example is given by

State Model

x(k + 1) = x(k)[1 +
k

k + 1
cos(0.8x(k) + 2w(k))] + w(k) (18)

Observation Model

z(k) =
6x(k)

1 + x2(k)
+ v(k), (19)

where the random variables x(0), w(k), and v(k) are independent Gaussian random variables
with means 6, 0, 0 and variances 13, 20, 15 respectively. It was assumed that there did not
exist any constraints imposed on state estimates. The state model of Eq. (18) is an highly
nonlinear function of the disturbance noise w(k). The extended Kalman filter (EKF) and the
grid-based approaches may not be used for the state estimation of this example, since the
EKF assumes a linear disturbance noise in the state model and the grid based approaches
assumes the availability of the state transition density p(x(k)|x(k − 1)) which may not readily
calculated (Arulampalam et al., 2002; Ristic et al., 2004). States of this example were estimated
by using the DF, the sampling importance resampling (SIR) particle filter (which is sometimes
called the bootstrap filter, and auxiliary sampling importance resampling (ASIR) particle filter
(Arulampalam et al., 2002; Gordon et al., 1993). Average absolute filtering and prediction
errors are sketched in Figs. 4 and 5 for 2000 runs each of which consists of 100 iterations.
These estimation errors were obtained by using the SIR and ASIR particle filters with 1000
particles and the DF for which the random variables x(0) and w(k) were approximated by the
approximate random variables with 3 possible values (which are given in Section 3); the gate
size (GS) and MN were taken as 0.1 and 8 respectively. The average filtering and prediction
errors per one estimation (one iteration) were 33.8445, 45.6377, 71.5145 and 34.0660, 45.4395,
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Fig. 5. Average Prediction Errors for Eqs. (18) and (19)

70.2305 respectively. A typical run with 100 iteration took 0.0818, 0.2753, 0.3936 seconds for
the DF, SIR and ASIR particle filters, respectively. The DF clearly performs better than both
the SIR and ASIR particle filter. Moreover, the DF is much faster than both the SIR and ASIR
particle filters with 1000 particles.
The second example is described by

State Model

x(k + 1) = x(k)[1 +
k

k + 1
cos(0.8x(k))] + w(k) (20)

Observation Model

z(k) =
6x(k)

1 + x2(k)
+ v(k), (21)

where the random variables x(0), w(k),and v(k) are independent Gaussian random variables
with means 3, 0, 0 and variances 8, 9, 9 respectively. It was assumed that there did not
exist any constraints imposed on state estimates. Average absolute filtering and prediction
errors are sketched in Figs. 6 and 7 for 2000 runs each of which consists of 200 iterations.
These estimation errors were obtained by using the SIR and ASIR particle filters with 1000
particles and the DF for which the random variables x(0) and w(k) were approximated by the
approximate random variables with 3 possible values (which are given in Section 3); the gate
size (GS) and MN were taken as 0.1 and 4 respectively. The average filtering and prediction
errors per one estimation (one iteration) were 38.4913, 61.5432, 48.4791 and 38.5817, 61.4818,
48.5088 respectively. A typical run with 200 iteration took 0.0939, 0.5562, 0.8317 seconds for
the DF, SIR and ASIR particle filters, respectively. The state model of the second example is
a linear function of the disturbance noise. Hence, the extended Kalman filter (EKF) was also
used for state estimation, but the EKF estimation errors quickly diverged, hence, the EKF state
estimation errors are not sketched. The DF clearly performs better than the EKF, SIR and ASIR
particle filters and also the DF is much faster than both the SIR and ASIR particle filters with
1000 particles for the second example.
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Fig. 6. Average Filtering Errors for Eqs. (20) and (21)
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Fig. 7. Average Prediction Errors for Eqs. (20) and (21)

The performance of the DF is determined by the possible values (n and m) of the approximate
discrete random disturbance noise and approximate discrete initial state, gate size (GS),
maximum number (MN) of considered state quantization levels at each iteration. As GS goes
to zero and the parameters n, m, and MN approach infinity, the approximate models of Eq.
(6) and (7) approach the models of Eqs. (1) and (2), hence, the DF approaches an optimum
estimation scheme, but the implementation complexity of the DF exponentially increases with
time k. The parameters n, m, GS, MN which yield the best performance for given models
are determined by Monte Carlo simulations for available hardware speed and storage. For
given nonlinear models: the performances of the DF, EKF, particle filters, and others must
be compared by Monte Carlo simulations with available hardware speed and storage. The
estimation scheme yielding the best performance should be used. The EKF is surely much
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faster than both the DF and particle filters. The speed of the DF is based upon the parameters
n, m, GS, MN; whereas the speeds of particle filters depend upon the number of particles
used.

7. Conclutions

Presented is a real-time (online) recusive state filtering and prediction scheme for nonlinear
discrete dynamic systems with Gaussian or non-Gaussian disturbance and observation noises.
This scheme, referred to as the DF, is recently proposed in (Demirbaş, 2010). The DF is very
suitable for state estimation of nonlinear dynamic systems under either missing observations
or constraints imposed on state estimates. The DF is much more general than grid based
estimation approaches. This is based upon discrete noise approximation, state quantization,
and a suboptimum implementation of multiple hypothesis testing , whereas particle filters
are based upon sequential Monte Carlo Methods. The models of the DF is as general as
the models of particle filters, whereas the models of the extended Kalman filter (EKF) are
linear functions of the disturbance and observation noises. The DF uses state models only to
calculate transition probabilities from gates to gates. Hence, if these transition probabilities
are known or can be estimated, state models are not needed for estimation with the DF,
whereas state models are needed for both the EKF and particle filters. The performance
and implementation complexity of the DF depend upon the gate size (GS), numbers n and
m of possible values of approximate discrete disturbance noise and approximate discrete
initial state, and maximum number (MN) of considered quantization levels at each iteration
of the DF; whereas the performances and implementation complexities of particle filters
depend upon numbers of particles used. The implementation complexity of the DF increases
with a smaller value of GS, bigger values of n, m, and MN. These yield more accurate
approximations of state and observation models; whereas the implementation complexities
of particle filters increase with larger numbers of particles, which yield better approximations
of conditional densities. Surely, the EKF is the simplest one to implement. The parameters
(GS, n,m, MN) for which the DF yields the best performance for a real-time problem should
be determined by Monte Carlo simulations. As GS → 0, n → ∞, m → ∞,and MN → ∞;
the DF approaches the optimum one in the average overall error probability sense, but its
implementation complexity exponentially increases with time. The performances of the DF,
particle filters, EKF are all model-dependent. Hence, for a real-time problem with available
hardware speed and storage; the DF, particle filters, and EKF (if applicable) should all be
tested by Monte Carlo simulations, and the one which yields the best results should be used.
The implementation complexity of the DF increases with the dimensions of multidimensional
systems, as in the particle filters.
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