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1. Introduction

Since its characterization in 2004 [Novoselov et al. (2004; 2005)] graphene has emerged as a
material showing somehow rather unusual and particular characteristics [Castro Neto et al
(2009); Geim (2009); Katselnson et al. (2006)]. In October 2010 A. Geim and K. Novoselov
have been awarded the Physics Nobel Prize for the characterization of graphene. Much of
this particular behavior is due to its nature of a pure two dimensional (2-D) materials made
up of Carbon atoms in a honeycomb lattice. Moreover graphene, can be thought not only
as the constituting material of the well known graphite (made up of a series of graphene
stacks kept together by weak van der Waals bonds), but also as the constituent of other
carbon-based nanomaterial. For instance the well known carbon nanotubes [Charlier et al.
(2007)] can be considered as a rolled-up graphene sheet where edges have been joined.
Fullerene [Andreoni (2000)] on the other hand can be seen as graphene with the presence of
pentagonal defects responsible for the positive curvature that leads to the spherical geometry.
Despite its importance, and despite the fact that graphene sheets could be produced every
time someone uses a graphite-pencil, graphene was isolated and characterized only very
recently, due to the technically difficulties in evidencing its formation. Moreover, even if
theoretical considerations on the electronic structures of a single graphite sheets date back
to the work of Pauling in 1950s [Pauling (1972)], the existence of a purely 2-D systems
was considered as impossible until recently. However, soon afterwards its characterization
graphene has open the way to an impressive mole of experimental and theoretical studies
(see for instance Castro Neto et al (2009) and reference therein), in particular because of
its remarkable electronic properties that make graphene a very important material to be
exploited in the field of molecular and nano-electronics. Technical applications of graphene, or
graphene-based devices, can go from single molecule detection [Schedin et al. (2007)], to field
effect transistors [Novoselov et al. (2004)] and quantum information processing [Trauzettel et
al. (2007)]. One should also cite that the robustness of the σ skeleton of graphene makes it one
of the strongest materials ever tested [Lee et al. (2008)], and this fact obviously suggest the
possible use of carbon-fiber reinforcements in novel composite materials. Although our work
will not focus mainly on the properties of infinite graphene sheets, let us cite that graphene
also proved to be a zero gap semi-metal, characterized by a very high electron mobility.
Moreover, graphene is able to show unusual linearly dispersing electronic excitations: the
electronic excitations in the vicinity of the Fermi level remind those of massless Dirac
fermions. Graphene, therefore, allowed predictions of quantum electrodynamics to be tested
in a solid-state system. It is also noteworthy to cite that many of these findings have been
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anticipated in the framework of independent electrons band theory by Wallace back in 1947
[Wallace (1947)]. Since then, even if theoretical works have become much more accurate
and have benefit of the possibility to compare to experiments, the role of electron-electron
correlation in graphene has been still an object of intense debate [Castro Neto et al (2009)].
Another very interesting problems, strongly related to electronic properties and to the Dirac
fermions, concerns the influence and effects produced by disorder in the physics of electrons
in graphene as well as its transport properties. Some of the parameters developed in the
following of this Chapter, and in particular the localization tensor, could be of seminal
importance in elucidating these effects.
If, as we have briefly recalled, infinite graphene presents absolutely remarkable properties,
also finite-size systems (nano ribbons or nano islands) show a behavior that needs a careful
investigation [Berger et al. (2006)]. In particular the geometry of the islands, and especially
the form of edges, can module the properties of the system in a very impressive way
[Castro Neto et al (2009)]. We would like to stress that in the near past the control over the
nano-islands geometry was rather poor, due to the fact that graphene was produced by a
top-down approaches by stripping away sheets from graphite. Today, on the other hand,
with the emergence of bottom-up approaches, based on controlled deposition on metallic
surfaces (for instance Ruthenium), the control of the final system geometry has significantly
improved, and it is now possible to produce nano-islands of different size and forms with
atomically defined edges [Fernandéz-Rossier & Palacios (2007)], ranging from the quasi-one
dimensional ribbons to the zero-dimension dots. One of the first and better known and studied
finite-size effect on graphene is the emergence of edge-states in the case of nano-ribbons
[Son et al. (2004)]. From a physical points of view this means that the electrons close to
the Fermi level tend to preferentially occupy regions of space that are close to the borders
of the ribbon. This feature has been observed experimentally and has been predicted with
high level ab initio computations for instance by Hod et al. (2008; 2007). It is also known that
the behavior of the nano-ribbon strongly depends on the type of edges, giving rise to the
two well known classes of "zig-zag" and "armchair" edges. More complex structures, such as
hexagonal, rhomboidal and triangular ones, will show an even more complex behavior and
can also give rise to open shell, high multiplicity ground states [Fernandéz-Rossier & Palacios
(2007); Yu et al. (2008); Ezawa (2007)]. This could result in the possibility of rationally design
advanced nano-magnets, also exploiting the connection of different multiplicity sub-units (see
for instance the works of Yu et al. (2008); Trinquier et al. (2010)). In the same way, as suggest
by Fürst et al (2009) the possibility to create antidot graphene lattices, in which graphene
can be artificially periodically perforated to create a precise arrangement of holes, appears
very promising to further control and module electronic properties. All this attempts can be
seen as steps toward the production of metametarials [Pendry et al. (1996)], i.e. materials
that derive their properties from their artificial, man-made, periodic small-scale structure.
Anyway it is noteworthy to cite also all the attempts made to enhance physically properties
of graphene-like structures by their interaction with atoms or small molecules, for instance
following the procedure of the spin doping.

1.1 Magnetic properties of graphene nano-systems

An important feature to rationalize the relation between structure and electronic properties,
and more generally, to study finite size effects on graphene nano-structures, is to recognize
that the honeycomb graphene is composed by a bipartite lattice [Fernandéz-Rossier & Palacios
(2007)], with two compenetrating triangular sublattices A and B. Each atom constituting the
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graphene can be associated to one of the two sublattices, one can therefore speak of A and B
graphene atoms or centers. Moreover, each A atom will only have B nearest neighborings and
viceversa. So for instance, zig-zag edges are composed of atoms that all belong to the same
sublattices, while the same does not hold for armchair edges. Moreover in order to rationalize
the emergence of magnetic properties in graphene nanosystems one can recall the Lieb’s
theorem [Lieb (1989)]. This theorem, also known as the theorem of itinerant magnetism and
usually applied within the framework of the Hubbard one-orbital model, is indeed intended
to predict the total spin of the ground state in bipartite lattices. In particular one can see that
an imbalance on the number of atom in one sublattice will yeld a magnetic ground state with
spin

S =
|NA − NB|

2
(1)

where NA and NB are the numbers of atoms of A and B type respectively. Moreover, in a
Hückel type approximation, |NA − NB| will also be the number of eigenvalues equals to zero.
It is also important to note that the magnetization originating from localized edge-states give
also rise to a high density of states at the Fermi level which in turn can determine a spin
polarization instability. Moreover the relation between the unbalanced number of atoms and
the ground state spin implies that two centers will be ferromagnetically coupled if they belong
to the same sublattice and antiferromagnetically coupled if they do not [Yu et al. (2008)].
If now we will consider triangular type nanoislands (as will be evident in the following
sections) one can see that the two sublattices are unbalanced, i.e. NA �= NB. For this reason,
the fundamental ground state will be a magnetic one, as was confirmed for instance by
Fernandéz-Rossier & Palacios (2007). When, on the other hand, one deals with hexagonal
coronene-like structures NA = NB, the ground state will be a closed shell singlet. In particular,
in the latter case no eigenvalue of the Hückel Hamiltonian will be equal to zero. In reality,
since even if a gap still exist at the Fermi level, increasing the size of the hexagonal island will
diminish the difference between the highest occupied and the lowest unoccupied molecular
orbitals (HOMO, LUMO), thus favoring an open-shell solution. Indeed a quantum phase
transition has been predicted for hexagonal structures leading to a compensated ferrimagnet
[Yu et al. (2008)].
In the following, we will rationalize the relation between magnetic and electronic properties
of graphene nanostructures, presenting also a comparison between the simple Hückel,
tight-binding, Hamiltonian and more sophisticated multireference ab initio ones.

1.2 Modern theory of conductivity: Polarizability and localizability

Graphene and graphene nano-ribbons are known to exhibit a very particular and in some
cases exotic electronic properties [Castro Neto et al (2009)]. Graphene, for instance, is very
well known for being a zero-gap semiconductor, characterized by an infinite electron mobility.
Finite graphene nanoribbons, or Graphene Nano Islands (GNI), on the other hand show
electronic properties that can vary drastically with the geometrical structure and shape [Castro
Neto et al (2009); Fernandéz-Rossier & Palacios (2007); Yu et al. (2008)]. For these reasons, a
study of electronic properties of GNI in the framework of the modern theory of conductivity
[Resta (1998); Resta & Sorella (1999)] can be of valuable importance in order to elucidate the
characteristic of these systems, as well as their correlation with the shape, as was recently
pointed out by Evangelisti et al. (2010).
For readers’ convenience, we report here a brief review of the so called modern theory
of conductivity, explicitating the most relevant quantities appearing in this formalism to
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discriminate between a metal and an insulator.
Modern theory of conductivity first emerged in a well established way with the seminal
works of Kohn in 1964 [Kohn (1964)]. In this work, for the first time, the character of an
insulating state was related not only to the few electronic states close to the Fermi level, as
it was customary on the "classic" theory, but indeed to the ground state as a whole. To use
Kohn’s words, "insulator behavior does not appear to depend on the notion of a filled band, but rather
reflects a certain type of organization of the electrons". Going even further, Kohn affirms that in
the insulating state the electrons "so organize themselves as to satisfy a many electron localization
condition".
Therefore, one can understand that, in this framework, the emergence of a metallic or insulator
behavior is no more related to the opening or closing of a gap at Fermi level but indeed to the
emergence of electron localization or delocalization [Resta & Sorella (1999); Kohn (1964)].
Different authors contributed to the development of the theory in the last years, and in
particular the localization condition invoked by Kohn was given a quantitative indicator
by means of the localization tensor, as defined by Resta and Sorella [Resta (1998); Resta &
Sorella (1999); Aoki & Imamura (1995)]. Although this theory was first derived within Periodic
Boundary Condition, its extension to the case of finite systems is possible, and is clearly much
more appropriate for the systems we want to investigate here [Resta (2005; 2006)].
Suppose we consider an electronic wavefunction |Ψ >, and indicate by r̂i the position operator
of the i-th electron (the position operator being a vector quantity of Cartesian components x,
y, z). Then r̂β will be one Cartesian component of the total position operator

r̂ =
n

∑
i=1

ri (2)

It will be possible to define the localization tensor (or localizability) of the state associated to
|Ψ > as the cumulant of the second-order momentum with respect of the operator r̂ i.e. the
quadratic fluctuation of the position

< rβrγ >c =
1
n

(< Ψ|r̂β r̂γ|Ψ > − < Ψ|r̂β|Ψ >< Ψ|r̂γ|Ψ >) (3)

Notice that the 1
n factor has been introduced in order to eliminate the dependence on the

number of electrons n in the case of identical non interacting subsystems. In the following,
for the sake of simplicity of notation, the locality-tensor components < rβrγ >c will be simply
indicated as ρβγ and the definition of Localizability will be used in analogy with polarizability.
As shown by Resta [Resta & Sorella (1999)]in the case of a metallic system the locality ρ will
diverge, while for insulators it will converge to a finite value. We will also remind that the
locality has been directly related to the macroscopic conductivity σ(ω) by Souza et al. (2000)

ραβ = δαβ
V

n

h̄

πe2

∫ ∞

0

dω

ω
ℜσ(ω) (4)

An equivalent, in the case of a complete expansion space, and in some instances
more convenient expression of the localization tensor can be obtained by invoking the
sum-over-states or spectral resolution formalism as:

ραβ =< Ψ0|(rβ− < rβ >)|(rγ− < rγ >)|Ψ0 >= ∑
k>0

< Ψ0|rβ|Ψk >< Ψk|rγ|Ψ0 > (5)
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Here the vectors |Ψk > are the (excited) eigenvectors of the system while |Ψ0 > represents the
ground state. In this formalism the relation between polarizability and locality becomes much
more evident if one recall the spectral resolution form of the (static) polarizability:

αβγ = 2 ∑
k>0

(

< Ψ0|rβ|Ψk >< Ψk|rγ|Ψ0 >

Ek − E0

)

(6)

where Ek are the eigenvalues corresponding to the Ψk eigenvector, E0 being the ground state
energy. We will also recall that for conducting systems too the polarizability will diverge,
implying, from a more physical point of view, and infinite possibility of deformation of the
electronic cloud of the systems.
Hence, the metallic or insulator characteristic of a system can be investigated by three criteria:

1. Zero energy gap.

2. Infinite per-atom polarizability.

3. Infinite fluctuation of the position operator (Localizability).

Anyway, it has to be pointed out that while the energy gap relates the metallic behavior of
a system only to the states close to the Fermi level the polarizability and the Localizability
are able to-take into account the properties of the whole system as it is clear from the
spectral-resolution formalism.
We would also like to remind that, strictly speaking, since we are dealing with finite systems, it
is clearly impossible to obtain a true metallic behavior. However, the divergent or convergent
behavior of the Localizability (and of the per-atom - or Specific - Polarizability) can be clearly
evidenced. Therefore, one can reasonably speak of a sort of metalicity, or at least of the
presence of “precursors” of metallic characters.

Fig. 1. The (7|3, 2, 1) HGNI. Note that the triangles eliminated from the original
hypertriangulene structure have been represented with dots

The previous formalism has already been applied to the study of metal insulator transition in
different systems, both at ab initio [Vetere et al. (2008)] and tight binding level [Evangelisti et al.
(2010); Monari et al. (2008); Bendazzoli et al. (2010)] and it has been shown that the equivalence
of the previous cited criteria does not always hold. For instance, disordered [Bendazzoli et al.
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(2010)] systems are gapless while being insulator, and graphene nano-ribbons [Evangelisti et
al. (2010)] can show a divergent polarizability and a convergent localizability. For this reason,
modern theory of conductivity proves its uselfullness in giving the possibility of a deeper
characterization of the metallic and insulator states.

2. Hexagonal Graphene Nanoislands

In this section, a possible classification of GNI is proposed and illustrated. We will limit
ourselves to Hexagonal GNI (or HGNI), which are defined as the convex structures that have a
(a priori irregular) hexagonal shape. Because of the hexagonal structure of the building block of
graphene, the hexagonal motifs representing HGNI will have angles of 60, 120 or 180 degrees.
In order to establish a classification of HGNI, we will start from a hypertriangulene having
a side containing Λ hexagons. The most general HGNI that can be derived from it well be
obtained by deleting three triangular patterns out of the triangulene vertices (see Figure 1).
Each one of these three triangles will be uniquely identified by the number of elementary
hexagons of its side, λi, with i = 1, 2, 3. Notice that, in some cases, some of the λi can be zero.
The resulting HGNI will then be indicated by (Λ|λ1, λ2, λ3). In order to avoid any ambiguity,
we will assume

λ1 ≥ λ2 ≥ λ3

Fig. 2. The A "lateral" (dark blue) and B "apical" (dark red) sublattice sites of various HGNI.
Notice in light blue and light red the eliminated lateral and apical sites, respectively, when
λ �= 0. Left the (7|0, 0, 0) triangulene, with a lateral-apical sites difference equal to Λ − 1 = 6.
Center the (7|2, 0, 0) characterized by a lateral-apical sites difference of Λ − λ1 − 1 = 4. Right
the (7|2, 2, 2) coronene that exhibits a lateral-apical sites difference of Λ − ∑i λi − 1 = 0

Notice that, in our notation, the small triangles are not allowed to overlap. This implies that
the sum of two different λ’s must be smaller than (or at most equal to) Λ. Because of the
ordering we have assumed, this condition is automatically fulfilled if we have

λ1 + λ2 ≤ Λ

As we said in the Introduction, Graphene is a bipartite lattice. Therefore, HGNI also are
obviously bipartite lattices. This implies that, at the Hückel level, the number of zero-energy
orbitals is given by the difference between the two types of lattices.
Let us consider a triangulene structure. With our previous notation, it will be described as
(Λ| 0, 0, 0). The lattice sites will be called “lateral” (blue in Figure 2) or “apical” (red in Figure
2). In particular, lateral sites will be defined as the Carbon atoms on one of the three edges in
the (Λ| 0, 0, 0) triangulene, while the three terminal atoms will be apical.
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Fig. 3. HGNI obtained from the (7|0, 0, 0) triangulene. Left the (4|0, 0, 0) triangulene. Center
the (7|2, 2, 2) coronene. Right the (7|2, 2, 0) pyrene. Eliminated triangles represented with
dots

If one looks at Figure 2, it is straightforward to note that the difference between A and B sites
is equal to the difference between lateral and apical sites. On the other hand it is also evident
that the lateral sites outnumber the apical ones by Λ − 1.
When a triangular portion is cut at a triangulene vertex, the difference between the lateral
and apical sites is reduced by λ. As a general result, we obtain that the difference between the
lateral and apical sites (referred to the original triangulene structure) is given by

Λ −
3

∑
i=1

λi − 1

The modulus of this quantity gives the number of zero-energy orbitals of the system if treated
at the Hückel level, n0.
It is useful to consider some special cases (see Figure 3):

• Triangulenes: They are described by the pattern (Λ| 0, 0, 0), and have n0 = Λ− 1. They can
also be obtained by cutting three identical triangular portions having side λ out an original
triangulene having side equal to 2λ + 1: (2λ + 1|λ, λ, λ) = (λ + 1| 0, 0, 0).

• Coronenes: They are characterized by the pattern (3λ + 1|λ, λ, λ), which implies that n0 =
0.

• Pyrenes: The are characterized by the pattern (2λ + 1|λ, λ, 0), which also implies that n0 =
0.

Finally, we notice that HGNI having a D3h symmetry are obtained if and only if the three λi

are equal: (Λ|λ, λ, λ), which gives n0 = |Λ − 3λ − 1| It is possible to start from a triangular
structure and, by adding hexagons on the sides, to pass through a series of D3h shapes, finally
ending up with a larger triangulene:

(2λ + 1|λ, λ, λ)
(2λ + 1|λ − 1, λ − 1, λ − 1)
(2λ + 1|λ − 2, λ − 2, λ − 2)
...
(2λ + 1|0, 0, 0)

If λ is an integer multiple of 3, the series will pass from the coronene (2λ + 1| 2
3 λ, 2

3 λ, 2
3 λ).
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3. Computational details

In this Section, we will recall the computational details and strategies used in the present
work. In particular the details concerning both the ab initio and the tight binding approach will
be discussed.

3.1 Tight binding

All the computation at the tight binding (Hückel in the language of Chemists) level have been
performed by using a specific home-made code [Evangelisti et al. (2010)]. In particular, the
diagonalization of the Hückel Hamiltonian, in order to get the eigenvectors and eigenvalues,
have been performed by using high efficiency BLAS and Lapack [lapack (1999)] subroutines.
The Hückel Hamiltonian has been constructed starting from the connectivity of each carbon
atoms in each HGNI, defining

〈i|Ĥ|i〉 = α = 0 (7)

and

〈i|Ĥ|j〉 = βγij (8)

where γij is 1 if i and j are different sites connected in the HGNI skeleton, and 0 otherwise.
We remind that −β is sometimes called the hopping integral t in physical literature. In HGNI,
due to a more complex connectivity, the Hückel Hamiltonian matrix will not be a tridiagonal
one, as it is customary in model linear systems (polyacetilene).
As will be discussed in the next section for some systems by diagonalization of the
Hamiltonian we obtained some strictly zero eigenvalues, in that case we considered the
system as an open shell one, and each zero eigenvector was considered as a half filled orbital.
Polarizability and Localizability have been computed by direct application of equations 4 and
5, anyway we would like to stress that since we are dealing also with open shell systems it
was necessary to compute separately the contribution coming from spin up and spin down (α
and β) electrons.

3.2 Ab initio

All the ab initio calculations have been performed by using the MOLPRO [Knowles & Werner
(2002)] Quantum-Chemistry package. The nanostructures investigated at ab initio level have
at least a D3h symmetry. Coronene islands are more symmetric, having a D6h point-group
symmetry. However, most ab initio codes (and MOLPRO is one of these) are able to treat only
abelian subgroups. Because of this symmetry constraint, calculations have been performed in
C2v and D2h instead of D3h and D6h, respectively. All HGNI edges have been saturated with
Hydrogens atoms.
In ab initio calculations, all the angles concerning connected atoms have been fixed to the ideal
value of 120 degrees. The internuclear C-C distance between connected atoms was fixed at 1.4
Å, while the corresponding C-H distance was fixed at 1.0 Å.
The atomic basis set is the minimal STO-3G [Hehre et al. (1969)] contracted gaussian basis for
both Carbon and Hydrogen. Although this basis set is certainly too small to give quantitatively
reliable results, it is known to reproduce correctly the qualitative behavior of many organic
and inorganic systems. Its reduced size, on the other hand, permits to investigate at a
correlated ab initio level systems whose size is relatively large.
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Fig. 4. The tight binding energy spectrum of some triangulene (left panel) and coronene
(right panel) structures. In the boxes see a zoom of the Fermi level

The systems have been studied at Complete Active Space Self Consistent Field (CAS-SCF)
level [Roos et al. (1980)], and Multi-Reference Perturbation-Theory level by using the
n-electrons valence perturbation theory (NEVPT2) formalism [Angeli et al. (2001; 2002; 2007)].
In all the CAS-SCF calculations, the active space has been selected by choosing the orbitals
that are strictly degenerated at Hückel level. The orbitals have been optimized at RHF level
for the high-spin wavefunction. These same orbitals have been then frozen for the CAS-SCF
calculations on the other spin multiplicities. In this way, our calculations are actually of
CAS-CI type. The NEVPT2 formalism has then be applied to these CAS-CI wavefunctions
in order to recover the dynamic correlation.

4. Results and discussion

The different behavior of Coronenes and triangulene finite size graphene structure will be
illustrated in this Section. In particular we will first consider the tight binding approximation,
before switching to an ab initio approach that allows us to better analyze the magnetic behavior
of such systems.

4.1 Tight binding

Even if the tight-binding approach represents a crude approximation of a chemical systems,
it can be important to sketch out some general tendencies, and to elucidate the behavior of
different classes of compounds. This is particularly true since it allows the treatment of very
large systems due to its extremely reduced computational cost.
The tight binding (Hückel) calculations of the different HGNI show, first of all, a quite
different behavior between the triangulene and coronene classes. This difference is another
confirmation of the very important role played by the finite size effects in graphene
nano-islands. The energy spectra of some Triangulenes are shown in the left panel of Figure 4,
while Coronenes are shown in the right panel (Notice that the spectra have been normalized
with respect to the number of carbon atoms, and therefore with respect to the number of
eigenvalues for graphical reasons). If the tail of the spectra looks similar between the two
classes of compounds and between islands of different size, a remarkable difference can
be seen at the Fermi level. As expected, [Fernandéz-Rossier & Palacios (2007); Yu et al.
(2008)] Coronenes show a gap at the Fermi level, while Triangulenes shows the presence of
some degenerate energy eigenvalues at the Fermi level. As can be seen on Table 1, where
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system nC N f αx ρx

(4|1,1,1) 24 0 0.37321 0.48330

(7|2,2,2) 54 0 0.62249 0.59056

(3|0,0,0) 22 2 0.40466 0.48802

(5|0,0,0) 46 4 0.53029 0.55306

(7|0,0,0) 78 6 0.64423 0.59801

(4|0,0,0) 33 3 0.46865 0.52370

(7|1,1,1) 69 3 0.71761 0.61768

Table 1. Localizability (ρ) and Specific Polarizability (α), in arbitrary units, for the
tight-binding approximation; nC indicates the number of Carbon atoms; n0 represents the
number of states at the Fermi level, i.e. having an eigenvalue exactly zero.

the number of zero level is reported, the Lieb theorem is exactly respected, as well as our
empirical formula. Moreover the Lieb theorem appears also to be respected for intermediate
structures like the (7|1,1,1) island, which present three zero-energy levels again as predicted
from our formula. The magnetic levels arise from orbitals concentrated at the edge of the
structure (edge states). This will induce a concentration of the spin density at the border of the
island, as can be seen in Figure 5, where the Hückel spin density for the (7|0,0,0) triangulene
has been shown. The spin density has been obtained by using Hückel eigenvectors and
considering an occupation equal to one of the degenerate zero-energy eigenvalues. For
graphical reasons, an arbitrary totally symmetric gaussian function has been placed on each
Carbon center.

Finally if one enlarges the island the effect imposed by the different edges, and by the
unbalancement of apical and lateral sites becomes less important. The HGNI energy spectrum
is expected to converge toward the infinite graphene structure. In Figure 6 we report the
spectra of the (121|40,40,40) coronene and of the (95|0,0,0) triangulene (both structures
having about 10,000 carbon atoms). The two spectra are nearly superposable, even if a slight
difference still remains in the close vicinity of the Fermi level. Indeed even if coronene will
present a gap, while triangulene will be gapless, the energy difference between occupied
and unoccupied orbitals in the first system will become smaller and smaller with the system
size, tending to the gapless spectrum of infinite graphene. This fact can be considered as
the origin of the spin instability of large coronene systems, for which the ground state will
be an open shell one instead of a closed shell. In Table 1 we also report the values of the
specific (i.e. per atom) polarizability and Localizability of the different classes of compounds.
We can see that for small size HGNI the two parameters behave in a similar way with the
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Fig. 5. The tight binding spin density of the (7|0,0,0) triangulene (septuplet state)

system size, and within the different classes of compounds although polarizability appears to
have a slightly higher value than Localizability. In Figure 7 we report the behavior of specific
polarizability and Localizability for triangulenes of different sizes up to the (100|0,0,0) HGNI.
If Localizability appears to converge to a value close to 1, specific polarizability diverges
linearly (implying an overall quadratic divergence of the polarizability). These results, which
shows a qualitatively different behavior of the two indicators, can be considered to be in
coherence with the observation that extended graphene is a semiconductor with infinite
electronic mobility.

4.2 Ab initio

In Table 2, we report CAS-SCF and NEVPT2 computations on different graphene nano-island.
In particular, as stated in Computational Details, we included in the active space the orbitals
that give rise to the degenerate zero-energy manifold at tight-binding level. This choice
assures to obtain a Multi-Configurational wavefunction that is able to correctly represent
the physics of the problem, without presenting an explosive size of the configuration space.
As it was already evident at Hückel level, the splitting of the different levels follows
quite remarkably the Lieb theorem for a Hubbard bipartite lattice. Indeed, in the case of
Triangulenes, the electronic state with multiplicity coherent with the Lieb theorem (n0 + 1,
where n0 is the difference between apical and lateral sites) is the ground state. The same is
true for the (7|1,1,1) intermediate system. In a similar way, Coronenes, at least for the size of
the ones investigated here, show always a singlet ground state.
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Fig. 6. The tight binding energy spectrum of (121|40,40,40) coronene and (95|0,0,0)
triangulene both tending to the infinite graphene spectrum

The same effects can be seen on the left and right panel of the Figure 8, where we report the
energy of the different multiplicity state, with respect to the highest multiplicity ground state,
of different odd Triangulenes at CAS-SCF and NEVPT2 level.
As far as the effect of the size of the island is concerned, one can easily see that the energy
splitting is large in larger structures. Therefore, one can assume that enlarging the structure
will tend to favor the ferromagnetic coupling of the unpaired electrons. Rather interestingly,
on the other hand, the inclusion of the dynamic correlation (at NEVPT2 level) determines a
very strong lowering of the ferromagnetic coupling, up to a factor of one half in the case of odd
Triangulenes. Probably this means that the relaxation of the other π double occupied orbitals
induce a rather important stabilization of the low spin states. We would like to stress that, to
such a magnitude, this phenomenon is quite uncommon in the magnetic spectrum of organic
and inorganic magnetic materials, thus suggesting a peculiar role played by the graphene-like
electronic structure.

5. Conclusion

We have reported a tight binding and ab initio study of graphene triangular and hexagonal
nano structures. In particular, we proposed a general classification of these structures based
on an index Λ and three indices λi. We showed how Coronene and Triangulene classes of
HGNI can be easily identified within this classification via an opportune choice of the indices.
By using the Lieb theorem and considering that graphene is actually a bipartite lattices, we
showed how it is possible to guess the magnetic properties of these nano-structures from the
values of Λ and λi. This heuristic findings have been confirmed also by high level ab initio
computations. We also showed how the magnetic properties of Triangulenes structures are
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Fig. 8. The CAS-SCF (left panel) and NEVPT2 (right panel) magnetic spectrum for the odd
Triangulenes with respect to the highest multiplicity ground state. Energy in hartree

given by edge states and orbitals, giving rise to a concentration of the spin density at the
border. However, we underlined how the particular nature of graphene induces a specific
behavior of the magnetic spectrum. In particular, the ferromagnetic coupling is very strongly
reduced by the inclusion of dynamical correlation.
The behavior of graphene nano-islands has also been studied in the framework of the modern
theory of conductivity, in particular by using the localization tensor (Localizability) and the
polarizability. We showed how, in the limit of an extended graphene sheet, the two indicators
of a metal-insulator transition behave in a qualitatively different way: while polarizability
diverges Localizability shows a convergence. This fact can be ascribed to the nature of

315Finite-Size Effects in Graphene Nanostructures

www.intechopen.com



system nC nH S ECAS−CI ENEVPT2

(4|1,1,1) 24 12 1 0.00000000 0.00000000

(7|2,2,2) 54 18 1 0.00000000 0.00000000

(3|0,0,0) 22 12 3 0.00000000 0.00000000
1 0.07504935 0.03331113

(5|0,0,0) 46 18 5 0.00000000 0.00000000
3 0.03924909 0.01935507
1 0.08033144 0.03242700

(7|0,0,0) 78 24 7 0.00000000 0.00000000
5 0.02271725 0.01135881
3 0.04009214 0.02078559
1 0.04647274 0.02467302

(4|0,0,0) 33 15 4 0.00000000 0.00000000
2 0.03632651 0.02469043

(7|1,1,1) 69 21 4 0.00000000 0.00000000
2 0.00466476 0.00624823

Table 2. Relative Energies (hartree) of nanoislands species, computed at ab initio level:

extended graphene, that is known to behave like a gapless semi conductor with infinite
electron mobility. These results also confirm how the use of modern theory of conductivity
can be of valuable importance in the study of exotic materials.
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