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1. Introduction 

Production scheduling is the process of allocating the resources and then sequencing of task 

to produce goods. Allocation and sequencing decision are closely related and it is very 

difficult to model mathematical interaction between them. The allocation problem is solved 

first and its results are supplied as inputs to the sequencing problem. High quality 

scheduling improves the delivery performance and lowers the inventory cost. They have 

much importance in this time based competition. This can be achieved when the scheduling 

is done in acceptable computation time, but it is difficult because of the NP-hard nature and 

large size of the scheduling problem. 

Based on the machine environment, sequence of operations for the jobs, etc. , the production 

scheduling problem is divided into the different types: one stage, one process or single 

machine; one stage, multiple processor or parallel machine; flow shop, job shop, open shop; 

static and dynamic etc. Job shop is a complex shop where there are finite number of 

machines, jobs and operation to be done on jobs. There is no direction of flow for jobs. The 

scheduling is done based on the selection of machine k to process an operation  i on job j.  

Each job can be processed on a machine any number of times. Flexible job-shop scheduling 

problem (FJSP) extends the JSP by allowing each operations to be processed on more than 

machine. With this extension, we are now confronted with two subtask: assignment of each 

operation to an appropriate machine and sequencing operations on each machine.    

In the literature, different approaches (tabu search, simulated annealing, variable 

neighborhood, particle swarm optimization, clonal selection principle etc.) have been 

proposed to solve this problem (Fattahi,et al., 2007;  Kacem, et al., 2002; Liu, et al., 2006; Ong, 

et. al., 2005; Preissl, 2006; Shi-Jin, et al., 2008; Tay, et al., 2008; Yazdani, et al., 2009). The 

genetic algorithms (GA), genetic programming, evolution strategies, and evolutionary 

programming for scheduling problem are described in (Affenzeller, et. al., 2004; Back, et al., 

1997; Beham, et al., 2008; Koza, 1992;  Mitchell, et. al., 2005; Zomaya, et. al., 2005; Stocher, et. 

al., 2007; Winkler, et. al., 2009), and cellular automata are presented in (De Castro, 2006; 

Tomassini, 2000; Seredyński, 2002). Using GA algorithm to behavior in cellular automata 

(CA), evolutionary design of rule changing CA, and other problems are described in (Back, 
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et. al., 2005; Kanoh, et. al., 2003; Martins, et. al., 2005; Das, et. al., 1994; Sipper, 1997,1999;  

Subrata, et. al., 2003; Sahoo, et. al. 2007).   

The difficulty of designing cellular automatons transition  rules to perform a particular 
problem has severely limited their applications.     
In (Seredyński,et. al.,  2002) evolution of cellular automata-based multiprocessor scheduling 
algorithm is created. In learning mode a GA is applied to discover rules of  CA suitable for 
solving instances of a scheduling problem. In operation mode discovered rules of CA are  
able to find automatically an optimal or suboptimal solution of the scheduling problem for 
any initial allocation of a program graph in two-processor system graph.  
The evolutionary  design of CA rules has been studied by th EVCA group in detail. A 
genetic algorithm GA was used to evolve CAs  for the two computational tasks. The GA  
was shown to have discovered rules that gave rise to sophisticated emergent computational 
strategies. Sipper (1999) has studied a cellular programming algorithm for 2-state non-
uniform CAs, in which each cell may contain a different rule. The evolution of rules is here 
performed by applying crossover and mutation. He showed that this method is better than 
uniform (ordinary) Cas with a standard GA for the two tasks.  In Kanoh (2003) was 
proposed a new programming method of cellular computers using genetic algorithms. 
Authors considered a pair of rules and the number of rule iterations as a step in the 
computer program. This method im meant to reduce the complexity of a given problem by 
dividing the problem into smaller ones and assigning a distinct rule to each.  
This study introduces an approach to solving evolutionary cellular automata-based  FJSP. In 
this paper genetic programming is applied in this algorithm – rule tables undergo selection 
and crossover operations in the populations that follow. 
The paper is organized as follows. Section 2 gives formulation of the problem.  A formal 

definition of CA is described in section 3. Section 4 explains the details of the evolving CA-

based production scheduling. Section 5 shows the computational results and the comparison 

of CA and GA for finding  solutions in FJSP is presented. Some concluding remarks are 

given in section 6. 

2. Problem formulation  

The FJSP is formulated as follows. There is a set of jobs  Z = {Zi}, i ∈  I, where I = {1, 2, ..., n} 
is an admissible set of parts, U = {uk}, k∈ 1, m, is a set of  machines. Each job Zi is a group of 

parts Πi of equal partial task pi of a certain range of production. Operations of  technological 

processing of the i-th part are denoted by {Oij} iH
j ξ= .  Then for Zi , we can write  Zi = (Πi 

{Oij} iH
j ξ= ), where  Oij = (Gij, tij  (N) ) is the j-th operation of processing the  i-th group of parts;  

ξi is the number of operation of the production  process at which one should start the 
processing the i- th group of parts; Hi is the number of the last operation for a given group; 
Gij is a group of interchangeable machines that is assigned to the operation Oij; G is a set of 
all groups of machines arose in the matrix ||{ Zi }||; tij (N) is an elementary duration of the 
operation Oij with one part di that depends on the number of machine N in the group (on the 
specified operations); t'ij is the duration of set up before the operation Oij;  Ngr is the number 
of all groups of machines. The most widely used objective is to find feasible schedules that 
minimize the completion time of the total production program, normally referred to as 
makespan (Cmax).  
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3. Formal definition cellular automata 

A d-dimensional CA consists of a finite or infinite d-dimensional grid of cells, each of which 

can take on a value from a finite, usually small, set of integers. The value of each cell at time 

step t + 1  is a function of the values of small local  neighborhood of cells at time t. The cells 

update their state simultaneously according to a given local rule. Formally, a CA can be 

defined as a quintuple (De Castro, 2006) 

C = <S, s0, G, d, f>         

                                                                  

where S is a finite set of states, s0∈  S are the initial states of the CA, G is cellular 

neighborhood, d∈  Z+ is the dimension of C, and f is the local cellular interaction rule, also 

referred to as the transition function or transition rule. Given the position of a cell i, where i is 

an integer vector in a d-dimensional space (i∈Zd), in a regular d-dimensional uniform 

lattice, or grid, its neighborhood G is defined by 

Gi = {i, i+ r1, i+ r2,..., i+ rn} 

 

where n is a fixed parameter that determines the neighborhood size, and rj is a fixed vector 
in the d-dimensional space. The local transition rule f  

f : Sn å S 

 

maps the state si∈  S of a given cell i into another state from the set S, as a function of the 
states of the cells in the neighborhood Gi. In a uniform CA, f is identical for all cells, whereas 
in nonuniform CA, f may differ from one cell to another, i.e., f  depends on i,  fi. For a finite-
size CA of size N, where N is the number of cells in the CA, a configuration of the grid at 
time t is defined as 

C(t) = (s0 (t), s1(t),...,s N -1(t)) 

 

where si(t) is the state of cell i at time t. The progression of the CA in time is then given by 
the iteration of the global mapping F  

F : C(t) å C (t+1),    t = 0,1,... 

 

Through the simultaneous application in each cell of the local transition rule f, the global 

dynamics of the CA can be described as a directed graph, referred to as the CA’ s state 

space. One-and bi-dimensional CA are the most usually explored types of CA. In the one-

dimensional case, there are usually only two possible states for each cell, S = {0,1}. Thus, f is 

a function f : {0,1} n å {0,1} and the neighborhood size n is usually taken to be n = 2r+1 such 

that  

si (t+ 1) = (si - r (t),...,si (t),...,s i + r (t)) 

 

where r∈Z+ is a parameter, known as the radius, representing the standard one-

dimensional cellular neighborhood. 
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4. Evolving cellular automata for FJSP 

4.1 Algorithm for evolving CA for FJSP 

The general working principle of evolutionary algorithms is based on a program loop that 
involves implementations of the operators mutation, recombination, selection, and fitness 
evaluation on a set of candidate solutions for a given problem.    
The algorithm which generates the schedule bases on two CAs. One is responsible for 
construction sequencing operations on individual parts, and the other for the  allocation of  
machines to operation with interchangeably group machines. 
The crossover operation is realized on the current and previous population using a definite 
number of the best rules in the two above-mentioned populations. Half of that definite 
number is taken from the current population, and the other half from the previous one.  
Depending on the generated value and the determined intensity the re-writing of the values 
from the current table to the previous one or vice versa takes place (no operation is also 
possible).  During the algorithm operation in a loop state changes of the CA are executed 
basing on the transition tables. 
They define the change of the current position of an element in the state table on the basis of 
its current value. The repetition of the operation causes changes in the CA state, which 
defines the sequence of technological operations and machines used. On the basis of those 
state tables a proper schedule is generated (reservation of machines). 
Genetic algorithm is applied in the CA algorithm – rule tables undergo selection and 
crossover operations in the populations that follow. 
The algorithm sequences the technological operations on a given set of parts of different 
kinds using evolving CAs. This is realized with the use a genetic algorithm which performs 
a selection of the so-called transition tables (i.e. rule tables, state change tables) of the two 
cellular automata whose functions are described above.  
The input parameters are: the number of the population of automata transition tables (rule 
tables - RT), the number of populations, the number of transitions, the hybrid coefficient (the 
number of the tables in the populations being crossed over with a given probability), the 
hybridization intensity (the probability of the crossover operation on given elements of the 
tables).  Fig. 1 shows the flowchart of evolving CA used to create schedules.  
The algorithm is based on two cellular automata: a) determination of machine allocation 
from the interchangeable group for individual operations, b) determination of part sequence 
for individual operations. 
The CA state change is realized as follows. Let oi1,oi2 position in the state table (ST) where 
oi1=0.  We determine the value n = Operation i [oi1], where  n = Operation i ST [oi1], which we 
use to calculate D where D = Operation i R T [n]. We calculate this position oi2 from the 
formula   oi2 = (oi1 +D) mod N (where N – number of jobs).   Next the value change in the CA 
state table is realized on the above mentioned positions oi1, oi2:  

Operation i ST [oi1] = Operation i ST [oi2]; 

eg. for  oi1 = oi2 for the values 0 1 2 3 4 5 6 in the  previous state table we have values 5 1 2 3 4 
0 6 in the new state table. After the change is done we assume   oi1 = oi2.  All the last 
permutations obtained as a result of the CA execution for each of the operations of all the 
CA state tables create a schedule. The number of schedules in one iteration of the algorithm 
is equal to number of populations. At the next stage schedule sorting takes place on the 
basis of the value of the makespan as well as the their selection with a determined 
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hybridization coefficient. As a result of those operations new rule tables for the next 
iteration are obtained. The CA for machine choice in individual groups operates in  a similar 
way.  
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Fig. 1. Flowchart of evolving CA for flexible job shop  scheduling.  

4.2 Example 

Examples of transition tables for the CA responsible for machine allocation from 
technological groups for individual operations are shown in Fig. 2. 
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Transition table: 0 
Operation: 0 [2, 0, 5, 0, 4, 4, 2] 
Operation: 1 [1, 1, 4, 5, 5, 2, 1] 
Operation: 2 [5, 1, 5, 2, 6, 1, 5] 
Operation: 3 [5, 2, 6, 0, 2, 2, 6] 

Transition table: 1 
Operation: 0 [2, 1, 6, 2, 0, 0, 3] 
Operation: 1 [0, 2, 2, 5, 5, 4, 5] 
Operation: 2 [1, 1, 0, 4, 0, 6, 3] 
Operation: 3 [4, 3, 2, 3, 1, 3, 0] 

Transition table: 2 
Operation: 0 [4, 1, 2, 3, 0, 6, 1] 
Operation: 1 [0, 0, 0, 2, 6, 0, 3] 
Operation: 2 [6, 1, 2, 3, 5, 2, 0] 
Operation: 3 [6, 5, 4, 3, 3, 6, 0] 

Fig. 2. Automata  transition tables (allocate machines) 

 
 
Examples of transition tables for the CA responsible for operation sequence in a generated 
schedule are shown in Fig. 3. 
 
 

Transition table: 0 
Operation: 0 [5, 4, 1, 0, 1, 2, 6] 
Operation: 1 [3, 2, 2, 4, 0, 6, 5] 
Operation: 2 [6, 2, 1, 5, 0, 3, 1] 
Operation: 3 [4, 6, 2, 5, 2, 0, 6] 

Transition table: 1 
Operation: 0 [6, 5, 3, 0, 3, 2, 2] 
Operation: 1 [6, 4, 0, 1, 5, 0, 3] 
Operation: 2 [4, 1, 5, 3, 3, 4, 5] 
Operation: 3 [6, 2, 6, 3, 6, 6, 4] 

Transition table: 2 
Operation: 0 [5, 2, 4, 6, 3, 2, 3] 
Operation: 1 [2, 2, 6, 3, 2, 0, 4] 
Operation: 2 [0, 2, 4, 2, 0, 3, 1] 
Operation: 3 [5, 5, 6, 6, 3, 3, 5] 

Fig. 3. Automata  transition tables (sequence operations) 

 
 
The use of machines (CA changes for the 10 consecutive states in a cycle of each table - left 
column) and the operation sequence  (CA changes for the next consecutive states in a cycle 
of each table -right column) for one population are shown in Fig.4. 
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State table: 0 
Op: 0 [0, 0, -1, 0, -1, -1, -1]   Op: 0 [0, 1, 2, 3, 4, 5, 6] 

Op: 0 [1, 0, -1, 0, -1, -1, -1]    Op: 0 [5, 1, 2, 3, 4, 0, 6] 
Op: 0 [1, 0, -1, 0, -1, -1, -1]    Op: 0 [5, 1, 2, 0, 4, 3, 6] 
...........................................        ...................................... 
Op: 0 [1, 0, -1, 1, -1, -1, -1]    Op: 0 [3, 6, 5, 0, 2, 1, 4] 
Op: 0 [1, 0, -1, 2, -1, -1, -1]    Op: 0 [3, 0, 5, 6, 2, 1, 4] 

 
Op: 1 [0, 0, 0, -1, 0, -1, -1]    Op: 1 [0, 1, 2, 3, 4, 5, 6] 

Op: 1 [1, 0, 0, -1, 0, -1, -1]    O p: 1 [2, 1, 0, 3, 4, 5, 6] 
Op: 1 [1, 0, 0, -1, 0, -1, -1]   Op: 1 [2, 1, 4, 3, 0, 5, 6] 

..........................................         ....................................... 
Op: 1 [0, 0, 0, -1, 0, -1, -1]   Op: 1 [4, 3, 6, 5, 0, 2, 1] 
Op: 1 [1, 0, 0, -1, 0, -1, -1]   Op: 1 [4, 3, 6, 5, 1, 2, 0] 

 
Op: 2 [-1, -1, -1, 0, 0, 0, 0]   Op: 2 [0, 1, 2, 3, 4, 5, 6] 

Op: 2 [-1, -1, -1, 0, 0, 0, 0]   Op: 2 [6, 1, 2, 3, 4, 5, 0] 
Op: 2 [-1, -1, -1, 0, 0, 0, 0]    Op: 2 [6, 1, 2, 3, 4, 0, 5] 
.........................................         ...................................... 
Op: 2 [-1, -1, -1, 2, 1, 2, 1]   Op: 2 [5, 6, 1, 2, 3, 0, 4] 
Op: 2 [-1, -1, -1, 2, 1, 2, 2]   Op: 2 [5, 6, 1, 2, 0, 3, 4] 

 

Op: 3 [-1, -1, -1, -1, 0, 0, 0]   Op: 3 [0, 1, 2, 3, 4, 5, 6] 

Op: 3 [-1, -1, -1, -1, 0, 0, 0]   Op: 3 [4, 1, 2, 3, 0, 5, 6] 
Op: 3 [-1, -1, -1, -1, 0, 0, 0]   Op: 3 [4, 0, 2, 3, 1, 5, 6] 

...........................................        ...................................... 
Op: 3 [-1, -1, -1, -1, 1, 1, 1]   Op: 3 [1, 0, 6, 4, 5, 2, 3] 
Op: 3 [-1, -1, -1, -1, 1, 1, 1]    Op: 3 [1, 2, 6, 4, 5, 0, 3] 

State table: 1 
Op: 0 [0, 0, -1, 0, -1, -1, -1]   Op: 0 [0, 1, 2, 3, 4, 5, 6] 

Op: 0 [1, 0, -1, 0, -1, -1, -1]   Op: 0 [6, 1, 2, 3, 4, 5, 0] 
Op: 0 [1, 0, -1, 0, -1, -1, -1]   Op: 0 [6, 1, 2, 3, 4, 0, 5] 

.............................................         ....................................... 
Op: 0 [2, 0, -1, 2, -1, -1, -1]   Op: 0 [5, 6, 1, 2, 3, 0, 4] 
Op: 0 [2, 0, -1, 2, -1, -1, -1]   Op: 0 [5, 6, 1, 2, 0, 3, 4] 

 
Op: 1 [0, 0, 0, -1, 0, -1, -1]   Op: 1 [0, 1, 2, 3, 4, 5, 6] 

Op: 1 [1, 0, 0, -1, 0, -1, -1]   Op: 1 [2, 1, 0, 3, 4, 5, 6] 
Op: 1 [1, 0, 0, -1, 0, -1, -1]   Op: 1 [2, 1, 4, 3, 0, 5, 6] 

..........................................         ...................................... 
Op: 1 [2, 0, 0, -1, 0, -1, -1]   Op: 1 [4, 3, 6, 5, 0, 2, 1] 
Op: 1 [2, 0, 0, -1, 0, -1, -1]   Op: 1 [4, 3, 6, 5, 1, 2, 0] 

 
 

Op: 2 [-1, -1, -1, 0, 0, 0, 0]  Op: 2 [0, 1, 2, 3, 4, 5, 6] 

Op: 2 [-1, -1, -1, 0, 0, 0, 0]   Op: 2 [4, 1, 2, 3, 0, 5, 6] 
Op: 2 [-1, -1, -1, 0, 0, 0, 0]   Op: 2 [4, 0, 2, 3, 1, 5, 6] 
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..........................................         ...................................... 
Op: 2 [-1, -1, -1, 2, 0, 0, 0]   Op: 2 [1, 0, 6, 4, 5, 2, 3] 
Op: 2 [-1, -1, -1, 2, 0, 0, 0]   Op: 2 [1, 2, 6, 4, 5, 0, 3] 

 
Op: 3 [-1, -1, -1, -1, 0, 0, 0]   Op: 3 [0, 1, 2, 3, 4, 5, 6] 

Op: 3 [-1, -1, -1, -1, 0, 0, 0]   Op: 3 [6, 1, 2, 3, 4, 5, 0] 
Op: 3 [-1, -1, -1, -1, 0, 0, 0]   Op: 3 [6, 1, 2, 3, 4, 0, 5] 

..........................................         ....................................... 
Op: 3 [-1, -1, -1, -1, 1, 1, 0]   Op: 3 [5, 6, 1, 2, 3, 0, 4] 
Op: 3 [-1, -1, -1, -1, 2, 1, 0]    Op: 3 [5, 6, 1, 2, 0, 3, 4] 

State table: 2 
Op: 0 [0, 0, -1, 0, -1, -1, -1]   Op: 0 [0, 1, 2, 3, 4, 5, 6] 

Op: 0 [1, 0, -1, 0, -1, -1, -1]   Op: 0 [5, 1, 2, 3, 4, 0, 6] 
Op: 0 [1, 0, -1, 0, -1, -1, -1]   Op: 0 [5, 1, 2, 0, 4, 3, 6] 

..........................................         ....................................... 
Op: 0 [0, 0, -1, 0, -1, -1, -1]   Op: 0 [3, 6, 5, 0, 2, 1, 4] 
Op: 0 [0, 0, -1, 0, -1, -1, -1]   Op: 0 [3, 0, 5, 6, 2, 1, 4] 

 
Op: 1 [0, 0, 0, -1, 0, -1, -1]   Op: 1 [0, 1, 2, 3, 4, 5, 6] 

Op: 1 [1, 0, 0, -1, 0, -1, -1]    Op: 1 [4, 1, 2, 3, 0, 5, 6] 
Op: 1 [1, 0, 0, -1, 0, -1, -1]     Op: 1 [4, 0, 2, 3, 1, 5, 6] 
..........................................         ...................................... 
Op: 1 [0, 0, 0, -1, 0, -1, -1]    Op: 1 [1, 0, 6, 4, 5, 2, 3] 
Op: 1 [1, 0, 0, -1, 0, -1, -1]    Op: 1 [1, 2, 6, 4, 5, 0, 3] 

 
Op: 2 [-1, -1, -1, 0, 0, 0, 0]    Op: 2 [0, 1, 2, 3, 4, 5, 6] 

Op: 2 [-1, -1, -1, 0, 0, 0, 0]    Op: 2 [0, 1, 2, 3, 4, 5, 6] 
Op: 2 [-1, -1, -1, 0, 0, 0, 0]     Op: 2 [0, 1, 2, 3, 4, 5, 6] 
..........................................          ..................................... 
Op: 2 [-1, -1, -1, 1, 0, 0, 2]    Op: 2 [0, 1, 2, 3, 4, 5, 6] 
Op: 2 [-1, -1, -1, 1, 0, 0, 0]    Op: 2 [0, 1, 2, 3, 4, 5, 6] 

 

Op: 3 [-1, -1, -1, -1, 0, 0, 0]    Op: 3 [0, 1, 2, 3, 4, 5, 6] 

Op: 3 [-1, -1, -1, -1, 0, 0, 0]    Op: 3 [5, 1, 2, 3, 4, 0, 6] 
Op: 3 [-1, -1, -1, -1, 0, 0, 0]    Op: 3 [5, 1, 2, 0, 4, 3, 6] 
..........................................         ...................................... 
Op: 3 [-1, -1, -1, -1, 1, 0, 0]    Op: 3 [3, 6, 5, 0, 2, 1, 4] 
Op: 3 [-1, -1, -1, -1, 2, 0, 0]    Op: 3 [3, 0, 5, 6, 2, 1, 4] 

Fig. 4. CA changes for the 10 consecutive states 

The numbers in the left column of the tables  stand for the number of the machine in a 
group, and their indexes  (i.e. allocation in the table) are the numbers of the parts. The 
numbers in the right column of the tables stand for the sequence of individual parts in a 
given operation and their indexes (i.e. allocation in the table) are the numbers of the parts. 
Value (-1) in the left column of  the tables stands for lack of machine participation in a given 
operation with a given part. Value (-1) in the right column would stand for lack of 
processing of a part in a given operation.  All the (-1) values are ignored in the state change 

www.intechopen.com



Some Results on Evolving Cellular Automata Applied to the Production Scheduling Problem   

 

385 

procedure of the CA, and does not participate in the machine allocation procedure. For each 
iteration makespan is determined for the generated schedule, on the basis of the final states 
of both automata. 
All the makespanes for each schedule from a population are recorded and compared in 
order to select the best schedule from the current population. If it is not the final 
population then the best rule tables are crossed over in order to generate the best 
schedules from the  current and previous population. In each iteration summary time 
realize of all operations (makespan) for generate schedule on basis final state two cellular 
automata is determinated.  All makespanes for each schedule with population are writing 
and compare to aim choice best schedule among current populations.  If population no is 
latest we realize crossower operation best rule table which lead for generated best 
schedules with current and previous populations. Half given number is taken with 
current population, and  second half with previous population. Depending to generated 
value and given intensity follows determine values with current table to previous table or 
vice versa (is possible lack operation).   

5. Computational results 

5.1 Comparative study of cellular automata for FJSP 

Two types of routing were considered: a serial and a parallel one. In a serial route an entire 
batch of parts is processed on one machine and only when all of the products in the batch 
have been processed are they sent to the next machine. In a parallel route individual items 
of the batch are sent to the next machines as soon as they have been processed on the 
previous machine. 
The research was carried out on a computer with an Intel Core2 2.4 GHz processor and 2047 
MB of RAM for the following settings of the CA algorithm: size of population = 1000; 
number of iterations = 100; number of transitions = 1000; hybridization ratio = 0.9; and 
intensity of hybridization = 0.9. 
For solution of FJSP problem special software to realize the CA algorithm have been created. 
Computer experiments were carried out for data presented in (Witkowski, 2005) – where the 
number of operations is 160, and the number of machines 26. 
The experiments have been carried out for the hybridization ratio:  0,1; 0,5; 0,9 and the 
intensity of hybridization equal to 0,1; 0,5; 0,9. The simulation of each test problem was run 
with the  SP population size equal to 10, 100, 1000, the RT transition rate was equal to 10, 
100, 1000, and the IN iteration number was equal to 10, 100, 1000. Besides, in some cases the 
values of SP, RT and IT reached 10000.   
The following symbols for signed algorithm parameters: SP - size of population; IT -  
number of iterations; RT - number of transitions; HR - hybridization ratio; and  IH - intensity 
of hybridization have been used. Individual SP, IT and RT parameters assume one of the 
values from the set {10, 100, 1000}; moreover  HR and IH from the sets{(0,1; 0,1); (0,5; 0,5) 
and (0,9; 0,9)} respectively.  
 For IT, SP and RT values we assume the following  linguistic variables :   N – low value, S – 
medium value, D – high value (V – very high value – in some combinations of parameters). 
In this way 27 combinations with parameters of  the algorithm were  created (fig. 5) For 
example.  one of such combinations is IT(M)-SP(S)-RT(D), etc..  
Table 1 shows some of the results (with the SP (D) value) for the test parameters of the  CA 
algorithm.   
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iter. min. average max. avg. time [sec.]

66295.6 71146.1 71852.0 69426.5 69729.6

69158.2 68452.7 69949.2 66517.3 70295.7

67436.6 63232.1 65860.1 69623.8 63542.7

66320.0 68723.9 65948.9 66832.0 66516.2

66305.5 66918.2 64587.4 65644.4 63057.3

67373.0 68121.8 66553.8 67074.6 66126.4
68121.8 10201000 63057.3 66176.2

100 63232.1 66403.6 69623.8 102

hybridization ratio = 0.9; intensity of hybridization = 0.9.

size of the population = 1000; number of transitions = 10.

Makespan

10 66295.6 69282.3 71852.0 10

 
 
 
 
 
 

iter. min. average max. avg. time [sec.]

72254,0 68692,3 72917,7 69880,7 69518,9

71397,2 66240,2 67804,5 68055,5 67732,4

70885,2 68269,0 63363,8 65451,6 70035,0

67585,8 67766,4 66859,0 68564,2 64747,8

66239,3 68417,1 69373,5 68334,9 62826,0

69118,0 69067,4 68188,7 67135,2 66453,5
10681000 62826,0 67515,4 69373,5

72917,7 10

100 63363,8 67352,8 70885,2 106

Makespan

10 66240,2 69449,3

hybridization ratio = 0.9; intensity of hybridization = 0.9.

size of the population = 1000; number of transitions = 100.

 
 
 
 
 
 

iter. min. average max. avg. time [sec.]

70217.3 66442.4 68170.6 69813.4 65720.8

63161.2 71086.2 72199.9 68404.2 72895.0

67537.3 62753.4 71358.4 67292.3 67810.3

69405.4 66784.8 65753.1 68183.8 65540.8

64347.2 63539.3 66144.4 66560.0 69469.2

67208.2 70579.7 66920.0 67386.3 68679.3
70579.7 15641000 63539.3 67083.4

15

100 62753.4 67242.0 71358.4 156

10 63161.2 68811.1 72895.0

hybridization ratio = 0.9; intensity of hybridization = 0.9.

size of the population = 1000; number of transitions = 1000.

Makespan

 
 
 
 
 
 

Table 1. Some of the  results (with the  SP (D) value) for the test parameters of the  CA 
algorithm  (serial route) 
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Figure 5 summarizes the results for the test problems that were run with the evolving 
cellular automata algorithm for the serial route.  
 

0.1; 0.1

0.5; 0.5

0.9; 0.9

81662,7

81044,9

78554,2

IT SP RT

1000

100

10

      

0.1; 0.1

0.5; 0.5

0.9; 0.9

77798,7

76117,5

78357,8

IT SP RT

1000

100

10

     

0.1; 0.1

0.5; 0.5

0.9; 0.9

79498,8

77680,8

76975,0

IT SP RT

1000

100

10

 
 

0.1; 0.1

0.5; 0.5

0.9; 0.9

83589,0

83247,5

81261,1

IT SP RT

1000

100

10

      

0.1; 0.1

0.5; 0.5

0.9; 0.9

79370,1

81223,4

80910,9

IT SP RT

1000

100

10

      

0.1; 0.1

0.5; 0.5

0.9; 0.9

80219,5

83431,1

77384,0

IT SP RT

1000

100

10

 
 

0.1; 0.1

0.5; 0.5

0.9; 0.9

82118,8

79335,4

83613,9

IT SP RT

1000

100

10

     

0.1; 0.1

0.5; 0.5

0.9; 0.9

81935,2

78669,3

78325,0

IT SP RT

1000

100

10

     

0.1; 0.1

0.5; 0.5

0.9; 0.9

78687,1

82720,1

80292,7

IT SP RT

1000

100

10

 
 

0.1; 0.1

0.5; 0.5

0.9; 0.9

76069,6

75395,4

74073,0

IT SP RT

1000

100

10

     

0.1; 0.1

0.5; 0.5

0.9; 0.9

69121,4

70828,1

70462,8

IT SP RT

1000

100

10

     

0.1; 0.1

0.5; 0.5

0.9; 0.9

71081,5

70800,4

70602,6

IT SP RT

1000

100

10

 
 

0.1; 0.1

0.5; 0.5

0.9; 0.9

74129,5

76410,9

74623,5

IT SP RT

1000

100

10

     

0.1; 0.1

0.5; 0.5

0.9; 0.9

70526,7

73550,7

73124,9

IT SP RT

1000

100

10

     

0.1; 0.1

0.5; 0.5

0.9; 0.9

72133,1

72126,3

73429,8

IT SP RT

1000

100

10
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0.1; 0.1

0.5; 0.5

0.9; 0.9

75249,7

73438,5

75201,3

IT SP RT

1000

100

10

   

0.1; 0.1

0.5; 0.5

0.9; 0.9

72750,8

72288,4

71287,6

IT SP RT

1000

100

10

  

0.1; 0.1

0.5; 0.5

0.9; 0.9

73102,2

73647,3

72543,6

IT SP RT

1000

100

10

 
 

0.1; 0.1

0.5; 0.5

0.9; 0.9

69027,6

69151,0

69282,3

IT SP RT

1000

100

10

 

0.1; 0.1

0.5; 0.5

0.9; 0.9

67350,0

66859,7

66403,6

IT SP RT

1000

100

10

  

0.1; 0.1

0.5; 0.5

0.9; 0.9

66282,5

66526,8

66176,2

IT SP RT

1000

100

10

 
 

0.1; 0.1

0.5; 0.5

0.9; 0.9

69748,7

69836,3

69449,3

IT SP RT

1000

100

10

     

0.1; 0.1

0.5; 0.5

0.9; 0.9

68200,7

67070,3

67352,8

IT SP RT

1000

100

10

     

0.1; 0.1

0.5; 0.5

0.9; 0.9

66575,2

66756,9

67515,4

IT SP RT

1000

100

10

 
 

0.1; 0.1

0.5; 0.5

0.9; 0.9 68811,1

70648,9

69980,9

IT SP RT

1000

100

10

     

0.1; 0.1

0.5; 0.5

0.9; 0.9 67242,0

67888,8

68057,5

IT SP RT

1000

100

10

     

0.1; 0.1

0.5; 0.5

0.9; 0.9 67083,4

67882,8

67532,3

IT SP RT

1000

100

10

 

Fig. 5. The results for the test problems that were run with the evolving cellular automata 
algorithm (serial route)  

We can generally see that depending on the PS population size we can single out 3 classes of 

quality results (with regard to the Cmax criterion) - very good (large population size), average 

(medium population size) and poor (small population size). Moreover an increase of the IT 

value influences the Cmax more than the RT value, although there are a number of exceptions.  

The best results of Cmax are always obtained at SP(D) regardless of the IT or RT values. Eg.   

at SP(D) value the best Cmax  is achieved  for combination IT(D)-SP(D)-RT(M) rather than for 

IT(M)-SP(D)-RT(D); at SP(D) value the best Cmax is achieved for combination IT(S)-SP(D)-

RT(M) rather than for IT(M)-SP(D)-RT(S); at SP(D) value the best Cmax is achieved for 

combination IT(D)-SP(D)-RT(S) rather than for IT(S)-SP(D)-RT(D). It should be noted that 
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for combination IT(D)-SP(D)-RT(D) an insignificantly poor  Cmax is achieved than for eg.   

IT(D)-SP(D)-RT(M).  

The worst results of Cmax are always obtained at SP(M) regardless of the IT or RT values.   
Eg. at SP(M) value the best Cmax  is achieved  for combination IT(D)-SP(M)-RT(M) rather 
than for IT(M)-SP(M)-RT(D); moreover for combination IT(S)-SP(M)-RT(D) the Cmax values 
are better than for IT(D)-SP(M)-RT(S) – while the pair (HR,IH) = (0,5:0,5), and the Cmax is 
worse while the pair (HR,IH) = (0,1;0,1). For combination IT(S)-SP(M)-RT(M) the  Cmax 
values are clearly better than for IT(M)-SP(M)-RT(S). We can also see that for IT(D)-SP(D)-
RT(D) an insignificantly poor Cmax is achieved  than  eg. for IT(D)-SP(D)-RT(M).  
Analizing the influence of SP on the Cmax we can observe the following behaviour of the CA 
algorithm. An increase of the SP value from 10 to 100 decreases the average value of  Cmax  
from ca.  82000 to 74000 min.,  i.e. by about 8000 min. An increase of the SP value from 100 
to 1000 decreases the average Cmax value from 74000 to 69000 min. - by about 5000 min. Thus 
an  increase of the  SP value from 10 to 1000 decreases the average Cmax value from 82000 to 
69000 min. i.e. by about 13000 min. We can see that the increase from 100 to 1000 results in a 
slower decrease of Cmax  (i.e. by about 5000 min.)  than  the change of the SP value from  10 to 
100 (i.e. about 8000 min.). 
Let us consider the influence of IT on the Cmax value. For combinations with SP(M) and 
RT(M) an increase of IT from 10 to 100 results in a decrease of Cmax  from 80000 to 77000 
min., i.e. by ca. 3000 min. An IT increase from 100 to 1000  results in an insignificant  
decrease  of Cmax - by about 500 min. - and while the pair (HR,IH) = (0.5;0,5) in an  increase of 
Cmax. For combination with SP(S) and RT(M) the change of IT from z 10 to 100 gives  an 
decrease of Cmax  from 75000 to 70000 min., i.e by ca. 5000 min.; moreover an increse of the IT 
value from 100 to 1 000 gives an insignificant  decrease of Cmax  while (HR,IH) = (0.5;0,5) and 
a decrease of Cmax while (HR,IH) = (0,1;01) and (HR,IH) = (0,9;0,9).  At SP(D) and RT(M) 
values the increase of IT from 10 to 100 gives  a decrease of Cmax  from 69000 to 67000 min., 
ie. by ca. 2000 min. An increase of IT from 100 to 1000  decreases the Cmax  from 67000 to 
66500 min. for combinations IT(M)-SP(D)-RT(M), IT(S)-SP(D)-RT(M) and IT(D)-SP(D)-
RT(M). A similar situation occurs for combinations IT(M)-SP(D)-RT(D), IT(S)-SP(D)-RT(D) 
and IT(D)-SP(D)-RT(D). 
An increase of the IT value in most cases improves the Cmax value eg. for combinations at 
SP(D), but there are also exceptions. For combination IT(S)-SP(D)-RT(S) we have better Cmax  
than  for IT(M)-SP(D)-RT(S). Moreover the Cmax  value increases in the following order: from 
IT(D)-SP(D)-RT(M)  to IT(S)-SP(D)-RT(M) to IT(M)-SP(D)-RT(M). An increase of the IT value 
does not always result in a better Cmax. For example dla Cmax with average values i.e. with 
combinations which have the medium parameter SP(S) combination IT(S)-SP(S)-RT(S) gives 
a better Cmax  than  IT(D)-SP(S)-RT(S) and combination IT(S)-SP(S)-RT(D) gives a better Cmax 
than IT(D)-SP(S)-RT(D). Moreover combination IT(S)-SP(S)-RT(M) gives a better Cmax than 
IT(D)-SP(S)-RT(M) while the pair (HR,IH) =  (0,1;0,1) and the pair (HR,IH) =  (0,9;0,9). 
The increase of the RT value both increases and decreases the Cmax value. For example 
combination IT(M)-SP(S)-RT(D) gives a better Cmax than IT(M)-SP(S)-RT(S) while the pair 
(HR,IH) = (0,5;0,5) and IT(S)-SP(S)-RT(D) gives a better  Cmax than IT(S)-SP(S)-RT(M) while 
the pair (HR,IH) = (0,5;0,5) and (HR, IH) = (0,9;0,9). We can also note the following cases: 
combination  IT(D)-SP(S)-RT(D) gives better values of Cmax than IT(D)-SP(S)-RT(S);  IT(D)-
SP(M)-RT(S) gives better Cmax than IT(D)-SP(M)-RT(M) while the pair (HR,IH) = (0,9;0,9); 
IT(D)-SP(M)-RT(D) gives a better Cmax than IT(D)-SP(M)-RT(S) while the pair (HR,IH) =  
(0,5;0,5) and (HR,IH) = (0,9;0,9); IT(S)-SP(M)-RT(D) gives a better Cmax than IT(S)-SP(M)-
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RT(S) while the pair (HR,IH) = (0,5;0,5) and (HR,IH) = (0,9;0,9);  IT(M)-SP(M)-RT(D) gives a 
better Cmax than IT(M)-SP(M)-RT(M) while (HR, IH) = (0,1;0,1) and (HR, IH) = (0,9;0,9) and  a 
better Cmax than IT(M)-SP(M)-RT(M) while (HR,IH) = (0,5;0,5). 
For IT(D)-SP(D)-RT(S) the CA algorithm gives a better Cmax than for IT(D)-SP(D)-RT(D). 
Similarly combination IT(S)-SP(D)-RT(M) gives a better Cmax  than IT(S)-SP(D)-RT(S) and 
IT(M)-SP(D)-RT(M) gives a better Cmax  than IT(M)-SP(D)-RT(S).  
In the group of poorest Cmax values (with SP(M) value) we can observe that the best Cmax  are 
achieved while the pair (HR,IH) = (0,1;0,1) - 3 times, while the pair (HR,IH) = (0,5;0,5) - twice 
and while the pair (HR,IH) = (0,9;0,9) - 4 times; moreover the worst Cmax is achieved while 
the pair (HR,IH) = (0,1;0,1) - 3 times, while the pair (HR,IH) = (0,5;0,5) - 4 times and while 
the pair (HR, IH) = (0,9;0,9) - twice.  
In the group of average Cmax values (with P(S) value) we can obeserve that the best Cmax is 
achieved while the pair (HR,IH) = (0,1;0,1) - 3 times, while the pair (HR,IH) = (0,5;0,5) – 
twice and while (0,9;0,9) – 4 times;  moreover the worst Cmax is achieved while the pair 
(0,1;0,1) - 4 times, the pair  is (0,5;0,5) - 4 times and the pair  is (0,9;0,9) - once.  
In the group of the best Cmax values (with SP(D)) we can see that the CA algorithm  gives the 
best Cmax values while the pair is (0,1;0,1) - twice, (0,5;0,5) - once and at pair (0,9;0,9) –            
3 times; moreover the worst  Cmax  (with SP(M)) is achieved while the pair is (0,1;0,1) -            
4 times, while (0,5; 0,5) - 3 times and while (0,9;0,9) - twice. 
Below we present some results achieved when applying higher values of  SP, IT and RT  
than in the main experiment - (ie. SP(V), IT(V), RT(V) values equal 10000).  
At SP(V) when the SP increase is from 1000 to 10000 the average value of Cmax decreases 
significantly from 69151 to 66060 min. for combination IT(M)-SP(V)-RT(M) compared to 
IT(M)-SP(D)-RT(M)  and from 66859 to 63739 min. for IT(D)-SP(V)-RT(M) compared to  
IT(D)-SP(D)-RT(M) while the pair (HR,IH) = (0,5;0,5).  While the pair (HR,IH) = (0,5;0,5) for 
combination IT(M)-SP(V)-RT(S) a decrease of Cmax is achieved from 69836 to 67456 compared 
to IT(M)-SP(D)-RT(S). For combination IT(S)-SP(V)-RT(S) a decrease of Cmax  is achieved 
from  67070 to 64626  min.  compared to IT(S)-SP(D)-RT(S).  Similarly for combination IT(M)-
SP(V)-RT(D) a decrease of Cmax is achieved from 69980 to 67351 compared IT(M)-SP(D)-
RT(D), and for combination  IT(S)-SP(V)-RT(D) a decrease of Cmax  was achieved from  68057 
to 63840 min. compared to  IT(S)-SP(D)-RT(S).  For combination IT(M)-SP(V)-RT(D) a 
decrease of Cmax was achieved from 69980 to 67351 min. compared to  IT(M)-SP(D)-RT(D), 
and for combination  IT(S)-SP(V)-RT(D) a decrease of Cmax  -  from 68057 to 63840 min. 
compared to IT(S)-SP(D)-RT(S).   
When analizing the influnece of IT(V) on Cmax we can note that almost in all the analized 
cases the an icrease from IT(D) to IT(V) gives an insignificant decrease of the  Cmax value eg. 
for combination IT(V)-SP(D)-RT(M) compared to IT(D)-SP(D)-RT(M), this change is equal to 
70800-70407= 393 min.; for combination  IT(V)-SP(M)-RT(D) compared to IT(D)-SP(M)-
RT(D) the change is equal to 83431-82657 = 774 min.; for combination IT(V)-SP(D)-RT(D) 
compared to IT(D)-SP(D)-RT(D) the change is equal to 72126-71315 = 811 min.; for 
combination   IT(V)-SP(M)-RT(D) compared to IT(D)-SP(M)-RT(D) the change is equal to 
82720-77636= 5084 min.; and for combination IT(V)-SP(S)-RT(D) compared to IT(D)-SP(S)-
RT(D) the change is equal to 73647-72 115 = 1432 min. 
When analizing the influnece of RT (V) eg. in combinations  IT(M)-SP(M)-RT(V) at RT(D) we 
can observe both increases and decreases of the Cmax value.  
For combinations with the SP(D) value (fig. 5) the CA algorithm has  a better Cmax in all 
cases  as compared to the combinations with the SP(M) value and has a better Cmax in almost  
all cases as compared to the combinations with the SP(S) value -  as it can be seen in fig. 5. 
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For combinations with the SP(S) value  (fig. 5) the CA algorithm has a better Cmax in almost 
all cases as compared to the combinations with the SP(M) value and has a worse Cmax in all 
cases as compared to the combinations with SP(D).  
For combinations with the SP(M) value  (fig. 5) the CA algorithm has a worse Cmax in almost 
all cases as compared to the combinations with the SP(S) value and has a worse Cmax in all 
cases as compared to the combinations with SP(D).  
Overall, the CA algorithm for combinations with the SP(D) value  produces solutions of 
better optimality compared to the CA algorithm for combinations with the SP(S) value and 
significantly better than with SP(M). 
For the problem being solved Gantt charts with the one of best makespan value have been 
constructed: with machines (Fig. 6), and with parts (Fig.7) while the route is serial. 
 

 

Fig. 6. The Gantt chart for the problem solved for machines (serial route) 

 

 

Fig. 7. The Gantt chart for the problem solved for parts (serial routes) 

5.2 Comparison of the CA with a genetic algorithm for FJSP  
The results obtained with the evolving cellular automata algorithm and genetic algorithm 
have been compared. A genetic algorithm is characterized by a parallel search of the state 
space by keeping a set of possible solutions under consideration, called a population. A new 
generation is obtained from the current population by applying genetic operators such as 
mutation and crossover to produce new offspring. The application of a GA requires an 
encoding scheme for a solution, the choice of genetic operators, a selection mechanism and 
the determination of genetic parameters such as the population size and probabilities of 
applying the genetic operators.   
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In our test, we use the genetic algorithm tested in Witkowski et. al (2004, 2007), where there 
is a more detailed description of the algorithm. Here, we use the recommended parameters, 
in particular we use a mutation probability of 0.8 and a crossover probability of 0.2.  
Figure 8 shows some of the best results for of  the CA algorithm, and   Table 2 shows some  
ofthe  results for the  GA algorithm (serial route). 
 

1

makespan : 66282,5
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3
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Fig. 8. Some of the best  results for the test parameters of  CA algorithm (serial route)  

 

 
Experiment 

number 
Number of  
generations 

Min imum 
makespan 

[min] 

Number of 
schedules 

Average 
makespan 

[min] 

 1 42 59830 595 64380 

 2 28 69211 142 74443 

 3 44 62664 210 69384 

 4 40 67199 120 69230 

 5 19 64615 421 69657 

 6 6 58734 768 64459 

 7 46 63438 330 67457 

 8 46 57636 630 61238 

 9 33 60236 646 70858 

Average  34 62618  67901 

Table 2. Some of the  results for the  GA algorithm (serial route)  
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In the experiments with the CA algorithm (parallel route) simulations of each test problem 
were run with the SP population size equal to 10, 100, 1000, the RT transition rate  equal to 
10, 100, 1000, and the IN iteration number equal to 10, 100, 1000. Each experiment was 
repeated 10 times. 
 

iter. min. average max. avg. time [sec.]

37543.2 38625.2 36427.7 38969.5 37880.1

38976.1 41153.0 39895.2 39895.2 39872.7

37661.2 37281.3 36120.0 37456.5 36597.7

36350.0 37029.1 37433.0 38124.6 38143.9

36300.6

10 36427.7 38923.8 41153.0 42

hybridization ratio = 0.9; intensity of hybridization = 0.9.

size of the population = 1000; number of transitions = 10.

Makespan

100 36120.0 37219.7 38143.9 420

36330.6 42011000
 

Table 3. Some of  the  results (with SP (D) value) for the test parameters of  the CA algorithm 
(parallel route) 

 
For the problem being solved Gantt charts with the one of best makespan value have been 
showed  with machines (Fig. 6) while the route is parallel. 
In the experiments with the GA algorithm (parallel route) we have used the following: 
mutation type – single-swap; crossover type - order-based; selection type – roulette. The 
experiment series was carried out with the following parameters: population size– 1000; 
generation number - 50. Each experiment was repeated 9 times.  
Tabele 4 shows the results  for the GA algorithm.   
 
 

PM 1/ PC 1/ Value of Cmax  for different parameters  of the GA algorithm [min] 

1000 1000 1 2 3 4 5 6 7 

512 128 37545 36724 38155 37585 35637 39430 38822 

1000 450 38926 38543 37084 37065 38862 38588 40597 

192 256 37368 40725 41188 38902 40709 39457 38531 

96 353 37729 38707 40275 37866 39706 39514 39915 

256 450 40018 35124 39795 38777 37631 38515 38777 

64 256 40359 38339 36397 37939 38109 38610 39853 

128 64 39775 38181 40018 37210 40112 39615 38968 

16 256 41088 38055 40519 40566 39857 37301 39629 

8 128 40200 41239 39281 40422 39025 40047 41556 

8 256 40942 38210 38390 40132 39879 39890 35470 

8 450 36868 39628 39560 39932 39959 38842 40078 

32 450 37158 40589 40653 37440 37855 38031 39183 

32 256 39961 38647 41262 40165 39269 35166 39483 

32 128 40567 40193 39226 39579 40423 38843 39825 

64 128 42941 38274 39981 39491 40111 39908 37428 
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64 256 38145 38874 36901 39209 38915 40416 39649 

64 450 39013 39672 39344 40236 39826 39775 41053 

128 353 38671 38903 39186 39422 37540 36506 38223 

512 353 40968 39619 40180 39583 38870 40559 36429 

192 256 37466 39257 38295 38501 38132 40304 39477 

96 256 39444 38595 38905 38402 38774 38134 39817 

64 353 37770 38677 39667 40263 39317 37676 39445 

16 353 39930 39980 41221 38075 38681 39236 40329 

280 130 40586 39648 36805 38176 38239 36077 39873 

280 370 39253 38892 38222 38726 38130 40813 39168 

840 130 41824 37050 33949 37923 37435 38013 38712 

910 370 37426 37692 38223 38467 37562 40862 39039 

8 64 38436 41069 37987 39287 38690 39993 39042 

16 64 37505 38351 36647 39846 34738 40428 39065 

32 64 38554 39284 38144 38171 41728 39474 38144 

64 64 40415 39862 36583 38454 36264 39039 40426 

96 64 40342 39791 39055 39394 39872 38728 37385 

192 64 40652 36435 38656 40164 38549 37849 37345 

256 64 40814 38851 40186 40448 39435 41031 37419 

280 64 38278 38972 38653 38102 37330 38661 39112 

512 64 38788 37774 39794 38820 40603 39224 39700 

840 64 40521 38146 37848 38323 38501 38126 37391 

910 64 39983 39467 38609 35735 38880 37447 41173 

1000 64 38465 40961 36692 38726 39597 38493 37194 

16 128 38645 38577 39785 39314 39181 39658 37034 

96 128 40260 39932 39688 39593 39786 38340 38967 

128 128 39873 39150 37624 39528 40273 38549 40675 

192 128 38559 39003 36695 40691 38635 39235 39041 

840 128 38322 39987 37723 40669 39489 38108 39049 

910 128 37698 39438 37920 35857 40082 39579 34667 

1000 128 38599 39670 39822 37052 38917 38312 40619 

8 130 38254 39256 37131 37520 40000 39848 39644 

16 130 41453 38340 37480 40308 37198 40346 39298 

32 130 38986 39323 39196 39646 40179 38961 38651 

64 130 38597 38765 39151 40179 39599 38224 40713 

96 130 41377 38974 40071 39615 38247 40970 39434 

128 130 40669 40836 39114 40808 39476 37848 38918 

192 130 38561 39158 39877 39820 39020 38387 40398 

256 130 36108 37828 38378 40828 38998 40361 38449 

512 130 38935 39359 37933 33549 37184 40117 39846 
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910 130 38595 40498 40037 39457 38055 37419 39086 

1000 130 38604 37872 39596 39220 39818 38110 39327 

128 256 35614 38756 37070 40614 40770 38541 39979 

256 256 39891 39413 35647 38149 38485 41064 40019 

280 256 38330 36906 37492 39298 39913 39255 39768 

512 256 39951 39321 39691 37334 36105 36620 40355 

840 256 38195 39439 39945 40077 40545 38156 36714 

910 256 39265 40465 37356 40592 39022 31701 38760 

1000 256 41797 40467 40199 37534 37890 39089 38813 

8 353 38198 38215 39587 40206 37049 37457 37841 

32 353 38420 38526 38422 36501 39419 37903 39557 

192 353 39418 39418 35429 39043 39223 40586 39113 

256 353 39693 38591 39548 37636 39295 39853 38624 

280 353 37849 35995 39018 38860 37544 38312 37608 

840 353 37159 37159 39290 39942 38015 37159 38966 

910 353 41668 34752 39535 37406 39493 37733 38185 

1000 353 39868 40506 38434 39869 38237 39632 38582 

8 370 40255 38051 39140 38494 40274 38577 40698 

16 370 39564 40285 39366 39737 39077 36294 40451 

32 370 39253 40837 39576 37373 41460 38928 36018 

64 370 38105 38778 39236 39644 36098 38552 40660 

96 370 36646 39237 38242 36963 40197 38688 39378 

128 370 39074 39184 38297 39650 40936 37823 38687 

192 370 39305 36835 40083 41108 39513 38629 38312 

256 370 38860 41255 42417 39995 34023 40120 37957 

512 370 39695 40118 38358 39824 40379 40349 39603 

840 370 40084 38184 37808 38206 37710 40083 38468 

1000 370 38875 38661 40703 36498 38493 38535 37560 

16 450 38756 39286 38315 39106 38933 40246 35516 

96 450 35559 38088 39556 38268 40046 37104 40137 

128 450 38532 40352 38448 42062 39222 38763 39441 

192 450 39985 41215 40856 36504 40110 35746 39633 

280 450 37565 38601 39134 39571 41389 38153 37565 

512 450 38871 38547 38282 39381 39058 37768 37832 

840 450 39854 38626 39132 33809 38059 40107 32947 

910 450 36160 39825 38749 38673 39747 37460 39459 

Tabele 4. Results (value Cmax ) for different parameters  of the GA algorithm   

 
The experiments showed that for CA algorithm we can achieve results similar to the GA 
algorithm – both for the  serial route and parallel routes. 
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Fig. 9. Gantt chart for the solving problem with parallel route (for machines) 

6. Conclusion 

The paper presents an algorithm based on evolving cellular automata for solving flexible job 
shop scheduling problem. The presentation of the algorithm CA and its comparison with 
the GA  algorithm shows positive results. The software of this algorithm allows for analysis 
of the schedule construction process for many variants reflecting a variety of combinations 
of other factors. We can generally see that  depending on  the PS population size we can 
single out  3 classes  of quality results with regard to the Cmax criterion - very good (large 
population size), average (medium population size) and poor (small population size). 
Moreover an increase of the IT value influences the Cmax more than the RT value, although 
there are a number of exceptions..  
In addition, we observed that for our specialized FJSP problem the trajectory methods (e.g.  
tabu search, simulated annealing, GRASP) have better efficiency than the CA algorithm, 
particularly  when those algorithms are used in hybrid approaches [Witkowski et al., 2005a, 
2005b, 2006]. Experiments  for the analyzed FJSP problem indicate that the evolving cellular 
automata algorithm is comparable with such population-based methods as the genetic 
algorithm. Morover, the successful use of this approach will also depend on the amount of 
calculation that can be done and on further improvement of this algorithm for our problem.  
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