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1. Introduction  

1.1 Overview of the problem 

Humans have an innate predisposition for ambulation (walking). The motor neuron 
stimulation involved in ambulation is generated by a natural neural network located in the 
spinal cord, known as the central pattern generator for locomotion. This network is strongly 
influenced both by super-spinal structures situated mainly in the hypothalamus and 
brainstem, and by signals coming from various types of peripheral receptors (Carter & Page 
2009). 
To facilitate research and analysis, free gait in humans is traditionally divided into phases 
and cycles. Each full gait cycle comprises two individual steps; a single step consists of a 
stance phase and a swing phase. The gait cycle includes a stage of single limb stance (when 
the body rests on a single lower extremity) and a double limb stance (on both lower 
extremities).  
Kinematic gait analysis assumes a simplified, 15-segment model of the human body (feet, 
shins, thighs, forearms, upper arms, hands, head, torso, and pelvis) (Błaszczyk 2004). There 
are two kinds of basic parameters adopted for gait modelling and routine testing of 
ambulation in healthy and disabled individuals: spatial values of motion (including step 
length, velocity of the body mass centre, progressions of changes in joint angles, body mass 
oscillations) and dynamic values of gait mechanics (most often including ground reaction 
forces in 3 planes and the distribution of foot forces on the ground). These physical values 
are measured in parallel with bioelectric muscle activity (EMC), registered by surface 
electrodes as a subject walks (Perry & Burnfield, 2010).  
Correct ambulation requires the precise integration of practically all the systems of the 
human body. When one of the elements, especially a motor organ, is damaged as a 
consequence of injury, degeneration, or deformation, this immediately finds reflection in 
divergences of the above parameters from normative values, which is in practice described 
as pathological gait (Perry & Burnfield, 2010). The field of clinical biomechanics therefore 

www.intechopen.com



 Artificial Neural Networks - Methodological Advances and Biomedical Applications 

 

304 

seeks to identify normative values and limits for a broad range of parameters describing the 
mechanics of free gate, to help in detecting divergences in individual patients and in 
monitoring the process of gait rehabilitation following serious injury, surgical intervention, 
or neurological disorders – such as stroke. 
In the remainder of Section 1 we will first outline the specifics of pathological gait 
classification in post-stroke patients and consider the link between brain lesion parameters 
and gait classification, then offer an overview of the application of artificial neural networks 
(ANNs) to physiotherapy in general and to gait classification in specific. In Section 2 we will 
present various findings from our own research dealing with the application of ANNs to 
post stroke gait classification (Kaczmarczyk et al., 2009; Kaczmarczyk et al., in preparation). 
In Section 3 we will more broadly discuss these findings in the light of other approaches to 
rehabilitation and in relation to other work dealing with ANNs.  

1.2 Classification of pathological gait in post stroke patients 

The traditional definition of stroke, devised by WHO in the 1970s, is a "neurological deficit 
of cerebrovascular cause that persists beyond 24 hours or is interrupted by death within 24 
hours". Clinical symptoms of stroke depend on the type of stroke (ischemic caused by 
blockage in an artery that supplies blood to the brain, resulting in a deficiency in blood flow, 
and hemorrhagic caused by the bleeding of ruptured blood vessels  in the brain), the size of 
the lesion, the location of the arterial blockage or hemorrhage, previous stroke damage, 
collateral circulation, and variability in areas supplied by individual arteries (Brust 2004). 
One consequence of stroke may be hemiparesis (weakness of one side of the body), which 
can have a profound effect upon the capacity for ambulation (Kinsella & Moran, 2008). 
Recovery of functional ability after stroke is variable, with between 30% and 60% of subjects 
remaining dependent on others for some activities of their daily living (Duncan et al., 1994). 
Key functional tasks, such as regaining the ability to walk, have been identified by patients 
with hemiparesis as being of great significance in stroke rehabilitation (Bohannon et al., 
1988, 1991).  
The gait of post stroke patients is generally characterized by what is known as the 
Wernicke-Mann posture – the upper limb is adduced in the shoulder joint, flexed and 
rotated in the elbow joint, flexed in the brachiocarpal joint and the finger joints, whereas the 
lower limb is extended in the knee joint. However, a wide variety of gait deviation is 
observed in post stroke patients (Voigt & Sinkjaer, 2000; Burdett et al., 1988; Rodda et al., 
2004). Many post stroke patients suffer from a foot drop problem during walking (an 
inability to move the ankle and toes upward). They might adopt different hemiplegic gait 
patterns with large variations, such as circumduction gait, high stepping pattern, etc. 
(Hermann 1987, Hong-yin et al., 2009). This variety of gait deviation poses a clinical 
problem, making it difficult to deliver targeted treatment. Clinical practice has therefore 
sought to develop methods for the appropriate (and early) classification of post-stroke gait 
dysfunction – the general idea being that once a given patient has been correctly classified as 
having a certain type of gait dysfunction, therapists may provide adopt a strategy of 
treatment best suited for their rehabilitation.  
The observation-based classification of gait in neurological patients described by Hermann 
(1987) remains the primary method of gait diagnostics used for clinical purposes, supplying 
information that facilitates the qualitative evaluation of a given patient's dysfunction. 
Seeking to ensure better uniformity of evaluation methods, various forms of qualitative or 
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point-based ways of recording observations of pathological gait have been devised – such as 
various scales, questionnaires, gait evaluation indexes, etc. However, such widely used 
observation-based methods of classifying pathological gait quality, not being underpinned 
by objective measurement of mechanical gait parameters, are unfortunately fraught with a 
large degree of subjectivity and their effectiveness varies greatly depending on how 
experienced the observer is and on how systematically the criteria are applied. This 
shortcoming has given rise to various attempts at providing formal descriptions and 
classifications of various types of pathological gait.  
In terms of post stroke dysfunction, numerous authors (Mulroy et al., 2003; Olney & 
Richards, 1996; Knutsson & Richards, 1979; Perry et al., 1995; Kramers de Quervain et al., 
1996; Kinsella & Moran, 2008) have attempted to identify homogeneous subgroups of post 
stroke walking patterns. Knutsson & Richards (1979) used EMG signals to distinguish three 
types of pathological gait. Kramers de Quervain et al. (1995) used the Mahalanobis distance 
statistical technique on five temporal distance parameters to distinguish four gait patterns. 
A similar study was carried out by Mulroy et al. (2003), analyzing gait based on temporal 
distance and sagittal plane joint kinematics, using a non-hierarchical cluster analysis to 
categorise four subgroups of walking patterns. Kinsella & Moran (2008) used hierarchical 
cluster analysis to identify three gait patterns in hemiplegics with equinus deformity of the 
foot based on temporal distance parameters and joint kinematic and kinetic measures in the 
sagittal and coronal planes. 
Overall, irrespective of the parameters measured or technique used, this line of investigation 
seems to show some convergence of results: suggesting that post stroke patients can be 
usefully classified into more or less three–four types of dysfunctional gait based on 
quantitative data.  
Wong et al. (2004) proposed another, simple gait classification technique based on 
evaluating foot position at ground contact. This study looked at 65 post stroke patients and 
distinguished between three gait types by analyzing the motion of the point of application 
of the resultant reaction force on the foot. Wong et al. (2004) found a correlation between the 
results of their classification, the neurological condition of the patients, and the temporal-
spatial data obtained from kinematic analysis. However, they did not attempt to find a link 
between foot position at ground contact and the progression of lower limb angle values over 
the gait cycle. The work of Wong et al. (2004), one of the few papers in the literature 
attempting to classify post stroke patients based on the analysis of foot motion during 
ambulation, served as the inspiration for the methodology used in our research.  
None of these studies discussed above attempted (as we have) to categorize walking 
patterns based on the full progression of joint angle changes as a function of the gait cycle in 
post stroke subjects – an avenue of research that is made possible by the use of Artificial 
Neural Networks (ANNs), as described in detail in the next section below.  

1.3 Association between brain lesion and gait classification 

Relatively little is known about the specific association between the parameters of the brain 
lesion causing a stroke and the gait type found in post stroke patients. Elucidating this 
relationship could enhance our understanding of the neural circuitry involved in 
locomotion and could have important clinical implications, underscoring the need to 
prioritize gait retraining for patients in the early stages after stroke.  
In view of this need for early rehabilitation, many studies (Jørgensen et al., 1995; Viosca et 
al., 2005; Dominkus et al., 1990) have discussed the association between motor recovery and 
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the most predictive factors that can be identified. However, none of these authors attempted 
to identify any link between CT scan parameters and the characteristic gait patterns seen in 
post-stroke patients – as we have explored in the work described below.  
The various types of pathological gait have a neurophysiological basis, due to post stroke 
changes in the brain. Clinical evidence suggests that the site of damage of the sensorimotor 
cortex influences the pattern of motor deficits (Glymour et al., 2007). This raises the 
possibility of exploring CT scan parameters as a way to predict gait patterns. Studies mostly 
evaluated the association of only one parameter of brain lesion with motor and functional 
outcomes after stroke. While several studies have suggested that brain lesion parameters 
correlate with final outcomes (Bear & Smith 2001; Dominkus et al., 1990; Alexander et al., 
2009; Laufer et al., 2003; Pérennou et al., 1999; Turney et al., 1984; Kwolek & Spławiński 
1996), other studies have found no such association (Chen et al., 2003; Viosca et al., 2005; 
Binkofski et al., 2001; Nakayama et al., 1994; Chae et al., 2000). The reason for this 
controversy might be that outcomes actually correlate with some combination of brain 
lesion factors together, rather than individually. Chen et al. (2000) showed that recovery and 
functional outcomes correlate with “brain lesion profiles” that combine two factors: size and 
location. However, all the cited authors have concentrated on finding an association 
between brain lesion parameters and motor recovery and functional outcome in hemiplegic 
stroke patients, rather than objectively identified gait patterns – this led us to further 
investigate the possibility of the latter link using Artificial Neural Networks (ANNs), as 
described in detail below.  

1.4 Introduction to Artificial Neural Networks 

Artificial neural networks (ANN), also known as connectionist systems or parallel 
distributed processing models, are computer-based, self-adaptive models that were first 
developed in the 1960s, but gained broad popularity only in the 1980s after the development 
of the backpropagation algorithm by Rumelhart et al. (1986). It is hard to ascertain today 
what sort of motivation initiated the development of neural network theory, but we can 
assume that a fascination with the human brain was a fundamental factor. Neural network 
research can be traced back to the work of McCulloch and Pitts (1943), who put forward the 
first formal arithmetic-logical model of the neuron. 
ANNs are simulations of the nervous system: a computational model consisting of an 
interconnected group of artificial neurons, often situated in distinct layers, which can be 
used for processing information. An ANN system is adaptive, responding to information 
that flows through the network during a learning phase. In a testing phase, ANNs generate 
on output signals as a response to previously unknown inputs. ANNs offer an 
extraordinarily flexible tool for inductive, nonlinear modelling of complex input-output 
relationships and finding complex patterns in data. The effectiveness of generalization can 
be expressed as the ratio of correctly recognised input patterns to all of the presented 
patterns in the test phase. The advantage of ANNs is that they can process large numbers of 
data simultaneously and because of their internal structure the pieces of data do not have to 
be isolated from each other, preserving the inherent relationships amongst the data set. The 
attractive features of simultaneous data handling and the concept of contextuality make 
ANNs potentially useful tools in the automated recognition of various gait patterns.  
Three types of neural network architecture can be distinguished: feedforward networks, 
recurrent networks, and cellular neural networks. In the feedforward type of network 
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mainly discussed below, the information moves in only one direction – forward – from the 
input nodes, through any hidden layers of nodes to the output nodes, and there are no 
cycles or loops in the network. In a recurrent network, in turn, some connections between 
units form a directed cycle, enabling the network to exhibit dynamic temporal behaviour.  

1.5 Application of Artificial Neural Networks in physiotherapy 

The use of neural networks in medicine and rehabilitation has grown enormously in the 
past decade (Carter 2007). They have been applied as statistical tool to solve problems 
including the following: i) prediction of diagnosis, e.g. for several types of cancer (Rogers et 
al., 1994), ii) prognoses, e.g. for heart disease (Katz et al., 1993), iii) the interpretation of 
diagnostic tests, e.g. for pancreatic enzymes (Kazmierczak et al., 1993), and iv) decision 
support, e.g. (Doornewaard et al., 1999).  
Neural networks are especially useful if the main goal of building a model is to predict 
outcomes for new cases. Grigsby et al. (1994) attempted to predict functional outcome, 
length of stay, and cost for patients with hip fractures who were undergoing inpatient 
rehabilitation. This study was one of the first to apply ANN methodology to the analysis of 
patients undergoing rehabilitation. The input data included age and selected Function 
Independence Measure scores at admission. An accurate prediction was defined as a value 
within ±15% of the actual outcome: the functional outcome model predicted the mean rating 
of the 13 FIM motor items score at discharge with an accuracy of 86%; the length of stay 
model prediction was 87% accurate, the cost model 91% accurate. Oczkowski & Barreca 
(1997) attempted to predict functional outcomes and discharge placement for moderately 
impaired stroke patients. The input data used to predict outcome included age, days since 
stroke, motor recovery of leg strength and postural control, the presence of sensory loss, 
neglect, a care-giver, and the admission FIM score. The network demonstrated an accuracy 
of 88% for the prediction of discharge FIM score, and 75% for the prediction of discharge 
placement. Both studies used separate training and test sets to evaluate model performance 
and back propagation methods for error reduction. Ohno-Machado et al. (1999) created 
neural network models to predict early mortality and ambulation for patients with spinal 
cord injuries. Their model included 15 variables for example, day from injury to admission, 
age gender level of presented neurologic function, and American Spinal Injury Association 
(ASIA) impairment score (Rowland et al., 1998), achieving an 97% rate of accuracy.  
Neural networks have also been applied to the study of functional electrical stimulation 
(FES). FES is one of the most used technologies for restoring the functions of patients 
affected by neurological pathologies. By electrically activating the muscular system, FES is 
increasingly recognized as a method of therapy and treatment for subjects impaired by 
stroke, multiple sclerosis and cerebral palsy (Popovic et al., 2002; Galen & Granat 2002). 
Electrical stimulation generates control signals that effectively activate paralyzed upper limb 
muscle for standing up, walking and maintaining body balance. A radial-basis neural 
network was used by (Popovic, Radulovic et al., 2003) for controlling FES in eight muscles in 
six subjects with paraplegia as a result of spinal cord injury. Their input data consisted of a 
function of hip, knee, ankle angles, flexors and extensors activation and ground reaction 
force (GRF) during the gait cycle in able-bodied individuals. Another study by (Muniz, Liu 
et al., 2010) evaluated three different models, including a probabilistic neural network 
(PNN) for discriminating between normal and Parkinson disease subjects in terms of 
ground reaction force during walking. Their experimental protocol included medications 
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and deep brain stimulation of the subthalamic nucleus. They found that neural networks, as 
well as the other models, showed high performance indexes for classifying ground reaction 
forces of normal and Parkinson subjects.  
ANNs can be also used for gleaning a better understanding of the mechanisms of motor 
control. Bernabucci, Conforto et al. (2007) simulated a simplified version of the 
biomechanical arm model, constructed with two mono-articular pairs of muscles for each 
joint (elbow and shoulder) and a bi-articular third pair of muscles connecting the two joints. 
The proposed system was only able to make ballistic plantar movements. As a crucial part 
of the system, ANNs were engaged for synchronizing the muscle activation during arm 
movement. Such theory-based investigations are important because they commonly open 
up wide fields of application. For instance the system developed by Bernabucci, Conforto et 
al. (2007) can be adapted to FES and could enhance paretic patients' capacity to control their 
arm movements with reduced effort during therapy.  
Encouraging results achieved in overcoming simple functional limb substitution (Liberson 
et al., 1961) and successful therapy both in lower (Bogataj et al., 1995) and in upper limb 
movements (Wang et al., 2002) have recently led to the development of FES-assisted 
rehabilitation programs for hemiplegic patients (Gritsenko & Prochazka 2004; Goffredo et 
al., 2008). Restoration of upper limb movements in post stroke patients is one of the 
keystones of rehabilitative practices. Rehabilitation of arm movements is usually more 
difficult than for the lower extremities (Goffredo et al., 2008). Goffredo et al. introduced a 
non-invasive FES-assisted rehabilitation system for the upper limb, called smartFES (sFES). 
The system includes a markless motion estimation algorithm and a biologically inspired 
neural inverse dynamics model, fed by the kinematic information that drives a 
biomechanical arm model, which could be used to drive an sFES. The algorithm is based on 
the design of a specific ANN, which works on a two-step basis: ANN1 was used to estimate 
the dynamics of shape and ANN2 to generate the muscular activation that will make the 
artificial muscles produce the forces necessary to drive the arm model. ANN1 is a two-
hidden-layers network. The network inputs consisted of horizontal and vertical components 
of position, velocity and acceleration of all the contour points n (n=1,..,N) in the current 
frame (i-1), which means the number of the input neurons is N*6. The (N*2) outputs are 
given by the horizontal and vertical components of the position of the contour points in the 
subsequent frame i. ANN2 is also a two-hidden-layer network, fed by four inputs, 
representing the coordinates of the starting and the ending points of the movement to be 
generated. The output layer yields: the time of contraction of the muscle pairs of both the 
shoulder and the elbow joint, together with the duration of the overall neural activations. In 
the stimulation of movements of a synthetic arm with a length of ±20cm, the model has 
shown an unbiased angular error, and a mean position error of about 1.5 cm, thus 
confirming the ability of the system to reliably drive the model to the desired targets.  
A similar study, this time concerning the lower limb, was undertaken by Chen et al. (2004). 
Hemiplegic patients very often suffer from the drop-foot problem. Chen et al. (2004) 
established a neural network and fuzzy feedback control FES system for adjusting the 
optimum electrical stimulating current to control the motion of an ankle joint. Three 
hemiplegics and a healthy individual participated in their study. Their three-level neural 
network structure used back-propagation. The network was used to estimate the current 
volume input into the body for electrical stimulation of the tibialis anterior of the hemiplegic 
patients. The fuzzy controller solved the nonlinear problem by compensating for the motion 
trace errors between neural networks control and actual system. Locomotion of the 
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hemiplegics was effectively improved by applying the neural network to electrical 
stimulation therapy. 
On the whole, therefore, we can conclude that ANNs have proven to be effective tools in 
medicine and rehabilitation.  

1.6 Gait classification using ANNs  

Artificial neural networks have a lot to offer to gait analysis in particular, facilitating the 
study of complicated gait variable relationships that have traditionally been difficult (Chau, 
2001). A standard three-layered feedforward network works as a universal function 
approximator (Lapedes & Farber, 1988). This property allows one to model any relationship 
among gait variables, provided adequate data are available and the requisite network 
complexity is computationally feasible.  
Another notable aspect of neural networks is that they can analyze great amounts of gait 
data, as evidenced in the studies of Holzreiter & Kohle (1997) and Lafuente et al. (1997). 
Other benefits to gait analysis include their inherent non-linear mapping ability, 
demonstrated aptitude at capturing temporal dependence (Savelberg & Herzog, 1997), and 
short processing time (Miller, 2009). Another advantage is the ability to capture patterns in 
the data within their internal parameters known as weights and biases which may influence 
gait patterns (Hinton, 1992).  
A significant number of papers (Holzreit & Kohle, 1993; Barton & Lees, 1997, 1995; Gioftsos 
& Grieve, 1995; Lafuente et al., 1998; as well as our own research outlined in the next 
section) have shown ANNs to be useful in distinguishing gait patterns. Recent efforts 
generally fall into three categories of application: i) classification of human gait, ii) 
biomechanical modelling, iii) prediction of gait variables and parameters (Chau, 2001). It is 
the first and third of these applications – classification and prediction – that we will explore 
in detail below, reporting the results of our own research.   
One of the first attempts at classifying gait in patients using ANNs was made by Holzreiter 
and Kohle (1993), using the standard network structure (i.e. with one hidden layer) and 
showing a 95% rate of successfully distinguishing gait patterns of healthy individuals from 
those of physically disabled individuals. Gioftsos & Grieve (1995) investigated the 
application of ANNs (again with one hidden layer) to the recognition of temporal gait 
parameters associated with altered gait patterns. Their network had a mean accuracy of 73% 
in correctly recognizing the unknown patterns. Similar studies were undertaken by Barton 
& Lees (1995, 1997) – their first study expanded the ANN classification to three categories 
and achieved a successful classification rate of 77% to 100% based on foot position, whereas 
their second study concluded that angle changes in the hip and knee joints offer a good 
basis for automatic identification of gait types (with an average correct classification rate of 
83.3%). In both tests, Barton & Lees (1995, 1997) used a complex neural network with two 
hidden layers concealed between the input and output cells. Lafuente et al. (1997) reverted 
to the standard network structure (i.e. with one hidden layer); here data concerning gait 
rhythm, speed and five kinetic values were fed into the neural network, based on which 
four gait types were correctly distinguished at a rate of 80%. The review of Miller et al. 
(1992) described other neural networks applied in different areas of investigation, with 
similar results. In turn, Aminian et al. (1995) used accelerometer to recognize the speed and 
incline of walking. The neural networks were first "trained" by known patterns of treadmill 
walking. Then the inclines, the speeds, and the distance covered during overground 
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walking (outdoor circuit) were estimated. The results show a good agreement between 
actual and predicted variables. All the above studies showed rates of correct classification 
within the 77%-100% range, reaffirming the great potential of neutral networks in 
distinguishing gait patterns.  
The various approaches and findings of these studies are summarized in Table 2.  
 

Author 
Measured 
parameters 

Inputs Network type Outputs 
Conclu-

sions 

Holzreiter 
& Kohle 
(1993) 

Ground reaction 
forces 

128 FFT 
coefficients 

Feed forward  
(one hidden 
layer) 

1) Able-bodied 
gait 
2) Pathological 
gait 

Up to 95% 
accuracy 

Barton & 
Lees (1995) 

Maximum 
pressure prints 

1316 
maximum 
pressure 
values 

Feed forward  
(two hidden 
layers) 

1) Heathy feet 
2) Pes cavus 
3) Hallux vagus 

77-100% 
accuracy 

Gioftsos &  
Grieve 
(1995) 

Duration of the 
double, right and 
left support 
phases 

three 
temporal 
measuremen
ts 

Recurrent 
network 

Three walking 
conditions; 7 
walking speeds 

73% 
accuracy 

Barton & 
Lees (1997) 

Hip and knee 
angles 

30 FFT 
coefficients 

Feed forward  
(two hidden 
layers) 

1) Normal 
walking 
2) 20 mm thick 
sole 
3) 3.5 kg mass 

83.3% 
accuracy 

Lafuente 
(1997) 

Cadence 
Velocity 
5 kinetic 
parameters 

Kinetic and 
kinematic 
parameters 

Feed forward  
(one hidden 
layer) 

1) Healthy 
2) Ankle 
arthrosis 
3) Knee arthrosis 
4) Hip arthrosis 

80% 
accuracy 

Aminian et 
al. (1995) 

10 
parameterizations 
of accelerations of 
the trunk and 
right heel  

Forward, 
vertical and 
lateral 
accelerations

Two feed 
forward 
networks 

Speed and 
incline 

 

Table 1. Summary of studies applying neural networks for gait classification 

2. Example application of ANNs in post stroke gait rehabilitation 

Overall, therefore, ANNs have been shown to be a promising avenue of research in post 
stroke gait rehabilitation. As an illustration of this, in the remainder of this chapter we will 
describe in detail the findings of our own research in this direction, which may be viewed as 
a single study reported in two separate papers, Kaczmarczyk et al. (2009, in preparation). 
As we noted above, the ability to correctly classify gait patterns in post stroke patients is 
now recognized as a crucial aspect for improving the rehabilitation process and providing 
targeted therapy tailored to the patient's individual needs. ANNs offer an advantage over 
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existing methods for characterizing post stroke gait types – which are mainly based on 
verbal descriptions, hence their use in clinical practice involves considerable risk and is 
strongly dependent upon the experience of the observer. At the same time, the use of 
traditional statistical methods, based on analysis of min/max values, may involve a certain 
error: two individuals may exhibit similar ranges of motion, yet have significantly different 
progressions of joint angle values over the course of their gait cycles.  
The aim of our work, reported in two separate papers but described in conjunction in the 
remainder of this section, was to compare methods for classifying post stroke patients into 
gait pattern types, taking as a point of departure Wong et al.'s (2004) three types of foot 
position. The methods we considered were: 1) min/max joint angle values and 2) the full 
progression of joint angle changes analyzed with ANNs, concluding that the ANN method 
yielded superior results (as reported in Kaczmarczyk et al., 2009). We also used these ANN 
gait classification predictions as a reference against which to test the association between the 
simultaneous impact of four brain lesion parameters and different pathological gait patterns 
(as reported in Kaczmarczyk et al., in preparation) 

2.1 Materials and methods 
2.1.1 Participants 

Seventy-four hemiplegic patients (31 females and 43 men) participated in this study; their 
characteristics are shown in Table 2. The inclusion criteria were: 40-70 years old, first 
incidence of hemorrhagic or ischemic stroke within the past six months, capable of walking 
independently (without any orthopedic walking aid), with no other disorders of an 
orthopedic, rheumatologic, etc., nature that could affect gait kinematics, with no cognitive 
disorders and with consent from their physician and physiotherapist for their participation 
in this study.  
 

Group Height [cm] 
Body mass 

[kg] 
Age 

[years] 

Time since 
stroke 

[weeks] 

Type of 
stroke 

Women 
(n = 31) 

162 ± 5 
(150 ÷ 172) 

69,6 ± 11,6 
(51 ÷ 105) 

55,6 ± 9,4 
(40 ÷ 70) 

7 ± 2,9 
(4 ÷ 12) 

I = 25 
H = 6 

Men 
(n = 43) 

173,8 ± 5,2 
(164 ÷ 186) 

78,7 ± 9,9 
(59 ÷ 100) 

58,9 ± 9,3 
(40 ÷ 70) 

7,2 ± 3,0 
(3 ÷ 12) 

I = 30 
H = 14 

I – ischemic, H – hemorrhagic (from Kaczmarczyk et al., 2009) 

Table 2. Average (±SD) values and ranges (min÷max) for selected characteristics of study 
participants 

Both the men and women subjects had experienced their stroke incident at a similar 
timeframe (7 months prior to the study), with the scatter coefficient of this parameter in both 
groups being 41%. One difference between the male and female groups was that 
hemorrhagic stroke accounted for 32% of the cases in the male group (n = 44) involved but 
19% of the cases in the female group (n = 31) – consistent with WHO data indicating that 
hemorrhagic stroke accounts for about 20% of all stroke incidents.  
Approval for the experiment was sought and obtained from the Institute's Research Ethics 
Commission and all the participants provided written informed consent. 
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2.1.2 Data collection and processing 

Firstly, gait analysis was performed once for each subject using the Ariel Performance 
Analysis System (APAS). Participants walked unassisted at a self-selected speed along a 10 
m walkway being recorded by two analogue cameras set perpendicularly to one another, 7 
m from the subject (one standard setup for 3D analysis). 18 markers were placed on each 
patient, at selected characteristic points (following a standard protocol for full body motion 
analysis using the APAS system): the base of the first metatarsal bone, the calceneal 
tuberosity, the lateral malleolus, the articular space of the knee joint, the greater trochanter 
of the femur, the radiocarpal joint, the elbow joint, the greater tubercle of the humerus, the 
jugular notch of the sternum and the root of the nose to define joint centres and the axes of 
rotation.  
Gait was evaluated quantitatively, based on local extremes (min/max) angle values and 
absolute angle values in the leg joints as a function of time. Because foot position was 
considered a dependent variable, the values collected were for the knee joint and for the hip 
joint in the frontal and sagittal planes.  
Secondly, all the patients had CT brain scans performed within 7 days after stroke. The 
images were evaluated in line with accepted diagnostic criteria, following American Stroke 
Association guidelines. The scans were performed without using a contrast medium, with 
slice thickness of 8 to 10 mm. A stroke lesion is treated as being a hypodensive ischemic area 
situated in the cortex, subcortically, or in the deep structures of white or grey matter, 
according to vascularization from one of the cerebral arteries. Lesion number was evaluated 
for each patient as follows: 1) one, 2) two, 3) multiple. Lesion size was classified according to 
Brott et al. (1989) as: 1) lacunar – up to 1 cm, 2) small lesion – less than ½ lobe but more than 
1 cm, 3) medium-size lesion – between ½ and 1 lobe, 4) large lesion encompassing more than 
1 lobe. Lesion location was defined according to the criteria of Damasio (1984) by 
vascularization area: 1) middle cerebral artery, 2) anterior cerebral artery, 3) posterior 
cerebral artery, 4) basilar artery, and by structures occupied: 1) deep structures, 2) frontal 
lobe 3) temporal lobe, 5) occipital lobe, 6) cerebellum, 7) brainstem.  

2.1.3 Statistics 

The data from the study were put through detailed statistical analysis using the 
STATISTICA software, adopting a significance level of ǂ = 0.05. The methods used for gait 
classification were discriminant function (DF) analysis and ANNs.  
DF analysis was used to classify patients and to identify parameters that make a significant 
contribution to distinguishing between gait types in post stroke patients. To illustrate the 
progression of the analysis, the forward stepwise method was used.  
ANNs were used to assign each case, as represented by the corresponding set of input data, 
to one of the selected gait pattern types. The input variables were discrete (continuous) 
values on the progression of knee and hip angle changes. The input variables were joint 
angles previously normalized for the gait cycle (expressed in percent), resampling to 50 
points. The input signals from each of the subjects, a total of 74 cases, were coded on a scale 
from 0 to 1. The output cell was a dependent variable of a nominal value (GROUP), 
represented using the "one-of-N" technique. In the "one-of-N" coding, one neuron 
corresponds to only one of 3 possible values of the GROUP variable, containing information 
about 3 types of gait in post stroke patients. The classification was implemented with the 
STATISTICA™ v7.0 Neural Networks software, using the Multi Layer Perceptron (MLP) 
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network type, to establish a network of 51 input cells, one hidden layer of 27 cells and one 
three-level output cell (MLP 51:51-27-3:1). For the three different network-creation subsets, 
i.e. the training, validation and test subsets, different quality measures were selected. Cases 
(subjects) were assigned to the individual subsets automatically and randomly.  
To identify the weight, in the range of 0 to 1, for each of the predicting values, one of the 
multivariate exploratory techniques was applied: analysing the robustness of the 
classification tree for the three gait types as dependent variables and for the four 
independent variables, lesion size and lesion location (as opposed to lesion number or lesion 
type). The classification tree was built performing discriminant-based split, bottom up 
running, generalizing Chi-square goodness of fit measures. Prior and misclassification cost 
were specified as equal, estimated from the data. 

2.2 Results  

We performed two stages of gait assessment using quantitative methods. The first such stage 
was based on local min/max angle values in the knee joint and the hip joint in the sagittal and 
frontal planes during the stance phase. This stage of discriminant analysis showed that none of 
these variables were significant (p>0.05) in predicting classification into groups (Tab. 2). 
 

Variable 

Summary of discriminant function analysis (local min/max) 

Wilks 
Lambda 

Partial 
Wilks 

F to remove (2.63) p-level Toler. 
1-Toler.  
(R-Sqr.) 

ǂmin 0.839 0.955 1.554 0.219 0.204 0.796 

ǂmax 0.807 0.993 0.232 0.793 0.194 0.806 

ǃmin 0.813 0.986 0.478 0.622 0.224 0.776 

ǃmax 0.811 0.988 0.404 0.669 0.227 0.773 

δmin 0.831 0.964 1.243 0.295 0.196 0.804 

δmax 0.859 0.932 2.394 0.099 0.202 0.798 

Table 3. Significance of min/max parameters in building a model of gait types in post stroke 
patients (n = 74) (from Kaczmarczyk et al., 2009) 

The Lambda Wilks values in the second column close to 1.0 indicate that the variables do 
not make a significant contribution to discriminating between groups. This is because the 
proposed variables do not individually carry sufficient information to build a good model of 
three gait type groups based on the proposed kinematic gait parameters (extreme range 
values of lower limb joints).  
In the next stage in our research, we tested the use of discriminant analysis for gait 
classification. The results are shown in Table 4.  
This unsatisfactory result of classification for discriminant analysis (below 50% both for each 
gait classification group and overall) can be explained in terms of the fact that the peak 
values characteristic for a specific gait phase may be distorted by random variations in 
extreme values or by the data processing itself, especially the filtering and smoothing of raw 
values in kinematic analysis. That is why our next step was to check whether it was possible 
to analyze the entire progression of angle values as a function of the cycle of a single step. 
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GROUP Classification matrix (min/max) 

 
Percent 
correct 

forefoot 
p=.405 

flatfoot 
p=.3562 

heel 
p=.2329 

forefoot 
(n=30) 

66.7 20 8 2 

flatfoot 
(n=26) 

38.5 13 10 3 

heel (n=18) 38.9 3 8 7 

Total 48.3 30 26 18 

Table 4. Percentage breakdown of correct classification of post stroke patients into gait types 
(n = 74) (from Kaczmarczyk et al., 2009) 

The next stage of our research, therefore, involved classifying the gait of patients based on 
the progression of angle values in the knee and hip joints in the frontal and sagittal planes 
using artificial neural networks. For ANN training, the input cells were the successive 
values of the joint angle progression ǂ=ƒ(t) during gait, sampled with step k = 2. Networks 
were built manually (i.e. not using the automatic option), and multi layer networks were 
ultimately selected for training. The network that most faithfully recreated the real values 
involved angle changes in the knee joint during walking. Figure 1 illustrates the 
configuration of the network we used for classifying post stroke patient gait on the basis of 
the progression of knee joint values during walking – a feedforward network using a single 
layer of hidden nodes. A network of identical configuration was built for post stroke gait 
classification based on the progression of hip joint values in both the frontal and sagittal 
planes.  
 

Typ : MLP 51:51-27-3:1 ,  Ind. = 1
Jakość ucz. = 0,986667 ,  Jakość wal. = 0,000000 ,  Jakość test. = 0,000000

 

Fig. 1. Configuration of ANN for post stroke gait classification based on the progression of 
knee joint values during walking (from Kaczmarczyk et al., 2009) 
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The main measure of the quality of the configured network during the learning process 
were errors in the training, validation, and test sets. The sets we used were of equal size and 
each constituted 1/3 of all patients; the selection of patients for each of the three sets was 
random. Table 5 shows data concerning the quality of the best sets accepted for further 
analysis. 
 

Joint Training error Validation error Testing terror 

Knee 0.07 0.00 0.00 
Hip sagittal 0.01 0.03 0.19 
Hip frontal 0.39 0.00 0.00 

Table 5. Error report for training of MLP51:51-27-3:1 neural network configured for 3 joint 
angles (from Kaczmarczyk et al., 2009) 

The critical error level is assumed to be 0.1, and the smaller the error value the better 
adapted the network is. The data in Table 5 shows that a fully satisfactory network was built 
solely on the basis of knee joint angle changes. For the other two hip joint angles, the 
program was unable to create a network so well adjusted to the measurement data set. As a 
result, classification of individual patients based on information from hip joint angle 
progressions is not as accurate as for the knee joint.  
The outcome of the ANN classification for individual joints – which we believe to be 
impressive given the unsatisfactory results obtained using the quantitative methods 
described so far – is presented in Table 5. Classification based on changes in knee joint angle 
values as a function of time placed all subjects correctly for all three gait types. Analysis of 
hip joint angle values in the sagittal plane placed all the subjects into the appropriate groups 
for two gait types (with a rate of nearly 97% for the third). For hip joint angle values in the 
frontal plane, successful classification rates were around 95% for two gait types, and 85% for 
the third gait type.  
 

Joint 
forefoot (n= 30) 

correct [%]
flatfoot (n = 26) 

correct [%]
heel (n = 18) 
correct [%] 

Knee 100 100 100 

Hip, sagittal 96.7 100 100 

Hip, frontal 96.7 84.6 94.4 

Table 5. Classification obtained using a neural network, with knee and hip joint angle values 
during gait as input parameters (from Kaczmarczyk et al., 2009) 

The above findings were reported in Kaczmarczyk et al. (2009), drawing the major 
conclusion that ANN analysis is superior to qualitative variable analysis for classifying post 
stroke patients' gait patterns into three gait types, as well as superior to the analysis of 
min/max joint angle values. Next, as reported in Kaczmarczyk et al. (in preparation), we 
used this ANN-derived classification method (which placed post stroke patients into one of 
three groups – F1 (forefoot), F2 (flat foot), H (heel)) as a reference gait classification against 
which we looked at the influence of four individual brain lesion parameters on the nature of 
gait in the same set of early stage post stroke patients. The results of comparing CT scan 
parameters against this ANN-derived gait classification are presented in Table 6.  
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Observed Predicted by CT scan parameters Correct 
classified 

(%)  F1(forefoot) F2 (flat foot) H (heel) 

F1(forefoot) (n=30) 22 4 4 73.3 

F2 (flat foot) (n=26) 5 18 3 69.2 

H (heel) (n=18) 2 3 13 72.2 

Table 6. The relationship between CT scan and gait pattern classification (from Kaczmarczyk 
et al., in preparation) 

The best correspondence between CT scan classification and the reference gait pattern from 
the previous study (listed as "observed" in Table 6) was seen in the F1(forefoot) group (of the 
30 individuals to be correctly placed into this group, CT scan parameters classed 22 
individuals correctly, 8 incorrectly). In general, all three groups showed similar levels of 
correct classification based on CT scan parameters, with the overall average result of 71.3% 
correct classification for all patients – a result that may be described as relatively good. 
Our next analysis looked into the classification trees techniques. The analysis followed a 
pairwise principle, comparing each pair to identify how each of the individual CT 
parameters contributes to classification into the different gait types. Table 7 lists the results 
of the comparisons – the values stated are weights that range from 0 to 1. The comparisons 
indicate that the influence of the individual parameters varies and depends on the 
configuration (accompanying parameter). The parameter whose contribution is analyzed is 
listed in the first column of Table 7, and the accompanying parameters are listed in order in 
the first row of the table 7.  
 

 Number Size Location Type 

Number  0.60 0.56 0.79 

Size   0.33 0.8 

Location    0.89 

Table 7. The individual CT parameters' contribution to classification into the three different 
gait types (from Kaczmarczyk et al., in preparation) 

The data in Table 6 indicate that considering only two stroke parameters derived from CT 
scans may be used to identify the importance (influence) of each CT scan parameter for the 
type of patient gait. Comparisons of all parameters against each other indicate a clearly 
lower importance of type of stroke, whereas for "number–type", "size–type", and "location–
type" comparisons the first parameter is always of dominant importance in predicting the 
type of gait in the future course of rehabilitation.  
The results of this analysis seem to indicate that to obtain a full picture of the influence of 
each of the parameters on the result of gait classification, analysis should be carried out 
considering all the CT scan parameters simultaneously. Therefore, next the individual 
significance of the four lesion geometry parameters was considered. Of these four, lesion 
size and lesion location (as opposed to lesion number or lesion type) appeared to influence 
gait pattern in post stroke patients most strongly (Fig. 2).  
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Fig. 2. Weight of the influence of individual CT parameters on the type of post stroke gait 
disorders in patients studied (from Kaczmarczyk et al., in preparation) 

These main findings obtained by recursive partitioning methods suggest that CT scan 
parameters, specific lesion size and lesion location may serve as a useful early gait 
classification strategy, nearly as accurate as the ANN method previously presented by 
Kaczmarczyk et al. (2009), which provided a useful reference classification.  
In the next section, we will discuss these various findings of ours in the broader context of 
other studies.  

3. Discussion 

The process of post stroke rehabilitation is protracted and costly. There are many papers 
arguing that post stroke patients engaged in a rehabilitation program achieve higher 
degrees of independence than patients without rehabilitation, and that the former do not 
acquire pathological gait patterns (Prescott et al., 1982). Even so, the effectiveness of such 
programs continues to raise many doubts. For the rehabilitation process to be effective, it 
has to be initiated as early as possible and properly targeted. One of the criteria for 
including patients in our research, reported above, was the relatively short time that had 
elapsed since their incidence of stroke.  
Functional reorganization after stroke is a commonly-hypothesized phenomenon. It is 
thought to play an essential role in the functional recovery that occurs during the first 3 to 6 
months after stroke through the recruitment of alternative neural paths (Fujii & Nakada 
2003). This opinion is confirmed by the results of research on various populations of post 
stroke patients using such tests and scales for evaluating neurological condition as the Fugl-
Meyer test and the Bartel scale. Using them it has been shown that the largest improvement 
in functional condition is achieved during the first 6 months after the occurrence of the 
stroke incident (Kwolek i Spławiński 1996). After that the process of improvement slows 
down, although in certain cases progress has been noted even up to 5 years later (Bach-y-
Rita 1981). Richards & Olney (1996) confirmed previous research that the time of 
rehabilitation onset is important, showing at the same time that rehabilitation during the 
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first 6 weeks is the most effective. All these findings serve to confirm the premise of early 
rehabilitation.  
Accurate gait classification in post stroke patients could aid the effectiveness of therapy. 
Performing qualitative gait evaluation in post stroke patients (especially early stage post 
stroke patients) based on kinematic parameters, ground reaction force and muscle activity is 
not an easy procedure in clinical practice. Wong et al. (2004) therefore proposed a simple 
classification of post stroke patients based on the analysis of foot movement during gait. 
Their classification corresponds to the criterion we adopted and verified with cluster 
analysis, based on evaluating foot position at the onset of the single stance phase.  
Wong et al. (2004) concluded that patients with hemiplegia have a tendency not to place 
their heel on the ground at the moment of first foot contact and to experience disturbances 
in the propulsion mechanism. Depending on the degree of neurological deficiency, they are 
observed to shift the trajectory of the centre of pressure towards the front of the foot, which 
is consistent with our results. Different results were obtained by von Schroeder et al. (1995), 
who observed only one case involving first contact of the toes with the ground, the 
remaining subjects seen to position their whole foot. This was confirmed by Karsznia et al. 
(2004), who in turn observed flatfoot position in their subjects both during first contact and 
during the propulsion stage. We can surmise that in both these experiments this finding 
resulted from the small degree of group differentiation in terms of neurological deficiency, 
although the authors did not present detailed data on this in their papers. However, 
Karsznia (2004) attempted to identify a link between foot position on the ground and angle 
progression in leg joints during the gait cycle.  
Burdett et al. (1988) found certain leg joint angle values at certain gait phases to be most 
important qualitative traits distinguishing gait in post stroke patients from that of able-
bodied subjects. Other authors concluded that the greatest differences between pathological 
and normal gait involve the maximal and minimal angles in the knee and ankle joints 
during the toe-off stage and at first foot contact with the ground (Knutsson & Richards 1979, 
Intiso et al., 1996). With respect to post stroke patients, in particular, impressive 
classification results (98%) were obtained by Mulroy et al. (2003), utilizing the maximal and 
minimal values of only three kinematic parameters. Kim and Eng (2004) attempted to 
classify gait in post stroke patients using the extreme values of angles in selected leg joints, 
successfully distinguishing two types of gait.  
Our study, however, did not find min/max angle values of the leg joints to serve as a useful 
indicator for classifying post stroke patients into gait types, showing a correct classification 
rate of below 50 percent. The unsatisfactory result in our case might be explained by the fact 
that peak values characteristic for a specific phase of pathological gait are subject to random 
fluctuation. The very procedure of filtering and normalizing the registered positions in the 
kinematic analysis could also be a source of additional error. In view of this unsatisfactory 
result, the next stage of our study analyzed the full progression of joint angle changes as a 
function of the gait cycle, using artificial neural networks as the method of analysis.  
One of the first attempts at classifying gait in patients using ANNs was made by Holzreiter 
and Kohle (1993). Holzreiter and Kohle measured two successive ground reaction forces 
during normal walking from 94 subjects with various lower limb conditions, including 
calcaneus fracture and limb deficiencies. The authors computed fast-Fourier transforms 
(FFT) of vertical components of the two ground reaction forces. The FFT coefficients served 
as inputs to a standard network with one hidden layer achieved 95% rate of successfully 
distinguishing gait patterns of healthy individuals from those of physically disabled 
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individuals. This early work demonstrated simple two-category gait classification with a 
fairy large number of input parameters. Gioftsos & Grieve (1995) measured the duration of 
the double support and right and left single support phases at seven speeds under three 
walking conditions (normal walking, walking with a 3.5 kg mass strapped to the right ankle, 
walking with the right knee fixed in an extended position) in 20 subjects. The network they 
applied showed a mean accuracy of 73% in correctly recognizing gait patterns. 
Similar studies were undertaken by Barton & Lees (1995), who expanded the ANN 
classification to three categories: healthy feet, pes cavus (high arch) and hallux valgus 
(bunion). They achieved a successful classification rate of 77% to 100% based on foot 
position. Below-foot pressure patterns were recorded from 18 subjects during normal 
walking. The patterns were rotated to a common orientation, scaled to a common size and 
normalized to the interval [0,1]. The network inputs consisted of a great number of 1316 
measured pressure values. Unlike the three-layer network used by Holzreiter & Kohle 
(1993) and Gioftsos & Grieve (1995), Barton & Lees (1995) developed a more complex neural 
network with two hidden layers. In 1997, Barton & Lees concluded that hip-knee join angle 
diagrams offer a good basis for automatic identification of gait types. The diagrams show 
the changes in the knee-joint angle as a function of the hip-joint angle. These curves combine 
the temporal changes of two joint angles, which allow interpretation of the relationships 
between the two angles, although the time dimension is lost on the graphical representation. 
The hip-knee joint angle diagrams represent the movement of nearly the entire body, and 
could be representative of the subject’s gait pattern and serve as a basis for distinguishing 
different gait patterns (Barton & Lees, 1997). These authors distinguished three gait patterns, 
which were normal walking, a simulation of lower limb length and a simulation of lower 
limb weight asymmetry. The angles were normalized in time, fast –Fourier transformed and 
normalized to the interval [0, 1]. As in their previous work, Barton & Lees again used a two-
hidden-layer neural network. The average accuracy of classification rate among the three 
walking conditions was 83.3%.  
Lafuente et al. (1998) reverted to the standard network structure (i.e. with one hidden layer), 
utilized likewise by Holzreiter and Kohle (1993) when attempting a classification into four 
gait categories. 148 subjects with ankle, knee or hip arthrosis and 88 control subjects without 
lower limb pathology participated in the study. Data concerning gait rhythm, speed and five 
kinetic values were fed into the neural network, based on which four gait types were 
correctly distinguished at a rate of 80%.  
All the above authors obtained rates of correct classification within the 77%-100% range, 
reaffirming the great potential of neutral networks in distinguishing gait patterns. Among 
the studies cited, only Barton & Lees (1997) utilized kinematic parameters similar to those 
we used in our study. The rates of correct classification they obtained (83.3%) were poorer 
than the average result of our study (92.5%), most likely due to the small size of the group 
analyzed (n = 8).  
Our study, as reported in Kaczmarczyk et al. (2009), found ANN analysis to be superior to 
qualitative variable analysis for classifying post stroke patients' gait patterns into three gait 
types, as well as superior to the analysis of min/max joint angle values. Moreover, it 
substantially decreases data processing time for clinical gait labs (Miller 2009). The detection 
of gait events is essentially a classification problem; an application for which artificial neural 
networks are well suited. Miller (2009) used a single-hidden-layer, feedforward network for 
the purpose of classifying foot-contact and foot-off events using the sagittal plane 
coordinates of heel and toe markers. The timing of events detected using this method was 
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compared to the timing of events detected by measuring the ground reaction force using a 
force plate for a total of 40 pathologic subjects divided into two groups: barefoot and 
shod/braced. On average, the neural network detected foot-contact events 7.1 ms and 0.8 
ms earlier than the force plate for the barefoot and shod/braced groups respectively. The 
average difference for foot-off events was 8.8 ms and 3.3 ms. Given that motion capture data 
were collected at 120 Hz, this implies that the force plate method and neural network 
method generally agreed within 1–2 frames of data.  
There are currently no robust methods available for the identification of gait events in 
pathologic gait, although several methods of identifying gait events based on kinematic data 
have been developed and successfully validated in normal walking (Hreljac & Marshall 
2000, Zeni et al., 2008, O’Connor et al., 2007, Ghoussayni et al., 2004). For example, the 
maximum vertical and horizontal components of the acceleration of foot markers can be 
used to identify foot contact and foot-off events (Hreljac & Marshall 2000). However, this 
method has been invalidated for toe walkers (Hsue et al., 2009). In addition, others have 
used accelerometers to identify gait events (Lau & Tong 2008). Even though these methods 
have shown reasonable accuracy when used on normal subjects, none have been validated 
for use in pathologic gait. Consequently, ANNs have been shown to be an accurate, 
autonomous method for detecting gait events in pathologic gait. More generally, our study 
has helped confirm the appropriateness of using neural networks in gait research.  
Aside from gait classification, early prediction of functional outcome and motor recovery 
remains a crucial factor in client-centred practice, discharge planning, and utilization of 
rehabilitation resources. According to Oczkowski & Barreca (1999) traditional predictive 
models, utilizing standard population statistics, appeared unable to predict the degree of 
disability or place of discharge for individual stroke survivors. These statistical methods of 
prediction incorporated the most recurrent or powerful variables so that some specific 
patient information was inevitably lost. ANNs modelling offers another methodologic 
approach to predicting outcome. It has been successfully used to determine outcome, length 
of stay, disease reoccurrence, and costs in other medical conditions by identifying patterns 
based on a group of input variables and their resultant outcomes. The patterns are not 
preconceived but learned from experience. After learning occurs, the neural network can 
then classify new cases having the same or similar defining characteristics. 
Furthermore, neural network modelling differs from standard regression analysis by 
maintaining and processing all available information in the clinical data base. This method 
does not discard variables that may be critical in determining outcome for an individual 
stroke survivor. Consequently, neural network modelling better handles the heterogeneity 
found in the stroke population. Neural network modelling imitates the brain’s biological 
features of learning, association, and memory without the addition of human judgment 
errors. 
Numerous studies seem to confirm the superiority of ANNS over traditional statistical 
methods like regression analysis and rough sets (Edwards, et al.; 1999, Rowland et al., 1998). 
Edwards et al. (1999) showed that the ANN was superior to the logistic regression model 
and correctly classified all patients (100%) as alive or dead compared with 85% correct 
classification for the logistic regression model. ANN analysis seems to use information for 
prediction of mortality more effectively in this sample of patients with ICH. Rowland et al. 
(1998), in turn, developed and compared 3 models (logistic regression, neural networks, and 
rough sets) in the in prediction of ambulation at hospital discharge following spinal cord 
injury. All models had sensitivity, specificity, and accuracy greater than 80% at ideal 

www.intechopen.com



Artificial Neural Networks (ANN) Applied for Gait Classification  
and Physiotherapy Monitoring in Post Stroke Patients   

 

321 

thresholds; however, the ANNs performed better than the other traditional methods. 
Similar results were obtained by Li et al. (2000), who compared three different mathematical 
models for building a traumatic brain injury (TBI) medical decision support system (MDSS). 
The results showed that, assuming equal importance of sensitivity and specificity, the 
logistic regression model had a (sensitivity, specificity) of (73%, 68%), compared to (80%, 
80%) from the RBF model and (88%, 80%) from the MLP model. This study demonstrated 
the feasibility of applying neural networks as the mechanism for TBI decision support 
systems based on clinical databases. The results also suggest that ANNs may be a better 
solution for complex, non-linear medical decision support systems than conventional 
statistical techniques such as logistic regression. 
One important aspect of our research, as profiled above, is the relationship between CT scan 
results and the pathological gait pattern in post stroke patients. A better awareness of these 
interdependencies, gleaned through the use ANNs, will enable the identification of CT scan 
criteria to be used in strategies for early rehabilitation of post stroke patients.  
The post stroke patients were classified into three groups according to pathological gait 
patterns rather than brain lesion parameters and showed similar levels of correct 
classification based on CT scan parameters, with the overall average result of 71.3% correct 
classification for all patients – a result that may be described as relatively good.  
Our study, as reported in Kaczmarczyk et al. (in preparation), showed that the weight of the 
individual parameters depends on the configuration (accompanying parameter), and thus 
does not have a fixed effect on the classification. In specific, we found that of the four lesion 
geometry factors considered, lesion size and location are the most dominant factors. 
Evidence from previous studies lends support to the importance of these factors. Alexander 
et al. (2009) identified an association between a focal subcortical structure and gait 
asymmetry. This finding is similar to that of Miyai et al. (2000), who proved that injury to 
the putamen was associated with poor functional outcome in chronic stroke patients. In 
contrast, Dominkus et al. (1990) showed that better results were observed in those with 
subcortical than with cortical lesions. Perennou et al. (1999), in turn, found that lesion size 
has the greatest influence on motor recovery. However, Binkofski et al. (2001) showed no 
significant correlation between initial lesion size and recovery of upper-limb motor function. 
There was also no significant correlation between motor recovery and functional outcome 
with stroke pathology (infarction or hemorrhage) in the study of Chen et al. (2000). This 
result was compatible with the report of Nakayama et al. (1994), although Allen (1984) 
reported that patients with intracerebral hemorrhage have a worse outcome in the acute 
stage. Some studies reported there was no link between walking recovery and the 
hemiplegic side (Viosca et al., 2005, Laufer et al., 2003, Chen et al., 2000) while other studies 
found such association (Kwolek & Spławiński 1996, Mcciocchi et al., 1998). The reason for 
the disparity of findings may lie in the application of only one parameter describing stroke 
in the analysis. 
Our work studied the effect of simultaneous impact of four brain lesion factors on gait 
patterns in post stroke patients. This concept is supported by the findings of several 
previous studies (Chen et al., 2000, Fries et al., 1993). According to Chen et al. (2000) motor 
recovery and functional outcome after stroke correlate with “brain lesion profiles” that 
combined the delimiting size and location of lesions, rather than the absolute or relative 
lesion size only. When the delimiting sizes were set at 75cm3 for cortical, 4cm3 for CR, 
0.75cm3 for IC, 22cm3 for putaminal, and 12cm3 for thalamic lesions, BLPs could determine 
motor and functional outcomes. Fries et al. (1993) did not identify the delimiting size, 
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although they demonstrated that small capsular lesions can selectively disrupt the output of 
distinct motor areas, while large capsular lesions cause more severe deficits. These authors 
analyzed two factors simultaneously: size and location. However, because numerous studies 
have confirmed the influence of side of stroke and type of stroke, in our analysis we also 
took those factors into account.  
Although many studies have assessed the influence of brain lesion parameters on motor and 
functional outcomes, to the best of our knowledge, none so far has investigated the 
association between lesion parameters and pathological gait patterns in hemiplegic stroke 
patients. Only Giroud and Dumas (1995) have attempted, as we have, to identify a link 
between stroke location and gait disturbances. These authors described a characteristic type 
of gait in patients with lesions near the corpus callosum. The patients used a wide base, with 
feet rooted to the ground. Gait consisted of shuffling with short steps, without upper limb 
movement and slight extension of the trunk. These authors used evaluative scales in 
quantifying neurological deficit and improvement in locomotive function that involves a 
subjective element. Clinical practice thus has a need for objective gait classification in post 
stroke patients, as a basis for predicting the degree of rehabilitation progress that is 
achievable within a specific timeframe, in each of the gait type groups distinguished.  
Our observations indicate that finding the relationship between an objective patient 
classification based on ANN technique into a specific subgroup of pathological gait and CT 
scan parameters may serve as a relatively good predictor of future functional condition and 
degree of improvement. Given that CT data are beginning to have more influence on 
rehabilitation practices (Boyd et al., 2007), our results may have considerable clinical 
implications. For instance, during the early stages after stroke when the most recovery may 
be possible (Jørgensen et al., 1995) long before kinematic gait tests may be performed, the 
results presented herein may lay the groundwork for implementing an early diagnostic and 
therapeutic procedure by providing an early prediction of pathological gait classification. 
This procedure would moreover provide predictions about prospects for gait improvement, 
but would be subject to further verification by other gait analysis methods as patient motor 
function returns. 
The results of our study may provide the basis for implementing diagnostic and therapeutic 
procedures that take account of predictions concerning future gait pattern, which would 
then be gradually verified as locomotive function returns. Future research in this direction 
should concentrate on the more precise specification of the distinguished gait patterns and 
on the development of effective programs of procedure in individual cases.  
The ANN methodology, here used successfully for classifying gait types in post stroke 
patients, seems to have the potential to distinguish pathological gait types stemming from 
other disorders. The scheme followed by our research, as described in detail in the previous 
section, could be productively applied in such cases for developing an objective diagnostic 
method based on quantitative data, associating symptoms with therapeutic procedures and 
predicted rehabilitative effects.  

4. Conclusions  

The work by various authors reviewed in this chapter, including our own, has shown that 
ANNs are very promising as a potential tool for use in gait classification in various types of 
disabilities, offering numerous advantages over other methods. ANN classification may 
allow for more effective treatment with appropriately targeted, early intervention. 
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Moreover, ANNs are also proving useful as a state-of-the-art tool in the monitoring and 
planning of rehabilitation strategies. In general, the various studies described in this chapter 
have helped confirm the appropriate use of neural networks in gait classification, and so 
ANNs can be expected to continue to be a productive field in physiotherapy research.  
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