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1. Introduction 

Graphene, monolayer of carbon atoms arranged in a honeycomb network, has recently 
gained revolutionary aspirations (Novoselov et al., 2005; Novoselov et al., 2007; Heersche et 
al., 2007; Zhang (a) et al., 2005; Stankovich et al., 2006) because of its remarkable electronic 
properties (Zhang (b) et al., 2005; Berger et al., 2004), unusual thermal properties (Balandin 
et al., 2008) and good mechanical properties (Lee et al., 2008). These extraordinary 
properties make it an excellent choice as inorganic fillers to substantially improve electrical, 
thermal and mechanical properties of composite materials (Stankovich et al., 2006; 
Ramanathan et al., 2008). Several effective techniques have been developed for preparing 
graphene nanosheets, including chemical (Stankovich et al., 2006) and mechanical 
exfoliation (Novoselov et al., 2004), alkali metals intercalation and expansion (Viculis et al., 
2003), microwave chemical vapor deposition (Wang et al., 2009), substrate-based thermal 
decomposition (Berger et al., 2004), and thermal exfoliation of graphite oxide (GO) 
(McAllister et al., 2007). Among them, chemical reduction of exfoliated graphite oxide in the 
presence of a surfactant or polymer is a relatively new method to prepare electrically 
conductive individual graphene sheets. Stankovich (Stankovich et al., 2006) put forward a 
new process to produce polystyrene/graphene nanocomposites via ultrasonic exfoliation 
and chemical reduction of graphite oxide and molecular-level dispersion of chemically 
modified graphene nanosheets. In addition, the thermal exfoliation and in situ reduction 
method can conveniently produce graphene nanosheets for mass production. As confirmed 
by Aksay and co-workers (McAllister et al., 2007), in situ reduction reaction took place 
during the thermal exfoliation process, which converted insulating graphite oxide to 
conducting graphene. More importantly, the graphene resulted through thermal exfoliation 
still contained some oxygen-containing groups. The oxygen functionalities on the graphene 
nanosheets will facilitate their dispersion in polar polymers (Ramanathan et al., 2008). 
Effective medium approximation indicated that graphene is more effective in improving 
conductivity of composites than carbon nanotubes (Xie et al., 2008). The 
polystyrene/graphene nanocomposites prepared by chemical modification and reduction in 

www.intechopen.com



 Physics and Applications of Graphene - Experiments 

 

410 

solution exhibited a percolation threshold in electrical conductivity as low as 0.1 vol%, 
comparable to those observed in single-walled carbon nanotubes (SWCNT) based 
nanocomposites (Grossiord et al., 2005; McLachlan et al., 2005); The electrical conductivity 
was as high as 1 S/m at 2.5 vol% of graphene content. Kim and Macosko (Kim & Macosko, 
2008) compared the effect of graphene nanosheets and graphite on conductivity of 
polyester-based composites, and the results revealed that graphene gave a much lower 
percolation threshold (0.3 vol%) than graphite (3.0 vol%). Recently, Liang et al. (Liang et al., 
2009) prepared epoxy/graphene nanocomposites via in situ process, which showed a small  
percolation threshold of 0.52 vol% and an electromagnetic interference shielding efficiency 
of 21dB with 8.8 vol% of graphene over 8.2~12.4 GHz. In contrast, unfully exfoliated 
graphite led to a much higher threshold (> 0.6 vol%) and a much lower electrical 
conductivity (< 10-2 S/m) even at high loading of 6.0 vol% (Kalaitzidou et al., 2007; Weng et 
al., 2005; Zheng et al., 2002). 
Compared to in situ polymerization and solution mixing, melt compounding using 
conventional compounding devices such as mixers and commercial resins is more attractive 
because this approach provides manufacturers many degrees of freedom with regard to the 
selection of polymer grades and choice of graphene content. It is believed that melt 
compounding would be more economical and simple than in situ polymerization processes. 
Actually, melt compounding has been successfully used to prepare conductive polymeric 
composites by using conducting fillers such as carbon nanotubes (CNTs) (Li et al., 2006), 
carbon black and expanded graphite (Lagreve et al., 2006; Zhang et al., 2008). It has been 
confirmed that CNTs can substantially increase the electrical conductivity of PET 
nanocomposites with low loading of CNT, but it is expensive. As for cheap carbon black, 
higher loading is usually required to make a polymer conductive. Due to the low price and 
availability of pristine graphite in large quantities, graphene nanosheets can be an ideal choice 
as conductive fillers in the preparation of conductive PET nanocomposites. To the best of our 
knowledge, few papers have been published on PET/graphene nanocomposites prepared by 
conventional melt compounding. In this study, Graphene nanosheets were prepared by 
complete oxidation of pristine graphite followed by thermal exfoliation and reduction. 
Subsequently, polyethylene terephthalate/graphene nanocomposites were prepared by melt 
compounding. The microstructure of graphene, its dispersion in PET matrix, and the 
electrically conductive behavior of the resulting nanocomposites were studied. 

2. Experimental 

2.1 Materials  
PET pellets were purchased and dried in vacuum oven at 150 oC for 5 h before use. Flaky 
pristine graphite with a mean size of 45 μm was bought from Qingdao Huatai Lubricant 
Sealing S&T (China). Graphene density is assumed to be equal to the theoretical graphite 
density of 2.28 g/cm3 (Kelly, 1981), and PET density is 1.34 g/cm3 (Cobbs & Burton, 1953). 
Fuming nitric acid (63%), sulfuric acid (98%), potassium chlorate (98%) and hydrochloric 
acid (37%) were obtained from Sinopharm Chemical Reagent (China).   

2.2 Preparation of graphene 
A technique, similar to that of Aksay and co-workers (Schniepp et al., 2006), was used to 
prepare bulk quantities of graphene nanosheets. Graphite oxide (GO) was prepared 
according to Staudenmaier method (Staudenmaier, 1898). First of all, the reaction flask was 
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purged with nitrogen and immersed in an ice bath, 40 g graphite was then added to the 
homogeneous mixture of concentrated nitric acid (270 ml) and sulfuric acid (525 ml) under 
vigorous stirring. After uniform dispersion of the graphite powder, 330 g potassium 
chlorate was added slowly to minimize the risk of explosion. The reaction was then allowed 
to last for 120 h at room temperature. After reaction, the slurry resultants were filtered and 
washed with excess deionized water and 5% HCl solution to remove the sulfuric ions (SO42-

), then GO aqueous solution was neutralized with potassium hydroxide solution. GO 
powder was separated from the solution by using GQ75 high-speed centrifuge, and dried in 

an air-circulating oven at 135°C for 24 h followed by another 24 h at 135°C in a vacuum 

oven. As confirmed by Aksay and co-workers (McAllister et al., 2007), 1050°C was adequate 
for thermal exfoliation and in situ reduction of GO, this temperature was also adopted in the 
present work to thermally exfoliate GO. The dried GO powder was quickly inserted into a 
muffle furnace preheated to 1050 oC and held in the furnace for 30s.  

2.3 Fabrication of PET composites 
PET/graphene nanocomposites were prepared by melt compounding at 285°C using a 
Brabender mixer. Compounding was performed with an initial screw speed of 50 rpm/min 
for 4 minutes; then the screw speed was raised to 100 rpm/min within 1 min and the 
compounding was conducted at this speed for 5 min. The samples for microscopy and 
electrical conductivity analysis were prepared by pressing the composites at 275°C under a 
pressure of 15 MPa. 

2.4 Characterization  
The volume conductivity of moderately conductive composites (Conductance >10-6 S·m) 
was measured with a Agilent 34401A digital multimeter and a YOKOGAWA 7651 voltage 
source by the two-probe method. For PET and composites with low conductivity 
(Conductance ≤ 10-6 S·m), the conductivity testing was performed using a EST121 ultrahigh 
resistance and micro current meter (Beijing EST Science & Technology CO. LTD) according 
to National Standard of China GB/1410-1989. A three-terminal fixture (two electrodes plus 
guard), similar to that proposed by the ASTM D257 standard for volume conductance 
determination of flat specimens, was selected for the measurement of low conductance. The 
guard electrode connected to the earth was used to eliminate the leakage current along 
specimen surface. In addition, the testing fixture was embedded in a metal shield box to 
minimize external interference. Circular plates with 7 cm in diameter and 2.5 mm in 
thickness were fabricated for conductivity measurement. Sample surfaces were coated with 
silver paste to reduce contact resistance between sample and electrodes. For specimens with 
low conductivity, the side contacting with the unguarded electrode was wholly painted 
with silver paste while the other side only partly painted, the painted area was in 
accordance with the cross-section of the guarded cylinder electrode. Three specimens of 
each sample were tested and the average value was reported as volume electrical 
conductivity. The resistance R can be obtained directly from the multimeter, and thus the 
electrical conductivity σ can be calculated by using Eq. (1) 

 
1 t

RS
σ

ρ
= =  (1) 

where ρ is electrical resistivity, t is thickness of sample between electrodes, and S is cross-
sectional area of the guarded cylinder electrode.  
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The microstructures of graphene and its PET nanocomposites were characterized using a 
Tecnai G2 F20 TEM at an accelerating voltage of 100 kV. Graphene sheets were dispersed in 
methanol by ultrasonication and some pieces were collected on carbon-coated 300-mesh 
copper grids for observation. While for PET/graphene nanocomposites, the samples were 
embedded in epoxy resin, and cured at 80 oC for 6 h, and then ultrathin sections of thinner 
than 100 nm were cryogenically cut with a diamond knife using a microtome and collected 
on 300-mesh copper grids. SEM observation of PET composites was performed using an FEI 
scanning electron microscope (Hitachi, S-4800) with an accelerating voltage of 5 kV. PET 
composites were freeze-fractured in liquid nitrogen and the fractured section was coated 
with a thin layer of platinum before observation.  
The diffraction behavior of pristine graphite, GO and graphene were studied using a Bruker 
AXS X-ray diffractometer with CuKǂ radiation at a generator voltage of 40 kV and a 
generator current of 40 mA. The scans were carried out in the reflection mode at a scan rate 
of 10°/min. Laser granularity analyzer (Malven, Zeta sizer Nano ZS) was used to determine 
the lateral dimension of graphene in alcohol solution. 

3. Results and discussion 

3.1 Characterization of graphene 
Figure. 1 shows the XRD spectra of pristine graphite, graphite oxide and graphene. The 
strong and sharp diffraction peak of pristine graphite at 26.6o completely disappeared after 
oxidization and instead a new peak at 13.9° appeared, indicating a complete oxidization of 
graphite (Wang et al., 2008), which is a prerequisite to obtain exfoliated graphene 
nanosheets by ultrasonication or thermal expansion. After thermal exfoliation of the 
completely oxidized graphite (GO), there was no apparent diffraction peak detected, which 
means the periodic structure of GO was eliminated and graphene nanosheets were formed.  
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Fig. 1. X-ray diffraction patterns of pristine graphite, graphite oxide and graphene. 
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Figure 2 shows TEM images of the graphene under low and high magnifications. Under low 

magnification, graphene looks like a transparent ultrathin film with a few thin ripples 

within the plane (Figure. 2a), quite different from the opaque and smooth feature of pristine 

graphite flakes. It is known that perfect two-dimensional graphene crystal was 

thermodynamically unstable (Meyer et al., 2007), therefore corrugations and ripples in the 

two dimension were formed for thermodynamic stability (Carlsson, 2007). Thereby the 

transparency and rippled feature of graphene, in turn, suggests a fact that graphene sheets 

prepared in this study are wafer thin and consists of few-layer or even monolayer graphene. 

Furthermore, stacks of graphene sheets arranged with a roughly parallel structure can be 

clearly observed in the high-magnification TEM image from an edge-on view (Figure. 2b).  
 

 

Fig. 2. TEM images of graphene under low (a) and high (b) magnifications. The scale bars 
are (a) 0.2 μm and (b) 5 nm. The inset is selected area electron diffraction (SAED) pattern of 
graphene. 

The thickness of graphene sheets can thus be measured. Statistical results from many TEM 

images give an average thickness ~ 1.57 nm of the graphene sheets prepared in this study. In 

addition, the weak and diffuse selected area electron diffraction (SAED) pattern (the inset of 

figure. 2b) also indicates the loss of long range ordering between graphene sheets and the 

ultrathin feature of the graphene. However, it should be mentioned that the specific surface 

area of the graphene sheets measured with BET method is 555 m2/g , much smaller than the 

theoretical value (2630 m2/g) of single graphene sheet (Peigney et al., 2001), indicating that 

existence of agglomerated and overlapped parts of the graphene sheets. In spite of this, a 

high aspect ratio (lateral dimension to thickness) of 146 for the graphene sheets is obtained 

based on the results from laser granularity analyzer. In contrast, pristine graphite flake has a 

lower aspect ratio (~36) and smaller specific surface area (< 10 m2/g). 

3.2 Microstructure of PET/graphene nanocomposites 
To clearly reveal the dispersion of graphene in PET matrix, Figure 3 shows the 
microstructure of PET nanocomposite with 3 vol% graphene. Graphene nanosheets were 
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Fig. 3. Low (a) and high (b) magnification TEM micrographs of PET nanocomposite with 3 
vol% graphene. The scale bars are (a) 1 μm and (b) 100 nm. 

homogeneously dispersed in PET matrix and there are almost no large agglomerates 
observed (Figure. 3a).  
The good dispersion of graphene sheets should be due to the good interaction between the 
oxygen and hydroxyl functional groups on the surface of graphene and the polar groups of 
PET. In addition, a compact continuous network throughout the matrix is also observed 
(Figure. 3a). As proposed by Alig et al (Alig et al., 2007), this conductive network can be 
considered as a network built by conductive fillers which are separated by local contact 
regions with polymer chains in-between, also improving electron mobility and interface 
polarization via tunneling (Yao et al., 2007). High magnification image (Figure. 3b) indicates 
that the network is composed of abundant thin stacks of a few sheets of monolayer 
graphene (black curly thin lines), which are bridged by the crumpled or overlapped 
graphene sheets (slightly thicker lines) (Figure. 3b). These wrinkled and overlapped 
graphene sheets can effectively link individual graphene sheets and carry high density of 
current, resulting in high electrical conductivity (Halperin et al., 1985).  
To demonstrate the strong interaction between the oxygen and hydroxyl functional groups 
on the surface of graphene and the polar groups of PET, Figure 4 shows SEM image of cryo-
fractured surface of PET nanocomposite with 1.2 vol% graphene. It is seen that the graphene 
sheets were encapsulated by PET and the thickness of the sheets increased from 1.57 to ~ 50 
nm (see the inset of Fig. 4). This confirms the strong interaction between graphene and PET. 
Due to the large specific surface area of the graphene nanosheets, the area of interface 
between graphene and PET is huge, providing numerous tunneling sites for electron 
transport (Steinert & Dean, 2009). 

3.3 Electrical properties of PET/graphene nanocomposites 
Figure. 5 shows plots of electrical conductivity versus filler content for PET/graphene 
nanocomposites and PET/pristine graphite composites.  
The PET/graphene nanocomposites exhibit a sharp transition from insulator to 
semiconductor with a small percolation threshold of 0.47 vol%. With a small increase of 
graphene content from 0.47 to 1.2 vol%, the electrical conductivity of the PET 
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Fig. 4. SEM images of fractured surface of PET nanocomposite with 1.2 vol% of graphene. 
The insert is a high-magnification SEM image of the same nanocomposite. 
 
 

 

Fig. 5. Plots of electrical conductivity versus filler content for PET/graphene 
nanocomposites and PET/graphite composites. The inset is double-logarithmic plot of 
volume electrical conductivity versus (φ-φc). 

nanocomposites increased quickly from 2.0×10-13 to 7.4×10-2  S/m. Actually, at 0.56 vol% of 
the graphene content, the conductivity the PET nanocomposite is 3.3×10-5 S/m, which is 
higher than antistatic criterion of 10-6 S/m. With only 3.0 vol% graphene, the conductivity of 
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PET nanocomposite is as high as 2.11 S/m. On the contrary, PET/graphite composites show 
a much higher percolation threshold of 2.4 vol% and a very broad percolation transition 
within a range of graphene content from 2.4 to 5.8 vol%. More interestingly, graphene is 
more efficient in improving electrical conductivity of PET than pristine graphite. For 
instance, the conductivity of PET/graphene nanocomposite with 0.92 vol% of graphene is 
3.46×10-3 S/m, even higher than that of PET/pristine graphite composite with 7.1 vol% of 
graphite (2.45×10-4 S/m). 
According to the percolation theory (Stauffer, 1985), the relationship of composite 
conductivity (σ) with filler volume content (φ) follows the below scaling law near the 
percolation threshold (φc):  

 0( )c
υσ σ ϕ ϕ∝ −  (2) 

Where σo is the bulk electrical conductivity of the fillers andυ  is the critical exponent 

describing the rapid variation of σ near φc. The percolation threshold is the critical content 

above which a continuous connected network is formed for the transport of electrons 

throughout the matrix. The inset in figure. 5 shows the double-logarithmic plot of electrical 

conductivity of PET/graphene nanocomposites versus (φ-φc), and an “anomalous” critical 

exponent (4.22) was obtained from the slope of linear fit curve, much larger than the 

theoretically predicted value (~ 2) for three-dimensional system (Balberg, 1987).  

To predict the electrical percolation threshold in theory, filler shape must be first considered 

in view of its strong influence on the electrical properties of composites (Ma & Gao, 2008). 

However, the electrical percolation threshold cannot be directly related to filler morphology, 

fortunately, geometrical percolation threshold (pc) provides some insight into the former 

although cannot be simply identified as it. Therefore, several models were developed to 

explore the percolative properties of oblate objects in respect of their aspect ratio 

(Ambrosetti et al., 2008; Garboczi et al., 1995; Yi & Tawerghi, 2009). Recently, Ambrosetti 

and coworkers (Ambrosetti et al., 2008) proposed a model consisting of isotropically 

distributed hard oblate spheroids of identical dimensions with soft shell, more fits the 

system of conducting spheroids dispersed in an insulating continuum host, and the shell 

thickness can be interpreted as a typical tunneling length between the particles, governing 

the electrical connectivity of composite. The percolation threshold, pc, for infinite system 

was obtained by extrapolating that for finite systems through the following scaling relations 

(Rintoul & Torquato, 1997):  

 1 /
( )

δ−Δ ∝L L  (3)                          

 1/

c

δ−− ∝eff

cp p L  (4) 

where δ is the correlation length exponent, ∆ represents the width of the percolation 
transition, pceff  is the effective percolation threshold for a system of linear size L. The value 
of correlation exponent δ is calculated as around 0.9 from thousands of simulations for 
variously sized lattices, and then pc can be consequently estimated from Eq. (4) by plotting 
pceff against L-δ for selected values of cell size L. The simulation results, for oblate 
ellipsoids with various aspect ratio and penetrable shell thickness, indicated that high aspect 
ratio entails a lower percolation threshold and this effect is also dependant on the shell 
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thickness, consistent with the behavior observed in our study and other composites 
containing oblate objects as conducting fillers. Therefore, the small φc of PET/graphene 
nanocomposites mainly owes to the high aspect ratios of graphene nanosheets.  
Moreover, if neglecting the limiting interaction distances to a shell of constant thickness 

from the presence of the hard core, the model will evolve to an idealized model consisting of 

completely permeable ellipsoids randomly dispersed in a matrix, as Garboczi and 

coworkers (Garboczi et al., 1995) suggested. From this model, pc can be predicted as 1.27 

ǂ/ǃ where ǃ is the radius of revolution and ǂ is the semiaxis length in the extreme oblate 

limit. Therefore, pc can be easily calculated as 0.87 vol% for PET/graphene nanocomposites 

and 3.34 vol% for PET/graphite composites if graphene and graphite considered as 

permeable oblate particles. These values are higher than that of φc obtained experimentally 

from curves of Figure 5. This difference between pc and φc may be, in part, due to the 

assumption that graphite and graphene were permeable, and in part, to the fact that Eq. (2) 

did not consider tunneling mechanism. The permeable assumption allows regions of space 

to be occupied by parts of more than one sheet and thereby the critical volume of fillers is 

overestimated. In addition, the unfavorable geometries of oblate particles also tend to 

reduce the interparticle connectivity and increase the percolation point. Finally, it is noticed 

that physically contacted network is adequate but not absolutely necessary for current flow 

in insulator-conductor composites, since electrons can transmit between isolated particles by 

tunneling through thin polymer layer (Quivy et al., 1989; Toker et al., 2003).  

From above experimental results, it is can be seen that the efficiency of graphene in 
improving conductivity of PET is comparable to or even better than CNTs. Hu (Hu et al., 
2006) reported a low electrical percolation threshold (0.9 wt%) in PET/MWCNT 
nanocomposites fabricated via coagulation, and the electrical conductivity reached 10-2 S/m 
at higher filler loading (~5 wt%). A small percolation threshold was reported by Steinert and 
coworkers in PET/SWCNT nanocomposite films prepared using a solution mixing and 
casting method. It was shown that sufficient conductivity for antistatic and electrostatic 
dissipation purposes was achieved at 0.5 wt% SWCNT, which was easily understood 
because solution casting of a film is efficient to form a conductive network due to the 2-
dimentional distribution of CNT and less serious damage of CNT length. However, melt 
compounding like twin-screw extrusion would inevitably shorten CNT and thus reduce its 
aspect ratio, which is not beneficial for achieving small percolation thresholds and high 
conductivity. For example, CNTs-based composites prepared by melt blending with 
coupling agent only leads to a moderate conductivity of 0.1S/m with 2.48 vol% CNTs (Li et 
al., 2006). Fortunately, the electrical percolation threshold (φc = 0.47 vol %) obtained in this 
study is also one of the lowest values for graphite-based composites (Chen et al., 2003; 
Zheng & Wong, 2003) although slightly higher than that observed in polystyrene/graphene 
composites prepared by solution mixing (Stankovich et al., 2006). This low percolation 
threshold and the good conductivity are attributed to the high aspect ratio, large specific 
surface area and the good dispersion of graphene in PET matrix.  
In addition, we found the anomalous exponent of 4.22 for the PET/graphene 
nanocomposites. Indeed, nonuniversal values (≥ 3) of the critical exponent were reported in 
many systems (Celzard et al., 1996; Carmona et al., 1984; Ezquerra et al., 1990). To explain 
this phenomenon, the tunneling conduction mechanism is repeatedly proposed. Balberg   
proposed a model based on the interparticle tunneling in percolation network. The 
conductance distribution function of the network, f(g), was related to the tunneling 
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conductance, g, between two impermeable spherical particles with a radius of b and an 
average interparticle distance a by: 

  0( / ) 1
0( ) ln( / ) d af g g g g −∝   (5) 

where g0 is a constant and d0 is the characteristic distance for tunneling (usually several 
nanometers). Percolation network and tunneling conductance are two competitive 
mechanisms in conductive composites, and the configuration of conductive fillers in 
polymer matrix determines the competition of these two mechanisms. Fillers existing as 
large and complicated aggregates (i.e. high structured carbon blacks) in composites are easy 
to cause much narrower distribution of interparticle tunneling distances than that of the 
distances between two adjacent particles, namely, the case of d0 > a, for small g values, the 
conductance function can account for the network and a universal behavior will be obtained 
(Balberg & Binenbaum, 1985). Whereas, smaller and less agglomerated filler structure (low 
structure carbon blacks) can provide a wide-enough distribution of the distances between 
particle surfaces, d0 < a, it can be seen that the essential part of the conductance distribution 
is determined and given by Eq. (6), which is well known to yield a anomalous behavior 
(Kogut & Straley, 1979). 

 0( / ) 1d a ag g− −≡  (6) 

Thus, an anomalous critical exponent of 4.0 was found in the composites filled with 
uniformly dispersed carbon blacks. Notice that the relationship given by Eq. (6) can be 
extended to general case of a ≥ 2b. For our PET/graphene nanocomposites, the evenly 
dispersed monolayer graphene or very small aggregates would also result in wide 
distribution of the interparticle distances similar to that derived from the above low 
structure carbon blacks in polyvinylchloride. Therefore, Eq.s (5) and (6) can be applied to 
interpret the nonuniversal conductivity in PET/graphene nanocomposites. Additionally, the 
vast nanosheet-polymer interface provides abundant potential sites for tunneling 
conductance, thereby an anomalous critical exponent of 4.22 was found in PET/graphene 
nanocomposites. 
The nonuniversal behavior can also be associated with the anisotropy (Smith & Lobb, 1979) 
of conductive fillers and the neck-like bonds in the percolation backbone. Both experimental 
and theoretical results indicate that geometrical and electrical anisotropy degree is expected 
to influence the percolation threshold and critical exponent.  

4. Conclusions  

Graphene sheets were prepared by chemical oxidation of pristine graphite flakes followed 
by thermal exfoliation and reduction of graphite oxide. PET/graphene nanocomposites 
prepared by melt compounding exhibit superior electrical conductivity with a small 
percolation threshold of 0.47 vol%. A high electrical conductivity of 2.11 S/m of PET 
nanocomposite was achieved with only 3.0 vol % of graphene, which is even adequate for 
EMI shielding. Additionally, an anomalous critical exponent of 4.22 for PET/graphene 
nanocomposites can be ascribed to the tunneling conduction and conductivity anisotropy of 
graphene. Compared to expensive CNTs, graphene is cheaper and it is more effective in 
making insulating polymers electrically conductive due to its higher specific surface area 
than CNTs.  
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