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1. Introduction 

Communication and multimedia have been developed rapidly in recent years. Digital media 

and services found in daily life include, such as digital cameras, VCD (Video Compact Disc), 

DVD (Digital Video Disc), HDTV (High-Definition TeleVision) and video conferences. 

Several well-known compression schemes, such as Differential Pulse Code Modulation 

(DPCM)-based method (Habibi & Hershel, 1974), DCT-based methods (Feig et al., 

1995)(Kondo & Oishi, 2000), and Wavelet-based methods (Mallat, 1989) have been well-

developed in recent years. The lifting-based scheme has recently provided a less-complexity 

solution for image/video applications, e.g., JPEG2000, Motion-JPEG2000, MPEG-4 still 

image coding, and MC-EZBC (Motion Compensation- Embedded Zero Block Coding). 

However, the real-time 2-D DWT (software-based) is still difficult to be achieved. Hence, an 

efficient transformation scheme for large of multimedia files is highly demanded. 
Filter banks for the applications of subband image/video coding were introduced in the 
1990s. Wavelet coding has been studied extensively since then. Wavelet coding has been 
successfully applied to many applications. The most significant applications include 
subband coding for audio, image, video, signal analysis and representation using wavelets. 
In the past few years, DWT  (Mallat, 1989) has been adopted in a wide range of applications 
including image coding and video compression, including speech analysis, numerical 
analysis, signal analysis, image coding, pattern recognition, computer vision and biometrics. 
The DWT can be viewed as a multi-resolution decomposition of a signal, meaning which 
decomposes a signal into several components in different wavelet frequency bands. 
Moreover, 2-D DWT is a modern tool for signal processing applications, such as JPEG2000 
still image compression, denoising, region of interest (ROI), and watermarking. By factoring 
the classical wavelet filter into lifting steps, the computational complexity of the 
corresponding DWT can be reduced by up to 50% (Daubechies & Sweldens, 1998). The 
lifting steps can be easily implemented, which is different from the direct finite impulse 
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response (FIR) implementations of Mallat’s algorithm  (Daubechies & Sweldens, 1998). 
Several lifting-based DWT hardware architectures have recently been proposed. The 2-D 
DWT architecture described by Chiang et al. (Chiang et al., 2005) is based on the new 
interlaced read scan algorithm with pipeline processing to achieve low-transpose memory 
size and high-speed operation. Chiang et al. (Chiang & Hsia, 2005) proposed a 2-D DWT 
folded architecture to improve the hardware utilization. Andra et al. (Andra et al., 2000) and 
(Andra et al., 2002) proposed simple processing units that compute several stages of the 
DWT at a time. An architecture performs the lifting-based DWT with the 5/3 filter, which is 
based on the interleaving technique presented in (Diou et al., 2001). Chen et al. (Chen & Wu, 
2002) used a 1-D folded architecture to improve the hardware utilization for 2-D 5/3 and 
9/7 filters. The recursive architecture is a general scheme to implement any wavelet filter 
that is decomposable into lifting steps (Lian et al., 2001) in small-size and low-power design. 
Despite these efficiency improvements of the existing architecture, further improvements in 
the algorithm and architecture are required. For this, Tan et al. (Tan & Arslan, 2003) 
presented a novel shift-accumulator arithmetic logic units architecture for 2-D lifting-based 
JPEG2000 5/3 DWT. The architecture has an efficient memory organization, which uses a 
smaller amount of embedded memory for processing and buffering. Lee et al. (Lee et al., 
2003) proposed a new signal flow operation approach for the DWT implementation, and 

adopted only a memory size of N is employed for an N×N 2-D DWT. Varshney et al. 
(Varshney et al., 2007) presented energy efficient single-processor and fully pipelined 
architectures for the 2-D 5/3 lifting-based JPEG2000. The single processor performs both the 
row-wise and column-wise processing simultaneously, thus achieving, full 2-D transform 
with 100% hardware utilization. In (Chen, 2002) proposed one flexible and folded 
architecture for 3-level 1-D Lifting-based DWT to increase hardware utilization. Liao et al. 
(Liao et al., 2004) proposed two similar 2-D lifting-based 9/7 DWT generic architectures by 
employing parallel and pipeline techniques with recursive pyramid algorithms. Those 
architectures achieve multilevel decomposition using an interleaving scheme that reduces 
the size of memory and the number of memory accesses, while having a slow throughput 
rate and inefficient hardware utilization. Some VLSI architectures of 2-D lifting-based DWT 
reduce the transpose memory requirements and communication between the processors. 
However, these architectures need large transpose memory and long latency time. 
Low-transpose memory requirement and latency reduction are the major concerns in 2-D 

DWT implementation. This work presents a new approach, namely 2-D Symmetric Mask-

based DWT algorithm (SMDWT), to improve the 2-D lifting-based DWT (LDWT), and 

further applies it 2-D DWT real-time applications. 

2. Lifting-based Discrete Wavelet Transform 

Filtering and convolution are applied to achieve the signal decomposition in classical DWT. 

In 1986, Meyer and Mallat found that the orthonormal wavelet decomposition and 

reconstruction can be implemented in the multi-resolution signal analysis framework 

(Mallat, 1989). Multi-resolution analysis is now a standard method for constructing the 

orthonormal wavelet bases. Figure 1 shows the framework of the 2-D DWT. In the 

decomposition process, the low-pass filter H and high-pass filter G denote the scaling 

functions and the corresponding wavelets, respectively. Given a filter of length four, the 

corresponding transfer functions of filters H and G can be represented as, 
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 H(z)=h0+h1z-1+h2z-2+h3z-3, (1) 

 G(z)=g0+g1z-1+g2z-2+g3z-3. (2) 

The downsampling operation is then applied to the filtered results. A pair of filters are 
applied to the signal to decompose the image into the low-low (LL), low-high (LH), high-
low (HL), and high-high (HH) wavelet frequency bands. Consider an image of size N×N, 
Each band is subsampled by a factor of two, so that each wavelet frequency band contains 
N/2×N/2 samples. The four bands can be integrated to generate an output image with the 
same number of samples as the original. 
In most image compression applications, the above 2-D wavelet decomposition can be 
applied again to the LL sub-image, forming four new subband images, and so on to achieve 
a compact energy in the lower frequency bands. 
 

 

Fig. 1. The 2-D analysis DWT image decomposition process. 

2.1 Lifting-based DWT algorithm 
The lifting-based scheme proposed by Daubechies and Sweldens requires fewer 
computations than the traditional convolution-based approach (Sweldens, 1996)(Daubechies 
& Sweldens, 1998). The lifting-based scheme is an efficient implementation for DWT. It can 
easily use integer operations, and avoids the problems caused by the finite precision or 
rounding. The Euclidean algorithm can be used to factorize the poly-phase matrix of a DWT 
filter into a sequence of alternating upper and lower triangular matrices and a diagonal 
matrix. The variables h(z) and g(z) in Eq. 3 respectively denote the low-pass and high-pass 
analysis filters, which can be divided into even and odd parts to generate a poly-phase 
matrix P(z) as in Eq. 4. 

g(z)=ge(z2)+ z-1go(z2), 
h(z)=he(z2)+z-1ho(z2). 

(3) 
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The Euclidean algorithm recursively finds the greatest common divisors of the even and 
odd parts of the original filters. Since h(z) and g(z) form a complementary filter pair, P(z) can 
be factorized into Eq. 5. 
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where si(z) and ti(z) are Laurent polynomials corresponding to the prediction and update 
steps, respectively, and k is a nonzero constant. Therefore, the filter bank can be factorized 
into three lifting steps. As illustrated in Fig. 2, a lifting-based scheme has the following four 
stages: 
1) Split phase: The original signal is divided into two disjoint subsets. Significantly, the 
variable Xe denotes the set of even samples and Xo denotes the set of odd samples. This 
phase is called lazy wavelet transform because it does not decorrelate the data, but only 
subsamples the signal into even and odd samples. 
2) Predict phase: The predicting operator P is applied to the subset Xo to obtain the wavelet 
coefficients d[n] as in Eq. 6. 

 d[n]=Xo[n]+P×(Xe[n]). (6) 

3) Update phase: Xe[n] and d[n] are combined to obtain the scaling coefficients s[n] after an 

update operator U as in Eq. 7. 

 s[n]=Xe[n]+U×(d[n]). (7) 

4) Scaling: In the final step, the normalization factor is applied on s[n] and d[n] to obtain the 

wavelet coefficients. Equations 8 and 9 describe the implementation of the 5/3 integer lifting 

analysis DWT and are used to calculate the odd coefficients (high-pass coefficients) and 

even coefficients (low-pass coefficients), respectively. 

 d*[n]=X(2n+1) - (2 ) (2 2) / 2X n X n+ +   (8) 

 s*[n]=X(2n) + (2 1) (2 1) 2 / 4d n d n− + + +  (9)                          

Although the lifting-based scheme has less complexity, its long and irregular data paths 

constitute a major limitation for efficient hardware implementation. Additionally, the 

increasing number of pipelined registers increases the transpose memory size of the 2-D 

DWT architecture. 

 

 

Fig. 2. Block diagram of the lifting-based DWT. 

2.2 Lossless 2-D 5/3 lifting-based DWT structure 
The 2-D DWT uses a vertical 1-D DWT subband decomposition and a horizontal 1-D DWT 
subband decomposition to obtain the 2-D DWT coefficients. Therefore, the memory 
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requirement dominates the hardware cost and complexity of the architectures for 2-D DWT. 
The 2-D transform operation is shown in Fig. 3. 
 

 

(a) 

 

(b) 

Fig. 3. 2-D LDWT operation. (a) The flow of a traditional 2-D DWT. (b) Detailed processing 
flow. 
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Fig. 4. Lifting-based 5/3 DWT algorithm. 

Figure 4 shows the lifting step associated with the wavelet. The original signals including s0, 
d0, s1, d1, s2, d2, ... are the original input pixel sequences. If the original data are infinite in 
length, then the first-stage lifting is applied to update the odd index data s0, s1, …. In Eq. 10, 
the parameters -1/2 and Hi denote the first stage lifting parameter and outcome, 
respectively. After all the odd index data points are calculated, the second stage lifting can 
be performed with Eq. 11, where those parameters denote the second stage lifting 
parameters and outcomes, respectively. The variables Hn and Ln are the high-pass and low-
pass coefficients. The values of the lifting parameters -1/2, 1, and 1/4 as shown in Fig. 4 are 
used for the prediction module (Hi), the update module (Li) and the Kn module (scaling by 
Kn=1), respectively. 

 Hi= [(si+si+1)×-1/2+di]×K0, (10) 

 Li= [(Hi+Hi-1)×1/4+si]×K1, (11) 

 K0 = K1 = 1. (12) 

3. The proposed 2-D symmetric mask-based Discrete Wavelet Transform 

LDWT is widely employed in the visual subband coding, because it inherently has the well-
known perfect reconstruction property. However, LDWT has high-transpose memory 
requirement and operation time in 2-D transform, as shown in Fig. 3. The memory 
requirement and operation speed are the two major concerns in 2-D DWT implementation. 

The row and column-wise signal flow operation is generally adopted for an N×N 2-D DWT. 
However, the memory requirement of this scheme ranges from 2.5N to N2. To solve the 
transpose memory access problem, this work proposes a low-latency and low-memory 
architecture for 1-level 2-D lifting-based DWT. The previous signal flow from row- and 
column-wise is replaced with mask-based processing, SMDWT, to reduce the transpose 
memory requirement for the 2-D DWT. The SMDWT has many advanced features, such as 
short critical path, less latency time, regular signal coding, and independent subband 
processing. The following subsections introduce the 2-D SMDWT where the coefficients of 
mask wavelet coefficient derivation are based on the 2-D 5/3 integer lifting-based DWT. 

3.1 The 2-D SMDWT structure 
This sub-section, the proposed SMDWT is discussed in three aspects: lifting structure, 
transpose memory, as well as latency and critical path. The proposed SMDWT algorithm 
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has the advantages of fast computational speed, less complexity, reduced latency, and 
regular data flow. 
For speed and simplicity, four-masks, 3×3, 5×3, 3×5, and 5×5, are generally used to perform 
spatial filtering tasks. Moreover, the four-subband processing can be further optimized to 
speed up and reduce the transpose memory of DWT coefficients. The four-matrix processors 
consist of four mask filters, and each filter is derived from one 2-D DWT of 5/3 integer lifting-
based coefficients. In LDWT implementation, a 1-D DWT needs massive computations, so the 
computation unit dominants the hardware cost (Chiang & Hsia, 2005)(Andra et al., 2002). A 2-
D DWT is compose of two 1-D DWTs and a block of transpose memory, which is of the same 
size of the processed image. The transpose memory is the main overhead of the computation 
unit in the 2-D DWT. Figure 3 shows the block diagram of a traditional 2-D DWT. Without loss 
of generality, the 5/3 lifting-based 2-D DWT is adopted for comparison. Assuming that the 

image is of size N×N, during the transformation, a large amount of transpose memory (order 
of N2) is needed to store the temporary data after the first stage 1-D DWT decomposition. The 
second stage 1-D DWT is then applied to the stored data to obtain the four-subband (HH, HL, 
LH, and LL) results of the 2-D DWT. Because the memory requirement of size N2 is huge and 
the processing is too long, this work proposes a new approach, called 2-D SMDWT, to reduce 
the transpose computing latency and critical path. Figure 5(a) shows the concept of the 
proposed SMDWT architecture, which consists of input arrangement, processing element, 
memory unit, and control unit, as shown in Fig. 5(b). The outputs are fed to the 2-D DWT four-
subband coefficients, HH, HL, LH, and LL. Significant transpose memory can be saved using 
the proposed approach. This architecture is described in detail in the following subsections, 
and is illustrated in Figs. 5, 7(c), 8(c), 11(c), and 14(c). This study focuses on the 5/3 lifting-
based 2-D DWT complexity reduction. 
 

 

(a) 

 

(b) 

Fig. 5. The system block diagram of the proposed 2-D DWT. (a) 2-D SMDWT. (b) Block 
diagram of the proposed system architecture. 
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Without loss of generality, let us take a 6×6-pixel image is employed to demonstrate the 5/3 
LDWT operations as shown in Fig. 6. In Fig. 6, the variable x(i,j) denotes the original image. 
The upper part of Fig. 6 shows the first stage 1-D LDWT operations, and the lower part of 
Fig. 6 shows the second stage 1-D LDWT operations for evaluating the four-subband 
coefficients, HH, HL, LH, and LL. In the first stage of the 1-D LDWT, three pixels are used to 
evaluate a 1-D high-frequency coefficient. For example, x(0,0), x(0,1), and x(0,2) are used to 
calculate the high-frequency wavelet coefficient b(0,0), where 
 

 

 

 

  

 trap L trap H

 

x(i,j): original image, i = 0~5 and j = 0~5 
b(i,j): high frequency wavelet coefficient of 1-D LDWT 
c(i,j): low frequency wavelet coefficient of 1-D LDWT 
HH: high-high frequency wavelet coefficient of 2-D LDWT 
HL: high-low frequency wavelet coefficient of 2-D LDWT 
LH: low-high frequency wavelet coefficient of 2-D LDWT 
LL: low-low frequency wavelet coefficient of 2-D LDWT 

Fig. 6. Example of 5/3 LDWT operations. 
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b(0,0)=−[x(0,0)+x(0,2)]/2+x(0,1). The pixels, x(0,2), x(0,3), and x(0,4) are used to calculate the 
next high-frequency wavelet coefficient b(0,1). Herein x(0,2) is used to calculate both of b(0,0) 
and b(0,1), and is called the overlapped pixel. The low-frequency wavelet coefficient is 
calculated using two consecutive high-frequency wavelet coefficients and the overlapped 
pixel. For example, b(0,0) and b(0,1) cope with x(0,2) to find the low-frequency wavelet 
coefficient c(0,1), where c(0,1)=[b(0,0)+b(0,1)]/4+x(0,2). The calculated high-frequency 
wavelet coefficients, b(i,j), and the low frequency wavelet coefficients, c(i,j), are then used in 
the second stage 1-D LDWT to calculate the four-subbands coefficients, HH, HL, LH and LL. 
The general form of the mask coefficients is derived first, and the complexity is further 
reduced by employing the symmetric feature of the mask. 

3.2 Simplified 2-D SMDWT using symmetric features 
1. High-High (HH) band mask coefficients reduction for 2-D SMDWT 
According to the 2-D 5/3 LDWT, the HH band coefficients of the SMDWT can be derived as 
follows: 

HH(i,j)=x(2i+1,2j+1)+(1/4)∑1u=0∑1v=0x(2i+2u,2j+2v)+(-1/2)∑2u=-1x(2i+|u|,2j+|1-u|). (13) 

The mask as shown in Fig. 7(a) can be obtained by Eq. 13, where the variables ǂ=-1/2, 
ǃ=1/4, and Ǆ=1. Figure 7(b) shows the DSP architecture and Fig. 7(c) shows the hardware 
architecture. 
The transpose memory requirement is a very important issue in multimedia IC design. 
Therefore, to make the SMDWT architecture suitable for VLSI implementation, the design 
processing element must be as simple and modular as possible. However, the product of 
cost and computation time is always the most important consideration from a 
standardization provides economies of scale for VLSI solution point of view. Therefore, 
speed is sometimes sacrificed to obtain less cost hardware, while still satisfying the 
performance requirement. In other words, the SMDWT architecture can be decomposed so 
as to adjust the cost and computation time product. Its hardware cost and computation time 
tradeoffs must be carefully considered to find the optimal design for VLSI implementation. 
A simple SMDWT method for cost and computation time savings is introduced below. 
Figure 7(c) shows the concept of the proposed HH-band architecture for SMDWT. The 
proposed HH-band architecture consists of a shifter (ǂ, ǃ, and Ǆ) and one adder tree with 
propagation registers, as shown in Fig. 7(c). The architecture design can be divided as 
follows: 

• Input arrangement unit: Three pixels in a column are inputted into a processing 
element for address generator circuits in each cycle. Simultaneously, the input 
arrangement to assign input original signals used in multiplexer (MUX) fetch 3 pixels in 
each cycle to switch for group 1, group 2 and group 3 to operations, respectively. 

• Coefficient shifter unit: The coefficient shifter values are ǂ=-1/2, ǃ=1/4, and Ǆ=1. 
Shifters replace multipliers to achieve a high-efficiency architecture by (reducing 
computational time, critical path, area cost and power consumption (Tan & Arslan, 
2003)). 

• Adder tree unit: An adder tree architecture is adopted to avoid the long signal path 
length, signal skewing, and hazards caused by signal dependency. Each adder tree level 
can be viewed as a parallel pipeline stage. This architecture is suitable for the realization 
in hardware design. 
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                        (a)                                                                    (b) 

 

(c) 

Fig. 7. HH band mask coefficients and the corresponding DSP architecture. (a) Coefficients. 
(b) DSP architecture. (c) Hardware architecture design. 

• Propagation register unit: Current pixels are stored to assign subband coefficients 
computation needs in each group, and next horizontal or vertical scan oriented 
computation are stored in propagation registers for data reuse. This approach can 
reduce the next access time and computations. The pipeline design is the best method to 
improve the system throughput. 

Based on this structure, the coefficient overlap part can be reused as show in Fig. 7(c). 
The complexity of the mask-based method is further reduced by employing the symmetric 
feature of the mask. First, the initial horizontal scan is expressed by: 

 HH(0,0)=ǃ×x(0,0)+ǂ×x(0,1)+ǃ×x(0,2)+ǂ×x(1,0)+Ǆ×x(1,1) 

 +ǂ×x(1,2)+ǃ×x(2,0)+ǂ×x(2,1)+ǃ×x(2,2) (14) 

The next coefficient can be calculated by: 

HH(0,1)=ǃ×x(0,2)+ǂ×x(0,3)+ǃ×x(0,4)+ǂ×x(1,2)+Ǆ×x(1,3)+ǂ×x(1,4)+ǃ×x(2,2)+ǂ×x(2,3)+ǃ×x(2,4) 

=ǂ×x(0,3)+ǃ×x(0,4)+Ǆ×x(1,3)+ǂ×x(1,4)+ǂ×x(2,3)+ǃ×x(2,4)+XMH 

 =ǃ×(x(0,4)+x(2,4))+ǂ×(x(0,3)+x(1,4)+x(2,3))+Ǆ×x(1,3)+XMH,   (15) 

www.intechopen.com



An Improved Low Complexity Algorithm for 2-D Integer Lifting-Based  
Discrete Wavelet Transform Using Symmetric Mask-Based Scheme   

 

123 

where the variable XMH denotes the repeated part after the horizontal third coefficient, 
where X denotes group of pixels x, M denotes the mask, and H denotes horizontal 
orientation. The general form can be derived as: 

 XMH=ǃ×x(i,2j+2)+ǂ×x(i+1,2j+2)+ǃ×x(i+2,2j+2). (16) 

Since Ǆ=1, the general form can be expressed as: 

HH(i,j+1)=ǃ×(x(i,2j+4)+x(i+2,2j+4))+ǂ×(x(i,2j+3)+x(i+1,2j+4)+x(i+2,2j+3))+x(i+1,2j+3)+XMH, (17) 

 

where i=0~N-1, j=0~N-2. 
The vertical scan can be done in the same way, where HH(0,0) is the same as that in Eq. 14. 
The next coefficient can be calculated by: 

HH(1,0)=ǃ×x(2,0)+ǂ×x(2,1)+ǃ×x(2,2)+ǂ×x(3,0)+Ǆ×x(3,1)+ǂ×x(3,2)+ǃ×x(4,0)+ǂ×x(4,1)+ǃ×x(4,2) 

 =ǂ×x(3,0)+ǃ×x(4,0)+Ǆ×x(3,1)+ǂ×x(4,1)+ǂ×x(3,2)+ǃ×x(4,2)+XMV,  (18) 

where the variable XMV denotes the repeated part after the vertical third coefficient, where 
V denotes vertical orientation. The general form can be derived as: 

 XMV=ǃ×x(2i+2,j)+ǂ×x(2i+2,j+1)+ǃ×x(2i+2,j+2).  (19) 

Since Ǆ=1, the general form can be expressed as: 

HH(i+1,j)=ǃ×(x(2i+4,j)+x(2i+4,j+2))+ǂ×(x(2i+3,j)+x(2i+4,j+1)+x(2i+3,j+2))+x(2i+3,j+1)+XMV.  (20) 

where i=0~N-1, j=0~N-2. 
Finally, the diagonal oriented scan can be derived as: 

HH(1,1)=ǃ×x(2,2)+ǂ×x(2,3)+ǃ×x(2,4)+┙×x(3,2)+Ǆ×x(3,3)+ǂ×x(3,4)+┚×x(4,2)+ǂ×x(4,3)+ǃ×x(4,4) 

=Ǆ×x(3,3)+ǂ×x(3,4)+ǂ×x(4,3)+ǃ×x(4,4)+XMD 

 =ǃ×x(4,4)+ǂ×(x(3,4)+x(4,3))+Ǆ×x(3,3)+XMD, (21) 

where the variable XMD denotes the repeated part after the vertical fifth coefficient, where D 
denotes diagonal orientation. The general form can be expressed as: 

 XMD=ǃ×x(2i+2,2j+2)+ǂ×x(2i+2,2j+3)+ǃ×x(2i+2,2j+4)+ǂ×x(2i+3,2j+2)+ǃ×x(2i+4,2j+2). (22) 

Since Ǆ=1, the general form can be expressed as: 

 HH(i+1,j+1)=ǃ×x(2i+4,2j+4)+ǂ×(x(2i+3,2j+4)+ǃ×x(2i+4,2j+3))+x(2i+3,2j+3)+XMD. (23) 

where i=0~N-1, j=0~N-2. 
The repeat part is only needed to be calculated once throughout the whole image. Hence it 
greatly reduces the complexity of the SMDWT. 
2. High-Low (HL) and Low-High (LH) band mask coefficients reduction for 2-D SMDWT 
According to the 2-D 5/3 lifting-based DWT, the HL-band coefficients of the mask-based 
DWT can be expressed as follows: 

HL(i,j)=(3/4)x(2i+1,2j)+(1/16)∑1u=0∑1v=0x(2i+4u,2j-2+2v)+(-1/8)∑1u=0x(2i+4u,2j) 
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+(-1/8)∑1u=0∑1v=0x(2i+2u,2j-1+2v)+ 

 (1/4)∑1u=0x(2i+1,2j-1+2u)+(-3/8)∑1u=0x(2i+2u,2j).  (24) 

The mask as shown in Fig. 8(a) can be obtained via Eq. 24, where ǂ=-1/8, ǃ=1/16, Ǆ=1/4, 
ǅ=-3/8, and ǆ=3/4. The DSP and hardware architecture are also depicted in Figs. 8(b) and 
(c). The complexity of the SMDWT is further reduced by employing the symmetric feature 
of the mask. 
The initial horizontal scan is expressed by: 
 

 

(a) 

 

(b) 

 

(c) 

Fig. 8. HL band mask coefficients and the corresponding DSP architecture. (a) Coefficients. 
(b) DSP architecture. (c) Hardware architecture design. 
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HL(0,0)=ǃ×x(0,0)+ǂ×x(0,1)+ǅ×x(0,2)+ǂ×x(0,3)+ǃ×x(0,4)+ǂ×x(1,0)+Ǆ×x(1,1)+ǆ×x(1,2)+ 

+Ǆ×x(1,3)+ǂ×x(1,4)+ǃ×x(2,0)+ǂx(2,1)+ǅ×x(2,2)+ǂ×x(2,3)+ǃ×x(2,4) 

=ǃ×x(0,0)+ǂ×x(0,1)+ǅ×x(0,2)+ǃ×x(0,4)+ǂ×x(1,0)+Ǆ×x(1,1)+ǆ×x(1,2)+ 

 +ǂ×x(1,4)+ǃ×x(2,0)+ǂ×x(2,1)+ǅ×x(2,2)+ǃ×(2,4)+XMH+1, (25) 

where the variable XMH+1 denotes the repeated part after the first horizontal coefficient. The 
next coefficient can be calculated as: 

HL(0,1)=ǃ×x(0,2)+ǂ×x(0,3)+ǅ×x(0,4)+ǂ×x(0,5)+ǃ×x(0,6)+ǂ×x(1,2)+Ǆ×x(1,3)+ǆ×x(1,4)+ 

+Ǆ×x(1,5)+ǂ×x(1,6)+ǃ×x(2,2)+ǂx(2,3)+ǅ×x(2,4)+ǂ×x(2,5)+ǃ×x(2,6) 

=ǃ×x(0,2)+ǅ×x(0,4)+ǂ×x(0,5)+ǃ×x(0,6)+ǂ×x(1,2)+ǆ×x(1,4)+Ǆ×x(1,5)+ 

 +ǂ×x(1,6)+ǃ×x(2,2)+ǅ×x(2,4)+ǂ×x(2,5)+ǃ×(2,6)+XMH+1,   (26) 

The general form of the first horizontal step can be derived as: 

HL(i,1)=ǃ×x(i,j+2)+ǅ×x(i,j+4)+ǂ×x(i,j+5)+ǃ×x(i,j+6)+ǂ×x(i+1,j+2)+ǆ×x(i+1,j+4)+ 

+Ǆ×x(i+1,j+5)+ǂ×x(i+1,j+6)+ǃ×x(i+2,j+2)+ǅ×x(i+2,j+4)+ǂ×x(i+2,j+5)+ǃ×x(i+2,j+XMH+1, (27) 

where i=0~N-1, and 

 XMH+1=ǂ×x(i,3)+Ǆ×x(i+1,3)+ǂ×x(i+2,3). (28) 

The next coefficient can be calculated as: 

HL(0,2)=ǃ×x(0,4)+ǂ×x(0,5)+ǅ×x(0,6)+ǂ×x(0,7)+ǃ×x(0,8)+ǂ×x(1,4)+Ǆ×x(1,5)+ 

+ǆ×x(1,6)+Ǆ×x(1,7)+ǂ×x(1,8)+ǃ×x(2,4)+ǂx(2,5)+ǅ×x(2,6)+ǂ×x(2,7) 

+ǃ×x(2,8)=ǅ×x(0,6)+ǂ×x(0,7)+ǃ×x(0,8)+ǆ×x(1,6)+Ǆ×x(1,7)+ǂ×x(1,8)+ 

 +ǅ×x(2,6)+ǂ×x(2,7)+ǃ×x(2,8)+XMH+n,  (29) 

where the variable XMH+n denotes the repeated part after the second horizontal coefficient. 
From Eq. 29, the general form can be expressed as: 

HL(i,j+2)=ǅ×x(i,2j+6)+ǂ×x(i,2j+7)+ǃ×x(i,2j+8)+ǆ×x(i+1,2j+6)+Ǆ×x(i+1,2j+7)+ǂ×x(i+1,2j+8)+ 

 +ǅ×x(i+2,2j+6)+ǂ×x(i+2,2j+7)+ǃ×x(i+2,2j+8)+XMH+n, (30) 

where i=0~N-1, j=0~N-2, and  

XMH+n=ǃ×x(i,2j+4)+ǂ×x(i,2j+5)+ǂ×x(i+1,2j+4)+Ǆ×x(i+1,2j+5)+ǃ×x(i+2,2j+4)+ǂ×x(i+2,2j+5). (31) 

The vertical scan can be done in the same way, where HL(0,0) is the same as that in Eq. 25. 
The next coefficient can be calculated as: 

HL(1,0)=ǃ×x(2,0)+ǂ×x(2,1)+ǅ×x(2,2)+ǂ×x(2,3)+ǃ×x(2,4)+ǂ×x(3,0)+Ǆ×x(3,1)+ 
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+ǆ×x(3,2)+Ǆ×x(3,3)+ǂ×x(3,4)+ǃ×x(4,0)+ǂ×(4,1)+ǅ×x(4,2)+ǂ×x(4,3)+ǃ×x(4,4) 

=ǂ×x(3,0)+Ǆ×x(3,1)+ǆ×x(3,2)+Ǆ×x(3,3)+ǂ×x(3,4)+ǃ×x(4,0)+ǂ×x(4,1)+ 

 +ǅ×x(4,2)+ǂ×x(4,3)+ǃ×x(4,4)+XMV, (32) 

where the variable XMV denotes the repeated part after the vertical fifth coefficient. The 
general form can be expressed as: 

HL(i+1,j)=ǂ×x(2i+3,j)+Ǆ×x(2i+3,j+1)+ǆ×x(2j+3,j+2)+Ǆ×x(2j+3,j+3)+ǂ×x(2j+3,j+4)+ 

+ǃ×x(2j+4,j)+ǂ×x(2j+4,j+1)+ǅ×x(2j+4,j+2) 

 +ǂ×x(2j+4,j+3)+ǃ×x(2j+4,j+4)+XMV,  (33) 
where i=0~N-1, j=0~N-1, and 

 XMV=ǃ×x(2i+2,j)+ǂ×x(2i+2,j+1)+ǅ×x(2i+2,j+2)+ǂ×x(2i+2,j+3)+ǃ×x(2i+2,j+4).  (34) 

Finally, the diagonal oriented scan can be expressed as: 

HL(1,1)=ǃ×x(2,2)+ǂ×x(2,3)+ǅ×x(2,4)+ǂ×x(2,5)+ǃ×x(2,6)+ǂ×x(3,2)+Ǆ×x(3,3)+ǆ×x(3,4)+ 

+Ǆ×x(3,5)+ǂ×x(3,6)+ǃ×x(4,2)+ǂx(4,3)+ǅ×x(4,4)+ǂ×x(4,5)+ǃ×x(4,6) 

=ǂ×x(3,2)+ǆ×x(3,4)+Ǆ×x(3,5)+ǂ×x(3,6)+ǃ×x(4,2)+ǅ×x(4,4)+ǂ×x(4,5)+ǃ×x(4,6)+XMD+1,  (35) 

where the variable XMD+1 denotes the repeated part as shown in the gray part of Fig. 9 after 
the first diagonal scan. Next, the HL(2,2) is calculated as: 

HL(2,2)=ǃ×x(4,4)+ǂ×x(4,5)+ǅ×x(4,6)+ǂ×x(4,7)+ǃ×x(4,8)+ǂ×x(5,4)+Ǆ×x(5,5)+ 

+ǆ×x(5,6)+Ǆ×x(5,7)+ǂ×x(5,8)+ǃ×x(6,4)+ǂ×(6,5)+ǅ×x(6,6)+ǂ×x(6,7)+ǃ×x(6,8)                             

 =ǆ×x(5,6)+Ǆ×x(5,7)+ǂ×x(5,8)+ǅ×x(6,6)+ǂ×x(6,7)+ǃ×x(6,8)+XMD+n, (36) 

 

x(2,2) x(2,3) x(2,4) x(2,5) x(2,6) 

x(3,2) x(3,3) x(3,4) x(3,5) x(3,6) 

x(4,2) x(4,3) x(4,4) x(4,5) x(4,6) 

Fig. 9. Repeat part (in gray) of the diagonal scanned position HL(1,1). 

where the variable XMD+n denotes the repeated part as shown in the gray part of Fig. 10 after 
the first diagonal scan. The general form of XMD+n can be expressed as: 

XMD+n=ǃ×x(2i+4,2i+4)+ǂ×x(2i+4,2i+5)+ǅ×x(2i+4,2i+6)+ǂ×x(2i+4,2i+7)+ǃ× 

×x(2i+4,2i+8)+ǂ×x(2i+5,2i+4)+Ǆ×x(2i+5,2i+5)+ǆ×x(2i+5,2i+6)+ 

+Ǆ×x(2i+5,2i+7)+ǂ×x(2i+5,2i+8)+ǃ×x(2i+6,2i+4)+ǂ×x(2i+6,2i+5)+ 

 +ǅ×x(2i+6,2i+6)+ǂ× x(2i+6,2i+7)+ǃ×x(2i+6,2i+8),   (37) 
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x(4,4) x(4,5) x(4,6) x(4,7) x(4,8) 

x(5,4) x(5,5) x(5,6) x(5,7) x(5,8) 

x(6,4) x(6,5) x(6,6) x(6,7) x(6,8) 

Fig. 10. Repeat part (in gray) of the diagonal scanned position HL(2,2). 

The general form of the rest part can be expressed as: 

HL(i+1,j+1)=ǃ×x(2i+6,2j+8)+ǂ×(x(2i+5,2j+8)+x(2i+6,2j+7))+Ǆ×x(2i+5,2j+7)+ 

 +ǅ×x(2i+6,2j+6)+ǆ×x(2i+5,2j+6)+XMD+n, (38) 

where i=1~N-1, j=1~N-1. 
The HL-band can be derived in the same way. According to the 2-D 5/3 LDWT, the LH-
band coefficients of the SMDWT can be derived as follows: 

LH(i,j)=(3/4)x(2i,2j+1)+(1/16)∑1u=0∑1v=0x(2i-2+2u,2j+4v)+ 

+(-1/8)∑1u=0x(2i,2j+4u)+(-1/8)∑1u=0∑1v=0x(2i-1+2u,2j+2v)+ 

 (1/4)∑1u=0x(2i-1+2u,2j+1)+(-3/8)∑1u=0x(2i,2j+2u).  (39) 

The mask as shown in Fig. 11(a) can be obtained via Eq. 39, where ǂ=-1/8, ǃ=1/16, Ǆ=1/4, 
ǅ=-3/8, and ǆ=3/4. The DSP and hardware architecture are depicted in Figs. 11(b) and (c). 
The complexity of the SMDWT is further reduced by employing the symmetric feature of 
the mask. First, the initial horizontal scan is calculated by the method that is similar to that 
of HL SMDWT, where the variable XMH denotes the repeated part after the horizontal fifth 
coefficient. The general form can be expressed as: 

LH(i,j+1)=ǂ×x(i,2j+3)+ǃ×x(i,2j+4)+Ǆ×x(i+1,2j+3)+ǂ×x(i+1,2j+4)+ǆ×x(i+2,2j+3)+ 

+ǅ×x(i+2,2j+4)+Ǆ×x(i+3,2j+3)+ 

 ǂ×x(i+3,2j+4)+ǂ×x(i+4,2j+3)+ǃ×x(i+4,2j+4)+XMH, (40) 

where i=0~N-1, j=0~N-1, and 

 XMH=ǃ×x(i,2j+2)+ǂ×x(i+1,2j+2)+ǅ×x(2i+2,j+2)+ǂ×x(i+3,2j+2)+ǃ×x(i+4,2j+2).   (41) 

Next, the initial vertical scan is calculated by the method similar to that of HL mask-based 
DWT, where the variable XMV+1 denotes the repeated part after the vertical first coefficient. 
The general form of the first vertical step can be expressed as: 

LH(1,j)=ǃ×x(i+2,j)+ǂ×x(i+2,j+1)+ǃ×x(i+2,j+2)+ǅ×x(i+4,j)+ǆ×x(i+4,j+1)+ǅ×x(i+4,j+2)+ 

+ǂ×x(i+5,j)+Ǆ×x(i+5,j+1)+ǂ×x(i+5,j+2)+ 

 +ǃ×x(i+6,j)+ǂ×x(i+6,j+1)+ǃ×x(i+6,j+2)+XMV+1, (42) 

where i=0, j=0~N-1, and 

 XMV+1=ǂ×x(2i+3,0)+Ǆ×x(2i+3,1)+ǂ×x(2i+3,2).  (43) 
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Next, the second vertical scan is calculated with the method similar to that of HL SMDWT. 

LH(i+2,j)=ǅ×x(2i+6,j)+ǆ×x(2i+6,j+1)+ǅ×x(2i+6,j+2)+ǂ×x(2i+7,j)+Ǆ×x(2i+7,j+1)+ 

 +ǂ×x(2i+7,j+2)+ǃ×x(2i+8,j)+ǂ×x(2i+8,j+1)+ǃ×x(2i+8,j+2)+XMV+n,  (44) 

where i=0~N-1, j=0~N-2, and  

XMV+n=ǃ×x(2i+4,j)+ǂ×x(2i+4,j+1)+ǃ×x(2i+4,j+2)+ǂ×x(2i+5,j)+Ǆ×x(2i+5,j+1)+ǂ×x(2i+5,j+2). (45) 

Finally, the diagonal oriented scan can be derived as: 

LH(1,1)=ǂ×x(3,4)+ǆ×x(4,3)+ǅ×x(4,4)+ǂ×x(5,2)+Ǆ×x(5,3)+ǃ×x(6,2)+ǂ×x(6,3)+ǃ×x(6,4)+XMD+1,(46) 

 

  

          (a)                                                                          (b) 

 

(c) 

Fig. 11. LH band mask coefficients and the corresponding DSP architecture. (a) Coefficients. 
(b) DSP architecture. (c) Hardware architecture design. 
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where the variable XMD+1 denotes the repeated part as shown in the gray part of Fig. 12 after 
the first diagonal scan. 
Next the LH(2,2) is calculated as: 

 LH(2,2)=ǂ×x(5,4)+ǆ×x(6,5)+ǅ×x(6,6)+Ǆ×x(7,5)+ǂ×x(7,6)+ǃ×x(8,4)+ǂ×x(8,5)+XMD+n, (47) 

where the variable XMD+n denotes the repeated part as shown in the gray part of Fig. 13 after 
the first diagonal scan. The general form of XMD+n can be expressed as: 

XMD+n=ǃ×x(2i+4,2i+4)+ǂ×x(2i+4,2i+5)+ǃ×x(2i+4,2i+6)+ǂ×x(2i+5,2i+4)+Ǆ×x(2i+5,2i+5)+ 

 +ǂ×x(2i+5,2i+6)+ǅ×x(2i+6,2i+4)+ǂ×x(2i+7,2i+4)+ǃ×x(2i+8,2i+4).   (48) 

 

x(2,2) x(2,3) x(2,4) 

x(3,2) x(3,3) x(3,4) 

x(4,2) x(4,3) x(4,4) 

x(5,2) x(5,3) x(5,4) 

x(6,2) x(6,3) x(6,4) 

Fig. 12. Repeat part (in gray) of the diagonal scanned position LH(1,1). 

 

x(4,4) x(4,5) x(4,6) 

x(5,4) x(5,5) x(5,6) 

x(6,4) x(6,5) x(6,6) 

x(7,4) x(7,5) x(7,6) 

x(8,4) x(8,5) x(8,6) 

Fig. 13. Repeat part (in gray) of the diagonal scanned position LH(2,2). 

The general form of the rest part can be expressed as: 

LH(i+1,j+1)=ǃ×x(2i+8,2j+6)+ǂ×(x(2i+7,2j+6)+x(2i+8,2j+5))+Ǆ×x(2i+7,2j+5)+ 

 +ǅ×x(2i+6,2j+6)+ǆ×x(2i+5,2j+6)+XMD+n.   (49) 

where i=1~N-1, j=1~N-1. 
3. Low-Low (LL) band mask coefficients reduction for 2-D SMDWT 
According to the 2-D 5/3 LDWT, the LL-band coefficients of the SMDWT can be expressed 
as follows: 

LL(i,j)=(9/16)x(2i,2j)+(1/64)∑1u=0∑1v=0x(2i-2+4u,2j-2+4v)+ 

+(1/16)∑1u=0∑1v=0x(2i-1+2u,2j-1+2v)+(-1/32)∑1u=0∑1v=0 x(2i-1+2u,2j-2+4v)+ 
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+(-1/32)∑1u=0∑1v=0x(2i-2+4u,2j-1+2v)+(3/16)∑1u=0[x(2i-1+2u,2j)+P(2i,2j-1+2u)]+ 

 +(-3/32)∑1u=0[x(2i-2+4u,2j)+x(2i,2j-2+4u)].  (50) 

The mask as shown in Fig. 14(a) can be obtained via Eq. 50, where ǂ=-1/32, ǃ=1/64, Ǆ=1/16, 
ǅ=-3/32, ǆ=3/16 and Ǉ=9/16. The DSP and hardware architecture are depicted in Figs. 14(b) 
and (c). The complexity of the SMDWT is further reduced by employing the symmetric 
feature of the mask. First, the initial horizontal scan LL(0,0). The next coefficient can be 
calculated as LL(0,1). where the variable XMH+1 denotes the repeated part after the first 
horizontal coefficient. The general form of the first horizontal step can be expressed as: 

LL(i,1)=ǃ×x(i,j+2)+ǅ×x(i,j+4)+ǂ×x(i,j+5)+ǃ×x(i,j+6)+ǂ×x(i+1,j+2)+ǆ×x(i+1,j+4)+ 

+Ǆ×x(i+1,j+5)+ǂ×x(i+1,j+6)+ǅ×x(i+2,j+2)+Ǉ×x(i+2,j+4)+ǆ×x(i+2,j+5)+ǅ×x(i+2,j+6)+ 

+ǂ×x(i+3,j+2)+ǆ×x(i+3,j+4)+Ǆ×x(i+3,j+5)+ǂ×x(i+3,j+6)+ǃ×x(i+4,j+2)+ 

 +ǅ×x(i+4,j+4)+ǂ×x(i+4,j+5)+ǃ×x(i+4,j+6)+XMH+1,  (51) 

where i=0~N-1, and 

 XMH+1=ǂ×x(i,3)+Ǆ×x(i+1,3)+ǆ×x(i+2,3)+Ǆ×x(i+3,3)+ǂ×x(i+4,3).  (52) 

The next coefficient can be calculated as LL(0,2). where the variable XMH+n denotes the 
repeated part after the second horizontal coefficient. From LL(0,2), the general form can be 
expressed as: 

LL(i,j+2)=ǅ×x(i,2j+6)+ǂ×x(i,2j+7)+ǃ×x(i,2j+8)+ǆ×x(i+1,2j+6)+Ǆ×x(i+1,2j+7)+ 

+ǂ×x(i+1,2j+8)+Ǉ×x(i+2,2j+6)+ǆ×x(i+2,2j+7)+ǅ×x(i+2,2j+8)+ 

+ǆ×x(i+3,2j+6)+Ǆ×x(i+3,2j+7)+ǂ×x(i+3,2j+8)+ǅ×x(i+4,2j+6)+ 

 +ǂ×x(i+4,2j+7)+ǃ×x(i+4,2j+8)+XMH+n, (53) 

where i=0~N-1, j=0~N-2, and  

XMH+n=ǃ×x(i,2j+4)+ǂ×x(i,2j+5)+ǂ×x(i+1,2j+4)+Ǆ×x(i+1,2j+5)+ǅ×x(i+2,2j+4)+ 

 +ǆ×x(i+2,2j+5)+ǂ×x(i+3,2j+4)+Ǆ×x(i+3,2j+5)+ǃ×x(i+4,2j+4)+ǂ×x(i+4,2j+5).  (54) 

 

  

(a) 
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(b) 

 

(c) 

Fig. 14. LL band mask coefficients and the corresponding DSP architecture. (a) Coefficients. 
(b) DSP architecture. (c) Hardware architecture design. 
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The vertical scan can be done in the same way, where LL(0,0) is the same as that horizontal 

in LL(0,0). The next coefficient can be calculated as LL(1,0). Next, the initial vertical scan is 

calculated by the method similar to that of LH SMDWT, where the variable XMV+1 denotes 

the repeated part after the vertical first coefficient. The general form of the first vertical step 

can be expressed as: 

LL(1,j)=ǃ×x(2i,j)+ǂ×x(2i,j+1)+ǅ×x(2i,j+2)+ǂ×x(2i,j+3)+ǃ×x(2i,j+4)+ǅ×x(2i+4,j)+ 

+ǆ×x(2i+4,j+1)+Ǉ×x(2i+4,j+2)+ǆ×x(2i+4,j+3)+ǅ×x(2i+4,j+4)+ǂ×x(2i+5,j)+ 

+Ǆ×x(2i+5,j+1)+ǆ×x(2i+5,j+2)+Ǆ×x(2i+5,j+3)+ǂ×x(2i+5,j+4)+ 

 +ǃ×x(2i+6,j)+ǂ×(2i+6,j+1)+ǅ×x(2i+6,j+2)+ǂ×x(2i+6,j+3)+ǃ×x(2i+6,j+4)+XMV+1, (55) 

 

where i=0, j=0~N-1, and 

 XMV+1=ǂ×x(3,j)+Ǆ×x(3,j+1)+ǆ×x(3,j+2)+Ǆ×x(3,j+3)+ǂ×x(3,j+4). (56) 

 

Next, the second vertical scan is calculated by the method similar to that of LH SMDWT. 

LL(i+2,j)=ǅ×x(2i+6,j)+ǆ×x(2i+6,j+1)+Ǉ×x(2i+6,j+2)+ǆ×x(2i+6,j+3)+ǅ×x(2i+6,j+4)+ 

+ǆ×x(2i+7,j+2)+Ǆ×x(2i+7,j+1)+ǆ×x(i,2j+7)+Ǆ×x(2i+7,j+3)+ǂ×x(2i+7,j+4)+ǃ×x(i,2j+8)+ 

 +ǂ×x(2i+8,j+1)+ǅ×x(2i+8,j+2)+ǂ×x(2i+8,j+3)+ǃ×x(2i+8,j+4)+XMV+n,  (57) 

 

where i=0~N-1, j=0~N-2, and 

XMV+n=ǃ×x(2i+4,j)+ǂ×x(2i+4,j+1)+ǅ×x(2i+4,j+2)+ǂ×x(2i+4,j+3)+ǃ×x(2i+4,j+4)+ 

 +ǃ×x(2i+5,j)+Ǆ×x(2i+5,j+1)+ǆ×x(2i+5,j+2)+Ǆ×x(2i+5,j+3)+ǂ×x(2i+5,j+4).  (58) 

 

Finally, the diagonal oriented scan can be derived as: 

LL(1,1)=ǃ×x(2,2)+ǂ×x(2,5)+ǃ×x(2,6)+Ǉ×x(4,4)+ǆ×x(4,5)+ǂ×x(5,2)+ǆ×x(5,4)+ 

 +Ǆ×x(5,5)+ǂ×x(5,6)+ǃ×x(6,2)+ǅ×x(6,4)+ǂ×x(6,5)+ǃ×x(6,6)+XMD+1,  (59) 

 

where the variable XMD+1 denotes the repeated part as shown in the gray part of Fig. 15 after 
the first diagonal scan. 
Next the HL(2,2) is calculated as: 

LL(2,2)=ǆ×x(6,5)+Ǉ×x(6,6)+ǆ×x(6,7)+Ǆ×x(7,5)+ǆ×x(7,6)+Ǆ×x(7,7)+ǂ×x(7,8)+ 

 +ǂ×x(8,5)+ǅ×x(8,6)+ǂ×x(8,7)+ǃ×x(8,8)+XMD+n, (60) 

 

where the variable XMD+2 denotes the repeated part as shown in the gray part of Fig. 16 after 

the first diagonal scan. The variable XMD+1 denotes the repeated part as shown in the gray 

part of Fig. 17 after the first diagonal scan. The general form of XMD+n can be expressed as: 
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x(2,2) x(2,3) x(2,4) x(2,5) x(2,6) 

x(3,2) x(3,3) x(3,4) x(3,5) x(3,6) 

x(4,2) x(4,3) x(4,4) x(4,5) x(4,6) 

x(5,2) x(5,3) x(5,4) x(5,5) x(5,6) 

x(6,2) x(6,3) x(6,4) x(6,5) x(6,6) 

Fig. 15. Repeat part (in gray) of the diagonal scanned position LL(1,1). 
 

x(4,4) x(4,5) x(4,6) x(4,7) x(4,8) 

x(5,4) x(5,5) x(5,6) x(5,7) x(5,8) 

x(6,4) x(6,5) x(6,6) x(6,7) x(6,8) 

x(7,4) x(7,5) x(7,6) x(7,7) x(7,8) 

x(8,4) x(8,5) x(8,6) x(8,7) x(8,8) 

Fig. 16. Repeat part (in gray) of the diagonal scanned position LL(2,2). 

 

x(6,6) x(6,7) x(6,8) x(6,9) x(6,10) 

x(7,6) x(7,7) x(7,8) x(7,9) x(7,10) 

x(8,6) x(8,7) x(8,8) x(8,9) x(8,10) 

x(9,6) x(9,7) x(9,8) x(9,9) x(9,10) 

x(10,6) x(10,7) x(10,8) x(10,9) x(10,10) 

Fig. 17. Repeat part (in gray) of the diagonal scanned position LL(3,3). 

XMD+n=ǃ×x(2i+6,2i+6)+ǂ×x(2i+6,2i+7)+ǅ×x(2i+6,2i+8)+ǂ×x(2i+6,2i+9)+ 

+ǃ×x(2i+6,2i+10)+ǂ×x(2i+7,2i+6)+Ǆ×x(2i+7,2i+7)+ǆ×x(2i+7,2i+8)+ 

+Ǆ×x(2i+7,2i+9)+ǂ×x(2i+7,2i+10)+ǅ×x(2i+8,2i+6)+ǆ×x(2i+8,2i+7)+ 

 +ǅ×x(2i+8,2i+10)+ǂ×x(2i+9,2i+6)+Ǆ×x(2i+9,2i+7)+ǃ×x(2i+10,2i+6)+ǂ×x(2i+10,2i+7).  (66) 

The general form of the rest part can be expressed as: 

LL(i+1,j+1)=Ǉ×x(2i+8,2i+8)+ǆ×x(2i+8,2i+9)+ǆ×x(2i+9,2i+8)+Ǆ×x(2i+9,2i+9)+ 

 +ǂ×x(2i+9,2i+10)+ǅ×x(2i+10,2i+8)+ǂ×x(2i+10,2i+9)+ǃ×x(2i+10,2i+10)+XMD+n,  (67) 

where i=1~N-1, j=1~N-1. 

3.3 Summary of the complexity reduction 
The four-matrix frameworks, HH, HL, LH, and LL lead to four different architectures. Each 
of these is described by the structural behavior of different components that makes up the 
digital signal processing (DSP) as shown in Table 1. The discussion above shows that the 
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complexity of the proposed SMDWT can be significantly reduced by exploiting the 
symmetric feature of the masks. Tables 2-5 show the overall complexity reductions from the 
original SMDWT to the simplified SMDWT. 
 

HH 9 2 

HL 15 2 

LH 15 2 

LL 25 2 

Table 1. The Subband Mask for DSP. 

 

XMH of HH(i,j+1) ǃ×x(i,2j+2)+ǂ×x(i+1,2j+2)+ǃ×x(i+2,2j+2). 

Complexity 
reduction 

Original SMDWT: adder is 8, and multiplier is 9. (number of operations) 
Simplified SMDWT: adder is 5, and multiplier is 0. (The shifter is used to 
replace multiplier) 

XMV of HH(i+1,j) ǃ×x(2i+2,j)+ǂ×x(2i+2,j+1)+ǃ×x(2i+2,j+2). 

Complexity 
reduction 

Original SMDWT: adder is 8, and multiplier is 9. 
Simplified SMDWT: adder is 6, and multiplier is 0. 

Table 2. HH-Band Wavelet Coefficient (Mask of Size 3×3). 

 

XMH+1 of HL(i,1) ǂ×x(i,3)+Ǆ×x(i+1,3)+ǂ×x(i+2,3). 

Complexity 
reduction 

Original SMDWT: adder is 14, and multiplier is 15. 
Simplified SMDWT: adder is 12, and multiplier is 0. 

XMH+n of 
HL(i,j+2) 

ǃ×x(i,2j+4)+ǂ×x(i,2j+5)+ǂ×x(i+1,2j+4)+Ǆ×x(i+1,2j+5)+ǃ×x(i+2,2j+4)+ǂ×x(
i+2,2j+5). 

Complexity 
reduction 

Original SMDWT: adder is 14, and multiplier is 15. 
Simplified SMDWT: adder is 9, and multiplier is 0. 

XMV of HL(i+1,j) ǃ×x(2i+2,j)+ǂ×x(2i+2,j+1)+ǅ×x(2i+2,j+2)+ǂ×x(2i+2,j+3)+ǃ×x(2i+2,j+4). 

Complexity 
reduction 

Original SMDWT: adder is 14, and multiplier is 15. 
Simplified SMDWT: adder is 10, and multiplier is 0. 

Table 3. HL-Band Wavelet Coefficient (Mask of Size 5×3). 

 

XMH of LH(i,j+1) ǃ×x(i,2j+2)+ǂ×x(i+1,2j+2)+ǅ×x(2i+2,j+2)+ǂ×x(i+3,2j+2)+ǃ×x(i+4,2j+2). 

Complexity 
reduction 

Original SMDWT: adder is 14, and multiplier is 15. 
Simplified SMDWT: adder is 10, and multiplier is 0. 

XMV+1 of LH(1,j) ǂ×x(2i+3,0)+Ǆ×x(2i+3,1)+ǂ×x(2i+3,2). 

Complexity 
reduction 

Original SMDWT: adder is 14, and multiplier is 15. 
Simplified SMDWT: adder is 12, and multiplier is 0. 

XMV+n of 
LH(i+2,j) 

ǃ×x(2i+4,j)+ǂ×x(2i+4,j+1)+ǃ×x(2i+4,j+2)+ǂ×x(2i+5,j)+Ǆ×x(2i+5,j+1)+ǂ×x(
2i+5,j+2). 

Complexity 
reduction 

Original SMDWT: adder is 14, and multiplier is 15. 
Simplified SMDWT: adder is 9, and multiplier is 0. 

Table 4. LH-Band Wavelet Coefficient (Mask of Size 3×5). 
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XMH+1 of LL(i,1) ǂ×x(i,3)+Ǆ×x(i+1,3)+ǆ×x(i+2,3)+Ǆ×x(i+3,3)+ǂ×x(i+4,3). 

Complexity 
reduction 

Original SMDWT: adder is 24, and multiplier is 25. 
Simplified SMDWT: adder is 20, and multiplier is 0. 

XMH+n of LL(i,j+2)
ǃ×x(i,2j+4)+ǂ×x(i,2j+5)+ǂ×x(i+1,2j+4)+Ǆ×x(i+1,2j+5)+ǅ×x(i+2,2j+4)+ǆ×
x(i+2,2j+5)+ǂ×x(i+3,2j+4)+Ǆ×x(i+3,2j+5)+ǃ×x(i+4,2j+4)+ǂ×x(i+4,2j+5). 

Complexity 
reduction 

Original SMDWT: adder is 24, and multiplier is 25. 
Simplified SMDWT: adder is 15, and multiplier is 0. 

XMV+1 of LL(1,j) ǂ×x(3,j)+Ǆ×x(3,j+1)+ǆ×x(3,j+2)+Ǆ×x(3,j+3)+ǂ×x(3,j+4). 

Complexity 
reduction 

Original SMDWT: adder is 24, and multiplier is 25. 
Simplified SMDWT: adder is 20, and multiplier is 0. 

XMV+n of LL(i+2,j)
ǃ×x(2i+4,j)+ǂ×x(2i+4,j+1)+ǅ×x(2i+4,j+2)+ǂ×x(2i+4,j+3)+ǃ×x(2i+4,j+4)+
ǃ×x(2i+5,j)+Ǆ×x(2i+5,j+1)+ǆ×x(2i+5,j+2)+Ǆ×x(2i+5,j+3)+ǂ×x(2i+5,j+4). 

Complexity 
reduction 

Original SMDWT: adder is 24, and multiplier is 25. 
Simplified SMDWT: adder is 15, and multiplier is 0. 

Table 5. LL-Band Wavelet Coefficient (Mask of Size 5×5). 

4. Experimental results and performance comparisons 

The proposed 2-D SMDWT algorithm is generally used to performing the 2-D DWT for still 
images. Figure 18 shows the schematic diagram of the 2-D SMDWT. The wavelet transform 
provides a multi-scale representation of image/video in the spatial-frequency domain. 
Besides the energy compaction and decorrelation properties that facilitate compression, a 
major advantage of the DWT is its scalability. The proposed algorithm is based on the four-
subband matrices (HH, HL, LH, and LL) which are processed to achieve the same 
performance as the 5/3 LDWT algorithm. The SMDWT is implemented in the JPEG2000 
reference software VM 9.0 and is compared with the original JPEG2000. The test image the 
used in this experiment was Lena of size 512×512. Experimental results show that the 
proposed algorithm not only significantly improves lifting-based latency, but also has the 
same visual quality as the normal 2-D 5/3 LDWT as shown in Fig. 19. 
 

 

Fig. 18. Schematic diagram of the 2-D SMDWT. 
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Fig. 19. PSNR (dB) versus Rate (bpp) comparison between 2-D LDWT and the proposed 2-D 
SMDWT. 

The architecture of the 2-D SMDWT has many advantages compared to the 2-D LDWT. For 
example, the critical path of the 2-D LDWT is potentially longer than that of SMDWT. 
Moreover, the 2-D LDWT is frame-based with the implementation bottleneck being the huge 
amount of the transpose memory size. This work uses the symmetric feature of the masks in 
SMDWT to improve the design. Experimental results, as shown in Table 7 show that the 
proposed algorithm is superior to most of the previous works. The proposed algorithm has 
efficient solutions for reducing the critical path (which is defined as the longest, time-weighted 
sequence of events from the start of the program to its termination with examples shown in 
Figs. 7(c), 8(c), 11(c), 14(c)), latency (the time between the arrival of a new signal and its first 
signal output becoming available in the system), and hardware cost, as shown in Figs. 7, 8, 11, 
14, and 20, and Table 6. The SMDWT approach requires a transpose memory of size (N/2)+26 
((N/2) is on-chip memory of size and 26 is number of register). The proposed 2-D DWT adopts 
parallel and pipeline schemes are employed to reduce the transpose memory and increase the 
operating speed. The shifters and adders replace multipliers in the computation to increase the 
hardware utilization and reduce the hardware cost. A N×N 2-D lifting-based DWT is RTL 
(Register Transistor Level) designed and simulated with VerilogHDL in this paper. 
 

 

            (a)                              (b)                                    (c)                                         (d) 

Fig. 20. 2-D LDWT critical path. (a) HH band. (b) HL band. (c) LH band. (d) LL band. 
 

Subbands LDWT critical path SMDWT critical path 

HH 2TM+2TA 1TM+2TA Fig.7(c) 

HL 3TM+3TA 1TM+2TA Fig.8(c) 

LH 3TM+3TA 1TM+3TA Fig.11(c) 

LL 4TM+4TA 1TM+3TA Fig.14(c) 

*TM: Multiplier operation time; TA: Adder operation time 

Table 6. Subband Lifting-Based V.S. Mask-Based for Integer 2-D DWT. 
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Methods 
2-D 

DWT 
Wave 
stage 

1Transpose 
memory 

2Latency
3Computing 

time 
Complexity 

Chiang et al., 2005 LDWT Integer 4N 7 (3/4)N2+7 Simple 

Chiang & Hsia, 
2005 

LDWT Integer N2/4+5N 3 N2 Medium 

Diou et al., 2001 LDWT Integer 3.5N N/A N/A Simple 

Chen & Wu, 2002 LDWT Integer 2.5N N/A N2 Complexity 

Andra et al., 2002 LDWT Integer 3.5N 2N+5 (N2/2)+N+5 Simple 

Tan & Arslan, 
2003 

LDWT Integer 3N N/A (N2/2)+N+5 Medium 

Lee et al., 2003 LDWT Integer N 5 (N2/2)+5 Medium 

ISO/IEC, 2000 LDWT Integer N2 N/A N/A Simple 

Varshney et al., 
2007 

LDWT Integer 3N 13 N/A Medium 

Chen, 2002 LDWT Integer 3N N/A (N2/2)+N+5 Medium 

Proposed SMDWT Integer (N/2)+26 2 N2/4+3 Simple 

1 Transpose memory is used to store frequency coefficients in the 1-L 2-D DWT. 
2 In a system, latency is often used to mean any delay or waiting time that increases real or perceived 
response time beyond the response time desired. For example, specific contributors to 2-D DWT latency 
include from original image input to first subband output in signal. 
3 In a system, computing time represents the time used to compute an image of size N×N. 
4 Suppose image is of size N×N. 

Table 7. Performance Comparisons. 
 

 

Fig. 21. The multilevel 2-D DWT architecture. 

The multi-level DWT computation can be implemented similarly by the proposed 2-D 
SMDWT. For the multi-level computation, this architecture needs (N2/4) off-chip memory. 
As illustrated in Fig. 21, the off-chip memory temporarily stores the LL subband coefficients 
for the next iteration computations. The second level computation requires N/2 counters 
and N/2 FIFOs for the control unit. The third level computation requires N/4 counters and 
N/4 FIFOs for the control unit. Generally, the jth level computation needs N/2j-1 counters 
and N/2j-1 FIFOs. Therefore, the proposed architecture is suitable for multilevel DWT 
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computations. The SMDWT also has the advantages of regular signal coding, short critical 
path, reduced latency time, and independent subband coding processing. Moreover, 
SMDWT can easily reduce the transpose memory access time and overlap original signal 
access so that power consumption of 2-D LDWT can also be easily improved by SMDWT. 

5. Conclusions 

This work proposes a novel 2-D SMDWT fast algorithm, which is superior to the 5/3 LDWT. 
The algorithm solves the latency problem in the previous schemes caused by multiple-layer 
transpose decomposition operation. Moreover, it provides real-time requirement and can be 
further applied to the 3-D wavelet video coding [30]. 
The proposed 2-D SMDWT algorithm has the advantages of a fast computational speed, less 
complexity, reduced latency. Low-transpose memory and regular data flow, and is suitable 
for VLSI implementation. Possible future works are described below: 
1.  The Dual-Mode 2-D SMDWT on JPEG2000: The dual-mode 2-D SMDWT can be 

developed to support 5/3 (lossless) lifting or 9/7 (lossy) lifting using similar hardware 
architecture, since the 5/3 and 9/7 are very similar and both have less complexity. 

2. High Performance JPEG2000 Codec: Since part of the JPEG2000 encoder is symmetric to 
the decoder the complexity of both the encoder and the decoder can be reduced. 

3. An independent four-subband mask can be used in other visual coding fields (eg. visual 
processing, visual compression and visual recognition). 
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