
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

18

Some Results on Evolving Cellular Automata
Applied to the Production Scheduling Problem

Tadeusz Witkowski1, Arkadiusz Antczak1,
Paweł Antczak1 and Soliman Elzway2

1Warsaw University of Technology
1Nasser International University

1Poland
2Libya

1. Introduction

Production scheduling is the process of allocating the resources and then sequencing of task

to produce goods. Allocation and sequencing decision are closely related and it is very

difficult to model mathematical interaction between them. The allocation problem is solved

first and its results are supplied as inputs to the sequencing problem. High quality

scheduling improves the delivery performance and lowers the inventory cost. They have

much importance in this time based competition. This can be achieved when the scheduling

is done in acceptable computation time, but it is difficult because of the NP-hard nature and

large size of the scheduling problem.

Based on the machine environment, sequence of operations for the jobs, etc. , the production

scheduling problem is divided into the different types: one stage, one process or single

machine; one stage, multiple processor or parallel machine; flow shop, job shop, open shop;

static and dynamic etc. Job shop is a complex shop where there are finite number of

machines, jobs and operation to be done on jobs. There is no direction of flow for jobs. The

scheduling is done based on the selection of machine k to process an operation i on job j.

Each job can be processed on a machine any number of times. Flexible job-shop scheduling

problem (FJSP) extends the JSP by allowing each operations to be processed on more than

machine. With this extension, we are now confronted with two subtask: assignment of each

operation to an appropriate machine and sequencing operations on each machine.

In the literature, different approaches (tabu search, simulated annealing, variable

neighborhood, particle swarm optimization, clonal selection principle etc.) have been

proposed to solve this problem (Fattahi,et al., 2007; Kacem, et al., 2002; Liu, et al., 2006; Ong,

et. al., 2005; Preissl, 2006; Shi-Jin, et al., 2008; Tay, et al., 2008; Yazdani, et al., 2009). The

genetic algorithms (GA), genetic programming, evolution strategies, and evolutionary

programming for scheduling problem are described in (Affenzeller, et. al., 2004; Back, et al.,

1997; Beham, et al., 2008; Koza, 1992; Mitchell, et. al., 2005; Zomaya, et. al., 2005; Stocher, et.

al., 2007; Winkler, et. al., 2009), and cellular automata are presented in (De Castro, 2006;

Tomassini, 2000; Seredyński, 2002). Using GA algorithm to behavior in cellular automata

(CA), evolutionary design of rule changing CA, and other problems are described in (Back,

www.intechopen.com

 Cellular Automata - Simplicity Behind Complexity

378

et. al., 2005; Kanoh, et. al., 2003; Martins, et. al., 2005; Das, et. al., 1994; Sipper, 1997,1999;

Subrata, et. al., 2003; Sahoo, et. al. 2007).

The difficulty of designing cellular automatons transition rules to perform a particular
problem has severely limited their applications.
In (Seredyński,et. al., 2002) evolution of cellular automata-based multiprocessor scheduling
algorithm is created. In learning mode a GA is applied to discover rules of CA suitable for
solving instances of a scheduling problem. In operation mode discovered rules of CA are
able to find automatically an optimal or suboptimal solution of the scheduling problem for
any initial allocation of a program graph in two-processor system graph.
The evolutionary design of CA rules has been studied by th EVCA group in detail. A
genetic algorithm GA was used to evolve CAs for the two computational tasks. The GA
was shown to have discovered rules that gave rise to sophisticated emergent computational
strategies. Sipper (1999) has studied a cellular programming algorithm for 2-state non-
uniform CAs, in which each cell may contain a different rule. The evolution of rules is here
performed by applying crossover and mutation. He showed that this method is better than
uniform (ordinary) Cas with a standard GA for the two tasks. In Kanoh (2003) was
proposed a new programming method of cellular computers using genetic algorithms.
Authors considered a pair of rules and the number of rule iterations as a step in the
computer program. This method im meant to reduce the complexity of a given problem by
dividing the problem into smaller ones and assigning a distinct rule to each.
This study introduces an approach to solving evolutionary cellular automata-based FJSP. In
this paper genetic programming is applied in this algorithm – rule tables undergo selection
and crossover operations in the populations that follow.
The paper is organized as follows. Section 2 gives formulation of the problem. A formal

definition of CA is described in section 3. Section 4 explains the details of the evolving CA-

based production scheduling. Section 5 shows the computational results and the comparison

of CA and GA for finding solutions in FJSP is presented. Some concluding remarks are

given in section 6.

2. Problem formulation

The FJSP is formulated as follows. There is a set of jobs Z = {Zi}, i ∈ I, where I = {1, 2, ..., n}
is an admissible set of parts, U = {uk}, k∈ 1, m, is a set of machines. Each job Zi is a group of

parts Πi of equal partial task pi of a certain range of production. Operations of technological

processing of the i-th part are denoted by {Oij} iH
j ξ= . Then for Zi , we can write Zi = (Πi

{Oij} iH
j ξ=), where Oij = (Gij, tij (N)) is the j-th operation of processing the i-th group of parts;

ξi is the number of operation of the production process at which one should start the
processing the i- th group of parts; Hi is the number of the last operation for a given group;
Gij is a group of interchangeable machines that is assigned to the operation Oij; G is a set of
all groups of machines arose in the matrix ||{ Zi }||; tij (N) is an elementary duration of the
operation Oij with one part di that depends on the number of machine N in the group (on the
specified operations); t'ij is the duration of set up before the operation Oij; Ngr is the number
of all groups of machines. The most widely used objective is to find feasible schedules that
minimize the completion time of the total production program, normally referred to as
makespan (Cmax).

www.intechopen.com

Some Results on Evolving Cellular Automata Applied to the Production Scheduling Problem

379

3. Formal definition cellular automata

A d-dimensional CA consists of a finite or infinite d-dimensional grid of cells, each of which

can take on a value from a finite, usually small, set of integers. The value of each cell at time

step t + 1 is a function of the values of small local neighborhood of cells at time t. The cells

update their state simultaneously according to a given local rule. Formally, a CA can be

defined as a quintuple (De Castro, 2006)

C = <S, s0, G, d, f>

where S is a finite set of states, s0∈ S are the initial states of the CA, G is cellular

neighborhood, d∈ Z+ is the dimension of C, and f is the local cellular interaction rule, also

referred to as the transition function or transition rule. Given the position of a cell i, where i is

an integer vector in a d-dimensional space (i∈Zd), in a regular d-dimensional uniform

lattice, or grid, its neighborhood G is defined by

Gi = {i, i+ r1, i+ r2,..., i+ rn}

where n is a fixed parameter that determines the neighborhood size, and rj is a fixed vector
in the d-dimensional space. The local transition rule f

f : Sn å S

maps the state si∈ S of a given cell i into another state from the set S, as a function of the
states of the cells in the neighborhood Gi. In a uniform CA, f is identical for all cells, whereas
in nonuniform CA, f may differ from one cell to another, i.e., f depends on i, fi. For a finite-
size CA of size N, where N is the number of cells in the CA, a configuration of the grid at
time t is defined as

C(t) = (s0 (t), s1(t),...,s N -1(t))

where si(t) is the state of cell i at time t. The progression of the CA in time is then given by
the iteration of the global mapping F

F : C(t) å C (t+1), t = 0,1,...

Through the simultaneous application in each cell of the local transition rule f, the global

dynamics of the CA can be described as a directed graph, referred to as the CA’ s state

space. One-and bi-dimensional CA are the most usually explored types of CA. In the one-

dimensional case, there are usually only two possible states for each cell, S = {0,1}. Thus, f is

a function f : {0,1} n å {0,1} and the neighborhood size n is usually taken to be n = 2r+1 such

that

si (t+ 1) = (si - r (t),...,si (t),...,s i + r (t))

where r∈Z+ is a parameter, known as the radius, representing the standard one-

dimensional cellular neighborhood.

www.intechopen.com

 Cellular Automata - Simplicity Behind Complexity

380

4. Evolving cellular automata for FJSP

4.1 Algorithm for evolving CA for FJSP

The general working principle of evolutionary algorithms is based on a program loop that
involves implementations of the operators mutation, recombination, selection, and fitness
evaluation on a set of candidate solutions for a given problem.
The algorithm which generates the schedule bases on two CAs. One is responsible for
construction sequencing operations on individual parts, and the other for the allocation of
machines to operation with interchangeably group machines.
The crossover operation is realized on the current and previous population using a definite
number of the best rules in the two above-mentioned populations. Half of that definite
number is taken from the current population, and the other half from the previous one.
Depending on the generated value and the determined intensity the re-writing of the values
from the current table to the previous one or vice versa takes place (no operation is also
possible). During the algorithm operation in a loop state changes of the CA are executed
basing on the transition tables.
They define the change of the current position of an element in the state table on the basis of
its current value. The repetition of the operation causes changes in the CA state, which
defines the sequence of technological operations and machines used. On the basis of those
state tables a proper schedule is generated (reservation of machines).
Genetic algorithm is applied in the CA algorithm – rule tables undergo selection and
crossover operations in the populations that follow.
The algorithm sequences the technological operations on a given set of parts of different
kinds using evolving CAs. This is realized with the use a genetic algorithm which performs
a selection of the so-called transition tables (i.e. rule tables, state change tables) of the two
cellular automata whose functions are described above.
The input parameters are: the number of the population of automata transition tables (rule
tables - RT), the number of populations, the number of transitions, the hybrid coefficient (the
number of the tables in the populations being crossed over with a given probability), the
hybridization intensity (the probability of the crossover operation on given elements of the
tables). Fig. 1 shows the flowchart of evolving CA used to create schedules.
The algorithm is based on two cellular automata: a) determination of machine allocation
from the interchangeable group for individual operations, b) determination of part sequence
for individual operations.
The CA state change is realized as follows. Let oi1,oi2 position in the state table (ST) where
oi1=0. We determine the value n = Operation i [oi1], where n = Operation i ST [oi1], which we
use to calculate D where D = Operation i R T [n]. We calculate this position oi2 from the
formula oi2 = (oi1 +D) mod N (where N – number of jobs). Next the value change in the CA
state table is realized on the above mentioned positions oi1, oi2:

Operation i ST [oi1] = Operation i ST [oi2];

eg. for oi1 = oi2 for the values 0 1 2 3 4 5 6 in the previous state table we have values 5 1 2 3 4
0 6 in the new state table. After the change is done we assume oi1 = oi2. All the last
permutations obtained as a result of the CA execution for each of the operations of all the
CA state tables create a schedule. The number of schedules in one iteration of the algorithm
is equal to number of populations. At the next stage schedule sorting takes place on the
basis of the value of the makespan as well as the their selection with a determined

www.intechopen.com

Some Results on Evolving Cellular Automata Applied to the Production Scheduling Problem

381

hybridization coefficient. As a result of those operations new rule tables for the next
iteration are obtained. The CA for machine choice in individual groups operates in a similar
way.

For each

population

is it the

last

cycle?

is it the last

operation?

Generate

random

transition tables

For each

transition table

in population

START

FINISH

Save the

transition tables

and CA states

of the previous

population

For each

operation

For each

CA cycle

is it the last

transition table in

the population?

is it the last

population?

Upgrade

machine

allocation

tables and

sequence

reservation

Cross-over N of

the best

transition tables

from the

previous

population

For each

transition table in

the population

Save the best

CA

configuration

Generate and

evaluate of

schedule

Select the best

configuration of

the last

population

Generate final

of schedule

is it the last

population?

TRUE

FALSE

TRUE

FALSE

TRUEFALSE

TRUE

FALSE

TRUE

FALSE

Fig. 1. Flowchart of evolving CA for flexible job shop scheduling.

4.2 Example

Examples of transition tables for the CA responsible for machine allocation from
technological groups for individual operations are shown in Fig. 2.

www.intechopen.com

 Cellular Automata - Simplicity Behind Complexity

382

Transition table: 0
Operation: 0 [2, 0, 5, 0, 4, 4, 2]
Operation: 1 [1, 1, 4, 5, 5, 2, 1]
Operation: 2 [5, 1, 5, 2, 6, 1, 5]
Operation: 3 [5, 2, 6, 0, 2, 2, 6]

Transition table: 1
Operation: 0 [2, 1, 6, 2, 0, 0, 3]
Operation: 1 [0, 2, 2, 5, 5, 4, 5]
Operation: 2 [1, 1, 0, 4, 0, 6, 3]
Operation: 3 [4, 3, 2, 3, 1, 3, 0]

Transition table: 2
Operation: 0 [4, 1, 2, 3, 0, 6, 1]
Operation: 1 [0, 0, 0, 2, 6, 0, 3]
Operation: 2 [6, 1, 2, 3, 5, 2, 0]
Operation: 3 [6, 5, 4, 3, 3, 6, 0]

Fig. 2. Automata transition tables (allocate machines)

Examples of transition tables for the CA responsible for operation sequence in a generated
schedule are shown in Fig. 3.

Transition table: 0
Operation: 0 [5, 4, 1, 0, 1, 2, 6]
Operation: 1 [3, 2, 2, 4, 0, 6, 5]
Operation: 2 [6, 2, 1, 5, 0, 3, 1]
Operation: 3 [4, 6, 2, 5, 2, 0, 6]

Transition table: 1
Operation: 0 [6, 5, 3, 0, 3, 2, 2]
Operation: 1 [6, 4, 0, 1, 5, 0, 3]
Operation: 2 [4, 1, 5, 3, 3, 4, 5]
Operation: 3 [6, 2, 6, 3, 6, 6, 4]

Transition table: 2
Operation: 0 [5, 2, 4, 6, 3, 2, 3]
Operation: 1 [2, 2, 6, 3, 2, 0, 4]
Operation: 2 [0, 2, 4, 2, 0, 3, 1]
Operation: 3 [5, 5, 6, 6, 3, 3, 5]

Fig. 3. Automata transition tables (sequence operations)

The use of machines (CA changes for the 10 consecutive states in a cycle of each table - left
column) and the operation sequence (CA changes for the next consecutive states in a cycle
of each table -right column) for one population are shown in Fig.4.

www.intechopen.com

Some Results on Evolving Cellular Automata Applied to the Production Scheduling Problem

383

State table: 0
Op: 0 [0, 0, -1, 0, -1, -1, -1] Op: 0 [0, 1, 2, 3, 4, 5, 6]

Op: 0 [1, 0, -1, 0, -1, -1, -1] Op: 0 [5, 1, 2, 3, 4, 0, 6]
Op: 0 [1, 0, -1, 0, -1, -1, -1] Op: 0 [5, 1, 2, 0, 4, 3, 6]
...
Op: 0 [1, 0, -1, 1, -1, -1, -1] Op: 0 [3, 6, 5, 0, 2, 1, 4]
Op: 0 [1, 0, -1, 2, -1, -1, -1] Op: 0 [3, 0, 5, 6, 2, 1, 4]

Op: 1 [0, 0, 0, -1, 0, -1, -1] Op: 1 [0, 1, 2, 3, 4, 5, 6]

Op: 1 [1, 0, 0, -1, 0, -1, -1] O p: 1 [2, 1, 0, 3, 4, 5, 6]
Op: 1 [1, 0, 0, -1, 0, -1, -1] Op: 1 [2, 1, 4, 3, 0, 5, 6]

..
Op: 1 [0, 0, 0, -1, 0, -1, -1] Op: 1 [4, 3, 6, 5, 0, 2, 1]
Op: 1 [1, 0, 0, -1, 0, -1, -1] Op: 1 [4, 3, 6, 5, 1, 2, 0]

Op: 2 [-1, -1, -1, 0, 0, 0, 0] Op: 2 [0, 1, 2, 3, 4, 5, 6]

Op: 2 [-1, -1, -1, 0, 0, 0, 0] Op: 2 [6, 1, 2, 3, 4, 5, 0]
Op: 2 [-1, -1, -1, 0, 0, 0, 0] Op: 2 [6, 1, 2, 3, 4, 0, 5]
...
Op: 2 [-1, -1, -1, 2, 1, 2, 1] Op: 2 [5, 6, 1, 2, 3, 0, 4]
Op: 2 [-1, -1, -1, 2, 1, 2, 2] Op: 2 [5, 6, 1, 2, 0, 3, 4]

Op: 3 [-1, -1, -1, -1, 0, 0, 0] Op: 3 [0, 1, 2, 3, 4, 5, 6]

Op: 3 [-1, -1, -1, -1, 0, 0, 0] Op: 3 [4, 1, 2, 3, 0, 5, 6]
Op: 3 [-1, -1, -1, -1, 0, 0, 0] Op: 3 [4, 0, 2, 3, 1, 5, 6]

...
Op: 3 [-1, -1, -1, -1, 1, 1, 1] Op: 3 [1, 0, 6, 4, 5, 2, 3]
Op: 3 [-1, -1, -1, -1, 1, 1, 1] Op: 3 [1, 2, 6, 4, 5, 0, 3]

State table: 1
Op: 0 [0, 0, -1, 0, -1, -1, -1] Op: 0 [0, 1, 2, 3, 4, 5, 6]

Op: 0 [1, 0, -1, 0, -1, -1, -1] Op: 0 [6, 1, 2, 3, 4, 5, 0]
Op: 0 [1, 0, -1, 0, -1, -1, -1] Op: 0 [6, 1, 2, 3, 4, 0, 5]

...
Op: 0 [2, 0, -1, 2, -1, -1, -1] Op: 0 [5, 6, 1, 2, 3, 0, 4]
Op: 0 [2, 0, -1, 2, -1, -1, -1] Op: 0 [5, 6, 1, 2, 0, 3, 4]

Op: 1 [0, 0, 0, -1, 0, -1, -1] Op: 1 [0, 1, 2, 3, 4, 5, 6]

Op: 1 [1, 0, 0, -1, 0, -1, -1] Op: 1 [2, 1, 0, 3, 4, 5, 6]
Op: 1 [1, 0, 0, -1, 0, -1, -1] Op: 1 [2, 1, 4, 3, 0, 5, 6]

..
Op: 1 [2, 0, 0, -1, 0, -1, -1] Op: 1 [4, 3, 6, 5, 0, 2, 1]
Op: 1 [2, 0, 0, -1, 0, -1, -1] Op: 1 [4, 3, 6, 5, 1, 2, 0]

Op: 2 [-1, -1, -1, 0, 0, 0, 0] Op: 2 [0, 1, 2, 3, 4, 5, 6]

Op: 2 [-1, -1, -1, 0, 0, 0, 0] Op: 2 [4, 1, 2, 3, 0, 5, 6]
Op: 2 [-1, -1, -1, 0, 0, 0, 0] Op: 2 [4, 0, 2, 3, 1, 5, 6]

www.intechopen.com

 Cellular Automata - Simplicity Behind Complexity

384

..
Op: 2 [-1, -1, -1, 2, 0, 0, 0] Op: 2 [1, 0, 6, 4, 5, 2, 3]
Op: 2 [-1, -1, -1, 2, 0, 0, 0] Op: 2 [1, 2, 6, 4, 5, 0, 3]

Op: 3 [-1, -1, -1, -1, 0, 0, 0] Op: 3 [0, 1, 2, 3, 4, 5, 6]

Op: 3 [-1, -1, -1, -1, 0, 0, 0] Op: 3 [6, 1, 2, 3, 4, 5, 0]
Op: 3 [-1, -1, -1, -1, 0, 0, 0] Op: 3 [6, 1, 2, 3, 4, 0, 5]

..
Op: 3 [-1, -1, -1, -1, 1, 1, 0] Op: 3 [5, 6, 1, 2, 3, 0, 4]
Op: 3 [-1, -1, -1, -1, 2, 1, 0] Op: 3 [5, 6, 1, 2, 0, 3, 4]

State table: 2
Op: 0 [0, 0, -1, 0, -1, -1, -1] Op: 0 [0, 1, 2, 3, 4, 5, 6]

Op: 0 [1, 0, -1, 0, -1, -1, -1] Op: 0 [5, 1, 2, 3, 4, 0, 6]
Op: 0 [1, 0, -1, 0, -1, -1, -1] Op: 0 [5, 1, 2, 0, 4, 3, 6]

..
Op: 0 [0, 0, -1, 0, -1, -1, -1] Op: 0 [3, 6, 5, 0, 2, 1, 4]
Op: 0 [0, 0, -1, 0, -1, -1, -1] Op: 0 [3, 0, 5, 6, 2, 1, 4]

Op: 1 [0, 0, 0, -1, 0, -1, -1] Op: 1 [0, 1, 2, 3, 4, 5, 6]

Op: 1 [1, 0, 0, -1, 0, -1, -1] Op: 1 [4, 1, 2, 3, 0, 5, 6]
Op: 1 [1, 0, 0, -1, 0, -1, -1] Op: 1 [4, 0, 2, 3, 1, 5, 6]
..
Op: 1 [0, 0, 0, -1, 0, -1, -1] Op: 1 [1, 0, 6, 4, 5, 2, 3]
Op: 1 [1, 0, 0, -1, 0, -1, -1] Op: 1 [1, 2, 6, 4, 5, 0, 3]

Op: 2 [-1, -1, -1, 0, 0, 0, 0] Op: 2 [0, 1, 2, 3, 4, 5, 6]

Op: 2 [-1, -1, -1, 0, 0, 0, 0] Op: 2 [0, 1, 2, 3, 4, 5, 6]
Op: 2 [-1, -1, -1, 0, 0, 0, 0] Op: 2 [0, 1, 2, 3, 4, 5, 6]
..
Op: 2 [-1, -1, -1, 1, 0, 0, 2] Op: 2 [0, 1, 2, 3, 4, 5, 6]
Op: 2 [-1, -1, -1, 1, 0, 0, 0] Op: 2 [0, 1, 2, 3, 4, 5, 6]

Op: 3 [-1, -1, -1, -1, 0, 0, 0] Op: 3 [0, 1, 2, 3, 4, 5, 6]

Op: 3 [-1, -1, -1, -1, 0, 0, 0] Op: 3 [5, 1, 2, 3, 4, 0, 6]
Op: 3 [-1, -1, -1, -1, 0, 0, 0] Op: 3 [5, 1, 2, 0, 4, 3, 6]
..
Op: 3 [-1, -1, -1, -1, 1, 0, 0] Op: 3 [3, 6, 5, 0, 2, 1, 4]
Op: 3 [-1, -1, -1, -1, 2, 0, 0] Op: 3 [3, 0, 5, 6, 2, 1, 4]

Fig. 4. CA changes for the 10 consecutive states

The numbers in the left column of the tables stand for the number of the machine in a
group, and their indexes (i.e. allocation in the table) are the numbers of the parts. The
numbers in the right column of the tables stand for the sequence of individual parts in a
given operation and their indexes (i.e. allocation in the table) are the numbers of the parts.
Value (-1) in the left column of the tables stands for lack of machine participation in a given
operation with a given part. Value (-1) in the right column would stand for lack of
processing of a part in a given operation. All the (-1) values are ignored in the state change

www.intechopen.com

Some Results on Evolving Cellular Automata Applied to the Production Scheduling Problem

385

procedure of the CA, and does not participate in the machine allocation procedure. For each
iteration makespan is determined for the generated schedule, on the basis of the final states
of both automata.
All the makespanes for each schedule from a population are recorded and compared in
order to select the best schedule from the current population. If it is not the final
population then the best rule tables are crossed over in order to generate the best
schedules from the current and previous population. In each iteration summary time
realize of all operations (makespan) for generate schedule on basis final state two cellular
automata is determinated. All makespanes for each schedule with population are writing
and compare to aim choice best schedule among current populations. If population no is
latest we realize crossower operation best rule table which lead for generated best
schedules with current and previous populations. Half given number is taken with
current population, and second half with previous population. Depending to generated
value and given intensity follows determine values with current table to previous table or
vice versa (is possible lack operation).

5. Computational results

5.1 Comparative study of cellular automata for FJSP

Two types of routing were considered: a serial and a parallel one. In a serial route an entire
batch of parts is processed on one machine and only when all of the products in the batch
have been processed are they sent to the next machine. In a parallel route individual items
of the batch are sent to the next machines as soon as they have been processed on the
previous machine.
The research was carried out on a computer with an Intel Core2 2.4 GHz processor and 2047
MB of RAM for the following settings of the CA algorithm: size of population = 1000;
number of iterations = 100; number of transitions = 1000; hybridization ratio = 0.9; and
intensity of hybridization = 0.9.
For solution of FJSP problem special software to realize the CA algorithm have been created.
Computer experiments were carried out for data presented in (Witkowski, 2005) – where the
number of operations is 160, and the number of machines 26.
The experiments have been carried out for the hybridization ratio: 0,1; 0,5; 0,9 and the
intensity of hybridization equal to 0,1; 0,5; 0,9. The simulation of each test problem was run
with the SP population size equal to 10, 100, 1000, the RT transition rate was equal to 10,
100, 1000, and the IN iteration number was equal to 10, 100, 1000. Besides, in some cases the
values of SP, RT and IT reached 10000.
The following symbols for signed algorithm parameters: SP - size of population; IT -
number of iterations; RT - number of transitions; HR - hybridization ratio; and IH - intensity
of hybridization have been used. Individual SP, IT and RT parameters assume one of the
values from the set {10, 100, 1000}; moreover HR and IH from the sets{(0,1; 0,1); (0,5; 0,5)
and (0,9; 0,9)} respectively.
 For IT, SP and RT values we assume the following linguistic variables : N – low value, S –
medium value, D – high value (V – very high value – in some combinations of parameters).
In this way 27 combinations with parameters of the algorithm were created (fig. 5) For
example. one of such combinations is IT(M)-SP(S)-RT(D), etc..
Table 1 shows some of the results (with the SP (D) value) for the test parameters of the CA
algorithm.

www.intechopen.com

 Cellular Automata - Simplicity Behind Complexity

386

iter. min. average max. avg. time [sec.]

66295.6 71146.1 71852.0 69426.5 69729.6

69158.2 68452.7 69949.2 66517.3 70295.7

67436.6 63232.1 65860.1 69623.8 63542.7

66320.0 68723.9 65948.9 66832.0 66516.2

66305.5 66918.2 64587.4 65644.4 63057.3

67373.0 68121.8 66553.8 67074.6 66126.4
68121.8 10201000 63057.3 66176.2

100 63232.1 66403.6 69623.8 102

hybridization ratio = 0.9; intensity of hybridization = 0.9.

size of the population = 1000; number of transitions = 10.

Makespan

10 66295.6 69282.3 71852.0 10

iter. min. average max. avg. time [sec.]

72254,0 68692,3 72917,7 69880,7 69518,9

71397,2 66240,2 67804,5 68055,5 67732,4

70885,2 68269,0 63363,8 65451,6 70035,0

67585,8 67766,4 66859,0 68564,2 64747,8

66239,3 68417,1 69373,5 68334,9 62826,0

69118,0 69067,4 68188,7 67135,2 66453,5
10681000 62826,0 67515,4 69373,5

72917,7 10

100 63363,8 67352,8 70885,2 106

Makespan

10 66240,2 69449,3

hybridization ratio = 0.9; intensity of hybridization = 0.9.

size of the population = 1000; number of transitions = 100.

iter. min. average max. avg. time [sec.]

70217.3 66442.4 68170.6 69813.4 65720.8

63161.2 71086.2 72199.9 68404.2 72895.0

67537.3 62753.4 71358.4 67292.3 67810.3

69405.4 66784.8 65753.1 68183.8 65540.8

64347.2 63539.3 66144.4 66560.0 69469.2

67208.2 70579.7 66920.0 67386.3 68679.3
70579.7 15641000 63539.3 67083.4

15

100 62753.4 67242.0 71358.4 156

10 63161.2 68811.1 72895.0

hybridization ratio = 0.9; intensity of hybridization = 0.9.

size of the population = 1000; number of transitions = 1000.

Makespan

Table 1. Some of the results (with the SP (D) value) for the test parameters of the CA
algorithm (serial route)

www.intechopen.com

Some Results on Evolving Cellular Automata Applied to the Production Scheduling Problem

387

Figure 5 summarizes the results for the test problems that were run with the evolving
cellular automata algorithm for the serial route.

0.1; 0.1

0.5; 0.5

0.9; 0.9

81662,7

81044,9

78554,2

IT SP RT

1000

100

10

0.1; 0.1

0.5; 0.5

0.9; 0.9

77798,7

76117,5

78357,8

IT SP RT

1000

100

10

0.1; 0.1

0.5; 0.5

0.9; 0.9

79498,8

77680,8

76975,0

IT SP RT

1000

100

10

0.1; 0.1

0.5; 0.5

0.9; 0.9

83589,0

83247,5

81261,1

IT SP RT

1000

100

10

0.1; 0.1

0.5; 0.5

0.9; 0.9

79370,1

81223,4

80910,9

IT SP RT

1000

100

10

0.1; 0.1

0.5; 0.5

0.9; 0.9

80219,5

83431,1

77384,0

IT SP RT

1000

100

10

0.1; 0.1

0.5; 0.5

0.9; 0.9

82118,8

79335,4

83613,9

IT SP RT

1000

100

10

0.1; 0.1

0.5; 0.5

0.9; 0.9

81935,2

78669,3

78325,0

IT SP RT

1000

100

10

0.1; 0.1

0.5; 0.5

0.9; 0.9

78687,1

82720,1

80292,7

IT SP RT

1000

100

10

0.1; 0.1

0.5; 0.5

0.9; 0.9

76069,6

75395,4

74073,0

IT SP RT

1000

100

10

0.1; 0.1

0.5; 0.5

0.9; 0.9

69121,4

70828,1

70462,8

IT SP RT

1000

100

10

0.1; 0.1

0.5; 0.5

0.9; 0.9

71081,5

70800,4

70602,6

IT SP RT

1000

100

10

0.1; 0.1

0.5; 0.5

0.9; 0.9

74129,5

76410,9

74623,5

IT SP RT

1000

100

10

0.1; 0.1

0.5; 0.5

0.9; 0.9

70526,7

73550,7

73124,9

IT SP RT

1000

100

10

0.1; 0.1

0.5; 0.5

0.9; 0.9

72133,1

72126,3

73429,8

IT SP RT

1000

100

10

www.intechopen.com

 Cellular Automata - Simplicity Behind Complexity

388

0.1; 0.1

0.5; 0.5

0.9; 0.9

75249,7

73438,5

75201,3

IT SP RT

1000

100

10

0.1; 0.1

0.5; 0.5

0.9; 0.9

72750,8

72288,4

71287,6

IT SP RT

1000

100

10

0.1; 0.1

0.5; 0.5

0.9; 0.9

73102,2

73647,3

72543,6

IT SP RT

1000

100

10

0.1; 0.1

0.5; 0.5

0.9; 0.9

69027,6

69151,0

69282,3

IT SP RT

1000

100

10

0.1; 0.1

0.5; 0.5

0.9; 0.9

67350,0

66859,7

66403,6

IT SP RT

1000

100

10

0.1; 0.1

0.5; 0.5

0.9; 0.9

66282,5

66526,8

66176,2

IT SP RT

1000

100

10

0.1; 0.1

0.5; 0.5

0.9; 0.9

69748,7

69836,3

69449,3

IT SP RT

1000

100

10

0.1; 0.1

0.5; 0.5

0.9; 0.9

68200,7

67070,3

67352,8

IT SP RT

1000

100

10

0.1; 0.1

0.5; 0.5

0.9; 0.9

66575,2

66756,9

67515,4

IT SP RT

1000

100

10

0.1; 0.1

0.5; 0.5

0.9; 0.9 68811,1

70648,9

69980,9

IT SP RT

1000

100

10

0.1; 0.1

0.5; 0.5

0.9; 0.9 67242,0

67888,8

68057,5

IT SP RT

1000

100

10

0.1; 0.1

0.5; 0.5

0.9; 0.9 67083,4

67882,8

67532,3

IT SP RT

1000

100

10

Fig. 5. The results for the test problems that were run with the evolving cellular automata
algorithm (serial route)

We can generally see that depending on the PS population size we can single out 3 classes of

quality results (with regard to the Cmax criterion) - very good (large population size), average

(medium population size) and poor (small population size). Moreover an increase of the IT

value influences the Cmax more than the RT value, although there are a number of exceptions.

The best results of Cmax are always obtained at SP(D) regardless of the IT or RT values. Eg.

at SP(D) value the best Cmax is achieved for combination IT(D)-SP(D)-RT(M) rather than for

IT(M)-SP(D)-RT(D); at SP(D) value the best Cmax is achieved for combination IT(S)-SP(D)-

RT(M) rather than for IT(M)-SP(D)-RT(S); at SP(D) value the best Cmax is achieved for

combination IT(D)-SP(D)-RT(S) rather than for IT(S)-SP(D)-RT(D). It should be noted that

www.intechopen.com

Some Results on Evolving Cellular Automata Applied to the Production Scheduling Problem

389

for combination IT(D)-SP(D)-RT(D) an insignificantly poor Cmax is achieved than for eg.

IT(D)-SP(D)-RT(M).

The worst results of Cmax are always obtained at SP(M) regardless of the IT or RT values.
Eg. at SP(M) value the best Cmax is achieved for combination IT(D)-SP(M)-RT(M) rather
than for IT(M)-SP(M)-RT(D); moreover for combination IT(S)-SP(M)-RT(D) the Cmax values
are better than for IT(D)-SP(M)-RT(S) – while the pair (HR,IH) = (0,5:0,5), and the Cmax is
worse while the pair (HR,IH) = (0,1;0,1). For combination IT(S)-SP(M)-RT(M) the Cmax
values are clearly better than for IT(M)-SP(M)-RT(S). We can also see that for IT(D)-SP(D)-
RT(D) an insignificantly poor Cmax is achieved than eg. for IT(D)-SP(D)-RT(M).
Analizing the influence of SP on the Cmax we can observe the following behaviour of the CA
algorithm. An increase of the SP value from 10 to 100 decreases the average value of Cmax
from ca. 82000 to 74000 min., i.e. by about 8000 min. An increase of the SP value from 100
to 1000 decreases the average Cmax value from 74000 to 69000 min. - by about 5000 min. Thus
an increase of the SP value from 10 to 1000 decreases the average Cmax value from 82000 to
69000 min. i.e. by about 13000 min. We can see that the increase from 100 to 1000 results in a
slower decrease of Cmax (i.e. by about 5000 min.) than the change of the SP value from 10 to
100 (i.e. about 8000 min.).
Let us consider the influence of IT on the Cmax value. For combinations with SP(M) and
RT(M) an increase of IT from 10 to 100 results in a decrease of Cmax from 80000 to 77000
min., i.e. by ca. 3000 min. An IT increase from 100 to 1000 results in an insignificant
decrease of Cmax - by about 500 min. - and while the pair (HR,IH) = (0.5;0,5) in an increase of
Cmax. For combination with SP(S) and RT(M) the change of IT from z 10 to 100 gives an
decrease of Cmax from 75000 to 70000 min., i.e by ca. 5000 min.; moreover an increse of the IT
value from 100 to 1 000 gives an insignificant decrease of Cmax while (HR,IH) = (0.5;0,5) and
a decrease of Cmax while (HR,IH) = (0,1;01) and (HR,IH) = (0,9;0,9). At SP(D) and RT(M)
values the increase of IT from 10 to 100 gives a decrease of Cmax from 69000 to 67000 min.,
ie. by ca. 2000 min. An increase of IT from 100 to 1000 decreases the Cmax from 67000 to
66500 min. for combinations IT(M)-SP(D)-RT(M), IT(S)-SP(D)-RT(M) and IT(D)-SP(D)-
RT(M). A similar situation occurs for combinations IT(M)-SP(D)-RT(D), IT(S)-SP(D)-RT(D)
and IT(D)-SP(D)-RT(D).
An increase of the IT value in most cases improves the Cmax value eg. for combinations at
SP(D), but there are also exceptions. For combination IT(S)-SP(D)-RT(S) we have better Cmax
than for IT(M)-SP(D)-RT(S). Moreover the Cmax value increases in the following order: from
IT(D)-SP(D)-RT(M) to IT(S)-SP(D)-RT(M) to IT(M)-SP(D)-RT(M). An increase of the IT value
does not always result in a better Cmax. For example dla Cmax with average values i.e. with
combinations which have the medium parameter SP(S) combination IT(S)-SP(S)-RT(S) gives
a better Cmax than IT(D)-SP(S)-RT(S) and combination IT(S)-SP(S)-RT(D) gives a better Cmax
than IT(D)-SP(S)-RT(D). Moreover combination IT(S)-SP(S)-RT(M) gives a better Cmax than
IT(D)-SP(S)-RT(M) while the pair (HR,IH) = (0,1;0,1) and the pair (HR,IH) = (0,9;0,9).
The increase of the RT value both increases and decreases the Cmax value. For example
combination IT(M)-SP(S)-RT(D) gives a better Cmax than IT(M)-SP(S)-RT(S) while the pair
(HR,IH) = (0,5;0,5) and IT(S)-SP(S)-RT(D) gives a better Cmax than IT(S)-SP(S)-RT(M) while
the pair (HR,IH) = (0,5;0,5) and (HR, IH) = (0,9;0,9). We can also note the following cases:
combination IT(D)-SP(S)-RT(D) gives better values of Cmax than IT(D)-SP(S)-RT(S); IT(D)-
SP(M)-RT(S) gives better Cmax than IT(D)-SP(M)-RT(M) while the pair (HR,IH) = (0,9;0,9);
IT(D)-SP(M)-RT(D) gives a better Cmax than IT(D)-SP(M)-RT(S) while the pair (HR,IH) =
(0,5;0,5) and (HR,IH) = (0,9;0,9); IT(S)-SP(M)-RT(D) gives a better Cmax than IT(S)-SP(M)-

www.intechopen.com

 Cellular Automata - Simplicity Behind Complexity

390

RT(S) while the pair (HR,IH) = (0,5;0,5) and (HR,IH) = (0,9;0,9); IT(M)-SP(M)-RT(D) gives a
better Cmax than IT(M)-SP(M)-RT(M) while (HR, IH) = (0,1;0,1) and (HR, IH) = (0,9;0,9) and a
better Cmax than IT(M)-SP(M)-RT(M) while (HR,IH) = (0,5;0,5).
For IT(D)-SP(D)-RT(S) the CA algorithm gives a better Cmax than for IT(D)-SP(D)-RT(D).
Similarly combination IT(S)-SP(D)-RT(M) gives a better Cmax than IT(S)-SP(D)-RT(S) and
IT(M)-SP(D)-RT(M) gives a better Cmax than IT(M)-SP(D)-RT(S).
In the group of poorest Cmax values (with SP(M) value) we can observe that the best Cmax are
achieved while the pair (HR,IH) = (0,1;0,1) - 3 times, while the pair (HR,IH) = (0,5;0,5) - twice
and while the pair (HR,IH) = (0,9;0,9) - 4 times; moreover the worst Cmax is achieved while
the pair (HR,IH) = (0,1;0,1) - 3 times, while the pair (HR,IH) = (0,5;0,5) - 4 times and while
the pair (HR, IH) = (0,9;0,9) - twice.
In the group of average Cmax values (with P(S) value) we can obeserve that the best Cmax is
achieved while the pair (HR,IH) = (0,1;0,1) - 3 times, while the pair (HR,IH) = (0,5;0,5) –
twice and while (0,9;0,9) – 4 times; moreover the worst Cmax is achieved while the pair
(0,1;0,1) - 4 times, the pair is (0,5;0,5) - 4 times and the pair is (0,9;0,9) - once.
In the group of the best Cmax values (with SP(D)) we can see that the CA algorithm gives the
best Cmax values while the pair is (0,1;0,1) - twice, (0,5;0,5) - once and at pair (0,9;0,9) –
3 times; moreover the worst Cmax (with SP(M)) is achieved while the pair is (0,1;0,1) -
4 times, while (0,5; 0,5) - 3 times and while (0,9;0,9) - twice.
Below we present some results achieved when applying higher values of SP, IT and RT
than in the main experiment - (ie. SP(V), IT(V), RT(V) values equal 10000).
At SP(V) when the SP increase is from 1000 to 10000 the average value of Cmax decreases
significantly from 69151 to 66060 min. for combination IT(M)-SP(V)-RT(M) compared to
IT(M)-SP(D)-RT(M) and from 66859 to 63739 min. for IT(D)-SP(V)-RT(M) compared to
IT(D)-SP(D)-RT(M) while the pair (HR,IH) = (0,5;0,5). While the pair (HR,IH) = (0,5;0,5) for
combination IT(M)-SP(V)-RT(S) a decrease of Cmax is achieved from 69836 to 67456 compared
to IT(M)-SP(D)-RT(S). For combination IT(S)-SP(V)-RT(S) a decrease of Cmax is achieved
from 67070 to 64626 min. compared to IT(S)-SP(D)-RT(S). Similarly for combination IT(M)-
SP(V)-RT(D) a decrease of Cmax is achieved from 69980 to 67351 compared IT(M)-SP(D)-
RT(D), and for combination IT(S)-SP(V)-RT(D) a decrease of Cmax was achieved from 68057
to 63840 min. compared to IT(S)-SP(D)-RT(S). For combination IT(M)-SP(V)-RT(D) a
decrease of Cmax was achieved from 69980 to 67351 min. compared to IT(M)-SP(D)-RT(D),
and for combination IT(S)-SP(V)-RT(D) a decrease of Cmax - from 68057 to 63840 min.
compared to IT(S)-SP(D)-RT(S).
When analizing the influnece of IT(V) on Cmax we can note that almost in all the analized
cases the an icrease from IT(D) to IT(V) gives an insignificant decrease of the Cmax value eg.
for combination IT(V)-SP(D)-RT(M) compared to IT(D)-SP(D)-RT(M), this change is equal to
70800-70407= 393 min.; for combination IT(V)-SP(M)-RT(D) compared to IT(D)-SP(M)-
RT(D) the change is equal to 83431-82657 = 774 min.; for combination IT(V)-SP(D)-RT(D)
compared to IT(D)-SP(D)-RT(D) the change is equal to 72126-71315 = 811 min.; for
combination IT(V)-SP(M)-RT(D) compared to IT(D)-SP(M)-RT(D) the change is equal to
82720-77636= 5084 min.; and for combination IT(V)-SP(S)-RT(D) compared to IT(D)-SP(S)-
RT(D) the change is equal to 73647-72 115 = 1432 min.
When analizing the influnece of RT (V) eg. in combinations IT(M)-SP(M)-RT(V) at RT(D) we
can observe both increases and decreases of the Cmax value.
For combinations with the SP(D) value (fig. 5) the CA algorithm has a better Cmax in all
cases as compared to the combinations with the SP(M) value and has a better Cmax in almost
all cases as compared to the combinations with the SP(S) value - as it can be seen in fig. 5.

www.intechopen.com

Some Results on Evolving Cellular Automata Applied to the Production Scheduling Problem

391

For combinations with the SP(S) value (fig. 5) the CA algorithm has a better Cmax in almost
all cases as compared to the combinations with the SP(M) value and has a worse Cmax in all
cases as compared to the combinations with SP(D).
For combinations with the SP(M) value (fig. 5) the CA algorithm has a worse Cmax in almost
all cases as compared to the combinations with the SP(S) value and has a worse Cmax in all
cases as compared to the combinations with SP(D).
Overall, the CA algorithm for combinations with the SP(D) value produces solutions of
better optimality compared to the CA algorithm for combinations with the SP(S) value and
significantly better than with SP(M).
For the problem being solved Gantt charts with the one of best makespan value have been
constructed: with machines (Fig. 6), and with parts (Fig.7) while the route is serial.

Fig. 6. The Gantt chart for the problem solved for machines (serial route)

Fig. 7. The Gantt chart for the problem solved for parts (serial routes)

5.2 Comparison of the CA with a genetic algorithm for FJSP
The results obtained with the evolving cellular automata algorithm and genetic algorithm
have been compared. A genetic algorithm is characterized by a parallel search of the state
space by keeping a set of possible solutions under consideration, called a population. A new
generation is obtained from the current population by applying genetic operators such as
mutation and crossover to produce new offspring. The application of a GA requires an
encoding scheme for a solution, the choice of genetic operators, a selection mechanism and
the determination of genetic parameters such as the population size and probabilities of
applying the genetic operators.

www.intechopen.com

 Cellular Automata - Simplicity Behind Complexity

392

In our test, we use the genetic algorithm tested in Witkowski et. al (2004, 2007), where there
is a more detailed description of the algorithm. Here, we use the recommended parameters,
in particular we use a mutation probability of 0.8 and a crossover probability of 0.2.
Figure 8 shows some of the best results for of the CA algorithm, and Table 2 shows some
ofthe results for the GA algorithm (serial route).

1

makespan : 66282,5

0.1; 0.1

2

makespan : 66575,2

3

makespan : 67350,0

0.5; 0.5

makespan : 66526,8

makespan : 66756,9

makespan : 66859,7

0.9; 0.9

makespan : 66176,2

makespan : 66403,6

makespan : 67083,4

IT SP RT

1000

100

10

IT SP RT

1000

100

10

IT SP RT

1000

100

10

IT SP RT

1000

100

10

IT SP RT

1000

100

10

IT SP RT

1000

100

10

IT SP RT

1000

100

10

IT SP RT

1000

100

10

IT SP RT

1000

100

10

Fig. 8. Some of the best results for the test parameters of CA algorithm (serial route)

Experiment

number
Number of
generations

Min imum
makespan

[min]

Number of
schedules

Average
makespan

[min]

 1 42 59830 595 64380

 2 28 69211 142 74443

 3 44 62664 210 69384

 4 40 67199 120 69230

 5 19 64615 421 69657

 6 6 58734 768 64459

 7 46 63438 330 67457

 8 46 57636 630 61238

 9 33 60236 646 70858

Average 34 62618 67901

Table 2. Some of the results for the GA algorithm (serial route)

www.intechopen.com

Some Results on Evolving Cellular Automata Applied to the Production Scheduling Problem

393

In the experiments with the CA algorithm (parallel route) simulations of each test problem
were run with the SP population size equal to 10, 100, 1000, the RT transition rate equal to
10, 100, 1000, and the IN iteration number equal to 10, 100, 1000. Each experiment was
repeated 10 times.

iter. min. average max. avg. time [sec.]

37543.2 38625.2 36427.7 38969.5 37880.1

38976.1 41153.0 39895.2 39895.2 39872.7

37661.2 37281.3 36120.0 37456.5 36597.7

36350.0 37029.1 37433.0 38124.6 38143.9

36300.6

10 36427.7 38923.8 41153.0 42

hybridization ratio = 0.9; intensity of hybridization = 0.9.

size of the population = 1000; number of transitions = 10.

Makespan

100 36120.0 37219.7 38143.9 420

36330.6 42011000

Table 3. Some of the results (with SP (D) value) for the test parameters of the CA algorithm
(parallel route)

For the problem being solved Gantt charts with the one of best makespan value have been
showed with machines (Fig. 6) while the route is parallel.
In the experiments with the GA algorithm (parallel route) we have used the following:
mutation type – single-swap; crossover type - order-based; selection type – roulette. The
experiment series was carried out with the following parameters: population size– 1000;
generation number - 50. Each experiment was repeated 9 times.
Tabele 4 shows the results for the GA algorithm.

PM 1/ PC 1/ Value of Cmax for different parameters of the GA algorithm [min]

1000 1000 1 2 3 4 5 6 7

512 128 37545 36724 38155 37585 35637 39430 38822

1000 450 38926 38543 37084 37065 38862 38588 40597

192 256 37368 40725 41188 38902 40709 39457 38531

96 353 37729 38707 40275 37866 39706 39514 39915

256 450 40018 35124 39795 38777 37631 38515 38777

64 256 40359 38339 36397 37939 38109 38610 39853

128 64 39775 38181 40018 37210 40112 39615 38968

16 256 41088 38055 40519 40566 39857 37301 39629

8 128 40200 41239 39281 40422 39025 40047 41556

8 256 40942 38210 38390 40132 39879 39890 35470

8 450 36868 39628 39560 39932 39959 38842 40078

32 450 37158 40589 40653 37440 37855 38031 39183

32 256 39961 38647 41262 40165 39269 35166 39483

32 128 40567 40193 39226 39579 40423 38843 39825

64 128 42941 38274 39981 39491 40111 39908 37428

www.intechopen.com

 Cellular Automata - Simplicity Behind Complexity

394

64 256 38145 38874 36901 39209 38915 40416 39649

64 450 39013 39672 39344 40236 39826 39775 41053

128 353 38671 38903 39186 39422 37540 36506 38223

512 353 40968 39619 40180 39583 38870 40559 36429

192 256 37466 39257 38295 38501 38132 40304 39477

96 256 39444 38595 38905 38402 38774 38134 39817

64 353 37770 38677 39667 40263 39317 37676 39445

16 353 39930 39980 41221 38075 38681 39236 40329

280 130 40586 39648 36805 38176 38239 36077 39873

280 370 39253 38892 38222 38726 38130 40813 39168

840 130 41824 37050 33949 37923 37435 38013 38712

910 370 37426 37692 38223 38467 37562 40862 39039

8 64 38436 41069 37987 39287 38690 39993 39042

16 64 37505 38351 36647 39846 34738 40428 39065

32 64 38554 39284 38144 38171 41728 39474 38144

64 64 40415 39862 36583 38454 36264 39039 40426

96 64 40342 39791 39055 39394 39872 38728 37385

192 64 40652 36435 38656 40164 38549 37849 37345

256 64 40814 38851 40186 40448 39435 41031 37419

280 64 38278 38972 38653 38102 37330 38661 39112

512 64 38788 37774 39794 38820 40603 39224 39700

840 64 40521 38146 37848 38323 38501 38126 37391

910 64 39983 39467 38609 35735 38880 37447 41173

1000 64 38465 40961 36692 38726 39597 38493 37194

16 128 38645 38577 39785 39314 39181 39658 37034

96 128 40260 39932 39688 39593 39786 38340 38967

128 128 39873 39150 37624 39528 40273 38549 40675

192 128 38559 39003 36695 40691 38635 39235 39041

840 128 38322 39987 37723 40669 39489 38108 39049

910 128 37698 39438 37920 35857 40082 39579 34667

1000 128 38599 39670 39822 37052 38917 38312 40619

8 130 38254 39256 37131 37520 40000 39848 39644

16 130 41453 38340 37480 40308 37198 40346 39298

32 130 38986 39323 39196 39646 40179 38961 38651

64 130 38597 38765 39151 40179 39599 38224 40713

96 130 41377 38974 40071 39615 38247 40970 39434

128 130 40669 40836 39114 40808 39476 37848 38918

192 130 38561 39158 39877 39820 39020 38387 40398

256 130 36108 37828 38378 40828 38998 40361 38449

512 130 38935 39359 37933 33549 37184 40117 39846

www.intechopen.com

Some Results on Evolving Cellular Automata Applied to the Production Scheduling Problem

395

910 130 38595 40498 40037 39457 38055 37419 39086

1000 130 38604 37872 39596 39220 39818 38110 39327

128 256 35614 38756 37070 40614 40770 38541 39979

256 256 39891 39413 35647 38149 38485 41064 40019

280 256 38330 36906 37492 39298 39913 39255 39768

512 256 39951 39321 39691 37334 36105 36620 40355

840 256 38195 39439 39945 40077 40545 38156 36714

910 256 39265 40465 37356 40592 39022 31701 38760

1000 256 41797 40467 40199 37534 37890 39089 38813

8 353 38198 38215 39587 40206 37049 37457 37841

32 353 38420 38526 38422 36501 39419 37903 39557

192 353 39418 39418 35429 39043 39223 40586 39113

256 353 39693 38591 39548 37636 39295 39853 38624

280 353 37849 35995 39018 38860 37544 38312 37608

840 353 37159 37159 39290 39942 38015 37159 38966

910 353 41668 34752 39535 37406 39493 37733 38185

1000 353 39868 40506 38434 39869 38237 39632 38582

8 370 40255 38051 39140 38494 40274 38577 40698

16 370 39564 40285 39366 39737 39077 36294 40451

32 370 39253 40837 39576 37373 41460 38928 36018

64 370 38105 38778 39236 39644 36098 38552 40660

96 370 36646 39237 38242 36963 40197 38688 39378

128 370 39074 39184 38297 39650 40936 37823 38687

192 370 39305 36835 40083 41108 39513 38629 38312

256 370 38860 41255 42417 39995 34023 40120 37957

512 370 39695 40118 38358 39824 40379 40349 39603

840 370 40084 38184 37808 38206 37710 40083 38468

1000 370 38875 38661 40703 36498 38493 38535 37560

16 450 38756 39286 38315 39106 38933 40246 35516

96 450 35559 38088 39556 38268 40046 37104 40137

128 450 38532 40352 38448 42062 39222 38763 39441

192 450 39985 41215 40856 36504 40110 35746 39633

280 450 37565 38601 39134 39571 41389 38153 37565

512 450 38871 38547 38282 39381 39058 37768 37832

840 450 39854 38626 39132 33809 38059 40107 32947

910 450 36160 39825 38749 38673 39747 37460 39459

Tabele 4. Results (value Cmax) for different parameters of the GA algorithm

The experiments showed that for CA algorithm we can achieve results similar to the GA
algorithm – both for the serial route and parallel routes.

www.intechopen.com

 Cellular Automata - Simplicity Behind Complexity

396

Fig. 9. Gantt chart for the solving problem with parallel route (for machines)

6. Conclusion

The paper presents an algorithm based on evolving cellular automata for solving flexible job
shop scheduling problem. The presentation of the algorithm CA and its comparison with
the GA algorithm shows positive results. The software of this algorithm allows for analysis
of the schedule construction process for many variants reflecting a variety of combinations
of other factors. We can generally see that depending on the PS population size we can
single out 3 classes of quality results with regard to the Cmax criterion - very good (large
population size), average (medium population size) and poor (small population size).
Moreover an increase of the IT value influences the Cmax more than the RT value, although
there are a number of exceptions..
In addition, we observed that for our specialized FJSP problem the trajectory methods (e.g.
tabu search, simulated annealing, GRASP) have better efficiency than the CA algorithm,
particularly when those algorithms are used in hybrid approaches [Witkowski et al., 2005a,
2005b, 2006]. Experiments for the analyzed FJSP problem indicate that the evolving cellular
automata algorithm is comparable with such population-based methods as the genetic
algorithm. Morover, the successful use of this approach will also depend on the amount of
calculation that can be done and on further improvement of this algorithm for our problem.

7. References

Fattahi,P., Mehrabad, M.S. & Jolai, F. (2007). Matemathical modeling and heuristic
approaches to flexible job shop scheduling problems. Journal Intel. Manufacturing,
Vol. 18, pp. 331-342

Kacem, I., Hammandi, S. & Borne, P. (2002). Approach by localization and multiobjective
evolutionary optimization for flexible job shop scheduling problems, IEEE T.
System Man Cybernetics C., Vol. 32, pp.1-13

Liu, H., Abraham, A., Choi, O. & Moon, S.H. (2006). Variable Neighborhood Particle Swarm
Optimization for Multi-objective Flexible Job-Shop Scheduling Problems, In T.-D.
Wang et al. (eds), SEAL 2006, LNCS 4247, pp. 1997-2004.

Ong, Z.X., Tay, J.C. & Kwoh, C.K. (2005). Applying the Clonal Selection Principle to Find
Flexible Job Shop Schedules ”, ICARIS 2005, LNCS 3627, pp. 442-455

www.intechopen.com

Some Results on Evolving Cellular Automata Applied to the Production Scheduling Problem

397

Preissl, R. (2006). A Parallel Approach For Solving The Flexible Job Shop Problem With
Priority Rules Developed By Genetic Programming, Master’s thesis, J. Kepler
University, Linz

Shi-Jin, W., Bing-Hai, Z. & Li-Feng, X. (2008). A filtered-beam-search-based heuristic
algorithm for flexible job shop scheduling problem. International Journal Production
Research, Vol. 46, pp. 3027-3058

Tay, J.C.& Ho, N.B. (2008). Evolving dispatching rules using genetic programming for
solving multi-objective flexible job shop problems”, Comput. Ind. Eng., Vol. 54, pp.
453-473

Yazdani, M., Gholami, M., Zandieh, M. & Mousakhani, M. (2009). A simulated Annealing
Algorithm for Flexible Job Shop Scheduling Problem, Journal of Applied Sciences, pp.
1-9

Affenzeller, M. & Wagner, S. (2004). SASEGASA: A New Genetic Parallel Evolutionary
Algorithm for Achieving Highest Quality Results. Journal of Heuristics-Special Issue
on New Advances on Parallel MetaHeuristics for Complex Problem, Vol. 10, pp. 239-2630

Back, D., Fogel, B. & Michalewicz Z. (eds.) (1997). Handbook of Evolutionary Computation,
Oxford University Press and Institute of Physics Publishing, Bristol-NY

Beham, A., Winkler, S., Wagner, S. & M. Affenzeller, M. (2008). A Genetic Programming
Approach to Solve Scheduling Problems with Parallel Simulation. Parallel and
Distributed Processing, pp. 1-5.

Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by Natural Selection,
MIT Press, Cambridge

Mitchell, M., & Forrest, S. (2005). Genetic Algorithms and Artificial Life, Artificial Life. An
Overview. , G. Langton (Ed.), MIT Press, 1995.

Mitchell, M., Crutchfield, J. & R. Das, R. (1996). Evolving Cellular Automata with Genetic
Algorithms: A Review of Recent Work. Proceedings of the First International
Conference on Evolutionary Computation and Its Applications , 1996.

Zomaya, A. Y., Ward, C. & Macey, B. (1999). Genetic Scheduling for Parallel Processor
Systems: Comperative Studies and Performance Issues, IEEE Trans. on Parallel and
Distributed Systems, Vol. 10, N 8, pp. 795-812

 Stocher, W., Kabelka, B., & Preissl, R. (2007). Automatically Generating Priority Rules for
the Flexible Job Shop Problem with Genetic Programming”, Proc. of Computer Aided
Systems Theory, Euro CAST 2007

Winkler, S., Affenzeller, M. & Wagner, S. (2007). Advanced Genetic Programming Based
Machine Learning. Journal of Mathematical Modelling and Algorithms, Vol. 6, N 3, pp.
455-480

De Castro, L. N. (2006). Fundamentals of Natural Computing: Basic Concepts, Algorithms, and
Applications, Chapman&Hall/CRC, NY.

Tomassini, M., Sipper, M. & Perrenoud, M. (2000). On the Generation of High-Quality
Random Numbers by Two-Dimensional Cellular Automata, IEEE Trans. Computers,
Vol. 49, N 10, pp. 1140-1151

Seredyński, F. & Święcicka, A. (2002). Immune - like System Approach to Cellular
Automata – based Scheduling, Parallel Processing and Applied Mathematics, R.
Wyrzykowski et al. (Ed.), LNCS 2328, pp. 626-633, Springer Berlin/ Heidelberg

Seredyński, F. & Zomaya A. Y. (2002). Sequential and Parallel Cellular Automata-Based
Scheduling Algorithms. IEEE Trans. Parallel Distributed Systems 13(10), pp. 1009-
1023

www.intechopen.com

 Cellular Automata - Simplicity Behind Complexity

398

Back, T., & Breukelaar, R. (2005). Using Genetic Algorithms to Evolve Behavior in Cellular
Automata, In: Lecture Notes in Computer Science, Springer Berlin/ Heidelberg, vol.
3699, pp. 1-10

Kanoh, H., Wu, Y. (2003). Evolutionary Design of Rule Changing Cellular Automata, In:
Palade, V., Howlett, R.J., Jain, L.C (Eds.). Knowlegde-Based Intelligent Information
and Engineering Systems, 7th International Conference KES 2003, Oxford, UK,
September 3-5, 2003, Lecture Notes in Computer Science, Springer
Berlin/Haidelberg, Vol. 2773, pp. 258-264

Martins, C. L. M. & de Oliveira, P.P.B. (2005). Evolving Sequential Combinations of
Elementary Cellular Automata Rules, In: Capcarrere, M. et al. (Ed.), LNAI 3630,
pp. 461-470

 Das, R., Mitchell, M &J. P. Crutchfield, J. P. (1994). A Genetic Algorithm Discovers
Particle-Based Computation in Cellular Automata, In: Parallel Problem Solving
from Nature – PPSN III, Davidor, Y. et al. (Ed.), LNCS 866, Springer, pp. 344-355

Sipper, M. (1997). Evolving of Parallel Cellular Machines: The Cellular Progrmming Approach,
Springer-Verlag, Heidelberg

Sipper, M. (1999). The Emergence of Cellular Computing, IEEE Computer, Vol. 32, N 7 , pp.
18-26, July 1999

Subrata, R., & Zomaya, A. Y. (2003). Evolving Cellular Automata for Location Management
In Mobile Computing, IEEE Trans. on Parallel and Distributed Systems, Vol. 14, N 1,
pp. 13-26

Sahoo, G. & Kumar, T. (2007). A Genetically based Evolutionary Computing Technique
based on Cellular Automata, International Journal of Computer Science and Network
Security, Vol. 7, N 11, pp. 26-31

Witkowski, T., Antczak, A. & Antczak, P. (2004). Random and Evolution Algorithms of
Tasks Scheduling and the Production Scheduling, Proceedings of International Join
Conference on Fuzzy Systems – IEEE 2004, Budapest, July 2004 vol. 2, pp. 727-732

 Witkowski, T., Antczak, P. & Antczak, A. (2005 a). Tabu Search and GRASP used in hybrid
procedure for optimize the flexible job shop problem, In: Fuzzy Logic, Soft
Computing and Computational Intelligence - 11th IFSA World Congress, Liu, Y. et
al. (Ed.), Tsinghua University Press and Springer, pp. 1620-1625

Witkowski, T., Antczak P.& Antczak A. (2005 b). Application of GRASP procedure for
production scheduling and its comparision with other methods. Journal of Automation
and Information Sciences, Beggel House Inc., New York, Vol. 37, 6(40), pp. 35-40

Witkowski T., Antczak, P. & Antczak, A. (2006). The application of simulated annealing
procedure for the flexible job shop scheduling problem, Proceedings of 11th
International Conference.: Information Processing and Management of Uncertainty in
Knowledge-Based Systems (Industrial Track), IPMU 2006, Paris, 2006, pp. 21-26

Witkowski, T., Elzway, S., Antczak, A. & Antczak, P. (2007). Representation of Solutions and
Genetic Operators for Flexible Job Shop Problem, In (eds. D.-S. Huang, L. Heutte,
and M. Loog): ICIC 2007, CCIS N2: Advanced Intelligent Computing Theories and
Applications. Springer-Verlag, Berlin Heidelberg 2007, pp. 256- 265

Witkowski, T., Antczak, A., Elzway, S., Antczak, P. (2009). Evolving Cellular Automata -
based Flexible Job Shop Scheduling, 5th International Conference on Natural
Computation ICNC’09, Vol. 2 (eds. H. Wang, K. S. Low, K. Wei, & J. Sun); Tianjian,
China, 14-16 August 2009, CPS, Los Alamitos, California, Washington, Tokio, pp. 8-13

www.intechopen.com

Cellular Automata - Simplicity Behind Complexity

Edited by Dr. Alejandro Salcido

ISBN 978-953-307-230-2

Hard cover, 566 pages

Publisher InTech

Published online 11, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Cellular automata make up a class of completely discrete dynamical systems, which have became a core

subject in the sciences of complexity due to their conceptual simplicity, easiness of implementation for

computer simulation, and their ability to exhibit a wide variety of amazingly complex behavior. The feature of

simplicity behind complexity of cellular automata has attracted the researchers' attention from a wide range of

divergent fields of study of science, which extend from the exact disciplines of mathematical physics up to the

social ones, and beyond. Numerous complex systems containing many discrete elements with local

interactions have been and are being conveniently modelled as cellular automata. In this book, the versatility

of cellular automata as models for a wide diversity of complex systems is underlined through the study of a

number of outstanding problems using these innovative techniques for modelling and simulation.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Tadeusz Witkowski, Arkadiusz Antczak, Paweł Antczak and Soliman Elzway (2011). Some Results on Evolving

Cellular Automata Applied to the Production Scheduling Problem, Cellular Automata - Simplicity Behind

Complexity, Dr. Alejandro Salcido (Ed.), ISBN: 978-953-307-230-2, InTech, Available from:

http://www.intechopen.com/books/cellular-automata-simplicity-behind-complexity/some-results-on-evolving-

cellular-automata-applied-to-the-production-scheduling-problem

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

