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1. Introduction 

Unmanned aerial vehicles (UAVs) are becoming more and more popular in a wide field of 

applications nowadays. UAVs are used in number of military application for gathering 

information and military attacks. In the future will likely see unmanned aircraft employed, 

offensively, for bombing and ground attack. As a tool for research and rescue, UAVs can 

help find humans lost in the wilderness, trapped in collapsed buildings, or drift at sea. It is 

also used in civil application in fire station, police observation of crime disturbance and 

natural disaster prevention, where the human observer will be risky to fight the fire. There 

is wide variety of UAV shapes, sizes, configuration and characteristics. Therefore, there is a 

growing demand for UAV control systems, and many projects either commercial or 

academic destined to design a UAV autopilot were held recently. A lot of impressive results 

had already been achieved, and many UAVs, more or less autonomous, are used by various 

organizations. 
An Artificial Neural Network (ANN) [3] is an information processing paradigm that is 
stimulated by the way biological nervous systems, such as the brain, process information. 
The key element of this paradigm is the novel structure of the information processing 
system.  Basically, a neural network (NN) is composed of a set of nodes (Fig. 1). Each node is 
connected to the others via a set of links. Information is transmitted from the input to the 
output cells depending of the strength of the links. Usually, neural networks operate in two 
phases. The first phase is a learning phase where each of the nodes and links adjust their 
strength in order to match with the desired output. A learning algorithm is in charge of this 
process. When the learning phase is complete, the NN is ready to recognize the incoming 
information and to work as a pattern recognition system. 
ANNs, like people, learn by example. An ANN is configured for a specific application, such 
as pattern recognition or data classification, through a learning process. Learning in 
biological systems involves adjustments to the synaptic connections that exist between the 
neurons.  
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In recent years, there is a wide momentum of ANNs in the control system arena, to design 
the UAVs. Any system in which input is not proportional to output is known as non-linear 
systems. The main advantages of ANNs are having the processing ability to model 
nonlinear systems. ANNs are very suitable for identification of non-linear dynamic systems. 
Multilayer Perceptron model have been used to model a large number of nonlinear plants. 
We can vary the number of hidden layers to minimize the mean square error. ANNs has 
been used to formulate a variety of control strategies [1] [2]. The NN approach is a good 
alternative for physical modeling techniques for nonlinear systems. 
 

 

Fig. 1. General Neural Network Architecture 

A fundamental difficulty of many non-linear control systems, which potentially could 
deliver better performance, is extremely difficult to theoretically predict the behavior of a 
system under all possible circumstances. In fact, even design envelope of a controller often 
remains largely uncertain. Therefore, it becomes a challenging task to verify and validate the 
designed controller under all possible flight conditions. A practical solution to this problem 
is extensive testing of the system. Possibly the most expensive design items are the control 
and navigation systems. Therefore, one of main questions that each system designer has to 
face is the selection of appropriate hardware for UAV system. Such hardware should satisfy 
the main requirements without contravening their boundaries in terms of quality and cost. 
In UAV design this kind of consideration is especially important due to the safety 
requirements expressed in airworthiness standards. Therefore question is how to find the 
optimal solution. Thus, simulation is necessary. Basically there are two type of simulation is 
needed while designing UAVs systems, they are Software-In-the-Loop (SIL) [5] simulation 
and Hardware-In-the-Loop (HIL) simulation [4]. 
To utilize the SIL configuration, the un-compiled software source code, which normally runs 
on the onboard computer, is compiled into the simulation tool itself, allowing this software 
to be tested on the simulation host computer. This allows the flight software to be tested 
without the need to tie-up the flight hardware, and was also used in selection of hardware. 
HILS simulates (Fig. 2) a process such that input and output signals show the time-
dependent values as real-time operating components. It is possible to test embedded system 
under real time with various test conditions. It provides the UAV developer to test many 
aspects of autopilot hardware, finding the real time problems, test the reliability, and many 
more. 
The simulation can be done with the help of Matlab Simulink program environment. This 
program can be considered as a facility fully competent for this task.  Simulink is the most 
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Fig. 2. UAV Architecture: Hardware-in-the-loop Simulation 

popular tool, it was not only used for a SIL Simulation of the complete UAV system but also 
to create the simulation code of a HIL Simulator that runs in real time. 
The system identification is the first and crucial step for the design of the controller, 
simulation of the system and so on. Frequently it is necessary to analyze the flight data in 
the frequency domain to identify the UAV system. This paper demonstrates how ANN can 
be used for non linear identification and controller design. The simulation processes consists 
of designing a simple system, and simulates that system with the help of model reference 
control block in Matlab/Simulink [6]. 
The paper is organized as follows: Section 2 describes some related work. Section 3 deals 
with system identification and control on the basis of NNs. Details of design and control 
system with NNs approaches is describes in section 4. In section 5, simulations are 
performed on RUAVs system and finally, conclusions are drawn in section 6. 

2. Related work 

Robust control techniques are capable for adapting themselves for changing the dynamics 
which are necessary for autonomous flight. This kind of controller can be designed with the 
help of system identification. 
There are lots of work had already done in UAV area in the context of ANNs. Mettler B. et 
al., [12] describe the process and result of the dynamic modeling of a model-scale unmanned 
helicopter using system identification. E. D. Beckmann et al., [13] explained the nonlinear 
modeling of a small-scale helicopter and the identification of its dynamic parameters using 
prediction error minimization methods. NN approaches have excellent performance than 
classical technique for modeling and identifying nonlinear dynamic systems [15] [16]. 
There is also numerous system identification techniques had been developed to model 
nonlinear systems. Some of them are Fuzzy identification [20] [27], state-space identification 
[21], frequency domain analysis [22], NN based identification [23] [26]. The exception is 
given by LPV identification [25] which is applicable for the entire flight envelope. The 
learning ability is the beauty of NN that has been utilized widely for system identification 
and control applications. Shim D. H. et al. [28] described time-domain system identification 
approaches to design the control system for RUAVs. 
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3. System identification and control 

The main idea of system identification is often to get a model that can be used for controller 

design. System identification (SI) [7] provides the idea of making mathematical models of 

dynamics systems, starting from experimental data, measurements, and observations.  

It is widely used for applications ranging from control system design and signal processing 

to time series analysis. The system identification is used to verify and test the control system 

parameters that are associated with the six-degree-of-freedom system using the test flight 

data. The simulation results and the statistical error analysis are provided for both the cases. 

Fig. 5 shows the flow of control system design with the system identification model. 

Basically System identification is the experimental approach to process modeling and it 

includes the following five steps as shown in Fig. 3 

The system considered as a black box (Fig. 4) which receives some inputs that lead to some 

output. The concern here is: what kind of parameters for a particular black box can correlate 

the observed inputs and outputs?  
 

Experiment Design

Choice of the 

Criteria to Fit

Selection of Model Structure

-Linear , Fuzzy Logic, Neural 

Network

……………...

Parameter Estimation

-Prior Knowledge, Random, 

Prior Model

…………..

Accepted
Not 

Accepted

Model 

Validation

Plant Model

Stopping Criteria

Minimum Cost

Errors-In-variables

Early Stopping

……………….

Cost function

-Errors-In-Variables , 

Least Squares , Bayes

……………..

Optimization Scheme

-Levenberg-Marquardt, 

Gauss-Newton, 

Generic Algorithms, 

Backpropagation

……………..

 

Fig. 4. System Identification Modeling Procedure 
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Black Box
Input

Output

 

Fig. 5. Black box view of System Identification 

Can these parameters help designer to predict the outputs for a new given set of inputs? This 
is the basic problem of system identification. Neural networks have been applied successfully 
in the identification and control of dynamic systems. Popular neural network architectures for 
prediction and control that have been implemented in the NN Toolbox™ software are: 

• Model Predictive Control 

• NARMA-L2 (Feedback Linearization) Control 

• Model Reference Control 
There are typically two steps involved when using neural networks for control systems: 

• System identification 

• Control design 
In the system identification stage, we develop a neural network model of the plant that we 
want to control.  The flow of control system design with system identification is shown in 
Fig 5. In the control design stage, we use the neural network plant model to design (or train) 
the controller using the propagation of the controlling error through the NN model. 
Training produces the optimal connection weights for the networks by minimizing the 
errors between NN output and the plant output over the entire set of samples. Among many 
network training algorithms Levenberg-Marquardt (LM) algorithm [14] is performed. This 
approach provides a gradient based technique allowing fast error minimization. The major 
aim of training is to get the appropriate values of the weights for closest possible prediction 
through repetitive iterations. The LM method works on the principle of minimizing the 
mean squared error between actual output of the system and predicted output of the 
network and can be calculated with the following formula.  

 
2

1

1 ˆ( ) ( ( ) ( ) )
N

N
t

V y t y t
N

θ
=

= −∑  (1) 

Where 

 ˆ( ) ( , ( ))y t g tθ φ=  (2) 

 1 2 1 2( , ,... , , , )na nba a a b b bθ =  (3) 

 ( ) ( ( 1),.. ( ), ( ),.. ( 1))t y t y t na u t nk u t nk nbφ = − − − − − +  (4) 

Here φ is the matrix of past inputs and outputs. To find the coefficientθ , there are many 

assumptions and detailed knowledge of the plant is required. 
In each of the three control architectures mention above, system identification stage is 
identical but control design stage is different. For model predictive control, the plant model 
is used to predict future behavior of the plant, and an optimization algorithm is used to 
select the control input that optimizes future performance.  
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Fig. 5. Flow of Control System Design with System Identification 
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Fig. 6. Neural Network MRC architecture 

For NARMA-L2 control, the controller is simply a rearrangement of the plant model. We 
used model reference control to simulate the nonlinear identification and control of UAV. 
For model reference control, the controller is a neural network that is trained to control a 
plant so that it follows a reference model. The neural network plant model is used to assist 
in the controller training. 
The neural model reference control architecture uses two neural networks: a controller 
network and a plant model network, as shown in the Fig. 6. The plant model is identified 
first, and then the controller is trained so that the plant output follows the reference model 
output. The system identification error can be defined by  

 ˆ
Ie y y= −  (5)  

and the tracking error 
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 ce y d= −  (6) 

Controller parameters are updated based on error computed from the system output and 
the NN model of the plant. 
They describe the input /output behavior of the system using a set of weights. Such models 
can be interpreted as a weighted combination of several local models resulting in a 
nonlinear global model. Hence the mismatch between the nonlinearities of local models and 
process is less significant compared with single nonlinear model. Therefore neural network 
modeling has been applied especially to modeling tasks with uncertain nonlinearities, 
uncertain parameters and or high complexity. 
In the case of multi-input multi-output (MIMO) plants, the plant identification stage is same 
as that for single-input single-output (SISO) except that the NN model has many neurons in 
the output layer as the number of outputs of actual plant. Fig. 7 shows the control of a 
MIMO plant using NN controller. 
 

 

Fig. 7. Control of a MIMO plant using NN controller 

3.1 Training of model using NN 

Iterative training is conducted to minimize mean square error (MSE) using Levenberg 

Marquardt (LM) algorithm. The LM is gradient based approach that allows fast error 

minimization. The mission of training is to obtain the most suitable and optimized values of 

the weights for closest prediction through iterations.  

The training process (Fig 8) is an iterative and can be stopped either when total training 

error reaches a bottom threshold or when training error ceases to decrease any further. 

There is flexibility for varying number of neurons in the hidden layers to optimize error. 

Starting from a small number of neurons, the number can be gradually increased or 

decrease until an accepted training error is achieved. Once the NN is successfully trained, it 

can be used to obtain a linear model of the plant from the available input and output values. 

Figure shows the behavior of plant input and output. It can be seen that the output response 

is different in each time slot with the variation of input weights. As a typical case, 1000 

different sets of initial weights are considered for the network with 10 hidden neurons. 
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Fig. 8. Plant Input/output behavior during training 

The network architecture for MIMO model of NN is shown in figure 9. In a particular 

equilibrium condition, no inertial and aerodynamic coupling, the behavior of RUAV can be 

divided into lateral and longitudinal dynamics mode and train with MIMO. The 

longitudinal cyclic deflection and collective control input is used to control the longitudinal 

dynamics mode whereas lateral cyclic deflection and pedal control input is used to control 

the lateral dynamics mode. The NN has trained with four system inputs and six outputs. 

The number of hidden layer is considered. The network is trained with different sets of data 

collected from the real flight tests of the RUAV.  

Figure 9 describes the longitudinal dynamics mode as longitudinal cyclic deflection and 

collective control are provided as inputs (U) to the system and pitch rate and forward 

velocity (u) are considered as the outputs (Y) of the system that results four outputs pitch 

angle (θ ), forward velocity (u),vertical velocity (w) and pitch angular rate (q).  Similarly, 

lateral cyclic deflection and pedal control are provided as inputs to the system and vertical 

velocity and roll rate are considered as the outputs of the system that results roll angle (ϕ ), 

lateral velocity (v), roll angular rate (p), yaw angular rate (r). 

Figure 10 illustrates a scenario of getting performance behavior of the identification with 

plant process during training (21 Epochs), where the training data and testing data are 

following almost same behavior. 
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Fig. 9. MIMO model of NN 

 

Fig. 10. A scenario of getting  performance behavior of the  identification with plant process 
during training (Trainlm at 21 Epochs), where the training data and testing data are 
following almost same behavior 
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4. Design of control system 

The key challenge to deploy the designed control system of UAV is the potential risk and 
cost. So, to minimize the cost and the potential risk, we have to test and simulate the control 
system rigorously to get high degree of precision of safeness.  Design, testing and simulation 
are the iterative process and this can be accomplished by executing several pair of design, 
test, and simulation. The simulation of UAV control system consist a group of nonlinear 
Simulink models which is used to estimate the capabilities of controllers. Generally, these 
models are employed both in evolutionary search to estimate the robustness of a particular 
controller, and later to verify and validate the designed controllers through extensive 
simulation with several test cases in different conditions. An UAV represents a complex 
non-linear system with 6 Degree of Freedom (6-DOF), and having high degree of coupling. 
It is anticipated that the most effective control on such a system can be gained with an 
appropriate non-linear controller. 
NNs have attracted a great deal of attention owing to their ability to learn non-linear 
functions from input-output data examples [8]. Applied to control field, NNs are essentially 
nonlinear models that can be useful to solve non-linear control problems [9]. 

4.1 Mathematical model of RUAV dynamics 

Basic starting point for UAV control design is to find out the state space matrix from 6-DOF 

equations of motion by linearizing with proper assumptions. The state of a system is a set of 

variables (Fig. 11) such that the knowledge of these variables and the input functions will, 

with the equations describing the dynamics, provide the future state and output of the 

system. The state of the system is described by the set of the first-order differential equations 

written in terms of state variables [x1 x2 ………xn]. 

 

Fig. 11. System inputs and outputs 

The state space is defined as the n-dimensional space in which the components of the n state 

vector represent its coordinate axes. The state equations of a system are a set of n first-order 

differential equations, where n is the number of independent states. Many control problems, 

however, that require multiple outputs be controlled simultaneously, to do control of such 

system, multiple inputs must be manipulated, usually they are orchestrated as MIMO. The 

helicopter is a complex MIMO system with high correlation. UAV autopilot is an example of 

MIMO where speed, altitude, pitch, roll, and yaw angles must be maintained and throttle, 

several rudders, and flaps are available as control variables. 

The UAV systems consist of a six degree of freedom, nonlinear complex systems. Budiyono 

A. et al., [11] illustrate the nonlinear rigid body equations of motion of helicopter (Eq.7-15) 

that describes the vehicle’s translational motion and angular motion about three reference 

axes. 
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 ( ) sinX m u rv qw mg θ= − + +∑ f
 (7) 

 ( ) sin cosY m ru v pw mg φ θ= + − −∑ f
 (8) 

 ( ) cos cosZ m qu pv w mg φ θ= − + − −∑ f
 (9) 

 ( )xx yy zzL I p I I qr= − −∑ f
 (10) 

 ( )yy zz xxM I q I I pr= − −∑ f
 (11) 

 ( )zz xx yyN I r I I pq= − −∑ f
 (12) 

 ( sin cos )tanp q rφ φ φ θ= + +
f

 (13) 

 cos sinq rθ φ φ= −
f

 (14) 

 ( sin cos )secq rϕ φ φ θ= +
f

 (15) 

Where the vector u, v, w and p, q, r are the fuselage velocities and angular rates in the body 
coordinate system, respectively. X, Y, Z are the external forces acting on the helicopter center 
of gravity and L, M, N are the external moments. State space and transfer-function models 
can be generalized to MIMO models. These first-order differential equations can be written 
in a general form that can be represented in matrix notation.  

 
x Ax Bu

y Cx Du

= +
= +

f f f
f f f  (16) 

Where 

 1 1s sx u w q a v p r bθ φ ′
= ⎡ ⎤⎣ ⎦

f
 (17) 

And  

 long coll lat pedu δ δ δ δ⎡ ⎤= ⎣ ⎦
f

 (18) 

The MIMO transfer-function matrix can be obtained from state space model by 
1( ) ( )G s C sI A B D−= − + where * * * *, , ,n n n m l n l mA B C D∈ ∈ ∈ ∈{ { { { . The descriptions of all 

parameters are shown in Table 1 and Table 2. 
Where A, B and C are the representation of the system matrix, input matrix and output matrix 
respectively. A, B, C and D depends on the flight regime with nominal parameter values for 
hovering and cruising. Then, u is a vector of the inputs, x is the element state vector, and y is a 
vector containing outputs. It is easy to see that each linear state space system of Equation (16) 
can be expressed as a linear time invariant (LTI) transfer functions. The procedure is to take 
Laplace transformation of the both sides of Equation (16) and use an algorithm is given by 
Leverrier-Fadeeva-Frame formula [10]. Another approach is to use Matlab functions directly. 
Let us take a transfer function of UAV (Eq. 19-20) to model and simulate. 
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Parameter Symbol Description 

u Forward velocity 

v Lateral velocity 

Fuselage 
Linear Motion 

 w Vertical velocity 

p Roll Angular Rate 

q Pitch Angular Rate 

Fuselage 
Angular 
Motion r Yaw Angular Rate 

a1s Longitudinal Flapping Angle Rotor Tip-
Path-Plane b1s Lateral Flapping Angle 

Pitch θ  Pitch Angle 

Roll φ Roll Angle 

Table 1. Model states. 
 

Control Description Units 

longδ  Longitudinal Cyclic 
Deflection 

Dimensionless [-1, 1] 

latδ  Lateral Cyclic 
Deflection 

Dimensionless [-1, 1] 

pedδ  Pedal control Input Dimensionless [-1, 1] 

collδ  Collective Control Input Dimensionless [0, 1] 

Table 2. Control input variables. 

 

1 1

1 1

1 1

1 1

1 1

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

u

w a s r b s

u a s v b s

a s b s

v

u a s v b s

w p r

a s b s

X g g

Z Z Z Z

M M M M

A A
A

Y g g

L L L L

N N N

B B

− −⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 (19) 

                                                                

0 0 0 0

0 0 0

0 0 0

0 0 0 0

0 0

0 0 0

0 0 0 0

0 0

0 0 0 0

0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

col

col

lon lat

ped

col ped

lon lat

Z

M

A A
B

Y

N N

B B

                                                 (20) 
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1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

C
 (21) 

 

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

D
 (22) 

 

The descriptions of all parameters used in Eq. 19-20 are shown in Table 3 

 
 

Parameter Description 

Zw  Zr  Zbls  Zals Yv Xu Nw  
Nr  Np 
Mv  Mu Mbls Mals 
Lv  Lu Lals  Lbls Bals Bbls 
Aals Abls 

 
Stability derivative 

g Force of gravity 

Zcol Yped Ncol Nped Mcol Control derivative 

Blon Blat  Alat  Alon Cyclic input sensitivity 
 

Table 3. Parameters of model constants for fuselage linear motion equations, model 
constants for tip-path-plane and augmented yaw dynamics, and model constants for 
angular motion. 

The objective of training a NN is to minimize the error between the output of NN and the 

desired output. First, we use models (Eq. 19-20) to generate training data. Then by 

propagation algorithm, all the weights in NN plant can be adjusted through the training sets 

until the NN plant outputs are very close to the plant outputs. This completes the system 

identification. Second, we will choose a reference model which allows the desired behavior. 

Let us use a flight data from Eq. 23-24 for design and simulation. 
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0.78501 0 0 9.8 9.8 0 0 0 0 0

0 0.065145 0 0 56.659 0 0 0.79784 0.0045036 1344.1

0.35712 0 0 0 92.468 0.063629 0 0 0 56.515

0 0 1 0 0 0 0 0 0 0

0 0 1 0 11.842 0 0 0 0 7.1176

0 0 0 0 0 0.11245 0 0 9.8 9.8

0.46624 0 0 0 0.6588 0.083441 0 0 0 131.19

0 1.0349 0

A =

− − −
− − − −

−

− − −

− −
0 0 0 9.9435 0.30115 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 2.1755 0 1 0 0 14.687

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

 
(23)

 

 

0 0 0 0

0.71986 0 0 0

1.4468 0 0 0

0 0 0 0

0 11.198 0 4.3523

0 0 204.28 0

0 0 0 0

3.5204 0 7.5159 0

0 0 0 0

0 2.9241 0 11.712

B =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  (24)   

Eigenvalues: 

The key dynamics can be seen from the system’s Eigen values and Eigen vectors, are listed 

in Table 4. The system is stable with damping because all the real parts of the eigenvalues 

are negative. The simulation (Fig. 12) shows clearly that the system is stable but having 

damping. 
 

Sno Eigenvalue Damping Freq. (rad/s)

1 -2.01e-002 + 8.27e-003i 9.25e-001 2.17e-002 

2 -2.01e-002 - 8.27e-003i 9.25e-001 2.17e-002 

3 -1.83e-001 + 9.01e-001i 1.99e-001 9.19e-001 

4 -1.83e-001 - 9.01e-001i 1.99e-001 9.19e-001 

5 -2.82e-001 + 5.79e-001i 4.37e-001 6.44e-001 

6 -2.82e-001 - 5.79e-001i 4.37e-001  6.44e-001 

7 -5.93e+000 + 6.22e+000i 6.90e-001 8.59e+000 

8 -5.93e+000 - 6.22e+000i 6.90e-001 8.59e+000 

9 -7.37e+000 + 1.06e+001i 5.73e-001 1.29e+001 

10 -7.37e+000 - 1.06e+001i 5.73e-001 1.29e+001 

Table 4. Eignevalues of the helicopter system 
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Fig. 12. Transfer function of system  

5. Experimental results and analysis 

In this experiment we used NN approach to train MIMO model and capture the phenomena 

of flight dynamics. This simulation is divided into two parts longitudinal mode and Lateral 

mode. The NN approach considers separate lateral and longitudinal network with inertial 

coupling between the networks taken into consideration. These networks trained 

individually by making it MIMO model. Basically system identification process consists of 

gathering experimental data, estimate model from data and validate model with 

independent data. NN controller is designed in such a way that makes the plant output to 

follow the output of a reference model. The main target is to play with fine tuning of 

controller in order to minimize the state error.  

The experiment is carried out with System identification procedures with Prediction Error 

Method (PEM) algorithm using System Identification Toolbox using Levenberg-Marquardt 

(LM) algorithm. We observe NN approach to get better result of System identification that 

shows the perfect matching and shown as RUAV Longitudinal Dynamics and RUAV Lateral 

Dynamics in the following fig. 13-18  

The prediction error of the output responses is described in Fig. 14. The autocorrelation 

function almost tend to zero and the cross correlation function vary in the range of -0.1to 0.1. 

This shows the dependency between prediction error and collδ , longδ but the dependency 

rate is very less. 
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Longitudinal Dynamics Mode Analysis 

 

 

(a)  Pitch Angle (θ ) 

 

(b) Forward Velocity (u) 

 

(c) Vertical velocity (w) 
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(d) Pitch Angular Rate (q) 

 

Fig. 13. Output response with network response in Longitudinal dynamics mode 

 
 
 

 

(a) Pitch Angle (θ ) 
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(b) Forward velocity (u) 

 
(c) Vertical velocity (w) 
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(d) Pitch Angular Rate (q) 

 

Fig. 14. Autocorrelation and Cross-correlation of output response in longitudinal mode 

The histogram of prediction error is shown in Fig. 15. 
 
 
 

 
 

Fig. 15. Histogram of Prediction errors in Longitudinal Mode 
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Lateral Dynamics Mode Analysis 

 

 

(a) Roll Angle (ϕ ) 

 

(b) Lateral Velocity (v) 

 

(c) Roll Angular Rate (P) 
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(d) Yaw Angular Rate (r) 

Fig. 16. Output response with network response in lateral dynamics mode 

The prediction error of the output responses is described in Fig. 17. Similarly, in lateral 
mode also, the autocorrelation function almost tend to zero and the cross correlation 
function vary in the range of -0.1to 0.1. This shows the dependency between prediction error 

and latδ , pedδ but the dependency rate is very less. 

 
 

 
 

(a) Roll Angle (ϕ ) 
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(b) Lateral Velocity (v) 

 
(c) Roll Angular Rate (P) 
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(d) Yaw Angular Rate (r) 

Fig. 17. Autocorrelation and Cross-correlation of output response in lateral mode 

The histogram of prediction error is shown in Fig. 18. 

6. Conclusion 

UAV control system is a huge and complex system, and to design and test a UAV control 

system is time-cost and money-cost. This chapter considered the simulation of identification 

of a nonlinear system dynamics using artificial neural networks approach. This experiment 

develops a neural network model of the plant that we want to control. In the control design 

stage, experiment uses the neural network plant model to design (or train) the controller. 

We used Matlab to train the network and simulate the behavior.  

This chapter provides the mathematical overview of MRC technique and neural network 

architecture to simulate nonlinear identification of UAV systems. MRC provides a direct 

and effective method to control a complex system without an equation-driven model. NN 

approach provides a good framework to implement MEC by identifying complicated 

models and training a controller for it. 
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Fig. 18. Histogram of Prediction errors in Longitudinal Mode 
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