
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

1

Requirements Modeling for
Multi-Agent Systems

Lorena Rodriguez1, Emilio Insfran1 and Luca Cernuzzi2
1ISSI Research Group, Department of Information Systems and Computation,

Universidad Politécnica de Valencia, Camino de Vera s/n 46022, Valencia,
2DEI, Universidad Católica “Nuestra Señora de la Asunción”, Campus Universitario,

C.C. 1683, Asunción
1Spain

2Paraguay

1. Introduction

The inadequate management of system requirements is a major cause of problems in

software development (Anton, 2006). Requirements Engineering is a branch of Software

Engineering and includes a set of activities concerning the identification, specification,

validation, and management of system requirements. However, a traditional approach to

requirements engineering may not be fully effective for certain complex systems that require

high levels or specific kinds of abstractions, and the need to define more specific

requirements engineering processes for these types of systems thus arises.

A Multi-Agent System (MAS) is a specific type of system that is composed of multiple

intelligent agents that interact with each other to achieve certain objectives. These systems

can be used to solve problems that it is difficult or impossible for a monolithic or a single

agent system to resolve. In recent years, various methodologies have been proposed to

guide the development of multi-agent systems, such as Tropos (Giorgini et al., 2005),

Ingenias (Gómez-Sanz & Pavón, 2003), Gaia (Zambonelli et al., 2003), etc. However, despite

the importance of the requirements phase in the development of software systems, many of

the proposed methodologies for the development of MAS do not adequately cover the

requirements engineering phase (Cernuzzi et al., 2005), focusing mainly on the design and

implementation phases. Moreover, a recent study on the application of requirements

engineering techniques in the development of a multi-agent system (Blanes et al. a, 2009)

found that 79% of the current methodologies for MAS development use requirements

engineering techniques which have been adapted from other paradigms (object orientation,

knowledge engineering, etc.) (Anton, 2006). However, these techniques and notations may

not be sufficient to cover the nature of MAS, since these systems, along with their

organizational, structural, or functional properties, characteristics that are not normally

necessary in conventional software systems such as pro-activity, adaptability, collaboration,

truth, or disposition (Blanes et al. a, 2009). These characteristics are denominated as social

behavior (Hector & Lakshmi, 2005). Therefore, there is a need for new methods and

techniques that enable the appropriate acquisition and treatment of MAS requirements.

www.intechopen.com

 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

4

(Blanes et al. b, 2009) and (Rodriguez et al., 2009) present two proposals for the acquisition
and modeling of requirements for the Gaia (Zambonelli et al., 2003) methodology which
covers the analysis and design phase of MAS. Based on the experience using these
approaches, this chapter presents an evolution of these earlier proposals to support the
acquisition and modeling of requirements regardless of the analysis and design
methodology used, and covers four essential perspectives of a MAS: organizational,
structural, functional, and social behavior.
It is also worth mentioning that agent technology is useful in many complex domains: e-
commerce, health, stock market, manufacturing, games, etc. In particular, we are interested
in the game development domain since it comprises a set of characteristics such as
collaboration, negotiation, trust, reputation, etc., which specially can be dealed with a MAS.
According to Google Trends and the ESA annual report (ESA, 2010), games development is
one of the business markets that has undergone most growth in the last few years. In
addition, the agent-oriented paradigm is one of the most promising for modeling such
business market due to the social behavior characteristics (negotiation, cooperation, etc.) of
the agents and the complexity that MASs can support. For this reason, in the next chapter,
we illustrate the feasibility of our approach by applying the requirements modeling process
to the development of the strategic board Diplomacy Game (Fabregues et al., 2010).
The structure of this chapter is as follows. Section 2, discusses the related works. Section 3,
describes the organizational, structural, functional and social behavior perspectives that
were considered when modeling MAS. Section 4, presents the requirements modeling
proposal. Section 5, focuses on the case study of the Diplomacy Game. Finally, section 6,
concludes and introduces future research work.

2. Related work

The importance of the requirements phase in software development is widely known.
However, capturing and modeling the requirements of a system is not a trivial task. In
particular, MAS require abstractions, techniques, and notations which have been specifically
tailored to this domain. We propose four basic perspectives for the modeling of MAS
requirements: organizational, structural, functional, and social behavior. This section, presents
some proposals for the acquisition and modeling of requirements that cover these four
perspectives of a MAS.
The organizational perspective is supported in proposals such as GBRAM (Anton, 2006).
GBRAM is a relevant traditional goal-oriented requirements engineering proposal. It
provides a procedural guide for the identification and development of goals and introduces
techniques that assist in their methodical and systematic analysis. GBRAM has a great
deficiency in terms of formality. This includes the lack of models, formal notations and tools
that support the modeling that the method uses. Nevertheless, the guidelines and the level
of clarity it offers are very good. Moreover, GBRAM also emphasize the verification of the
requirements through its refinement stage which specifies certain guidelines to follow, thus
making this process more reliable. Therefore it is possible to track the requirements
captured, and this is reflected in the traceability offered by the method.
Another proposal for requirements modeling that supports the organizational perspective is
the i * framework (Yu, 1997). This framework has been established as the basis for the
Tropos methodology (Giorgini et al., 2005). Tropos has been appropriately adapted to the
acquisition and modeling of the actors in the system and its environment, i.e., the actors,

www.intechopen.com

Requirements Modeling for Multi-Agent Systems

5

goals, tasks, interactions, dependencies, resources needed, etc. However, it does not permit
a full representation of constraints nor does it propose a modeling environment. Since we
consider goal orientation to be of particular interest in the capturing of requirements for
MAS, we believe that it is necessary to analyze other methods which are complementary to
this approach.
The structural perspective is supported by proposals such as AUML (Odell et al., 2000).

AUML tends to be asserted as a notational standard in various methodologies; one of the

most common proposals for the requirements phase is the adoption of Use Case diagrams.

This formalism has shown good results for the representation of functional requirements

and is also a good tool for communication with stakeholders. Nevertheless, Use Cases have

limitations in capturing qualitative aspects of the environment and interactions with it. In

addition, a interesting contribution of AUML is the Agents Interaction Protocol (AIP), which

constitutes a central aspect for MAS, specified by means of protocol diagrams.

Another proposal that covers the structural perspective is KAOS (Van Lamsweerde et al.,

1998), a proposal for modeling requirements through goals. KAOS consists of a specification

language, a method of elaboration, and the meta-level knowledge which is used as a guide.

A KAOS model contains goals, information system requirements, expectations about the

system environment, conflicts between goals, obstacles, entities, agents, etc. One of the

strengths of the proposal is that of its use of formality to achieve correction. Moreover, the

idea of constraint is useful in identifying some of the external problems of integrity, and this

contributes to the robustness of the system. However, the successful implementation of the

method depends heavily on the developer’s experience in the domain and how well defined

the problem to be solved is (Huzam & Maibaum, 2006).

Other proposals do not support the organizational and structural perspective. This is the

case of CREWS (Maiden, 1998), which focuses on the perspectives of functional and social

behavior. CREWS is based on system object models that are abstractions of the key features

of the different qualities of the problem domain. CREWS uses these models to generate

normal course scenarios, and it then uses the theoretical and empirical research into

cognitive science, human-computer interaction, collaboration systems and software

engineering as a basis to generate alternative courses for these scenarios. A potential

weakness of the CREWS approach is that the generation of scenarios is domain-oriented, in

contrast with the goal-oriented scenario analysis and the task-oriented Use Case modeling.

If the scenarios are intended to validate the requirements, these requirements should be

oriented towards the generation of scenarios.

In summary, the organizational perspective is covered by proposals such as GBRAM and i *,

and the structural perspective is covered in proposals such as KAOS and AUML. Most of

the proposals presented in some way cover, either totally or partially, the functional and

social behavior perspective, as in the case of CREWS. However, to the best of our knowledge

no methods that completely cover all four perspectives needed for the development of a

MAS exist.

3. Different perspectives for multi-agent systems

This work aims to provide a solution to the lack of RE modeling approaches that

appropriately cover the four perspectives of MASs: organizational, structural, functional, and

social behavior. In order to contextualize these perspectives, an overview of them is presented

www.intechopen.com

 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

6

which emphasizes both social behavior and organizational aspects, since these are key

aspects for the development of MASs.

3.1 Organizational perspective

In the organizational perspective, the organization is represented as a system that has
certain goals. The organization attains these goals through consistent actions, which use
system resources and alter the desired system state (Falkenberg, 1998). Some authors such as
(Zambonelli et al., 2003) consider that the human organizational metaphor is very adequate
for systems which are situated in open and changing environments. They define a MAS as a
software system that is conceived as the computational instantiation of a group of
interacting and autonomous individuals (agents). Each agent can be seen as playing one or
more specific roles: it has a set of responsibilities or goals in the context of the overall system
and is responsible for pursuing these autonomously. Furthermore, interactions are clearly
identified and localized in the definition of the role itself, and they help to characterize the
overall structure of the organization and the agent’s position in it. The evolution of the
activities in the organization, which is derived from the agents’ autonomous execution and
from their interactions, determines the achievement of the application goal.

3.2 Structural perspective

The structural perspective shows the system architecture in terms of entities and the static
relationship between them. The modeling of these entities and relationships provides an
abstract structural perspective of the system. We believe that this perspective is necessary to
identify the entities that will be needed to build the future MAS. If the static and structural
relationships are to be captured accurately, the development method must include
formalisms and techniques to specify relationships of hierarchy (inheritance), semantic
dependency (association) and part-of relations (aggregation).

3.3 Functional perspective

The functional perspective shows the semantics associated with the organizational roles’
services that are motivated by the occurrence of events. In this context, we understand an
organizational role to be the representation of an abstract entity that provides (multiple)
system methods or services. An event is something that occurs in the environment and to
which the organizational role reacts by running a method or service. This perspective
focuses to model the functional requirements to be met by the roles in the future MAS.

3.4 Social behavior perspective

The social behavior perspective shows the possible sequences of events or services to which
an agent can respond or that occur in its lifetime, along with interaction aspects such as
communication between agents, and this is often represented as state or activity diagrams.
As is discussed above, in addition to organizational, structural, and functional properties, a
MAS also requires characteristics that are not normally required in conventional software
systems, such as pro-activity, adaptability, collaboration, truth, or disposition. These
characteristics are denominated as social behavior. We therefore believe that covering this
perspective in a proposal for modeling requirements for MAS is an important contribution
towards the development of such systems, since the essence of these systems is the
performance of complex tasks that other types of systems are not capable of solving.

www.intechopen.com

Requirements Modeling for Multi-Agent Systems

7

3.4.1 Classification

In order to properly structure and organize the features of social behavior requirements, we

briefly present the classification scheme of agent characteristics defined in (Hector &

Lakshmi, 2005). According to the authors, three main attributes of an agent are defined: (a)

autonomy, which refers to the fact that an agent should run independently, with little or no

human intervention, (b) temporal continuity, which signifies that an agent should run

continuously rather than simply perform a task and finish, and (c) social skills, which

signifies that an agent should possess some form of social skills, since the agent’s

advantages lie in its interactive communication with other agents. In addition to these core

attributes, an agent can also be classified according to the following social behavior

characteristics:

a. Pro-activeness: this refers to how the agent reacts to -and reasons about - its

environment, and how it pursues its goals. The agent can directly react to stimuli in its

environment by mapping an input from its sensors directly to an action, or it can take a

purely planning, or goal-oriented, approach to achieve its goals. This last approach

relies upon utilizing planning techniques.

b. Adaptability: this describes an agent's ability to modify its behavior over time. In fact, the

term “agent” is often taken to implicitly mean “intelligent agents”, which combine

traditional artificial intelligence techniques to assist in the process of autonomously

performing tasks. This feature includes other sub-features such as learning and sub-

submission.

c. Mobility: this refers to the agents’ capability of transporting their execution between

machines on a network. This form of moving can be physical, where the agent travels

between machines on a network, or logical, where an agent which is running on a single

machine is remotely accessed from other locations on the Internet.

d. Collaboration: collaboration among agents underpins the success of an operation or

action in a timely manner. This can be achieved by being able to coordinate with other

agents by sending and receiving messages using some form of agent communication

language, and permits a high degree of collaboration, thus making social activities such

as distributed problem solving and negotiation possible. Moreover, it is possible for

agents to collaborate without actual communication taking place. The interaction of

agents with resources and their environment may lead to the emergence of

collaborative or competitive behavior.

e. Veracity: this refers to the agent’s ability to deceive other agents via their messages or

behavior. An agent can thus be truthful in failing to intentionally deceive other players.

Moreover, an agent that is untruthful may try to deceive other agents, either by

providing false information or by acting in a misleading way.

f. Disposition: this refers to the agent’s “attitude” towards other agents, and its willingness

to cooperate with them. An agent may always attempt to perform a task when asked to

do so (benevolent), or may act in its own interests to collaborate with other agents only

when it is convenient to do (self-interested), or it might try to harm other agents or

destroy them in some way (malevolent).

The above characteristics in the classification represent to some extent abstraction of human
social behavior, and are those that differentiate agent paradigms from traditional software
development. In this work, we use this classification to study the characteristics of social
behavior and to propose mechanisms for the definition and specification of requirements of

www.intechopen.com

 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

8

these types. In particular, and as a starting point, in this work we will focus on the following
characteristics: proactiveness, collaboration, veracity, and disposition. Other characteristics
such as adaptability or mobility will be considered in future work.
Social behavior is a skill that must have an agent in a MAS. Moreover, if we consider the

organizational metaphor, an agent can, at different times in its life-cycle, play one or more

specific roles, which in turn have a set of responsibilities and goals. We therefore propose to

identify these features of social behavior in the requirements modeling process at role level,

through an analysis of the goals that need to be attained. Therefore, in the later phases of

the software development, when an agent has to be defined, the corresponding roles of

which a given agent will be composed will determine the agent’s complete social behavior.

4. Modeling requirements for multi-agent systems

To support the organizational, structural, functional and social behavior perspectives, we

propose a requirements modeling process which is decomposed into two main activities:

Requirements Definition and Requirements Specification. The user’s specific needs are

identified in the Requirements Definition activity. In particular it is identified: the

organizational structure of the system; the roles that are required in each sub-organization;

the roles goals; the social behavior needed for the roles to carry out their goals; and relevant

entities of the environment. The detailed requirements for developers are specified in the

Requirements Specification activity. The specifications extracted from the Requirements

Definition activity are refined, and the level of detail increased, in order to identify artifacts

which are closer to the analysis and development of the system: activities and interactions,

resources of the system, the permissions that roles have in those resources and

organizational rules.

Moreover, the process is based on the definition of models needed to describe the problem

in more concrete aspects that form the different perspectives of the system. In particular, in

the Requirements Definition activity it is possible to identify: (a) a Refinement Tree, which

identify and represent the goals of the system and their hierarchy, the roles that will carry

out these goals in an organizational context, and the organizational structure of the system,

and (b) a Domain Model with which to represent the entities that could be used as the

organization’s resources. In turn, the Refinement Tree, as is specified by the above

description, represents: (i) Mission Statement, which is the main objective that the system

under development provides the environment with in order to identify the overall goal

within the organization as a whole; (ii) Organizational Model, to represent the sub-

organizations of which the global organization is composed; (iii) Role Model, to represent the

roles involved in each sub-organization, the inheritance relationships between them, and

the social behavior needed between roles to accomplish their goals; and (iv) Goal Model, to

represent the goals associated with each role.

Moreover, in the Requirements Specification activity it is possible to identify: (c) a Behavior

Model, to represent the decomposition of goals into tasks and protocols in order to

understand the internal flow of a role to determine its responsibilities, (d) an Environment

Model, to represent the permissions of the roles identified in the Role Model with regard to

the resources of the Domain Model; and (e) an Organizational Rules Model, to represent the

constraints of the organization’s behavior.

www.intechopen.com

Requirements Modeling for Multi-Agent Systems

9

Fig. 1. Models of the proposal and its relationship

In order to obtain a clear view of the models used, each of them is presented as follows. The
Mission Statement is defined in natural language, with a recommended extension of one or
two paragraphs. Since the Mission Statement identifies the overall goal within the
organization as a whole, it provides us with information about the organizational and
functional perspectives. The Mission Statement is the root of the Refinement Tree. It is
successively refined to identify the goals of the system to be represented as leaf nodes in the
tree. It is possible to distinguish three general levels in this process: (i) we first define the
decomposition of the system in a hierarchy of sub-organizations, thus representing the
Organizational Model. A sub-organization is a part of the system that aims to achieve a goal
in the system and weakly interacts with other parts of the system (low coupling); (ii) we
then decompose the sub-organizations into roles that partially represent the Role Model. A
role is the representation of an abstract entity that has (multiple) system goals; (iii) and
finally, we identify the goals of the system and a hierarchy of them, thus representing the
Goal Model. The goals are tasks which are carried out by a role in the sub-organization. The
structure of the Refinement Tree allows us to identify elements of the organizational
perspective through the decomposition of the system into sub-organizations; elements of the
structural perspective by identifying the roles that make up the sub-organizations and
finally aspects of the functional perspective by identifying the goals that each role has to
perform. As was previously mentioned, the Role Model describes the roles that belong to the
sub-organizations of the Refinement Tree. The purpose of this model is to represent the
different roles found in each sub-organization and to reason about their special
relationships. The special relationships between roles can serve to identify the common
properties between the roles in order to create a hierarchy of roles using inheritance
relationships and the identification of the social behavior relationships between roles in
different sub-organizations. The resulting Role Model comprises the information represented
in the Refinement Tree: one diagram for the inheritance relations between roles and one or
more diagrams as needed for each sub-organization for the social behavior relations

www.intechopen.com

 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

10

between roles. The UML Use Case Diagram is used to represent this information and
complement the Refinement Tree representation of roles. The roles are represented as actors
which are labeled with the stereotype <<role>>.In addition, the inheritance relations are
represented with the corresponding diagram relation, and the social behavior relations are
represented as relations labeled with the stereotypes <<collaboration>>, <<disposition>>
and <<veracity>>. We propose naming the relations with the corresponding property (i.e.
for the social behavior relation collaboration the relation is named as “communicative”, “non-
communicative” or both, for the social behavior relation disposition the relation is named as
“benevolent”, “self-interested”, “malevolent” or the combinations, and finally for the social
behavior relation veracity the relation is named as “truthful”, “untruthful” or both). A social
behavior relation between two roles could be of one or more property, since the relation is
dynamic, i.e. it may alter depending on the agent that will eventually play the role. This
information allows us to express elements of the structural, organizational and social
behavior perspectives.
The Domain Model represents the entities identified in the problem domain. The purpose of

this is to identify key concepts and relationships, thus representing a first structural view.

These entities are seen from the point of view of the application domain, and

implementation details are therefore avoided at this level. Associations and inheritance

relationships between domain entities are also represented. The identification of these

domain entities and their relationships allows us to extract information for the structural

perspective and to partially extract information for the organizational perspective. The UML

Class Diagram will be used to represent this information.

The Behavior Model shows a sequence of steps that represent the flow of activities needed to

achieve the goals identified in the system. A representation of the flow of tasks could be

useful: to understand the logical flow of a role; to complement the information regarding

social behavior identified in the Role Model; and to help to identify new information when

one role needs to work with others in order to accomplish a task. The identification of the

flow of activities allows us to extract information for the functional perspective.

Furthermore, the identification of interactions between different roles allows us to identify

information for the social behavior perspective. The UML Activity Diagram will be used to

represent this information.

The Environment Model represents the permissions of the roles with regard to the entities

identified in the Domain Model. For each role identified in the Role Model, resources are

established for those who can legitimately access them. Finally the permissions (perceive or

modify) are established. The identification of these permissions offers information of the

structural and functional perspectives of the system. The UML Use Case Diagram is used to

represent this information, and the roles are represented as actors which are labeled with the

stereotype <<role>>, the resources are represented as classes and the permissions are

represented as relations between the role and the entity, which are labeled with the

stereotypes <<perceive>>, and <<modify>.

The Organizational Rules Model identifies and represents the general rules concerning the

organization’s behavior. These rules can be viewed as general rules, responsibilities,

restrictions, the desired behavior, and the sequence or order in such conduct. These rules

will be represented by building on GBRAM, in which two types of dependency

relationships between goals are distinguished: precedence and restriction, which are

represented by the symbols < and å respectively, and by adding a relationship to the

www.intechopen.com

Requirements Modeling for Multi-Agent Systems

11

proposal to represent general rules of the system, which is represented with only natural

language. This information contributes to extract information for organizational, structural

and functional perspectives of the system. We suggest that the set of rules should be

represented with a table schema in which each rule is defined by a natural language

description of the relationship, the type and the corresponding formula if necessary.

Each of these models provides the information which is necessary to cover the different

perspectives of a MAS: (i) structural (Domain Model, Role Model, and Environment Model); (ii)

organizational (Mission Statement, Organizational Model, Roles Model, Domain Model, and

Organizational Rules Model); (iii) functional (Mission Statement, Goal Model, Behavior Model,

Environment Model and organizational Rules Model); and (iv) social behavior (Role Model and

Behavior Model). Figure 1 shows an overview of these models and their respective relations.

The process for defining and specifying the requirements is described in the following
subsection.

4.1 Requirements modeling process

As was mentioned earlier, the requirements modeling process proposed involves two

phases: Requirements Definition and Requirements Specification. Figure 2 shows an overview of

this process, using the SPEM graphical notation (OMG, 2010). Each activity of the process

produces a document that is composed of the sum of all the models and documents of the

working definition that is included in each activity. The Requirements Definition activity tasks

are performed first, thus producing the requirements specification. The Requirements

Specification activity tasks are then performed, using the requirements specification

produced in the previous activity as input and resulting in the production of the refined

requirements specification. At this point the Requirements Definition activity can again be

performed in case some kind of inconsistency or incompleteness is encountered in the

specification, or the process may end.

Requirements

Specification

Refined

Requirements

Specification

Requirements

Definition

Requirements

Specification

[valid][not valid]

Fig. 2. Requirements modeling process overview

www.intechopen.com

 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

12

4.1.1 Requirements definition

The Requirements Definition activity consists of three tasks whose aim is to identify the

models of the phase, as is shown in Figure 3. The first task is to Create Refinement Tree,

beginning with the definition of the Mission Statement which is then broken into sub-

organizations, roles and goals. This information is part of the Mission Statement,

Organizational Model, Role Model and Goal Model. The list of roles identified in the previous

task will be used as input for the next task: Refine Roles. Here we discuss possible structural

similarities in order to identify inheritance relationships, and we analyze the goals to be

attained by each role in each sub-organization in order to identify the social behavior

relationships between them. If deemed appropriate, it is possible to return to the previous

task in order to update the Refinement Tree, or the next task can be performed. In the last

task, Identified Entities, the Domain Model is constructed from the identified entities, and

association and inheritance relationships among them are defined.

Refinement Tree

Create

Refinement

Tree

Refine Roles
Identified
Entities

Organizational
Model

Role Model Domain ModelRole ModelGoal Model

Mission

Statement

Fig. 3. Requirements Definition activity decomposed into tasks and artifacts

4.1.2 Requirements specification

The Requirements Specification activity involves the creation of three models: Behavior Model,

Environment Model and Organizational Rules Model, and therefore consists of three tasks for

the creation of the models, as is shown in Figure 4. The first task in this activity is Create

Activity Diagrams. The Organizational Model, Role Model, Goal Model of the Requirements

Definition activity are used as input. The necessary Activity diagrams are created as a result

of this. When this has been completed, the next task is performed: Develop Environment

Model. The Role Model and the Domain Model of the Requirements Definition phase are taken

as input. Then, the Define Organizational Rules task is performed, taking as input the Role

Model of the Requirements Definition activity and the Environment Model of the current

activity. The Organizational Rules Model is produced as a result of this.

www.intechopen.com

Requirements Modeling for Multi-Agent Systems

13

Create Activity

Diagrams

Behavior Model

Organizational

Model

Role Model

Goal Model

Develop

Environment Model
Define Organizational

Rules

Domain Model

Environment Model Organizational Rules Model

Fig. 4. Requirements Specification activity decomposed into tasks and artifacts

Finally, the artifacts generated during the process can relate to analysis and design artifacts
from other methodologies by establishing a traceability framework. This will increase the
overall quality of the system to be.

5. Case study: diplomacy game with agents

We have used the Diplomacy Game to verify the feasibility of our approach in areas such as
negotiation, argumentation, trust and reputation (Fabregues et al., 2010) in the game
development domain. Many interesting features make the Diplomacy Game compelling for
the applying the agent technology: the absence of random movements, all players move
their units simultaneously, all units are equally strong so when one attacks another the
winner of the battle is decided by considering solely the number of units helping one
another, etc. Accordingly, from a player’s point of view, the most important feature of the
game is the negotiation process: deciding allies, selecting who to ask for help, arguing with
other players to obtain information about their objectives or to discover what they know,
and so on. We have used the rulebook of the Diplomacy Game (Wizards, 2010) as a
description of the system to be modeled with the process proposed in this work. The most
relevant aspects of the game are provided as follows.
The Diplomacy Game is played by seven players and a Game Master. Each player represents
one of the seven “Great Powers of Europe” in the years prior to World War I. These Great
Powers consist of England, Germany, Russia, Turkey, Italy, France, and Austria. At the start
of the game, the players randomly decide which Great Power each will represent. This is the
only element of chance in the game. As soon as one Great Power controls 18 supply centers,
it is considered to have gained control of Europe. The player representing that Great Power
is the winner.
Diplomacy is a game of negotiations, alliances, promises kept, and promises broken. In order
to survive, a player needs help from others. In order to win the game, a player must
eventually stand alone. Knowing who to trust, when to trust them, what to promise, and
when to promise it is the heart of the game.
At the beginning of each turn, the players meet together in small groups to discuss their plans
and suggest strategies. Alliances between players are made openly or secretly, and orders are

www.intechopen.com

 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

14

coordinated. Immediately following this period of “diplomacy,” each player secretly writes an
order for each of his or her units on a slip of paper. When all the players have written their
orders, the orders are simultaneously revealed, and are then all resolved. Some units are
moved, some have to retreat, and some are removed. Resolving orders is the most challenging
part of the rules and requires complete knowledge of the rules. Each turn represents six
months of time. The first turn is called a Spring turn and the next a Fall turn. After each Fall
turn, each Great Power must reconcile the number of units it controls with the number of
supply centers it controls. At this time some units are removed and new ones are built. The
purpose of the Game Master is to keep time for the negotiation sessions, collect and read
orders, resolve issues, and make rulings when necessary. This role should be strictly neutral.
Each turn has a series of phases: (a) Spring four-phase turn: Diplomatic phase, Order
Writing phase, Order Resolution phase, Retreat and Disbanding phase; (b) Fall five-phase
turn: Diplomatic phase, Order Writing phase, Order Resolution phase, Retreat and
Disbanding phase, Gaining and Losing Units phase. After a Fall turn, if one Great Power
controls 18 or more supply centers, the game ends and that player is declared the winner.
Based on the tasks of the Requirements Definition and Requirements Specification activities
proposed, and which were presented in the previous section, the development of the case
study is presented below.

5.1 Requirements definition

The requirements modeling process starts with the Requirements Definition activity. This
activity starts with the first task: Create Refinement Tree. First the Mission Statement of the
system must be defined, which in this case is simple and is the Management of the Diplomacy
Game. For the definition of the sub-organizations of the system we decided that the problem
naturally leads to a conception of the whole system as a number of different MAS sub-
organizations, one for each phase of the game, and one extra sub-organization representing
the start of the game. The resulting sub-organizations are: Initial phase, Diplomatic phase,
Writing Order Phase, Order Resolution phase, Retreat and Disband phase and Gaining and Losing
Units phase. This concept of representing the sub-organizations of the system as phases was
also used in (Zambonelli et al., 2003). The roles that are part of each sub-organization are
then defined, resulting in three roles: Great Power, Game Master and Unit which, depending
on which sub-organization they are, have different goals. Finally the roles are refined with
the goals they need to attain in order to fulfill each sub-organization’s objective. For example
in the Order Resolution Phase sub-organization, the Game Master role has the goal of Resolve
Order Conflicts and the Unit role has the goal of Follow Orders. Figure 5 shows the complete
resulting Refinement Tree.
The second task, Refine Role Model, is performed to complete the Role Model based on the
information defined in the Refinement Tree. Possible inheritance relationships between roles
can be specified in this task. The goals of each role in each sub-organization are also
reviewed in order to identify whether the role needs social behavior relationships in any
sub-organization. Owing to space limitations we shall only illustrate the Role Model showing
one of the most significant diagrams (see Figure 6). However, the same analysis should be
performed for all of the sub-organizations, thus resulting in one or more Social behavior
diagrams for each sub-organization. Upon analyzing the goals of the roles of the Diplomatic
Phase sub-organization, we identified that the Great Power role needs to have the
collaborative relation to attain all of its goals in the sub-organization analyzed, and more
specifically, the role needs to be communicative with other instances of the Great Power role

www.intechopen.com

Requirements Modeling for Multi-Agent Systems

15

and with the Game Master role. The same applies in the case of the Game Master role fulfilling
its Control Negotiation Session goal: the collaborative relationship will be with the Great Power
role. The collaborative relationship between Great Power and Game Master will therefore be
on both sides, represented with a non-directional arrow. Moreover, if the Great Power role is
to fulfill all of its goals in the sub-organization analyzed, it needs to be benevolent, self-
interested or malevolent with regard to another instance of the Great Power role, depending on
the agent’s intentions. In this sub-organization, negotiation, persuasion and trust are keys to
the Great Power role. On the other hand, the Great Power role in the sub-organization analyzed
is in all cases benevolent with regard to the Game Master role, and vice versa. Finally, we
believe that it is necessary for the veracity relation between the Great Power role and other
instance of the same role to be truthful or untruthful, again depending on the intentions of the
agent playing the role. We also believe that it is necessary for the veracity relation between the
Great Power role and the Game Master role to be truthful in both directions.

Fig. 5. Diplomacy game Refinement Tree

Fig. 6. Social behavior diagram showing relations between roles in the Diplomatic phase sub-
organization (collaboration, veracity, and disposition)

www.intechopen.com

 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

16

The third task, Identify entities, is performed to define the Domain Model. Figure 7 shows the
Domain Model generated. Briefly, the domain consists of a Map that is composed of many
Countries which in turn have Boundaries and Provinces. A Province can be an Inland, Coastal or
Water province. A Supply Center is in a Province, but a Province may or may not have a Supply
Center. Furthermore, a Unit is in a Province, but a Province may or may not have a Unit. A
Unit can be an Army or a Fleet. Both a Province and a Unit belong to a Great Power which in
turn is a Country, but not all Countries are Great Powers. A Great Power has many Documents,
Orders, Retreats and Adjustments, and they all belong to only one Great Power. Orders, Retreats
and Adjustments are all for one Unit and a Unit follows many Orders, Retreats and
Adjustments.

Fig. 7. Diplomacy game Domain Model

As a result of performing the Requirements Definition activity we obtain the Refinements Tree
shown in Figure 5, which represents the Mission Statement, Organizational Model, partially the
Role Model and Goal Model. One or more Social behavior diagrams is needed for each sub-
organization, thus complementing the information of the roles in the Refinement Tree to
complete the Role Model. An example of this is shown in Figure 6. Finally, the UML Class
Diagram which relates the entities identified in the domain to represent the Domain Model
are shown in Figure 7.

5.2 Requirements specification

The second activity is to perform the Requirements Specification, which starts with the first

task, Create Activity Diagrams, in order to specify the Behavior Model using the information

from the Organizational Model, Role Model, and Goal Model generated in the Requirements

Definition activity as input. Once again, owing to space limitations we shall only illustrate

www.intechopen.com

Requirements Modeling for Multi-Agent Systems

17

one Activity diagram from the Behavior Model (see Figure 8). However, the same analysis

must be carried out for each goal identified in the Goal Model, resulting in one or more

Activity diagrams for each goal. The presented activity diagram specifies the activities and

protocols performed by the Great Power role to attain the Make Alliance goal and the activities

and protocols performed by the Game Master role to attain the Control Negotiation Sessions

goal, both of which are roles of the Diplomatic phase sub-organization. As the goals of these

two roles are related, we decide to specify their activity diagrams in just one diagram with

tree swim lines, two for the interaction between the two instances of the Great Power role

(active and passive) to attain the Make Alliance goal, and the third for the interaction between

the Game Master role and the instances of the Great Power role to attain the Control Negotiation

Sessions goal.

As is shown in Figure 8, the flow of actions performed by the Great Power active role to

attain the Make Alliance goal begins with a fork that gives the control to one initiator

protocol: Meet in private groups, and to one reactive protocol: Interrupt negotiation session

(Game Master). The first protocol is initialized by the Great Power active role and result in the

reactive protocol Meet in private groups (Active:Great Power) of the Great Power passive role,

while the other is a reaction of the Great Power role to the Interrupt negotiation session protocol

initialized by the Game Master role if the negotiation time has ended. If this protocol is

performed, the Great Power active role must terminate the flow of action.

After the Meet in private groups protocol has been performed, the Great Power active role

must perform the Decide who to trust activity in order to attain the Make Alliance goal. The

Great Power passive role has the same flow of actions as the Great Power active role, with the

difference that its Meet in private groups (Active:Great Power) protocol is a reaction to the Meet

in private groups protocol initialized by the Great Power active role, and since this is a passive

instance of the Great Power role, it does not end the flow of actions.

Active:Great Power :Game Master

Meet in private
groups

Decide who to trust

Is Time

to

finish?

No

Si

Interrupt negotiation
session

Interrupt negotiation
session

(Game Master)

Passive:Great Power

Decide who to trust

Interrupt negotiation
session

(Game Master)

Meet in private
groups

(Active :Great Power)

Fig. 8. Activity Diagram for the goals Make Alliance and Control Negotiation Session

www.intechopen.com

 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

18

The second task that must be performed in the Requirements Specification activity is Develop

Environment Model using the information from the Role Model and Domain Model generated

in the Requirements Definition activity as input. Figure 9 shows the permissions of the Great

Power, Game Master and Unit roles with regard to the Domain Model resources that each role

needs to perceive or modify in order to attain its goals. The Great Power role perceives the

following entities in the system: other instances of Great Power, Units, Map, Provinces,

Boundary and Country; and can modify: Supply Center, Document, Order, Retreat and

Adjustment. The Game Master role perceives the following entities in the system: Great Power,

Units, Map, Provinces, Supply Center, Boundary and Country; and can modify: Order, Retreat

and Adjustment; but cannot perceive or modify the Document entity. Finally the Unit role

perceives the following entities in the system: Great Power, Map, Provinces, Boundary,

Country, Document, Order, Retreat and Adjustment; but cannot perceive or modify the

following entities: other instances of Unit and Supply Center.

The third task that must be performed in the Requirements Specification activity is to Define

Organizational Rules, using the information from the Domain Model generated in the

Requirements Definition activity and the Behavior Model of the current activity as input. In the

current domain, the important rules to identify are the general rules of the game, the

number of players, the rules concerning the movement of the units depending on the type of

unit and on the type of provinces the move take place in, etc. Table 1 shows an extract from

the Organizational Rules Model.

Fig. 9. Diplomacy game Environment Model

Finally, as a result of performing the Requirements Specification activity we obtain the Behavior

Model which is composed with all the Activity diagrams (see example in Figure 8). We also

obtain the Environment Model (see Figure 9). And finally, a table representing the

Organizational Rules Model is obtained (see Table 1).

www.intechopen.com

Requirements Modeling for Multi-Agent Systems

19

Description

The game is divided into a two year tour: Spring four-phase turn and Fall five-phase turn

Spring four-phase turn has phases: Diplomatic, Order Writing, Order Resolution and
Retreat and Disbanding

Fall five-phase turn has phases: Diplomatic, Order Writing, Order Resolution and Retreat
and Disbanding, Gaining an Losing

Only seven players may perform the role of "Great Power"

When 18 supply centers belongs to a "Great Power" the game ends and the winner is that
"Great Power"

At the start of the game each “Great Power”, except Russia, controls 3 supply centers

At the start of the game, the “Great Power” Russia controls 4 supply centers

Maximum time in the first diplomatic phase is 30 minutes

Table 1. Extract of Organizational Rules Model

5.3 Discussion

With the definition of the Diplomacy Game Refinement Tree (see Figure 5), the requirements

engineer is able to identify the overall goal of the system, the decomposition of the system in

a hierarchy of sub-organizations, roles involved in each sub-organization, and the goals

which are carried out by each role in the corresponding sub-organization. The Diplomacy

Game Refinement Tree provides information for the organizational, functional, and structural

perspectives of the case study system. In addition, the social behavior needed for each role

to carry out their goals is specified by mean of one Social behavior diagram for each sub-

organization (see Figure 6). The case study presents a variety of social characteristics that

allow to fully evaluating the proposed Social behavior diagram. In particular, we identified

relationships of collaboration, disposition and veracity. The Social behavior diagrams

provide information for the social behavior perspective. Moreover, the relevant entities of the

environment of the game are identified in the Diplomacy Game Domain Model (see Figure 7),

providing information for the organizational and structural perspective.

With the construction of one Activity diagram for each goal, the requirements engineer is

able to refine each goal in activities and protocols, and also to refine the social behavior

identified in the previous activity. It is proper to mention that the collaboration relationships

identified in the Social behavior diagrams is refined in the Activity diagrams. As an

example, the initiator protocols and reactive protocols in Figure 8 show the specification of

the collaboration relation identified in the Social behavior diagram of Figure 6. The Activity

diagrams also provide information for the functional and social behavior perspectives.

Furthermore, the Diplomacy Game Environment Model (see Figure 9), identifies the resources

of the system, and defines the permissions that roles have in those resources, providing

information for the structural and functional perspectives. The organizational rules of the

game are specified (see Table 1), providing information for the organizational, structural and

functional perspectives.

Finally, due to its characteristics, the Diplomacy Game case study offers a good example to

validate the feasibility of our approach to model the requirements of a MAS covering its

organizational, structural, functional, and social behavior properties.

www.intechopen.com

 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

20

6. Conclusions and future work

In this work we proposed a requirements modeling process for MAS. The approach is
organized into two main activities: Requirements Definition and Requirements Specification. In
the Requirements Definition activity the following is modeled: (a) the organizational structure
and structural properties of the system; (b) the functional behavior of the system; and (c) the
domain entities and their relationships. In the Requirements Specification activity the
requirements specifications are refined, identifying: (a) the interactions on which the social
behavior of the system is based; (b) the mains activities which conform the functional
behavior of each role; (c) the permissions of the roles in the domain entities; and (d) the
structural and functional behavior. This process supports the four perspectives that
characterize a MAS: organizational, structural, functional and social behavior. We believe that
this proposal addresses the need for a requirements modeling process for MAS because it
incorporates specific abstractions needed to capture and specify these four perspectives. In
particular, the definition and specification of features of social behavior at the requirements
level will increase the quality of specifications, thus providing the expressiveness needed by
the MAS in an early stage of the software development process.
As a case study, we have presented the requirements modeling of the Diplomacy Game. The
game development domain, given its characteristics, particularly allows us to observe and
reason about different ways in which to identify, define, and specify requirements of social
behavior, in addition to the organizational (because of the various phases of which a game is
composed), the structural (owing to the different types of elements used), and the functional
(because of the different actions to be performed). Moreover, according to Google Trends
and the ESA annual report (ESA, 2010), game development is one of the business markets
that has undergone most growth in the last few years. The social behavior characteristics
(negotiation, cooperation, pro-activity, etc.) and complexity of games make them
appropriate subjects for resolution with the agent-oriented paradigm.
Currently, we are working on the definition and specification of other social behavior
characteristics, such as adaptability and mobility. In addition, plan to empirically validate
our approach through a series of experiments using game development experts as subjects.
We are also working to extend this agent proposal to a model-driven development approach
in the context of a project named Multi-modeling Approach for Quality-Aware Software
Product Lines (MULTIPLE). MULTIPLE focuses on the definition and implementation of a
technology framework for developing software product lines of high-quality software in the
context of model-driven development. This extension would facilitate the integration and
traceability among the artifacts generated during the requirements modeling process and
the analysis and design artifacts used in the MAS development. This will increase the
overall quality of the MAS to be developed. Finally, we plan to build a tool that will support
the overall process defined, using the Eclipse Development Environment (The Eclipse
Fundation, 2010).

7. Acknowledgments

This research is funded by the Ministry of Education and Science, under the National
Research Program, Development and Innovation, MULTIPLE project (TIN2009-13838).
Lorena Rodriguez has a scholarship under the College Scholarship Program and Support of
the Scientific and Technological Production, in the context of the Social Responsibility
Program of the Itaipu Binacional/Parque Tecnológico Itaipu-Py.

www.intechopen.com

Requirements Modeling for Multi-Agent Systems

21

8. References

Anton, A. (1996). Goal-based requirements analysis. Proceedings of the 2nd International
Conference on Requirements Engineering (ICRE '96), pp.136–144, ISBN: 0-8186-7252-8,
Colorado Springs, April 1996, IEEE Computer Society, Colorado

Blanes, D.; Insfrán, E.; Abrahão, S. (2009) a. Requirements Engineering in the Development
of Multi-Agent Systems: A Systematic Review. Proceedings of the International
Conference on Intelligent Data Engineering and Automated Learning (IDEAL), pp. 510 –
517, ISBN: 0302-9743, Burgos, Spain, September 2009, Springer-Verlag, Berlin,
Heidelberg

Blanes, D.; Insfrán, E.; Abrahão, S. (2009) b. RE4Gaia: A Requirements Modeling Approach
for the Development of Multi-Agent Systems. International Conference on Advanced
Software Engineering and Its Applications (ASEA’09), pp. 245 – 252, ISBN: 978-3-642-
10618-7, Jeju Island, Korea, December 2009, Springer, Berlin

Cernuzzi, L.; Cossentino, M.; Zambonelli, F. (2005). Process models for agent-based
development. Engineering Applications of Artificial Intelligence, 18, 2, (March 2005)
page numbers (205 – 222), ISSN: 0952-1976

ESA (2010). Entertainment Software Association, Industry Facts. Last accessed on September
14, 2010, en http://www.theesa.com/facts/index.asp

Fabregues, A.; Navarro D.; Serrano A.; Sierra C. (2010). dipGame: a Testbed for Multiagent
Systems, Proceeding of the ninth International Conference of Autonomous Agents and
Multi-Agent Systems, Toronto, Canada, May 2010

Falkenberg, E.D.; Hesse, W.; Lindgreen, P.; Nilsson, B. E.; Oei, J.L.H.; Rolland, C.; Stamper,
R. K.; Van Assche, F.J.M.; Verrijn-Stuart, A. A.; Voss., K. (1998). FRISCO - A
framework of information system concepts — The FRISCO Report. Task Group FRISCO,
ISBN: 3-901882-01-4

Giorgini, P.; Kolp, M.; Mylopoulos, J.; Castro, J. (2005). Tropos: A Requirements-Driven
Methodology for Agent-Oriented Software. In: Agent-Oriented Methodologies, Brian
Henderson-Sellers; Paolo Giorgini, page numbers (20-45), Idea Group , ISBN:
1591405815, USA

Gómez-Sanz, J.; Pavón, J. (2003). Agent Oriented Software Engineering with INGENIAS,
Proceedings of the 3rd Central and Eastern Europe Conference on Multiagent Systems
(CEEMAS ‘03), pp. 394 – 403, ISBN: 3-540-40450-3, Prague, june 2003, Springer-
Verlag, Prague

Hector, A.; Lakshmi Narasimhan, V. (2005). A New Classification Scheme for Software
Agents. Proceedings of the Third International Conference on Information Technology and
Applications (ICITA’05), pp. 191 – 196, ISBN: 0-7695-2316-1, Sydney, Australia, July
2005, IEEE Computer Society, Washington, DC

Huzam S. F. Al-Subaie; Maibaum Tom S. E. (2006). Evaluating the Effectiveness of a Goal-
Oriented Requirements Engineering Method. Proceedings of the Fourth International
Workshop on Comparative Evaluation in Requirements Engineering, pp. 8 - 19, ISBN: 0-
7695-2712-4, Minneapolis/St. Paul, Minnesota, September 2006, IEEE Computer
Society Washington, DC

Maiden, N. (1998). CREWS-SAVRE: Scenarios for Acquiring and Validating Requirements.
Automated Software Engineering, 5, 4, (October 1998) page numbers (419 - 446), ISSN:
0928-8910

www.intechopen.com

 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

22

Odell, J.; Parunak, H. V. D.; Bauer, B. (2000). Extending UML for agents. Proceeding of the 2nd
Int. Workshop on Agent-Oriented Information Systems, pp. 3 – 17, Berlin, iCue
Publishing

OMG (Object Management Group). Software Process Engineering Meta-Model (SPEM),
version 1.1. Last accessed on March 11, 2010, en http://www.omg.org/cgi-
bin/doc?formal/05-01-06.pdf

Rodriguez L.; Hume, A.; Cernuzzi, L.; Insfrán, E. (2009). Improving the Quality of Agent-
Based Systems: Integration of Requirements Modeling into Gaia. Proceedings of the
Ninth International Conference on Quality Software (QSIC ‘09), pp. 278 – 283, ISBN:
978-0-7695-3828-0, Jeju, Korea, August 2009, IEEE Computer Society Washington,
DC

The Eclipse Foundation. Last accessed on September 2010, from http://www.eclipse.org
Van Lamsweerde, A.; Darimont, R.; Letier, E. (1998). Managing conflicts in goal-driven

requirements engineering. IEEE Transactions on Software Engineering, 24, 11,
(November 1998) page numbers (908 – 926), ISSN: 0098-5589

Wizards (2010). The rules of Diplomacy. The game of international intrigue. . Last accessed
on September 14, 2010 en

 http://www.wizards.com/avalonhill/rules/diplomacy_rulebook.pdf
Yu, E. (1997). Towards Modelling and Reasoning Support for Early-Phase Requirements

Engineering. Proceedings of the 3rd IEEE Int. Symp. on Requirements Engineering (RE
‘97), pp. 226 – 235, ISBN: 0-8186-7740-6, Washington D.C., USA, January 1997

Zambonelli, F.; Jennings, N.; Wooldridge, M. (2003). Developing Multiagent Systems: The
Gaia Methodology. ACM Transactions on Software Engineering and Methodology
(TOSEM), 12, 3, (July 2003) page numbers (317 – 370), ISSN: 1049-331X

www.intechopen.com

Multi-Agent Systems - Modeling, Control, Programming,

Simulations and Applications

Edited by Dr. Faisal Alkhateeb

ISBN 978-953-307-174-9

Hard cover, 522 pages

Publisher InTech

Published online 01, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. Multi-agent

systems can be used to solve problems which are difficult or impossible for an individual agent or monolithic

system to solve. Agent systems are open and extensible systems that allow for the deployment of autonomous

and proactive software components. Multi-agent systems have been brought up and used in several

application domains.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Lorena Rodriguez, Emilio Insfran and Luca Cernuzzi (2011). Requirements Modeling for Multi-Agent Systems,

Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications, Dr. Faisal Alkhateeb

(Ed.), ISBN: 978-953-307-174-9, InTech, Available from: http://www.intechopen.com/books/multi-agent-

systems-modeling-control-programming-simulations-and-applications/requirements-modeling-for-multi-agent-

systems

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

