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1. Introduction 

A robust invariant pattern detection and classification system needs to be able to recognise 
the object under any usual a priori defined distortions such as translation, scaling and in-
plane and out-of-plane rotation (Wood, 1996) (see Fig. 1). Ideally, the system should be able 
to recognise (detect and classify) any complex scene of objects even within background 
clutter noise. This problem is a very complex and difficult one. Here, we will consider only 
non-deformable (solid) objects (Forsyth & Ponce, 2003). In effect, they maintain their form 
independent of any of the distortions just described. Early studies (Casasent & Psaltis, 1976) 
in trying to solve the invariant pattern recognition problem include the system based on a 
modified logarithmic Mellin transform (Grace & Spann, 1991; Sheng & Arsenault, 1986; 
Sheng & Lejeune, 1991). Other work (Mersereau & Morris, 1986) has focused on a system 
based on a circular harmonic filter (Hsu et al., 1982; Hsu & Arsenault, 1982, 1984) 
illuminated with white light illumination. (Jensen et al., 1987) have described an optical 
image pattern recognition system based on log-polar mapping (Bryngdahl, 1974; Cederquist 
& Tai, 1984) of a Fourier transformed input pattern to convert in-plane rotation and scale 
changes into shift properties. The system’s implementation by a correlator has allowed 
translation invariance of the input pattern. Although, the real-time practical use of these 
systems has been superseded, useful concepts for future implementation of filters can be 
extracted from this work.  
In literature, broadly, two main categories of pattern recognition systems exist. The first 
category consists of linear combinatorial-type filters (LCFs) (Stamos, 2001). Proper image 
analysis in the frequency domain is done with the help of Fourier Transformation (FT) 
(Lynn & Fuerst, 1998; Proakis & Manolakis, 1988). The second category consists of pure 
neural modelling approaches. (Wood, 1996) has given a brief but clear review of invariant 
pattern recognition methods. His survey has divided the methods into two main categories 
of solving the invariant pattern recognition problem. The first category has two distinct 
phases of separately calculating the features of the training set pattern to be invariant to 
certain distortions and then classifying the extracted features. The second one, instead of 
having two separate phases, has a single phase which parameterises the desired invariances 
and then adapts them. (Wood, 1996) has also described the integral transforms, which fall 
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under the first category of feature extractors. They are based on Fourier analysis, such as the 
multidimensional Fourier transform, Fourier-Mellin transform, triple correlation 
(Delopoulos et al., 1994) and others. Part of the first category is also the group of algebraic 
invariants, such as Zernike moments (Khotanzad & Hong, 1990; Perantonis & Lisboa, 1992), 
generalised moments (Shvedov et al., 1979) and others. Wood has given examples of the 
second category, the main representative of this category being based on artificial neural 
network (NNET) architectures. He has presented the weight-sharing neural networks 
(LeCun, 1989; LeCun et al. 1990), the high-order neural networks (Giles & Maxwell, 1987; 
Kanaoka et al. 1992; Perantonis & Lisboa, 1992; Spirkovska & Reid, 1992), the time-delay 
neural networks (TDNN) (Bottou et al., 1990; Simard & LeCun, 1992; Waibel et al., 1989) and 
others. Finally, he has included a third category or the miscellaneous group where it consists 
of the methods which cannot strictly be categorised under either the feature-extraction 
feature-classification approach or the parameterised approach. Such methods are image 
normalisation pre-processing (Yuceer & Oflazer, 1993) methods for achieving invariance to 
certain distortions. (Dobnikar et al., 1992) have compared the invariant pattern classification 
(IPC) neural network architecture versus the Fourier transform (FT) method. They used for 
their comparison black-and-white images. They have proven the generalisation properties 
and fault-tolerant abilities to input patterns of the artificial neural network architectures.  
An alternative approach for the solution of the invariant pattern recognition problem has 
been well demonstrated previously with the Hybrid Optical Neural Network (HONN) filter. 
HONN filter combines the digital design of a filter by artificial neural network techniques 
with an optical correlator-type implementation of the resulting combinatorial correlator type 
filter. There are two main design blocks in the HONN filter, the NNET block and the optical 
correlator-type block. The input images pass first through the NNET block. The extracted 
images from the NNET block’s output are used in the composite image synthesis of the 
correlator-type block where we have chosen to be of the combinatorial-type. 
In order to keep consistency between the different mathematical symbols of NNET 
architectures and optical correlators we have applied similar notation rules throughout this 
chapter. We denote the variable names and functions by non-italic letters, the names of the 
vectors by italic lower case letters and the matrices by italic upper case. The frequency 
domain vectors, matrices, variable names and functions are represented by bold letters and 
the space domain vectors, matrices, variables and functions by plain letters. 
Section 2 describes briefly the design and implementation of the general HONN filter. 
Section 3 describes how the design of the general HONN filter can be altered to 
accommodate multiple objects recognition of the same and of different class. Section 4 
describes the design and implementations of the unconstrained-HONN (U-HONN), the 
constrained-HONN (C-HONN), and the modified-HONN (M-HONN) filters for multiple 
objects recognition. Section 5 consists of the comparative analysis of U-HONN, C-HONN 
and M-HONN filters for multiple objects recognition. Section 6 concludes.  

2. General hybrid optical neural network filter 

The main motivation for the initial design and implementation of the HONN filter was to 
achieve the performance advantages of both NNET architectures (Kypraios et al. 2004a) and 
the optically implemented correlators (Bahri et Kumar, 1988). NNET architectures exhibit 
non-linear superposition abilities (Kypraios et al., 2002) of the training set pattern images 
and generalisation abilities (Beale & Jackson, 1990) over the whole set of the whole set of the 
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Fig. 1. A robust invariant pattern detection and classification system 

input images. Optical correlators allow high speed implementation of the algorithms 

described. In effect, the HONN filter combines the digital design of a filter by NNET 

techniques with an optical correlator-type implementation of the resulting combinatorial 

correlator type filter (Kumar, 1992). Briefly, the original input images pass first through the 

NNET block and, then, the extracted images from the NNET block’s output are used to form 

a combinatorial-type filter. Thus the output of the combinatorial-type correlator block is a 

composite image of the HONN filter’s output. To test the HONN filter we correlate the filter 

with an input image.  

Let ( ),h k l  denote the composite image of the combinatorial-type correlator, such as 

synthetic discriminant function (SDF) filter, and ( ),ix k l  denote the training set images, 

where 1,2, ,i N= "  and N is the number of the training images used in the synthesis of the 

combinatorial-type correlator. The basic filter’s transfer function, from the weighed linear 

combination of ix  is given by: 

 ( )
1

,
N

i
i

h k l α
=

=∑ ( ),ix k l  (1) 

where the coefficients ( )1,2, ,i i Nα = "  are to set the constraints on the peak given by c. The 

iα values are determined from: 
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 1R cα −=  (2) 

where α  is the vector of the coefficients ( )1,2, ,i i Nα = " , R is the correlation matrix of 

it and c is the peak constraint vector. The elements of this are usually set to zeros for false-

class objects and to ones for true-class objects. 

Let’s assume that an image s  is the input vector to an NNET’s hidden neuron (node), pt κ  

represent the target output for a pattern p on node κ  and po κ  represent the calculated 

output at that node. The weight from node ι  to node κ  is represented by w ικ  . The 

activation of each node κ , for pattern p, can be written as:  

 pnet κ = ( )pw bικ κ ιο +∑  (3) 

i.e. it is the weighted sum of the calculated output from the node ι  to node κ . b ι  

represents the bias vector of unit ι . We train a specifically configured NNET architecture 

with N training set images. The network has N neurons in the hidden layer, i.e. equal to the 

number of training images. There is a single neuron at the output layer to separate two 

different object classes. From eqn. (3) the net input of each of the neurons in the hidden layer 

is now given by: 

 
1

i

i

m n
x x

xnet w sι
ι ι

ι

×

=
= ∑  (4) 

where net is the net input of each of the hidden neurons. ixw ι  are the input weights from the 

input layer to the hidden neurons for the training image ix  of size [mxn] in matrix form or 

of size [1x(mxn)] in vector form. Similarity, for the training image Nx  of size [mxn] in 

matrix form ([1x(mxn)] in vector form) the net input, 
Nxnet  is given by: 

 
1

N N

N

mxn
x x

x
i

net w sι ι
=

=∑  (5) 

From eqns. (1), and (3) and (5) there is a direct analogy between the combinatorial-type filter 
synthesis procedure and the combination of all the layers’ weighted input vectors. 

Two possible and equivalent specially configured designs (Kypraios et al. 2004a) of NNET 

architectures can form the basis of the combinatorial-type filter synthesis. In both of the 

designs each neuron of the hidden layer is trained with only one of the training set images. 

In effect, 1neuron  with the training image 1x , 2neuron  with the training image 2x  and so 

on, ending with Nneuron  with the training image Nx . In the first design the number of the 

input sources is kept constant whereas in the second design the number of the input sources 

is equal to the number of the training images. In effect the number of the input weights 

increases proportionally to the size of the training set: 

 [ ]i wN N m n= × ×  (6) 

where i wN  is the number of the input weights, N, is the size of the training set equal to the 

number of the training images and [mxn] is the size of the image of the training set. The 
latter design would allow parallel implementation, since all the training images could be 
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Fig. 2. Custom design of NNET block at general-HONN filter 

input through the NNET in parallel due to the parallel input sources. However, to allow 
easier implementation, we chose the former design of the NNET. 
Hence, assume there are three training images of a car, size [100x100] ([1x(100x100)] in 
vector form), of different angle of view, to pass through the NNET. The chosen first design 
(see Fig. 2) uses one input source used for all the training images. Then, the input source 
consists of 10,000 i.e. [1x(100x100)] input neurons equal to the size of each training image (in 
vector form). Each layer needs, by definition, to have the same input connections to each of 
its hidden neurons. However, Fig. 2 is referred to as of four-layered architecture since there 
are three hidden layers (shown here aligned under each other) and one output layer. The 
input layer does not contain neurons with activation functions and so is omitted in the 
numbering of the layers. Each of the hidden layers consist of only one hidden neuron. 
Though the network initially is fully connected to the input layer during the training stage, 
only one hidden layer is connected for each training image presented through the NNET. 
Fig. 2 is thus not a contiguous four-layered architecture during training which is why the 
distinction is made.  
In the chosen configured NNET architecture design, the initial values of the input weights, 
the layer weights and the biases are based on the Nguyen-Widrow (Nguyen & Widrow, 
1989, 1990) initialisation algorithm. The transfer function of the hidden layers is set as the 
Log-Sigmoidal function. When a new training image is presented to the NNET we leave 
connected the input weights of only one of the hidden neurons. In order not to upset any 
previous learning of the rest of the hidden layer neurons we do not alter their weights when 
the new image is input to the NNET. It is emphasised that there is no separate feature 
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extraction stage (Casasent et al., 1998; Talukder & Casasent, 1999) applied to the training set 
image. To achieve faster learning we used a modified steepest descent (Hagan et al., 1996) 
back propagation algorithm based on heuristic techniques. The adaptive training algorithm 
updates the weights and bias values according to the gradient descent momentum and an 
adaptive learning rate (Hagan et al., 1996): 

 ( ) ( ) ( )
, 1 1,

1,

fP
w i i w i i

w i i
μ λ μ

Δ
Δ + = × Δ − + × ×

Δ +
 (7) 

 ( ) ( ) ( )
, 1 1,

1,

fP
b i i b i i

b i i
μ λ μ

Δ
Δ + = × Δ − + × ×

Δ +
 (8) 

 ( )
( )

0

0 & & max

max

f

f f f

f f

if P

no change if P P P

if P P

λ λ ε

λ λ

λ λ ε

⎧ ⎫= + Δ <
⎪ ⎪
⎪ ⎪= = < Δ Δ >⎨ ⎬
⎪ ⎪

= − Δ >⎪ ⎪⎩ ⎭

 (9) 

where now variable i is the iteration index of the network and is updated every time all the 

training set images pass through the NNET. wΔ  is the update function of the input and 

layer weights, bΔ  is the update function of the biases of the layers and Ǎ is the momentum 

constant. The momentum allows the network to respond not only to the local gradient, but 
also to recent trends in the error surface. It functions like a low-pass filter by removing the 
small features in the error surface which allows NNET not to get stuck in a shallow local 

minimum, but to slide through such a minimum. fP  is the performance function usually 

set as being the mean square error (mse) and fPΔ  is the derivative of the performance 

function. The learning rate is indicated with the letter ǌ. It adapts iteratively based on the 

derivative of the performance function fPΔ . In effect, if there is a decrease in the fPΔ , then 

the learning rate is increased by the constant ε. If fPΔ  increases but the derivative does not 

take a value higher than the maximum allowed value of the performance function, 

( )max fP  then the learning rate does not change. If fPΔ  increases more than ( )max fP , 

then the learning rate decreases by the constant ε. The layer weights remain connected with 
all the hidden layers for all the training set and throughout all the training session.  

3. Multiple objects recognition 

All the HONN-type filters can accommodate multiple objects of the same class to be 
recognised within an input cluttered image due to the shift invariance properties inherited 
by its correlator unit. In the general HONN filter (see Fig. 3) all the input images first pass 
through the NNET unit. Each training image is multiplied (element wise) with the 
corresponding weight connections (mask). Then, the training set images after being 
transformed (masked) through the NNET unit by being multiplied with the mask, pass 
through the correlator unit where they are correlated with the masked test set images. The 
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Fig. 3. Block diagram of the general-HONN filter 
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Fig. 4. Modified NNET block architecture for enabling multiple objects recognition of the 
same and of different classes 

cross-correlation of each masked test set image with the transformed training set images 

(reference kernel) returns an output correlation plane peak value for each cross-correlation 

step. In effect, the maximum peak height values of the output correlation plane correspond 

to the recognised true-class objects.  

3.1 Modified NNET block architecture for multiple objects of different classes 
recognition 

Fig. 4 shows the modified NNET block architecture for accommodating multiple objects for 

more than one class recognition. In all the HONN-type filters presented here, i.e. 

Unconstrained-, Constrained-, and Modified-HONN filters, NNET is implemented as a 

feedforward multi-layer architecture trained with a backpropagation algorithm (Beale & 

Jackson, 1990). It has a single input source of input neurons equal to the size of the training 

image or video frame in vector form. In effect, for the training image or frame 1i Nx = …  of 

size [ ]m n× , there are [ ]m n×  input neurons in the single input source. The input weights are 

fully connected from the input layer to the hidden layers. There are i wN  input weights 

proportional to the size of the training set. The number of the hidden layers, lN  is equal to 

the number of the images or video frames of the training set N:  

 1,2,3, ,N i= "  and lN N=  (10) 
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We have set to each hidden layer to contain a single neuron. The layer weights are fully 

connected to the output layer. Now, the number of the layer weights l wN  is given by: 

 lw opnN N N= ×  and opn classesN N=  (11) 

where opnN  is the number of the output neurons and classesN  is the number of the different 

classes. In effect, we have augmented the output layer by adding more output neurons, one 

for each different class. On Fig. 4 we assume 2classesN = . Thus: 

 2opn classesN N= =  so, there are 2lwN N= ×  (12) 

and 

 1 lwclassN N=  and 2 lwclassN N=  (13) 

where 1 lwclassN  and 2 lwclassN  are the layer weights corresponding to object class 1 and 

object class 2, respectively. There are bias connections to each one of the hidden layers: 

 bN N=  (14) 

where bN  is the number of the bias connections. There are argt et wN  target connections 

form the opnN  output neurons of the output layer: 

 argt et w opnN N=  (15) 

Thus, for 2class esN =  there are N transformed images being created for class 1 and N 

transformed images being created for class 2. Then, both sets of transformed images are 

used for the synthesis of the filter’s composite image.  

4. Unconstrained-, Constrained-, and Modified-HONN filters for multiple 
objects recognition 

Next, we describe the implementation of the unconstrained-hybrid optical neural network 
(U-HONN), the constrained-hybrid optical neural network (C-HONN), and the modified-
hybrid optical neural network (M-HONN) filters for multiple objects recognition of the 
same and of different classes. 

4.1 Unconstrained-HONN filter for multiple objects recognition 

In general, unconstrained linear combinatorial-type filters (Mahalanobis et al., 1994; 
Mahalanobis & Kumar, 1997; Zhou & Chao, 1999) produce broader correlation peaks but 
offer better distortion tolerance. However, they are not explicitly optimised to provide good 
quality discrimination ability between classes. LCFs, such as the SDF filter (Sudharsanan et 
al., 1990) set hard constraints on the correlation peak height values of the training images. 
During the synthesis of the filter, peak height constraints are applied at the origin. In effect, 
all the training set images, when correlated with an LCF, are set to produce certain pre-
specified peak values, but there is no information provided for the test image correlation 
peak height values of the training images. In the unconstrained correlation filter synthesis 
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(Mahalanobis et al., 1994; Mahalanobis & Kumar, 1997; Zhou & Chao, 1999) there are no 
hard constraints on the correlation peak heights. Thus, the assumption made is that by 
removing the hard constraints the number of possible solutions the filter can draw on 
increases by allowing the correlation peak height values to move freely to any value, so 
improving its performance.  

Assume we have now classesN  objects of different classes in the input image. Then, if do not 

set hard constraints on the correlation peak heights generated by the HONN filter, and add 

the transformed images ( ),class
iS m n , of size each [ ]m n× , of each class, without any hard 

constraint weights at the origin, then we can synthesise the U-HONN filter (Kypraios et al., 

2004b), which its transfer function is given by: 

 U HONN− ( )
1

,
classes

classes

N N
class
i

i N N

S m n
×

= ×
= ∑

…

 (16) 

or in the frequency domain eqn. (16) is re-written as: 

 U HONN− ( )
1

,
classes

classes

N N
class
i

i N N

S u v
×

= ×
= ∑

…

 (17) 

where ( ),class
iS u v  is the frequency domain transformed input image i of each class (with (u, 

v) the frequency components of the image), N is the number of the input images, the image 

index ( )1 classesi N N= ×… , i.e. there are N transformed images of each of the classesN  in the 

filter’s synthesis, and index 1, 2, ,classesN class class classK= …  (K any non-zero positive integer 

number, K +∈ℑ . 
The non-linear U-HONN filter is inherently shift invariant and may be employed as an 
optical correlator-type filter. It may be used as a space domain function in a joint transform 
correlator architecture or be Fourier transformed and used as a Fourier domain filter in a 4-f 
Vander Lugt (Vander Lugt, 1964) type optical correlator. 

4.2 Constrained-HONN filter for multiple objects recognition 

Following a similar technique used for constraining an LCF we can constrain the correlation 
peaks at the centre of the correlation plane of the general HONN filter. The transfer function 
of the produced C-HONN filter (Kypraios et al., 2004a), now for multiple objects of the same 
and of different class, is given by: 

 C HONN− ( )
1

,
classes

classes

N N
class

i i
i N N

S m nα
×

= ×
= ⋅∑

…

 (18) 

or in the frequency domain eqn. (18) is re-written as: 

 C HONN− ( )
1

,
classes

classes

N N
class

i i
i N N

S u vα
×

= ×
= ⋅∑

…
 (19) 

where ( ),class
iS u v  is the frequency domain transformed input image i of each class (with (u, 

v) the frequency components of the image), N is the number of the input images, the image 

index ( )1 classesi N N= ×… , i.e. there are N transformed images of each of the classesN  in the 
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filter’s synthesis, and index 1, 2, ,classesN class class classK= …  (K any non-zero positive integer 

number, K +∈ℑ . Now, the transformed images ( ),class
iS m n , of size each [ ]m n× , of each 

class, are multiplied with the hard constraint weights 1 classesi N Nα = ×…  set on the correlation 

peak heights of the N input images at the centre of the correlation plane.  
The C-HONN filter is composed of a non-linear space domain superposition of the training 
set images. The multiplying coefficient becomes a function of the input weights and the 
layer weights, rather than a simple linear multiplying constant as used in a conventional 
LCF synthesis. Thus, the non-linear C-HONN filter is inherently shift invariant and it may 
be employed in an optical correlator as would a linear superposition LCF, such as the SDF-
type filters. As for the U-HONN filter, it may be used as a space domain function in a joint 
transform correlator architecture or be Fourier transformed and used as Fourier domain 
filter in a 4-f Vander Lugt (Vander Lugt, 1964) type optical correlator. 

4.3 Modified-HONN filter for multiple objects recognition 
The following observations are made for the general HONN filter. Though the LCFs contain 
no information on non-reference objects in the training set used during their synthesis, the 
NNET includes information for reference and non-reference images of the true-class object. 
That is due to the NNET interpolating non-linearly between the reference images (Kypraios 
et al., 2002) included in the training set and forcing all the non-reference images to follow 
the activation graph. Moreover, the NNET generalises between all the reference and non-
reference images. Motivated by these observations, we apply an optical mask to the filter’s 
input (see Fig. 5). The mask is built by the weight connections of the reference images of the 
true-class object and is applied to all the tested images: 

c cx x
c W LΓ = ⋅  

11 111 12 1 1 1

21 221 22 2 1 2

1 2 1 1

c cc c c c

c cc c c c

c c c cc c

x xx x x x
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x xx x x x
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x x x xx x
mn nqm m mn n
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⎢ ⎥= ⋅⎢ ⎥
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=
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 (20) 

where cxW  and cxL  are the matrices of the input and layer weights. cx
mnW  are the input 

weights from the input neuron of the input vector element at row m and column n to the 

associated hidden layer for the training image ( ),cx m n . cx
nql  are the hidden layer weights 
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from the hidden neuron n to the associated output neuron q. Now, instead of multiplying 

each training image with the corresponding weight connections as for the C-HONN filter, 

we keep constant the weight connection values, setting them to be equal with a randomly 

chosen image included in the training set ( ),cx m n . The matrix cΓ  is used to build the 

optical mask for M-HONN.  
The transfer function of the M-HONN filter (Kypraios et al., 2008, 2009) for multiple object 
recognition of different class objects is written as follows: 

M HONN− ( )
1

,
classes

classes

N N
class

i i
i N N

S m nα
×

= ×

= ⋅∑
…

 

 ( )( ) ( )( ) ( )( )1 1 2 2, , ,class class class
c c N c NX m n X m n X m nα α α= ⋅ Γ ⋅ + ⋅ Γ ⋅ + + ⋅ Γ ⋅"  (21) 

or in the frequency domain eqn. (21) is re-written as: 

 M HONN− ( )
1

,
classes

classes

N N
class

i i
i N N

S u vα
×

= ×

= ⋅∑
…

 (22) 

where ( ),class
iS u v  is the frequency domain transformed input image i of each class (with (u, 

v) the frequency components of the image), N is the number of the input images, the image 

index ( )1 classesi N N= ×… , i.e. there are N transformed images of each of the classesN  in the 

filter’s synthesis, and index 1, 2, ,classesN class class class K= …  (K any non-zero positive 

integer number, K +∈ℑ . The transformed images ( ),class
iS m n  are calculated from the dot 

product of class
cΓ  for each class, which corresponds to an output neuron of the augmented 

NNET, with the corresponding training image ( ),iX m n . 
Thus, the filter is composed of a non-linear space domain superposition of the training set 
images (similarly, it can be formed from video frames of the training set images). As for 
all the HONN-type filters, the multiplying coefficients now become a non-linear function 
of the input weights and the layer weights, rather than a simple linear multiplying 
constant as used in a constrained linear combinatorial-type filter synthesis procedure. The 
non-linear M-HONN filter is inherently shift invariant and it may be employed in an 
optical correlator as would a linear superposition LCF, such as the SDF-type filters. It may 
be used as a space domain function in a joint transform correlator architecture or be 
Fourier transformed and used as Fourier domain filter in a 4-f Vander Lugt (Vander Lugt, 
1964) type optical correlator. 

5. Comparative analysis of HONN-type filters 

It was confirmed experimentally that by choosing different values of the target classification 

levels for the true-class class
trueT  and false-class false

trueT  objects i.e. the output layer’s neuron’s 

target output for the true-class object and the corresponding false-class object, and for each 
of the different object classes, respectively of the NNET (see Fig. 4), the U-HONN, C-HONN, 
and M-HONN filters’, for multiple objects recognition, behaviour can be varied to suit 
different application requirements. Hence, by increasing the absolute distance of the target 
classification levels between the different object classes and between each object class and 
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Fig. 5. Block diagram of the M-HONN filter 

each corresponding false-class i.e. 1 2class classclass
true false falseT T TΔ = −  and 1 2class classclass

true true trueT T TΔ = −  the 

filters exhibited generally sharp peaks and good clutter suppression but are more sensitive 
to intra-class distortions i.e. they behave more like a high-pass biased filter, whereas by 
decreasing the absolute distance of the target classification levels between the different 
object classes and between each object class and each corresponding false-class the filters 
exhibited relatively good intra-class distortion invariance but producing broad correlation 
peaks i.e. they behave more like a minimum variance synthetic discriminant function 
(MVSDF) filter (Kumar, 1986). It is noted that though U-HONN, C-HONN and M-HONN 
filters behaviour can be varied by increasing or decreasing the absolute distance of the target 
classification levels between the different object classes and between each object class and 
each corresponding false-class, however even for the same training and test set images and 
for the same target classification levels the individual morphology of each filter’s output 
correlation plane differs based on its individual transfer function characteristics. Therefore, 
next we will study comparatively the characteristics of its filter for multiple objects 
recognition within cluttered scenes. Thus, we have kept the same target classification levels 
for all the filters and all the conducted simulations to be able to extract useful comparison 
conclusions. It must be noted, again, the selected target classification levels are not 
optimised for each individual filter form, but rather we are aiming to set values that can 
allow reasonable performance for all of the filters, U-HONN, C-HONN and M-HONN. 
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                                         (a)                                                                       (b) 

Fig. 6. (a) Test set image data, and (b) training set background car park scenes 

Obviously, the optimised target classification levels achieve best performance when set 
individually for each of U-HONN, C-HONN and M-HONN filters (Kypraios, 2009; 
Kypraios et al. 2004a, 2004b, 2008, 2009). 

5.1 Test data 

For the conducted simulations for comparing the U-HONN, C-HONN and M-HONN filters’ 
performance within cluttered scenes we used different image data sets. The first data set 
consists of an S-type Jaguar car model at 10° increments of out-of-plane rotation at an 
elevation angle of approximately 45°. A second image data set consists of images of a Mazda 
Efini RX-7 Police car model at 45° elevation angle. A third image data set consists of typical 
empty car park scenes (background scene images). A fourth image data set (cluttered 
scenes) consists of the background images of typical car parks and the images of the S-type 
car model and the MazdaRX-7 car model added in the background scene (see Fig. 6). All the 
image data sequences used in the training sets and test sets were used in grey-scale bitmap 
format. All the image data sequences used in the training sets and test sets were of size 
[256x256]. All the input video frames prior being processed by the NNET are concatenated 
row-by-row in to a vector form, i.e. [1x(256x256)]. Normally this size of input image data is 
practically impossible to be processed in real-time, since to be implemented by enough 
input and layer weights for 256x256 pixels input images would require in input weights: 

 ( )1 256 256N x⎡ ⎤× ×⎣ ⎦  (23) 

So, assume (see Fig. 4) N=10 images or video frames to be processed through any neural 
network architecture would require in input weights: 

 ( )10 1 256 256 655,360x⎡ ⎤× × =⎣ ⎦  (24) 

which is more than half-a-million input weight connections! Hence, it only becomes possible 
to overcome this problem by using the novel selective weight connection architecture. 
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Additionally, the heuristic training algorithm with momentum and an adaptive learning 
rate employed into the NNET training stage speeds up the learning phase and reduces the 
memory size needed to fully complete the training stage. Here, it worth mentioning that the 
video frame sequences for all the test series were processed by a Dual Core CPU at 2.4 GHz 
with 4GB RAM in few a msec.  

5.2 Simulation results of C-HONN for multiple objects recognition  

The training set consisted of true-class 1 object of the Jaguar S-type for a distortion range 
over 20° to 70° at 10° increments. At least one Mazda Efini RX-7 car image has been added in 
the training set to be of true-class 2 object. At least one background image of a typical car 
park scene has been included in the training set of the NNET block to fall inside the false-
class. For the C-HONN filter we constrained in the correlator-type block the true-class 1 
object images (Jaguar S-type) to unit peak-height output correlation value, the true-class 2 
object images (Mazda Efini RX-7) to half-a-unit peak-height output correlation value, and all 
the false-class images (background scenes) to zero peak-height output correlation value. The 
test set consisted of a non-training in-class true-class 1 object at an intermediate car pose 
(non-training) and a non-training in-class true-class 2 object at an intermediate car pose 
(non-training) inserted in an unknown (non-training) background scene. During the true-
classes objects’ insertion additional Gaussian noise is added in the test set image, too. For 
our application purposes and for enabling us to extract useful comparison conclusions we 

have set in the NNET block the true-class 1 object target classification levels 1 40class
trueT = +  

and the true-class 2 object target classification levels 2 20class
trueT = + . All the false-class images 

and all the background images with the car park scenes were set to 1 1class
falseT = −  for false-

class 1 and to 2 1class
falseT = −  for false-class 2. 

Several simulations with different test sets were conducted. For the purpose of this study 
indicatively we show one of the results recorded. Thus, Fig. 7 (a) shows the normalised, to 
the maximum correlation peak intensity value, isometric correlation plane for the used test 
set image. Fig. 7 (b) shows the position of a tracking box on top of the detected area at the 
output correlation plane of the true-class objects. Also, in Table 1, we have recorded the 
peak-to-correlation energy ratio (PCE) value, the peak-to-secondary-peak ratio (PSPR) value 
and the discrimination ability percentage (%) of recognising the different true-class objects 
for the shown output correlation plane. From the complete series of the recorded results, it is 
apparent that the C-HONN filter is able to detect and classify correctly both true-class 
objects, class 1 of Jaguar S-type and class 2 of Mazda Efini RX-7 at non-training intermediate 
out-of-plane rotation angles, and suppress background clutter scene. From Fig. 7 (a) and 
Table 1, C-HONN filter gave sharp correlation peaks with good correlation peak-height 
values. Note that the PSPR values should not be confused with the discrimination ability of 
the filter. PSPR values indicate the maximum peak-height value in comparison to the 
sidelobes and not to the overall output correlation plane for the test set image. Thus, the 
discrimination ability % value (also indicates the filter’s inter-class separation ability) which 
C-HONN filter gave for the shown isometric correlation plane, and for separating class 1 
and class 2 objects was 36.5616% (column 3 of Table 1). Though the LCFs offer no 
information for non-reference objects of the training set in their synthesis, the NNET block 
of all the HONN-type filters offers information for reference (trained) and non-reference 
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                                      (a)                                                                                  (b) 

Fig. 7. (a) Normalised, to the maximum correlation peak intensity value, isometric 
output correlation plane of the C-HONN filter for a test set image, and (b) tracking boxes on 
top of the detected of the true-class objects areas at the output correlation plane; class 1of 
Jaguar S-type is shown with blue colour and class 2 of Mazda Efini RX-7 is shown with 
the red colour 

(non-training) images of the true-class objects. Consequently, LCFs, such as SDF-type filters, 
depend solely on the information built inside the composite image formed from the 
reference images. However, the C-HONN filter for multiple objects recognition was able to 
generalise enough within the cluttered images and successfully recognise the true-class 
objects even at non-reference (non-training) out-of-plane rotation angles and within non-
reference background car park scene.  

5.3 Simulation results of U-HONN for multiple objects recognition  

We used the same training and test data sets as for the C-HONN filter for multiple objects 
recognition. However, we created two slightly different training sets, one with at least one 
non-training background image included and a second one with no background images 
included. During the U-HONN filter for multiple objects recognition’s synthesis of its 
composite image this time we set no hard constraints on the correlation peak-height values. 
For our application purposes and for enabling us to extract useful comparison conclusions    
 

 

Table 1. C-HONN filter for multiple objects recognition within cluttered scenes performance 
assessment values 
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we have kept the same, as for the C-HONN filter for multiple objects recognition, target 
classification levels in the NNET block i.e. true-class 1 object target classification level 

1 40class
trueT = +  and the true-class 2 object target classification level 2 20class

trueT = + . All the false-

class images and all the background images with the car park scenes were set to 1 1class
falseT = −  

for false-class 1 and to 2 1class
falseT = −  for false-class 2. 

Several simulations with different test sets were conducted. For the purpose of this study 
indicatively we show one of the results recorded. Thus, Fig. 8 (a) shows the normalised, to 
the maximum correlation peak intensity value, isometric correlation plane for the used test 
set image with at least one background non-reference car park scene included in the training 
set, Fig. 8 (b) shows the normalised, to the maximum correlation peak intensity value, 
isometric correlation plane for the used test set image with no background car park scene 
included in the training set, and Fig. 9 shows the position of a tracking box on top of the 
detected area at the output correlation plane of the true-class objects for the isometric 
correlation plane shown in Fig. 8 (a). In Table 2 we have recorded the PCE values, the PSPR 
values and the discrimination ability % of recognising the different true-class objects for 
both shown output correlation planes in Fig. 8 (a) and Fig. 8 (b). From the complete series of 
the recorded results, it is apparent that the U-HONN filter is able to detect and classify 
correctly both true-class objects, class 1 of Jaguar S-type and class 2 of Mazda Efini RX-7 at 
non-training intermediate out-of-plane rotation angles, and suppress background clutter 
scene. But, when there was at least one non-reference background scene included in the U-
HONN filter’s synthesis then it increased the detected false-class areas at the output 
correlation plane (see Fig. 8 (b)). Thus, as it was expected from U-HONN filter for multiple 
objects recognition’s design and transfer function (see eqns. (16) and (17)), the resulted 
solutions from correlating the test set image with the U-HONN filter’s transfer function are 
increasing in comparison with the C-HONN filter since there are no hard constraints 
imposed on the correlation peak-heights for U-HONN filter. However, by including a false-
class non-reference background image in the filter’s synthesis, it produces more unwanted 
false-class peaks in comparison to having not included any background images. From Fig. 7 
and Fig. 8 (a) (for background images included in the training set), and from Table 1 and 
Table 2 U-HONN filter for multiple objects recognition produces higher PSPR with smaller 
sidelobes values i.e. sharper correlation peaks, but C-HONN filter for multiple objects 
recognition produces higher correlation peak-height values with broader sidelobes (smaller 
PSPR values). The discrimination ability % value U-HONN filter gave for Fig. 8 (a) shown 
isometric correlation plane, and for separating class 1 and class 2 objects was 12.0242% and 
for Fig. 8 (b) was approximately 2% (column 3 of Table 2), which for both isometric plots it is 
less than the discrimination ability % value that C-HONN filter gave. In effect, U-HONN 
filter for multiple objects recognition it maximises the correlation peak-heights (including 
the false-class ones in the case of Fig. 8 (a) plot) at the output correlation plane in expense of 
broadening the sidelobes and, thus, decreasing its discrimination ability %, for the test set 
images to recognise the true-class objects in the cluttered scenes. Consequently, for U-
HONN, broader sidelobes means better intra-class ability and better distortion range, i.e. it 
is able to maintain high correlation peak-heights for recognising intermediate non-reference 
out-of-plane rotation angles of the true-class objects with less correlation peak-height value 
decrease (drop) than C-HONN filter. Again, as for the C-HONN filter for multiple objects 
recognition, the U-HONN filter for multiple objects recognition was able to generalise 
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                             (a)                                                                                         (b) 

Fig. 8. (a) Normalised, to the maximum correlation peak intensity value, isometric output 
correlation plane of the U-HONN filter for a test set image with at least one background 
non-reference car park scene included in the training set, and (b) normalised, to the 
maximum correlation peak intensity value, isometric correlation plane for the used test set 
image with no background car park scene included in the training set 

enough within the cluttered images and successfully recognise the true-class objects even at 
non-reference (non-training) out-of-plane rotation angles and within non-reference 
background car park scene.  

5.4 Simulation results of M-HONN for multiple objects recognition  

We used the same training and test data sets as for the C-HONN filter for multiple objects 
recognition. As for the C-HONN filter for multiple objects recognition, we constrained in the 
correlator-type block of the M-HONN filter for multiple objects recognition the true-class 1 
object images (Jaguar S-type) to unit peak-height output correlation value, the true-class 2 
object images (Mazda Efini RX-7) to half-a-unit peak-height output correlation value, and all 
the false-class images (background scenes) to zero peak-height output correlation value. For 
our application purposes and for enabling us to extract useful comparison conclusions we 
have kept the same, as for the C-HONN filter for multiple objects recognition, target 
classification levels in the NNET block i.e. true-class 1 object target classification level 

1 40class
trueT = +  and the true-class 2 object target classification level 2 20class

trueT = + . All the false-

class images and all the background images with the car park scenes were set to 1 1class
falseT = −  

for false-class 1 and to 2 1class
falseT = −  for false-class 2. 

Several simulations with different test sets were conducted. For the purpose of this study 
indicatively we show one of the results recorded. Fig. 10 (a) shows the normalised, to the 
maximum correlation peak intensity value, isometric correlation plane for the used test set 
image and Fig. 10 (b) shows the position of a tracking box on top of the detected area at the 
output correlation plane of the true-class objects. In Table 3 the PSPR value is recorded for 
the test set image. From the complete series of the recorded results, it is apparent that the M-
HONN filter is able to detect and classify correctly both true-class objects, class 1 of Jaguar 
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Fig. 9. Tracking boxes on top of the detected areas of the true-class objects at the output 
correlation plane of U-HONN filter for multiple objects recognition; class 1of Jaguar S-type 
is shown with blue colour and class 2 of Mazda Efini RX-7 is shown with the red colour 

 

 

Table 2. U-HONN filter for multiple objects recognition within cluttered scenes performance 
assessment values 

S-type and class 2 of Mazda Efini RX-7 at non-training intermediate out-of-plane rotation 

angles, and suppress background clutter scene. From the isometric plots shown in Fig. 7, 

Fig. 8 (b), Fig. 9 and Fig. 10, and from Table 1, Table 2 and Table 3 it is found that the M-

HONN filter for multiple objects recognition produces higher PSPR values and i.e. sharper 

peaks than the C-HONN and U-HONN filters for multiple objects recognition. However, 

from the full series of the conducted tests it is recorded that the M-HONN filter for multiple  

objects recognition produces a higher drop for the non-training intermediate car poses 

within the background clutter than the C-HONN and U-HONN filters for multiple objects 

recognition (Kypraios, 2009; Kypraios et al. 2008). In effect, the M-HONN filter for multiple 

objects recognition confirms its design expectation of producing optimum performance 

(sharper peak-heights) within cluttered scenes than U-HONN and C-HONN filters for 

multiple objects recognition in expense of a drop in its intra-class (non-training images of 

intermediate out-of-plane rotation angles of true-class objects) distortion tolerance. 
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                                      (a)                                                                                (b) 

Fig. 10. (a) Normalised, to the maximum correlation peak intensity value, isometric output 
correlation plane of the M-HONN filter for a test set image, and (b) tracking boxes on  
op of the detected of the true-class objects areas at the output correlation plane; class 1of 
Jaguar S-type is shown with blue colour and class 2 of Mazda Efini RX-7 is shown with the 
red colour 

 

Table 3. M-HONN filter for multiple objects recognition within cluttered scenes 
performance assessment values 

M-HONN filter for multiple objects recognition gave for the shown isometric correlation 
plane in Fig. 10, and for separating class 1 and class 2, the discrimination ability % value of 
20.4320% (column 3 of Table 3). Thus, C-HONN filter for multiple objects recognition 
exhibits higher discrimination ability than the M-HONN filter for multiple objects 
recognition. Still, the M-HONN filter is able to separate adequately the different classes of 
objects. Again, as for the U-HONN and C-HONN filters for multiple  
objects recognition, the M-HONN filter for multiple objects recognition was able to 
generalise enough within the cluttered images and successfully recognise the true-class 
objects even at non-reference (non-training) out-of-plane rotation angles and within non-
reference (unknown) background car park scene.  

6. Conclusion 

We have compared with each other the performance of the U-HONN, C-HONN and M-
HONN filters for multiple objects recognition. We have described how the U-HONN, C-
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HONN and M-HONN filters can accommodate the recognition of multiple objects of the 
same or of different classes. Due to the shift invariance properties inherited by its correlator 
unit the filter can accommodate multiple objects of the same class to be detected within an 
input cluttered image. Also, the architecture of the NNET block of the general-HONN filter 
allows the recognition of multiple objects of different classes within the input cluttered 
image by augmenting the output layer of the unit. U-HONN, C-HONN and M-HONN 
filters for multiple objects recognition may be used as a space domain function in a joint 
transform correlator architecture or be Fourier transformed and used as a Fourier domain 
filter in a 4-f Vander Lugt-type optical correlator. It was confirmed experimentally that by 
increasing or decreasing the absolute distance of the target classification levels between the 
different object classes and between each object class and each corresponding false-class i.e. 

1 2class classclass
true false falseT T TΔ = −  and 1 2class classclass

true true trueT T TΔ = − , the U-HONN, C-HONN, and M-

HONN filters, for multiple objects recognition, behaviour can be varied to behave from 
more like a high-pass biased filter to more like a MVSDF filter for serving the different 
application requirements. However, even for the same training and test set images and for 
the same target classification levels the individual morphology of each filter’s output 
correlation plane differs based on its individual transfer function characteristics. Therefore, 
for all the conducted tests the target classification levels for all the filters have been kept the 
same in order to be able to extract useful comparison conclusions. It must be noted the 
target classification levels are chosen to values which can allow good performance for all the 
filters and for keeping the same values. Obviously, best performance can be achieved by 
setting the values individually for each of U-HONN, C-HONN and M-HONN filters but not 
to the same target classification levels.  
U-HONN, C-HONN and M-HONN filters for multiple objects recognition exhibit 
simultaneously shift and out-of-plane rotation invariances with a single pass over the data, 
i.e. there is not needed more than one filter to be trained for shift invariance and separately 
another one for out-of-plane rotation invariance. Additionally, they exhibit good tolerance-
to-clutter performance without disturbing the other simultaneously exhibit properties of 
out-of-plane rotation and shift invariances. In general, the HONN-type filters are shown 
experimentally to be performing better than the LCFs. U-HONN, C-HONN and M-HONN 
filters are proven to recognize correctly the multiple true-class objects of the same or of 
different classes within non-reference (unknown i.e. not previously trained) background 
scenes. U-HONN filter for multiple objects recognition exhibits better distortion range, i.e. it 
maintains good correlation peak height for recognising intermediate non-reference out-of-
plane rotation angles of the true-class objects, and higher peak-heights but in expense of 
broader sidelobes in recognising the true-class objects within the cluttered scene than the C-
HONN and M-HONN filters. M-HONN filter design is optimised for producing best 
performance in recognising objects within cluttered scenes. Hence, it was found that it gave 
sharper peaks than the U-HONN and C-HONN filters for recognising the true-class objects 
of the different classes within the unknown car park scene. However, C-HONN filter for 
multiple objects recognition produces more controlled peak-heights and better 
discrimination ability between the true-class objects of different classes within the cluttered 
scenes than the U-HONN and M-HONN filters for multiple objects recognition. U-HONN, 
C-HONN and M-HONN filters for multiple objects recognition can be employed, amongst 
the many application areas, in image content-based Internet search engines. The 
simultaneous properties of U-HONN, C-HONN and M-HONN filters of shift and out-of-
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plane rotation invariances, can reduce the number of stored images for each object class and, 
consequently reduce the time needed for an Internet image-to-image search engine (content-
based search engine) to search the complete data set of matched images. Moreover, the 
accommodation of multiple objects recognition of the same and of different classes with the 
same single filter and with a single pass over the training and test data reduces the training 
times instead of training several filters for the different object classes. 
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