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1. Introduction 

Transmission techniques of biomedical signals through communication channels are 

currently an important issue in many applications related to clinical practice. These 

techniques can allow experts to make a remote assessment of the information carried by the 

signals, in a very cost-effective way. However, in many situations this process leads to a 

large volume of information. The necessity of efficient data compression methods for 

biomedical signals is currently widely recognized. This chapter introduces the compression 

of ElectroCardioGram (ECG or EKG) signals using Discrete Wavelet Transform (DWT). It is 

well known that modern clinical systems require the storage, processing and transmission of 

large quantities of ECG signals. ECG signals are collected both over long periods of time and 

at high resolution. This creates substantial volumes of data for storage and transmission. 

Data compression seeks to reduce the number of bits of information required to store or 

transmit digitized ECG signals without significant loss of signal quality. Although storage 

space is currently relatively cheap, electronic ECG archives could easily become extremely 

large and expensive. Moreover, sending ECG recordings through mobile networks would 

benefit from low bandwidth demands. ECG signal compression attracted considerable 

attention over the last decade. Several examples of ECG compression algorithms have been 

described in the literature with compression ratios ranging approximately from 2:1 up to 

50:1 (Jalaleddine et al., 1990; Addison, 2005). The main goal here is to provide an up-to-date 

introduction to this fascinating field; through presenting some of the latest algorithmic 

innovations and to stimulate readers to investigate the subject in greater depth using the 

extensive set of references provided (Addison, 2005; Padma et al., 2009). Section 2 introduces 

the production of the ECG signal and its main time- and frequency-domain parameters. 

Different ECG signal compression techniques including direct, transformed and 

optimization methods are presented in section 3. Section 4 discusses the fundamentals of 

DWTs and their filter bank realizations. Subjective and objective performance measures of 

compression algorithms are explained in section 5. In section 6, DWT based ECG signal 

compression algorithms are presented. This includes optimization-based, SPIHT, 2-D, 

hybrid, and linear prediction based algorithms. Thresholding, and coding of DWT 

coefficients considering energy packing efficiency and binary significant map are discussed 

in sections 7 and 8 respectively. 
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2. ElectroCardioGraphy 

ECG signal is a recording of the electrical activity of the heart over time produced by an 

electrocardiograph and is a well-established diagnostic tool for cardiac diseases. ECG signal 

is monitored by placing sensors at defined positions on chest and limb extremities of the 

subject. Each heart beat is caused by a section of the heart generating an electrical signal 

which then conducts through specialized pathway to all parts of the heart. These electrical 

signals also get transmitted through the chest to the skin where they can be recorded. The 

following four steps in the generation of ECG signal can be monitored: 

1. The S-A node (natural pacemaker) creates an electrical signal. 

2. The electrical signal follows natural electrical pathways through both atria. The 

movement of electricity causes the atria to contract, which helps push blood into the 

ventricles. 

3. The electrical signal reaches the A-V node (electrical bridge). There, the signal pauses to 

give the ventricles time to fill with blood. 

4. The electrical signal spreads through the His-Purkinje system. The movement of 

electricity causes the ventricles to contract and push blood out to lungs and body. 

ECG signal is obtained from a machine known as an Electrocardiograph, which captures the 

signal through an array of electrode sensors placed at standard locations on the skin of the 

human body. Modern electrocardiographs record ECG signals by digitizing and then 

storing the signal in magnetic or optical discs. An automated diagnostic system is required 

to speed up the diagnostic process and assist the cardiologists in examining patients using 

non-invasive techniques. Electrical impulses in the heart originate in the sinoatrial node and 

travel through the heart muscle where they impart electrical initiation of systole or 

contraction of the heart. The electrical waves can be measured at selectively placed 

electrodes (electrical contacts) on the skin. Electrodes on different sides of the heart measure 

the activity of different parts of the heart muscle. An ECG displays the voltage between 

pairs of these electrodes, and the muscle activity that they measure, from different 

directions, also understood as vectors. The ECG signal is composed from five waves labeled 

using five capital letters from the alphabet: P, Q, R, S, and T. The width of a wave on the 

horizontal axis represents a measure of time. The height and depth of a wave represent a 

measure of voltage. An upward deflection of a wave is called positive deflection and a 

downward deflection is called negative deflection. A typical representation of the ECG 

waves is presented in Figure (1) (Moody, (1992).  

The electrocardiogram essentially reads the electrical impulses that stimulate the heart to 

contract. It is probably the most useful tool to determine whether the heart has been injured 

or how it is functioning. The ECG signal is made up of a number of segments or waves of 

different durations, amplitudes, and forms: ‘slow’, low-frequency P and T waves and short 

and high-frequency Q, R, and S waves, forming the QRS complex. P wave, QRS wave, and T 

wave, they are diagnostic critical waves. The P wave represents the atrial depolarization 

where the blood is squeezed from the atria to the ventricles. The QRS segment is when the 

ventricles depolarize and squeeze the blood from the right ventricle to the aorta. The T wave 

represents the period of time when the ventricles repolarize (get ready for the next heart 

beat). Most of the ECG signal energy is concentrated in the QRS complex, but there are 

diagnostically important changes in the low amplitude PQ and ST intervals, the P and T 

waves.  
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Fig. 1. A typical representation of the ECG waves. 

Figure (2) illustrates the ECG signal in time and frequency domains. Compressing the ECG 
signal while preserving the original shape of the reconstructed signal and especially the 
amplitudes of Q, R and S peaks, without introducing distortions in the low amplitude ST 
segment, P and T waves are the main objectives of this chapter. In fact, most ECG 
compression algorithms produce ripple effects around QRS complexes and could also 
reduce the sharp waves' amplitudes. 

3. ECG signal compression  

Data reduction of ECG signal is achieved by discarding digitized samples that are not 
important for subsequent pattern analysis and rhythm interpretation. The data reduction 
algorithms are empirically designed to achieve good reduction without causing significant 
distortion error. ECG compression techniques can be categorized into: direct time-domain 
techniques; transformed frequency-domain techniques and parameters optimization 
techniques. 
  

 
Fig. 2. ECG signal in time and frequency domains. 
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1. Direct Signal Compression Techniques: Direct methods involve the compression 
performed directly on the ECG signal. These are also known as time domain techniques 
dedicated to compression of ECG signal through the extraction of a subset of significant 
samples from the original sample set. Which signal samples are significant, depends on 
the underlying criterion for the sample selection process. To get a high performance time-
domain compression algorithm, much effort should be put in designing intelligent sample 
selection criteria. The original signal is reconstructed by an inverse process, most often by 
drawing straight lines between the extracted samples. This category includes the FAN 
(Dipersio & Barr, 1985), CORTES (Abenstein & Tompkins, 1982), AZTEC (Cox et al., 1968), 
Turning Point (Mueller W., 1978) and TRIM (Moody et al., 1989) algorithms. The more 
recent cardinality constrained shortest path technique (Haugland et al., 1997) also fits into 
this category. Many of the time domain techniques for ECG signal compression are based 
on the idea of extracting a subset of significant signal samples to represent the original 
signal. The key to a successful algorithm is the development of a good rule for 
determining the most significant samples. Decoding is based on interpolating this subset 
of samples. The traditional ECG time domain compression algorithms all have in common 
that they are based on heuristics in the sample selection process. This generally makes 
them fast, but they all suffer from sub-optimality. 

2. Transformed ECG Compression Methods: Transform domain methods, as their name 

implies, operate by first transforming the ECG signal into another domain. These 
methods mainly utilize the spectral and energy distributions of the signal by means of 
some transform, and properly encoding the transformed output. Signal reconstruction 
is achieved by an inverse transformation process. This category includes traditional 
transform coding techniques applied to ECG signals such as the Karhunen–Loève 
transform (Olmos et al., 1996), Fourier transform (Reddy & Murthy, 1986), Cosine 
transform (Ahmed et al., 1975), subband-techniques (Husøy & Gjerde, (1996), vector 
quantization (VQ) (Mammen & Ramamurthi, 1990), and more recently the wavelet 
transform (WT) (Chen et al., 1993; (Miaou et al.., 2002). Wavelet technique is the obvious 
choice for ECG signal compression because of its localized and non-stationary property 
and the well-proven ability of wavelets to see through signals at different resolutions. 
Wavelets are mathematical functions that cut up data into different scale-shift 
components. The wavelet decomposition splits the analyzing signal into average and 
detail coefficients, using finite impulse response digital filters. The main task in wavelet 
analysis (decomposition and reconstruction) is to find a good analyzing function 
(mother wavelet) to perform an optimal decomposition. Wavelet-based ECG 
compression methods have been proved to perform well. The ability of DWT to 
separate out pertinent signal components has led to a number of wavelet-based 
techniques which supersede those based on traditional Fourier methods. The discrete 
wavelet transform has interesting mathematics and fits in with standard signal filtering 
and encoding methodologies. It produces few coefficients, and the user does not have 
to worry about losing energy during the transform process or its inverse. While the 
DWT is faster and maps quickly to the sub-band coding of signals, the Continuous 
Wavelet Transform (CWT) allows the user to analyze the signal at various scales and 
translations according to the problem.  

3. Optimization Methods For ECG Compression: More recently, many interesting 

optimization based ECG compression methods, the third category, have been 

developed. The goal of most of these methods is to minimize the reconstruction error 
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given a bound on the number of samples to be extracted or the quality of the 

reconstructed signal to be achieved. In (Haugland et al., 1997), the goal is to minimize 

the reconstruction error given a bound on the number of samples to be extracted. The 

ECG signal is compressed by extracting the signal samples that, after interpolation, will 

best represent the original signal given an upper bound on their number. After the 

samples are extracted they are Huffman encoded. This leads to the best possible 

representation in terms of the number of extracted signal samples, but not necessarily in 

terms of bits used to encode such samples. In (Nygaard et al., 1999), the bit rate has 

been taken into consideration in the optimization process. 
The vast majority of the above mentioned methods do not permit perfect reconstruction of 
the original signals. In fact; there is no automatic way to assure that the distortion in the 
reconstructed signal will not affect clinically important features of the ECG. To preserve the 
clinical diagnostic features of the reconstructed ECG signals both the wavelet filters’ 
parameters and the threshold levels in all subbands should be selected carefully. Thus, the 
aim is to present ECG compression technique that achieves maximum data volume 
reduction while preserving the significant signal morphology features upon reconstruction. 
This has been achieved through the minimization of both the bit rate and the distortion of 
the reconstructed ECG signal through parameterization of the wavelet filters and the 
selection of optimum threshold levels of the wavelet coefficients in different subbands.  

4. Discrete wavelet transform 

In technical literature, a number of time–frequency methods are currently available for the 
high resolution signal decomposition. This includes the short time Fourier transform (STFT), 
Wigner–Ville transform (WVT), Choi–Williams distribution (CWD) and the WT. Of these, 
the wavelet transform has emerged as the most favored tool by researchers as it does not 
contain the cross terms inherent in the WVT and CWD methods while possessing 
frequency-dependent windowing which allows for arbitrarily high resolution of the high 
frequency signal components. The DWT is the appropriate tool for the analysis of ECG 
signals as it removes the main shortcomings of the STFT; namely it uses a single analysis 
window which is of fixed length in both time and frequency domains. This is a major 
drawback of the STFT, since what are really needed are a window of short length (in time 
domain) for the high frequency content of a signal and a window of longer length for the 
low frequency content of the signal. The WT improves upon the STFT by varying the 
window length depending on the frequency range of analysis. This effect is obtained by 
scaling (contractions and dilations) as well as shifting the basis wavelet. The continuous 
wavelet transform (CWT) transforms a continuous signal into highly redundant signal of 
two continuous variables — translation and scale. The resulting transformed signal is easy 
to interpret and valuable for time-frequency analysis. The continuous wavelet transform of 
continuous function, ( )f x  relative to real-valued wavelet, ( )xψ  is described by: 

 
,( , ) ( ) ( )sW s f x x dxψ ττ ψ

∞

−∞

= ∫   (1) 

where,          

 
-

,

1
( ) ( )s

x
x

ss
τ

τψ ψ=   (2) 
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s andτ are called scale and translation parameters, respectively. ( , )W sψ τ denotes the 

wavelet transform coefficients and ψ is the fundamental mother wavelet. If ( , )W sψ τ is 

given, ( )f x can be obtained using the inverse continuous wavelet transform (ICWT) that is 

described by:  

 ,
2

0

( )1
( ) ( , ) s x

f x W s d ds
C s

τ
ψ

ψ

ψ
τ τ

∞ ∞

−∞

= ∫ ∫   (3) 

where, ( )uΨ  is the Fourier transform of ( )xψ  and 

 
2| ( )|

| |

u
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u
ψ

∞

−∞

Ψ
= ∫   (4) 

The discrete wavelet transform  can be written on the same form as Equation (1), which 
emphasizes the close relationship between CWT and DWT. The most obvious difference is 
that the DWT uses scale and position values based on powers of two. The values of s and τ  

are:  2 , * 2j js kτ= =  and 2( , )j k Z∈  as shown in Equation (5).  
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The key issues in DWT and inverse DWT are signal decomposition and reconstruction, 

respectively. The basic idea behind decomposition and reconstruction is low-pass and high-

pass filtering with the use of down sampling and up sampling respectively. The result of 

wavelet decomposition is hierarchically organized decompositions. One can choose the level 

of decomposition j  based on a desired cutoff frequency. Figure (3-a) shows an 

implementation of a three-level forward DWT based on  a  two-channel  recursive  filter 

bank,  where 0( )h n  and 1( )h n  are low-pass  and  high-pass  analysis filters,  respectively, 

and the block &2 represents the down sampling operator by a factor of 2. The input signal 

( )x n  is recursively decomposed into a total of four subband signals: a coarse signal 3( )C n , 

and three detail signals, 3 2( ), ( )D n D n , and 1( )D n , of three resolutions. Figure (3-b)  shows  an  

implementation of  a  three-level  inverse DWT based on a  two-channel recursive filter 

bank, where 0( )h n#  and 1( )h n#  are low-pass and high-pass synthesis filters, respectively, and 

the block  %2  represents  the up sampling operator by a factor of 2. The four subband signals 

3 3 2( ), ( ), ( )C n D n D n  and 1( )D n , are recursively combined to reconstruct the output 

signal ( )x n# . The four finite impulse response filters satisfy the following relationships: 

 -1 0( ) ( 1) ( )nh n h n=   (6) 

 -0 0( ) (1 )h n h n=#   (7) 

  - -1 0( ) ( 1) (1 )nh n h n=#   (8) 

so that the output of the inverse DWT is identical to the input of the forward DWT. 
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5. Compression algorithms performance measures 

5.1 Subjective judgment 

The most obvious way to determine the preservation of diagnostic information is to subject 
the reconstructed data for evaluation by a cardiologist. This approach might be accurate in 
some cases but suffers from many disadvantages. One drawback is that it is a subjective 
measure of the quality of reconstructed data and depends on the cardiologist being 
consulted, thus different results may be presented. Another shortcoming of the approach is 
that it is highly inefficient. Moreover, the subjective judgment solution is expensive and can 
generally be applied only for research purposes (Zigel et al., 2000). 

5.2 Objective judgment 

Compression algorithms all aim at removing redundancy within data, thereby discarding 
irrelevant information. In the case of ECG compression, data that does not contain 
diagnostic information can be removed without any loss to the physician. To be able to 
compare different compression algorithms, it is imperative that an error criterion is defined 
such that it will measure the ability of the reconstructed signal to preserve the relevant 
diagnostic information. The criteria for testing the performance of the compression 
algorithms consist of three components: compression measure, reconstruction error and 
computational complexity. The compression measure and the reconstruction error depend 
usually on each other and determine the rate-distortion function of the algorithm. The 
computational complexity component is related to practical implementation consideration 
and is desired to be as low as possible. 
 

 

Fig. 3. A three-level two-channel iterative filter bank   (a) forward DWT   (b) inverse DWT 

The compression ratio (CR) is defined as the ratio of the number of bits representing the 
original signal to the number required for representing the compressed signal. So, it can be 
calculated from: 
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( )( 1)S SN M b

N bcCR
+ +

=   (9) 

Where, bc  is the number of bits representing each original ECG sample. One of the most 
difficult problems in ECG compression applications and reconstruction is defining the error 
criterion. Several techniques exist for evaluating the quality of compression algorithms. In 
some literature, the root mean square error (RMS) is used as an error estimate. The RMS is 
defined as 

 

2

1

( ( ) ( ))
N

n

x n x n

RMS
N

=
−

=
∑ &

  (10) 

where ( )x n  is the original signal, ( )x n
&

 is the reconstructed signal and N is the length of the 
window over which the RMS is calculated(Zou & Tewfik, 1993). This is a purely 
mathematical error estimate without any diagnostic considerations.  
The distortion resulting from the ECG processing is frequently measured by the percent 
root-mean-square difference (PRD) (Ahmed et al., 2000). However, in previous trials focus 
has been on how much compression a specific algorithm can achieve without loosing too 
much diagnostic information. In most ECG compression algorithms, the PRD measure is 
employed. Other error measures such as the PRD with various normalized root mean 
square error and signal to noise ratio (SNR) are used as well (Javaid et al., 2008). However, 
the clinical acceptability of the reconstructed signal is desired to be as low as possible. To 
enable comparison between signals with different amplitudes, a modification of the RMS 
error estimate has been devised. The PRD is defined as:  
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This error estimate is the one most commonly used in all scientific literature concerned with 
ECG compression techniques. The main drawbacks are the inability to cope with baseline 
fluctuations and the inability to discriminate between the diagnostic portions of an ECG 
curve. However, its simplicity and relative accuracy make it a popular error estimate among 
researchers (Benzid et al., 2003; Blanco-Velasco et al., 2004). 
As the PRD is heavily dependent on the mean value, it is more appropriate to use the 
modified criteria:  
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  (12) 

where x  is the mean value of the signal. Furthermore, it is established in (Zigel et al., 2000), 

that if the PRD1 value is between 0 and 9%, the quality of the reconstructed signal is either 
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‘very good’ or ‘good’, whereas if the value is greater than 9% its quality group cannot be 
determined. As we are strictly interested in very good and good reconstructions, it is taken 
that the PRD value, as measured with (11), must be less than 9%. 
In (Zigel et al., 2000), a new error measure for ECG compression techniques, called the 
weighted diagnostic distortion measure (WDD), was presented. It can be described as a 
combination of mathematical and diagnostic subjective measures. The estimate is based on 
comparing the PQRST complex features of the original and reconstructed ECG signals. The 
WDD measures the relative preservation of the diagnostic information in the reconstructed 
signal. The features investigated include the location, duration, amplitudes and shapes of 
the waves and complexes that exist in every heartbeat. Although, the WDD is believed to be 
a diagnostically accurate error estimate, it has been designed for surface ECG recordings.  
More recently (Al-Fahoum, 2006), quality assessment of ECG compression techniques using 
a wavelet-based diagnostic measure has been developed. This approach is based on 
decomposing the segment of interest into frequency bands where a weighted score is given 
to the band depending on its dynamic range and its diagnostic significance.  

6. DWT based ECG signal compression algorithms  

As described above, the process of decomposing a signal x into approximation and detail 
parts can be realized as a filter bank followed by down-sampling (by a factor of 2) as shown 
in Figure (4). The impulse responses h[n] (low-pass filter) and g[n] (high-pass filter) are 
derived from the scaling function and the mother wavelet. This gives a new interpretation of 
the wavelet decomposition as splitting the signal x into frequency bands. In hierarchical 
decomposition, the output from the low-pass filter h constitutes the input to a new pair of 
filters. This results in a multilevel decomposition. The maximum number of such 
decomposition levels depends on the signal length. For a signal of size N, the maximum 
decomposition level is log2(N).  
The process of decomposing the signal x can be reversed, that is given the approximation 
and detail information it is possible to reconstruct x. This process can be realized as up-
sampling (by a factor of 2) followed by filtering the resulting signals and adding the result of 
the filters. The impulse responses h’ and g’ can be derived from h and g. If more than two 
bands are used in the decomposition we need to cascade the structure.  
In (Chen et al., 1993), the wavelet transform as a method for compressing both ECG and 
heart rate variability data sets has been developed. In (Thakor et al., 1993), two methods of 
data reduction on a dyadic scale for normal and abnormal cardiac rhythms, detailing the 
errors associated with increasing data reduction ratios have been compared. Using discrete 
orthonormal wavelet transforms and Daubechies D10 wavelets, Chen et al., compressed ECG 
data sets resulting in high compression ratios while retaining clinically acceptable signal 
quality (Chen & Itoh, 1998). In (Miaou & Lin, 2000), D10 wavelets have been used, with the 
incorporating of adaptive quantization strategy which allows a predetermined desired 
signal quality to be achieved. Another quality driven compression methodology based on 
Daubechies wavelets and later on biorthogonal wavelets has been proposed (Miaou & Lin, 
2002). The latter algorithm adopts the set partitioning of hierarchical tree (SPIHT) coding 
strategy. In (Bradie, 1996), the use of a wavelet-packet-based algorithm for the compression 
of the ECG signal has been suggested. By first normalizing beat periods using multi rate 
processing and normalizing beat amplitudes the ECG signal is converted into a near 
cyclostationary sequence (Ramakrishnan & Saha, 1997). Then Ramakrishnan and Saha 
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employed a uniform choice of significant Daubechies D4 wavelet transform coefficients 
within each beat thus reducing the data storage required. Their method encodes the QRS 
complexes with an error equal to that obtained in the other regions of the cardiac cycle. 
More recent DWT data compression schemes for the ECG include the method using non-
orthogonal wavelet transforms (Ahmed et al., 2000), and SPIHT algorithm (Lu et al., 2000).  

6.1 Optimization-based compression algorithm  

As it has been mentioned before, many of the resulting wavelet coefficients are either zero or 
close to zero. These coefficients are divided into two classes according to their energy content; 
namely: high energy coefficients and low energy coefficients. By coding only the larger 
coefficients, many bits are already discarded. The high energy coefficients should be 
compressed very accurately because they contain more information. So, they are threshold 
with low threshold levels. However, the low energy coefficients that represent the details are 
threshold with high threshold levels. The success of this scheme is based on the fact that only a 
fraction of nonzero value wavelet coefficients may be encoded using a small number of bits.  
In (Zou & Tewfik, 1993), the problem of finding a wavelet that best matches the wave shape 
of the ECG signal has been addressed. The main idea behind this approach is to find the 
minimum distortion representation of a signal, subject to a given bit budget or to find the 
minimum bit rate representation of a signal, subject to a target PRD. If, for a given wavelet, 
the error associated with the compressed signal is minimal, then its wavelet coefficients are 
considered to best represent the original signal. Therefore, the selected wavelet would more 
effectively match the signal under analysis when compared to standard wavelets 
(Daubechies, 1998). The DWT of the discrete type signal x[n] of length N is computed in a 

recursive cascade structure consisting of decimators ↓2 and complementing low-pass (h) 
and high-pass (g) filters which are uniquely associated with a wavelet. The signal is 
iteratively decomposed through a filter bank to obtain its discrete wavelet transform. This 
gives a new interpretation of the wavelet decomposition as splitting the signal into 
frequency bands. Figure (4) depicts a diagram of the filter bank structure. In hierarchical 
decomposition, the output from the low-pass filter constitutes the input to a new pair of 
filters. The filters coefficients corresponding to scaling and wavelet functions are related by 

 [ ] ( ) [ ] 
 1  –  ,    0 ,  1,  . . . ,  1

n
g n h L n n L= − = −  (13) 

where L is the filter length. To adapt the mother wavelet to the signals for the purpose of 
compression, it is necessary to define a family of wavelets that depend on a set of 
parameters and a quality criterion for wavelet selection (i.e. wavelet parameter 
optimization). These concepts have been adopted to derive a new approach for ECG signal 
compression based on dyadic discrete orthogonal wavelet bases, with selection of the 
mother wavelet leading to minimum reconstruction error. An orthogonal wavelet transform 

decomposes a signal into dilated and translated versions of the wavelet function ( )tψ . The 

wavelet function ( )tψ is based on a scaling function ( )tϕ and both can be represented by 

dilated and translated versions of this scaling function. 

 
1

0

( ) ( ) (2 )
L

n

t h n t nϕ ϕ
−

=
= −∑      and        

1

0

( ) ( ) (2 )
L

n

t g n t nψ ϕ
−

=
= −∑   (14) 

www.intechopen.com



ECG Signal Compression Using Discrete Wavelet Transform 

 

153 

With these coefficients h(n) and g(n), the transfer functions of the filter bank that are used to 
implement the discrete orthogonal wavelet transform, can be formulated. 

 
1 1

0 0

( ) ( ) ( ) ( )
L L

n n

b b

H z h n z and G z g n z
− −

− −

= =
= =∑ ∑  (15) 

For a finite impulse response (FIR) filter of length L, there are 12/ +L sufficient conditions 

to ensure the existence and orthogonality of the scaling function and wavelets (Donoho & 
Johnstone, 1998). Thus 12/ −L  degrees of freedom (free parameters) remain to design the 

filter h. 
 

 

Fig. 4. The DWT implementation using a filter bank structure. 

The lattice parameterization described in (Vaidyanathan, 1993) offers the opportunity to 

design h via unconstrained optimization: the L coefficients of h can be expressed in term of 

/ 2 1L −  new free parameters. These parameters can be used to choose the wavelets which 

results in a good coding performance. The Daubechies wavelet family was constructed by 

using all the free parameters to maximize the number of vanishing moments. Coiflet 

wavelets were designed by imposing vanishing moments on both the scaling and wavelet 

functions. In (Zou & Tewfik, 1993) wavelet parameterizations have been used to 

systematically generate L-tap orthogonal wavelets using the 12/ −L  free parameters for    

L = 4, 6 and 8. The order of a wavelet filter is important in achieving good coding 

performance. A higher order filter can be designed to have good frequency localization 

which in turn increases the energy compaction. Consequently, by restriction to the 

orthogonal case, h definesψ . For this purpose consider, the orthogonal 2x2 rotational 

angles, realized by the lattice section shown in Figure (5), and defined by the matrix: 
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The polyphase matrix ( )pH z  can be defined in terms of the rotational angles as 
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∏   (17) 

 

 

Fig. 5. Lattice Implementation   

where, ( )eH z , ( )oH z , ( )eG z and ( )oG z are defined, respectively, from the decomposition of 

( )H z and ( )G z as 

  2 1 2( ) ( ) ( )e oH z H z z H z−= +  (18a) 

and  

 2 1 2( ) ( ) ( )e oG z G z z G z−= +   (18b) 

To obtain the expressions for the coefficients of H(z) in terms of the rotational angles, it is 
necessary to multiply out the above matrix product. In order to parameterize all orthogonal 
wavelet transforms leading to a simple implementation, the following facts should be 
considered.   
1. Orthogonality is structurally imposed by using lattice filters consisting of orthogonal 

rotations.  
2. The sufficient condition for constructing a wavelet transform, namely one vanishing 

moment of the wavelet, is guaranteed, by assuring the sum of all rotation angles of the 
filters to be exactly -45o .  

A suitable architecture for the implementation of the orthogonal wavelet transforms are 
lattice filters. However, the wavelet function should be of zero mean, which is equivalent to 
the wavelet having at least one vanishing moment and the transfer functions H(z) and G(z) 
have at least one zero at z =-1 and z=1 respectively. These conditions are fulfilled if the sum 
of all rotation angles is 45o (Xie & Morris, 1994), i.e.,  

 
/2

1

45
L

o
i

i

β
=

=∑  (19) 

Therefore, a lattice filter whose sum of all rotation angles is 45o performs an orthogonal WT 

independent of the angles of each rotation. For a lattice filter of length L, L/2 orthogonal 
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rotations are required. Denote the rotation angles by , 1, 2, . . . , / 2i i Lβ = , and considering 

the constraint given in (19), the number of design angles θ s is L/2-1.  The following is the 

relation between the rotation angles and the design angles. 

 

1 1

1

/2
/2 /2 1

45 ,

( 1) ( ) 2, 3, . . ., / 2 1,

( 1)

o

i
i i i

L
L L

for i L

β θ

β θ θ

β θ
−

−

⎫= −
⎪⎪= − + = − ⎬
⎪= − ⎪⎭

  (20) 

At the end of the decomposition process, a set of vectors representing the wavelet 
coefficients is obtained  

 { }1 2 3, , , . . . , , . . . , ,j m mC d d d d d a=  (21) 

where, m is the number of decomposition levels of the DWT. This set of approximation and 

detail vectors represents the DWT coefficients of the original signal. Vectors jd  contain the 

detail coefficients of the signal in each scale j. As j varies from 1 to m, a finer or coarser detail 

coefficients vector is obtained. On the other hand, the vector ma  contains the approximation 

wavelet coefficients of the signal at scale m. It should be noted that this recursive procedure 

can be iterated ( )2logm N≤   times at most. Depending on the choice of m, a different set of 

coefficients can be obtained. The inverse transform can be performed using a similar 

recursive approach. Thus, the process of decomposing the signal x can be reversed, that is 

given the approximation and detail information it is possible to reconstruct x. This process 

can be realized as up-sampling (by a factor of 2) followed by filtering the resulting signals 

and adding the result of the filters. The impulse responses h’ and g’ can be derived from h 

and g. However, to generate an orthogonal wavelet, h must satisfy some constraints. The 

basic condition is
1

( ) 2
L

n

h n
=

=∑ , to ensure the existence of φ . Moreover, for orthogonality, h 

must be of norm one and must satisfy the quadratic condition 

  
1 1

( ) ( 2 ) 0, 1,. . ., / 2 1
L L

n n

h n h n k for k L
= =

− = = −∑ ∑   (22) 

 

The lattice parameterization described in (Vaidyanathan, 1993) offers the opportunity to 

design h using unconstrained optimization by expressing the / 2 1L −  free parameters in 

terms of the design parameter vectorθ . For instance, if L = 6, two-component design vector, 

1 2[ , ]θ θ θ=  is needed, and h is given by (Vaidyanathan, 1993): 

( )( )1 1 2 2 2 10 , 1 ( ) 1 ( 1) cos sin 1 ( 1) cos sin ( 1) 2sin cos / 4 2i i ii h i θ θ θ θ θ θ⎡ ⎤= = + − + − − − + −⎣ ⎦  

1 2 1 22 , 3 ( ) 1 cos( ) ( 1) sin( ) / 2 2ii h i θ θ θ θ⎡ ⎤= = + − + − −⎣ ⎦  

4 , 5 ( ) 1 / 2 ( 4) ( 2)i h i h i h i= = − − − −    (23) 
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For other values of L, expressions of h are given in (Maitrot et al., 2005). With this wavelet 

parameterization there are infinite available wavelets which depend on the design 

parameter vector θ  to represent the ECG signal at hand. Different values of θ  may lead to 

different quality in the reconstructed signal. In order to choose the optimal θ  values, and 

thus the optimal wavelet, a blind criterion of performance is needed. Figure (6) illustrates 

the block diagram of the proposed compression algorithm. In order to establish an efficient 

solution scheme, the following precise problem formulation is developed.  For this purpose, 

consider the one-dimensional vector x(i), i=1, 2, 3, …., N represents the frame of the ECG 

signal to be compressed; where N is the number of its samples. The initial threshold values 

are computed separately for each subband by finding the mean (μ) and standard deviation 

(σ) of the magnitude of the non-zero wavelet coefficients in the corresponding subband. If 

the σ is greater than μ then the threshold value in that subband is set to (2*μ), otherwise, it is 

set to (μ-σ). Also, define the targeted performance measures PRDtarget and CRtarget and start 

with an initial wavelet design parameter vector 10 20[ , ,.θ θ θ=  10.. , ]Lθ −  to construct the 

wavelet filters H(z) and G(z). Figure (7) illustrates the compression algorithm for satisfying 

predefined PRD (PRD1) with minimum bit rate representation of the signal. The same 

algorithm with little modifications is used for satisfying predefined bit rate with minimum 

signal distortion measured by PRD ( 1PRD ); case 2. In this case, the shaded two blocks are 

replaced by: CR calculation and predefined CR is reached?, respectively. 
 

 

Fig. 6. Block diagram for the proposed compression algorithm. 

6.2 Compression of ECG signals using SPIHT algorithm 

SPIHT is an embedded coding technique; where all encodings of the same signal at lower bit 
rates are embedded at the beginning of the bit stream for the target bit rate. Effectively, bits are 
ordered in importance. This type of coding is especially useful for progressive transmission 
and transmission over a noisy channel. Using an embedded code, an encoder can terminate 
the encoding process at any point, thereby allowing a target rate or distortion parameter to be 
met exactly. Typically, some target parameters, such as bit count, is monitored in the encoding 
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process and when the target is met, the encoding simply stops. Similarly, given a bit stream, 
the decoder can cease decoding at any point and can produce reconstruction corresponding to 
all lower-rate encodings. EZW, introduced in (Shapiro, 1993) is a very effective and 
computationally simple embedded coding algorithm based on discrete wavelet transform, for 
image compression. SPIHT algorithm introduced for image compression in (Said & Pearlman, 
1996) is a refinement to EZW and uses its principles of operation. 
 

 

Fig. 7. Compression Algorithm for Satisfying Predefined PRD with Minimum Bit Rate. 
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These principles are partial ordering of transform coefficients by magnitude with a set 
partitioning sorting algorithm, ordered bit plane transmission and exploitation of self-
similarity across different scales of an image wavelet transform. The partial ordering is done 
by comparing the transform coefficients magnitudes with a set of octavely decreasing 
thresholds. In this algorithm, a transmission priority is assigned to each coefficient to be 
transmitted. Using these rules, the encoder always transmits the most significant bit to the 
decoder. In (Lu et al., 2000), SPIHT algorithm is modified for 1-D signals and used for ECG 
compression. For faster computations SPIHT algorithm can be described as follows: 
1. ECG signal is divided to contiguous non-overlapping frames each of N samples and 

each frame is encoded separately.  
2. DWT is applied to the ECG frames up to L decomposition levels.  
3. Each wavelet coefficient is represented by a fixed-point binary format, so it can be 

treated as an integer. 
4. SPIHT algorithm is applied to these integers (produced from wavelet coefficients) for 

encoding them.  
5. The termination of encoding algorithm is specified by a threshold value determined in 

advance; changing this threshold, gives different compression ratios.  
6. The output of the algorithm is a bit stream (0 and 1). This bit stream is used for 

reconstructing signal after compression. From it and by going through inverse of SPIHT 
algorithm, we compute a vector of N wavelet coefficients and using inverse wavelet 
transform, we make the reconstructed N sample frame of ECG signal.  

In (Pooyan et al., 2005), the above algorithm is tested with N=1024 samples, L=6 levels and 
the DWT used is biorthogonal 9/7 (with symmetric filters h(n) with length 9 and g(n) with 
length 7). The filters' coefficients are given in Table (1). 
 

n 0 ±1 ±2 ±3 ±4 

h(n) 0,852699 0,377403 -0.11062 -0.023849 0.037829 

g(n) 0.788485 0.418092 -0.04069 -0.064539  
 

Table 1. Coefficients of the Biorthogonal 9/7 Tap Filters. 

6.3 2-D ECG compression methods based on DWT 

By observing the ECG waveforms, a fact can be concluded that the heartbeat signals 

generally show considerable similarity between adjacent heartbeats, along with short-term 

correlation between adjacent samples. However, most existing ECG compression techniques 

did not utilize such correlation between adjacent heartbeats. A compression scheme using 

two-dimensional DWT transform is an option to employ the correlation between adjacent 

heartbeats and can thus further improve the compression efficiency. In (Reza et al., 2001; Ali 

et al., 2003) a 2-D wavelet packet ECG compression approach and a 2-D wavelet based ECG 

compression method using the JPEG2000 image compression standard have been presented 

respectively. These 2-D ECG compression methods consist of: 1) QRS detection, 2) 

preprocessing (cut and align beats, period normalization, amplitude normalization, mean 

removal), 3) transformation, and 4) coefficient encoding. Period normalization helps 

utilizing the interbeat correlation but incurs some quantization errors. Mean removal helps 

maximizing the interbeat correlation since dc value of each beat is different due to baseline 

change. Recently (Tai et al., 2005), a 2-D approach for ECG compression that utilizes the 
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redundancy between adjacent heartbeats has been presented. The QRS complex in each 

heartbeat is detected for slicing and aligning a 1-D ECG signal to a 2-D data array, and then 

2-D wavelet transform is applied to the constructed 2-D data array. Consequently, a 

modified SPIHT algorithm is applied to the resulting wavelet coefficients for further 

compression. The way that the 2-D ECG algorithm presented in (Tai et al., 2005) differs from 

other 2-D algorithms, (Reza et al., 2001; Ali et al., 2003), is that it not only utilizes the 

interbeat correlation but also employs the correlation among coefficients in relative 

subbands. More recently (Wang & Meng, 2008), a new 2-D wavelet-based ECG data 

compression algorithm has been presented. In this algorithm a 1-D ECG data is first 

segmented and aligned to a 2-D data array, thus the two kinds of correlation of heartbeat 

signals can be fully utilized. And then 2-D wavelet transform is applied to the constructed 2-

D ECG data array. The resulting wavelet coefficients are quantized using a modified vector 

quantization (VQ). This modified VQ algorithm constructs a new tree vector which well 

utilizing the characteristics of the wavelet coefficients. Experimental results show that this 

method is suitable for various morphologies of ECG data, and that it achieves higher 

compression ratio with the characteristic features well preserved. 

6.4 Hybrid ECG signal compression methods 

Hybrids ECG signal compression methods are constructed from more than time and/or 
frequency domain techniques (Ahmed et al., 2007). These include Modified Discrete Cosine 
Transform (MDCT) and DWT; linear prediction coding and DWT. By studying the ECG 
waveforms, it can be concluded that the ECG signals generally show two types of 
correlation, namely correlation between adjacent samples within each ECG cycles (intrabeat 
correlation) and correlation between adjacent heartbeats (interbeat correlation) (Xingyuan & 
Juan, 2009). However, most existing ECG compression techniques did not utilize such 
correlation between adjacent heartbeats. Hybrid compression methods of ECG signals are 
discussed in this section, which fully utilizes the interbeat correlation and thus can further 
improve the compression efficiency.  

6.4.1 ECG signal compression based on combined MDCT and DWT 

In (Ahmed et al., 2008), a hybrid two-stage electrocardiogram (ECG) signals compression 
method based on the MDCT and DWT has been proposed. The ECG signal is partitioned 
into blocks and the MDCT is applied to each block to decorrelate the spectral information. 
Then, the DWT is applied to the resulting MDCT coefficients. The resulting wavelet 
coefficients are then threshold and compressed using energy packing and binary-significant 
map coding technique for storage space saving. MDCT is a linear orthogonal lapped 
transform, based on the idea of time domain aliasing cancellation (TDAC). It is designed to 
be performed on consecutive blocks of a larger dataset, where subsequent blocks are 
overlapped so that the last half of one block coincides with the first half of the next block. 
This overlapping, in addition to the energy-compaction qualities of the DCT, makes the 
MDCT especially attractive for signal compression applications. Thus, it helps to avoid 
artifacts stemming from the block boundaries (Britanak & Rao, 2002; Nikolajevic & Fettweis, 
2003). MDCT is critically sampled, which means that though it is 50% overlapped, a 
sequence data after MDCT has the same number of coefficients as samples before the 
transform (after overlap-and-add). This means that, a single block of IMDCT data does not 
correspond to the original block on which the MDCT was performed. When subsequent 
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blocks of inverse transformed data are added, the errors introduced by the transform cancel 
out TDAC. The MDCT is defined as (Nikolajevic & Fettweis, 2003): 

 
1

0

( ) ( ) cos , 0, 1, . . .1 1 1
2 2

N

C
n

X k x n n k k M
M

M π−

=

⎡ ⎤⎛ ⎞ ⎛ ⎞= + + =⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
+ −∑   (24) 

where, x(n), n=0, 1, 2, …, N-1 is the sequence to be transformed, N=2M is the window length 

and M is the number of transform coefficients. The computation burden can be reduced if 

the transform coefficients given by equation (24) are rewritten in the following recursive 

form 

 ( ) ( ) ( )1 2( ) (0) cos 1 cos 3 cos 1
2 2 2
k k k

CX k x M V M V M
θ θ θ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + + − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (25) 

Where,  

 1 2( ) 2cos , 1, 2, ...,1, 0m k m mV x m V V m N Nθ + += + − = − −  (26) 

and  

 1
2k k

M

πθ ⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (27) 

The MDCT computation algorithm of a data sequence x(n) can be summarized in the 

following: 

1. Partition the data sequence in Nb consecutive blocks, each one with N=64 samples.  

2. Recursively generate the mV from the input sequence x(n) according to (26) and (27).  

3. Calculate the MDCT coefficients for each block by evaluating the k-th MDCT coefficient 

using (25) at the N-th step.  

In the decompression stage, the inverse MDCT, that is termed IMDCT, is adopted. Because 

there are different numbers of inputs and outputs, at first glance it might seem that the 

MDCT should not be invertible. However, perfect invertability is achieved by adding the 

overlapped IMDCTs of subsequent overlapping blocks, causing the errors to cancel and the 

original data to be retrieved. The IMDCT transforms the M real coefficients, XC (0), XC (1), … 

, XC (M-1), into N=2M real numbers, x(0), x(1), ….. , x(N-1), according to the formula:  
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Again, the computation burden of x(n) can be reduced considerably if equation (28) is 

rewritten in the following recursive form 

 1 2

3
( ) (0) cos cos cos

2 2 2
n n n

Cx n X V V
θ θ θ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (29) 

Where,                     1 2( ) 2cosm C n m mV X m V Vθ + += + −    and   1
2n n

M
M πθ ⎛ ⎞= +⎜ ⎟

⎝ ⎠
+  (30) 
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6.4.2 ECG signal compression based on the linear prediction of DWT coefficients 

In (Abo-Zahhad et al., 2000; Ahmed & Abo-Zahhad, 2001), a new hybrid algorithm for ECG 
compression based on the compression of the linearly predicted residuals of the wavelet 
coefficients is presented. The main goal of the algorithm is to reduce the bit rate while 
keeping the reconstructed signal distortion at a clinically acceptable level. In this algorithm, 
the input signal is divided into blocks and each block goes through a discrete wavelet 
transform; then the resulting wavelet coefficients are linearly predicted. In this way, a set of 
uncorrelated transform domain signals is obtained. These signals are compressed using 
various coding methods, including modified run-length and Huffman coding techniques. 
The error corresponding to the difference between the wavelet coefficients and the predicted 
coefficients is minimized in order to get the best predictor.  

7. Thresholding and coding of DWT coefficients 

Thresholding DWT coefficients are very similar to the method that our ears take to de-noise 
a music signal. We concentrate on the high peaks and try to ignore the low crackling of the 
white noise. Because DWT coefficients are based on amplitude and location of the signal, we 
can separate much of the noise from the signal relatively easily. The technique of 
thresholding takes the DWT coefficients, and throws out (makes them zero) coefficients 
below a certain threshold, leaving the peaks of the signal. Then each coefficient after 
thresholded is quantized. A non-uniform quantization method is commonly used to 
increase the compression and decrease the distortion in the reconstructed signal. The 
quantized coefficients are then encoded. The wavelet domain representation itself does not 
introduce any compression. Compression is obtained by encoding the thresholded wavelet 
coefficients using optimal thresholding levels. Given that most of the energy in the signal is 
in the lower subbands, it is reasonable to assume that after thresholding a substantial 
number of higher band wavelet coefficients will be set to zeros. Since these zeros tend to 
occur in clusters, as a direct consequence of the way in which the data are organized in 
vectors, run-length coding of these zeros makes sense. The basic idea of this technique is to 
encode a sequence of equal symbols with a certain codeword depending on the length of 
that sequence. Thus, two types of codewords may be used: the counter-words and the 
value-words. For example, the string “aaabbbbd” is encoded as: (a, 3), (b, 4), and (d, 1). In 
case of ECG compression, the run-length coding is done by representing the thresholded 
wavelet coefficients vectors in the forum of (Run, Level), where Run is the number of zeros 
before each nonzero coefficients, and Level is the amplitude of the coefficient following a 
number of zeros given by Run. The event that the last coefficient are all zeros is represented 
by the special code (0 , 0). For example, the set of wavelet coefficients given by  Wbefore = {0  
1  0  0  0  4  5  0   0   0   0   0   0    0    0   0 } is run-length coded as Wafter = { (1 , 1)    (3 , 4)    (0 , 
5)    (0 , 0) }. As it has been mentioned in section 3, the compression is based on representing 
the thereshold wavelet coefficients with a small number of bits. This has been carried out by 
discarding the WT-coefficients, which are less than a given threshold. These coefficients are 
considered insignificant with their values set to zero. The remaining NS coefficients are the 
significant coefficients. The number of the discarded coefficients is NI=N-NS. Most of these 
coefficients are concentrated at the end of the coefficients’ vector. In technical literature, 
many algorithms are suggested to deal with signals that have repeated samples' values such 
as run-length coding and Huffman coding. The need of at least one bit for the mostly 
repeated sample is the main limitation of the Huffman coding. The disadvantage of the run-
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length algorithm is the need of two words for the representation of each group of repeated 
samples: one for the repeated value and the other for the number of repetitions. In this 
section a more efficient coding algorithm, a modified run-length algorithm, is presented for 
dealing with this situation. The algorithm is based on representing each significant 
coefficient by bS+1 bits. The insignificant coefficients (of value zero) are manipulated in a 
different manner. First, the repeated groups of zeros are counted and the resulting count is 
represented by bS+1 bits. Then the train of coefficients representing the ECG signal is 
transformed to another train of numbers. Some of these numbers represent the significant 
coefficients and the rest are the numbers representing the repeated group of zeros (K1, K2, 
…., KM). Here, M denotes the number of these groups. The problem here is how to 
differentiate between the coefficients and the numbers representing the group of zeros. For 
example, the number 18 may be found twice in the new train of numbers, where the first 18 
may be a significant coefficient and the second one may indicate 18 repeated zeros. To 
overcome this problem, the first bit in the representation of each number is used as a control 
bit. In case of the significant coefficient this bit is set to one and in case of repeated zeros it is 
reset to zero.  
 

• representation of significant residual coefficient 1 bS – bits 
 

• representation of a group of repeated zeros 0 bS – bits 

8. Quantization and coding of DWT coefficients 

A quantizer simply reduces the number of bits needed to store the transformed coefficients 

by reducing the precision of those values. A quantization scheme maps a large number of 

input values into a smaller set of output values. This implies that some information is lost 

during the quantization process. The original wavelet coefficients ( )c n  cannot be recovered 

exactly after quantization. An encoder further compresses the quantized values losslessly to 

give better overall compression. The most commonly used encoders are the Huffman 

encoder and the arithmetic encoder, although for applications requiring fast execution, 

simple run-length encoding (RLE) has proven very effective (Ahmed & Abo-Zahhad, 2001). 

In the following, wavelet coefficients quantization and coding algorithms are described.  

8.1 Energy packing efficiency strategy 
In this section, the quantization strategy adopted is based on the energy packing efficiency 
(EPE). It guarantees the balance between the compression achievement and information 
loss. Here, quantization process is performed by selecting an appropriate threshold level λ 
to control the compression ratio. Due to the careful representation of the ECG signal 
performed by DWT, it is reasonable to assume that only a few coefficients contain 
information about the real signal while others appear as less important details. The goal is to 
extract these significant coefficients and to ignore others smaller  than  specified threshold 
level λ. The optimal value of λ is determined such that the reconstructed signal is as close to 
the original one as possible. Usually the selection of optimal threshold level is not an easy 
task, because some of the coefficients that represent the actual signal details may be also 
killed, and as a result, signal distortion is the side effect. In (Abo-Zahhad & Rajoub, 2001, 
2002) Energy Packing Efficiency (EPE) strategy has been utilized for decreasing the 
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distortion of the reconstructed signal. This has been performed by thresholding the wavelet 
coefficients of the approximation and details subbands with different threshold levels.  
As it can be deduced from the above discussion, the approximation band is the smallest 
band in size and it includes high amplitude approximation coefficients. The wavelet 
coefficients other than these included in the approximation band, detail coefficients, have 
small magnitudes. Most of the energy is captured by these coefficients of the lowest 
resolution band. This can be seen from the decomposition of 4096-sample ECG signal up to 
the fifth level. The total energy of the signal is 94393.5. About 99.73% of this energy is 
concentrated in the 136 approximation coefficients and only 0.27% of the energy is 
concentrated in the remaining 3960 detail coefficients. Here, threshold levels are defined 
according to the energy packing efficiencies of the signal for all subbands. EPE for a set of 
coefficients in the ith subband is defined as the ratio of the energy captured by the subband 
coefficients and the energy captured by the whole number of coefficients. 
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Where iL and L are the number of coefficients in the ith subband and the whole number of 
coefficients respectively. A large threshold could attain high data reduction but poor signal 
fidelity and a small threshold would produce low data reduction but high signal fidelity. To 
explore the effect of threshold level (λ) selection and the coefficients representation on the 
compression ratio and PRD, the following thresholding rule is set:  

Keep all the wavelet coefficients in the approximation subband without thresholding and  calculate the 
threshold value for each details subband separately  by preserving the higher amplitude wavelet 

coefficients in the ith details subband that contribute to αi % of the energy in that subband.  

One important feature of this rule is that the integer part of the wavelet coefficients in each 
subband is represented by different number of bits.  

8.2 Binary significant map coding algorithm 
The coding algorithm adopted here is based on grouping the significant coefficients in one 
vector and the locations of the insignificant coefficients in another vector. The significant 
coefficients are arranged from high scale coefficients to low scale coefficients. Each 
significant coefficient is decomposed into integer part and fractional part, where M-bits are 
assigned to represent the integer part (signed representation) and N-bits represent the 
fractional part; i.e. each coefficient is represented by N+M bits. A binary significant map is 
used as flags to indicate if the coefficient is significant or not. This binary stream is 
compressed further as will be shown in the following: 

1. Threshold the wavelet coefficients, ( )c n , to produce the threshold coefficients ( )c n . 

The threshold level (λ) is determined by using the above-mentioned rule such that the 

distortion in the reconstructed signal ix  is acceptable. The distortion is measured using 

PRD and/or visual inspection. The optimal non-orthogonal wavelet transform 

developed in (Ahmed et al., 2000) may be used to minimize the PRD in least mean 

square sense. Here, the threshold λ is determined such that the PRD is less or equal to a 

prescribed acceptable value defined by a cardiologist.  
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2. Search the vector ( )c n to isolate the significant coefficient in another vector ˆ ( )SC m .  

3. Use finite word length representation to represent the integer and fractional parts of the 

coefficients, ˆ ( )SC m . The number of bits used to represent these coefficients is 

determined as follows: 

3.1  Search the vector ˆ ( )SC m to find the maximum coefficient (in absolute value) and 

determine the number of bits that represents this coefficient. This can be done by 

finding ˆInt max| ( )|k C m
S

=  where Int .  denotes the integer part. Then convert 

k to a binary number and count the number of bits, M.  

3.2  Similarly, find the number of bits, N, that represent the minimum value of the 

fractional part of each significant coefficient in such a way to keep the distortion 

within acceptable limits.  

4. Generate a binary stream, b(n),  of 1’s and 0’s that encodes the zero-locations in ( )c n . 

This is done by coding each significant coefficient in ( )c n by a binary 1. The length of 

the binary stream equals n1, where n1 designates the index value of the last significant 

coefficients in ( )c n . Hence, there is no need to encode the zeros for n > n1. The value of 

n1 need not be stored because it can be determined as the length of the vector b(n) in the 

decoding process.  

5. Compress the binary stream using run length encoding of 0’s and 1’s as follows:  

5.1   Set i = 1,  Run-type= b(i),  and set the run length Z to 1; 

        If b(i) ≠ b(i+1)  increment i by Z. Else, while b(i+1) = b(i),  increment i by 1  and Z       

by 1   end;  end. 

5.2  From Table (2), find the inequality that Z satisfies. Then output the symbol that 

specifies the run type followed by the number Z. i.e., code = [code  χ Z] , where χ 

designates concatenation operator.  

5.3   If index < n1 set Z=1 and go to step (5.1). 
6. Represent the obtained run length code in binary format. There are 16 different symbols 

that can be generated from step 5. These are the digits 0-9 and the letters A-F. Hence, 4 

bits can be used to represent each symbol. 

 

Symbol Run Type Range  Symbol Run Type Range 

A 0 999100 ≤≤ Z   D 1 999100 ≤≤ Z  
B 0 9910 ≤≤ Z   E 1 9910 ≤≤ Z  
C 0 92 ≤≤ Z   F 1 92 ≤≤ Z  

Table 2. Run Length Encoding of 0’s and 1. 

9. Conclusion 

In literature, numerous ECG compression methods have been developed. They may be 

defined either as reversible methods (offering low compression ratios but guaranteeing an 

exact or near-lossless signal reconstruction), irreversible methods (designed for higher 

compression ratios at the cost of a quality loss that must be controlled and characterized), or 

scalable methods (fully adapted to data transmission purposes and enabling lossy 

reconstruction). Choosing one method mainly depends on the use of the ECG signal. In the 

case of the needs of a first diagnosis, a reversible compression would be most suitable. 
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However, if compressed data has to be stored on low-capacity data supports, an irreversible 

compression would be necessary. Finally, scalable techniques clearly suit data transmission. 

All compression solutions presented in this chapter adopt DWT as a reversible compression 

tool. As a consequence, the following question remains: why should they all be compressed 

using the same algorithm? Unsurprisingly, this discussion still remains open. 
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