
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

1. Introduction

The fast growing complexity of modern integrated circuits and rapid changes in technology
pose a number of challenges in testing of electronic products. With the introduction of surface
mounted devices, small pitch packaging becomes prevalent, which makes the access to the
test points on a board either impossible or at least very costly. Traditional in-circuit test
techniques that utilize a bed-of-nails to make contact to individual leads on a printed circuit
board have become inadequate. This forced the development of a boundary-scan approach
that is already widely adopted in practice (Khalil et al., 2002; Parker, 2003). But, a limited
number of input/output pins represents a bottleneck in testing of complex embedded cores
where transfers of large amounts of test patterns and test results between the automatic test
equipment (ATE) and the unit-under-test (UUT) are required. However, the implementation
of a built-in self-test (BIST) (Garvie & Thompson, 2003) of the UUT with on-chip test pattern
generation (TPG) and on-chip output response analysis logic presents an efficient solution.
Then the communication with external ATE is reduced to test initiation and transfer of test
results. This approach has the drawback, while BIST implementation leads to the area
overhead, causing longer signal routing paths. Therefore, we need to minimize this BIST
logic.
Different TPG structures have been proposed in the past. In general, they can be classified
as ROM-based deterministic, algorithmic, exhaustive and pseudo-random. In the first
approach, deterministic patterns are stored in a ROM and a counter is used for their
addressing, (Edirisooriya & Robinson, 1992). The approach is limited to small test pattern
sets. Algorithmic TPG are mostly used for testing regular structures such as RAMs (van de
Goor, 1991). Exhaustive TPG is counter-based approach that is not able to generate specific
sequence of test vectors. With some modifications, however, counter-based solutions are able
to generate deterministic test patterns, (Chakrabarty et al., 2000). Pseudo-random TPG is
most commonly applied technique in practice; here Linear Feedback Shift Register (LFSR) or
Cellular Automata (CA) are employed to generate pseudo-random test patterns. In order to
decrease the complexity of a TPG, designers usually try to embed deterministic test patterns

Gregor Papa1 and Tomasz Garbolino2

1Computer Systems Department, Jožef Stefan Institute, Ljubljana
2Institute of Electronics, Silesian University of Technology, Gliwice

1Slovenia
2Poland

Stochastic Approach to Test Pattern
Generator Design

4

www.intechopen.com

into the vector sequence generated by some linear register. Such embedding can be done
either by re-seeding a TPG or modifying its feedback function (Hellebrand et al., 1995). Some
solutions also modify or transform the vector sequence produced by a LFSR in such a way
that it contains deterministic test patterns (Bellos et al., 2002; Fiser, 2007; Hakmi et al., 2007;
Touba & McCluskey, 2001).
Regarding the way the test patterns are delivered to the UUT, there are also different
approaches. In the test-per-scan approach each test pattern first needs to be shifted in a scan
path during several clock cycles before it is applied to the inputs of the UUT (Hakmi et al.,
2007; Touba & McCluskey, 2001). This usually leads to long testing times. If a shorter test
duration is required, test-per-clock method has to be adopted (Chakrabarty et al., 2000; Fiser,
2007; Garbolino & Papa, 2008), so that each test pattern is produced and stimulates the UUT
inputs in a single clock cycle.
Some types of non-concurrent on-line BIST (Aktouf et al., 1999) may require TPG structures
that are capable to generate the set of precomputed deterministic test patterns in the minimum
number of clock cycles. In one of the first approaches the set of predefined test vectors is
encoded into an appropriately designed network of the OR gates (Dufaza et al., 1993). In
turn, the solution proposed in (Bellos et al., 2002) uses a network of XOR gates to transform
a sequence of consecutive vectors produced by a LFSR into a sequence of deterministic
test patterns. In (Garbolino & Papa, 2008; 2010) a Multi-Input Signature Register (MISR) is
combined with a combinational logic which modifies its state diagram in such a way that the
MISR generates a sequence of expected deterministic test patterns. A method of designing a
deterministic TPG based on non-uniform CA was proposed in (Cao et al., 2008), while another
solution employs a group of small Finite State Machines (FSMs) to generate a relatively short
vector sequence that contains all deterministic test patterns (Sudireddy et al., 2008).
The proposed LFSR structures are based on D-type flip-flops, while in recent years LFSR
composed of D-type and T-type flip-flops or even of T-type flip-flops only, has been gaining
popularity. The main reason is its low area overhead and high operating speed (Garbolino
& Hlawiczka, 1999; Garbolino et al., 2000). Some applications of such a type of LFSRs can
be found in (Garbolino & Hlawiczka, 2002; Garbolino & Papa, 2008; Novák et al., 2004).
In particular, works (Garbolino & Hlawiczka, 2002) and (Garbolino & Papa, 2008) present
some concepts of optimizing the LFSR structure containing D-type and T-type flip-flops for
generation of deterministic test pattern sets.
Evolutionary stochastic techniques for the optimization of hardware are widely used (Bolzani
et al., 2007; Drechsler & Drechsler, 2002; Guo et al., 2007; Mazumder & Rudnick, 1999).
In (Sanchez & Squillero, 2007) a software-based methodology that automatically generates
test programs is described. The methodology is based on an evolutionary algorithm able
to generate test programs for different microprocessor cores. In (Corno et al., 2000) an
automatic approach, based on genetic algorithm (GA), targeting processor cores is described
that computes a test program able to attain high fault coverage figures.
GA has also been used for the derivation of test pattern sets for target UUTs (Corno, Prinetto,
Rebaudengo & Sonza Reorda, 1996), and for optimization of test sequence for weighted
pseudo-random test generation to achieve the best test efficiency (Favalli & Dalpasso, 2002).
As regards the synthesis of the TPG logic for actual generation of the derived test patters, GA
approach has also been used for the solutions based on CA (Corno, Prinetto & Sonza Reorda,
1996). A detailed summary and analysis of various test pattern generation techniques based
on GA is presented in (Fin & Fummi, 2003).

76 Stochastic Optimization - Seeing the Optimal for the Uncertain

www.intechopen.com

The work presents a design approach of a deterministic TPG logic based on a LFSR, that is
composed of D-type and T-type flip-flops. The use of LFSR for TPG eliminates the need of
a ROM for storing the seeds since a LFSR itself jumps from a state to the next required state
(seed) by inverting the logic value of some of the bits of its next state. In contrast to (Garbolino
& Papa, 2010) here the counter is connected to the inputs of the modification function. The
search for the proper LFSR employs a GA to find an acceptable practical solution in a large
space of possible LFSR implementations, where the goal is to develop a TPG that would
generate only the required test vectors. Here, we concurrently optimize the TPG structure
(type of flip-flops, presence of inverters), the order of patterns in test sequence, and the
bit-order of a test pattern.
The rest of the chapter is organized as follows: in Section 2 we describe the TPG structure,
and give an example of area minimization through the modification of the TPG structure and
its test vectors; in Section 3 we describe the GA and the work of its operators; in Section 4 we
describe the optimization process and evaluate it; and in Section 5 we draw the conclusion.

2. TPG structure

A TPG is initialized with a given deterministic seed and run until the desired fault coverage is
achieved. The test application time using an LFSR is significantly larger than what is required
for applying the test set generated using a deterministic TPG; vector set generated by a LFSR
includes not only useful vectors but also many other vectors that do not contribute to the fault
coverage. In our approach, the goal is to develop a TPG that would generate only the required
test vectors (i.e., with no intermittent non-useful vectors).

Fig. 1. Block diagram of the n-bit TPG.

A general block diagram of the proposed n bit test pattern generator is shown in Figure 1. A
TPG contains k MSIRs which operation is synchronized by a common clock signal clk. A MISR
is a variant of a LFSR that is additionally equipped with parallel inputs. A bit vector applied to
the parallel inputs of a MISR influences the sequence of vectors produced at the outputs of the
register. The k′ MISRs have width N while the width of k” remaining registers is N + 1, where
N = n/k , k” = (n MOD k) and k′ = k − k”. Parallel inputs of all MISRs are connected to
the outputs of the common block of a combinational logic, which is called a modifying logic
because its aim is to modify the MISRs’ state diagrams. Outputs of all registers are in turn
fed back to the inputs of the modifying logic block. Moreover, the modifying logic may be
optionally fed by the outputs of a test pattern counter (TPC), which anyway has to be present
in any BIST structure. We expect that the latter property should simplify optimization of the
modifying logic and enable its further reduction by a synthesis tool. In this study we take into
account two types of TPCs, namely binary and one-hot counter.

77Stochastic Approach to Test Pattern Generator Design

www.intechopen.com

Fig. 2. Scheme of the j-th N-bit MISR.

A scheme in Figure 2 shows an internal structure of the MSIR and interconnections between
the register and the modifying logic. The MISR is composed of N cells connected in series and
always has a global feedback path connecting the serial output (SO) of the last stage to the
serial input (SI) of the first stage. Some other cells, depending on their internal structure, may
also have their feedback tap (FT) inputs connected to the global feedback path (connections
marked by a dotted line). The parallel input (PI) of each cell is controlled by an output of the
modifying logic. Parallel outputs (PO) of the cells constitute the actual outputs of a TPG and
at the same time they are fed back to the inputs of the modifying logic module.
A general scheme of the i-th cell of the MISR is presented in Figure 3. The cell contains a
D- or T-type flip-flop. The input of the flip-flop is fed by the logic implementing a XOR or
XNOR function of the cell’s inputs: serial input SI, parallel input PI and - in a case of some cell
structures - feedback tap input FT. The output Q of the flip-flop is connected to the parallel
output PO of the cell either directly or via an inverter. It is also connected to the serial output
SO of the cell. All elements of the cell that are optional and may or may not be present in
its particular configuration are marked grey in Figure 3. Thus, a single cell may have 16
different structures. An exception are the first and the last cell of a MISR, which have only 8
different structures. In consequence, the number α of different structures of a N-bit MISR is
α = 16N−2 + 82 = 24N−2.

Fig. 3. A general scheme of an i-th cell of a MISR.

The modifying logic - which is a simple combinational logic and acts as a decoder - allows
that in the subsequent clock cycles the contents of the MISR assumes the values specified by
the target test pattern set. Hence the MISR and the modifying logic are application specific:
they are synthesized according to the required test pattern set.

78 Stochastic Optimization - Seeing the Optimal for the Uncertain

www.intechopen.com

Particularly important parameter in the case of deterministic test pattern generators is the area
overhead, which is influenced by:

• a structure of each stage in each MISR,

• an order of the test patterns in a test sequence,

• a bit-order of the test patterns,

• a number of MISRs in a TPG.

The first factor influences the complexity of both the MISR and the modifying logic, only. The
relationships are illustrated below with the use of a simple TPG designed for TSMC 0.35 µm
technology.

Initial structure and test vectors

Having the set of seven 5-bit vectors the resulting structure of a TPG is shown in Figure 4.
It is assumed that all flip-flops in the scheme are scannable. A T-type flip-flops comprise a
scannable D-type flip-flop and a XOR gate. The total complexity of the initial structure of a
TPG is 55 equivalent gates.

Fig. 4. TPG structure modification: initial solution.

Flip-flop type replacement

Replacing the T-type flip-flop with the D-type one in the stage No. 4 of a TPG, the new
configuration of a TPG is presented in Figure 5. The replacement of the type of the flip-flop
has lead to reduction of the total complexity of a TPG structure to 51 equivalent gates.

Column permutation

Permutation of columns of the test pattern sequence further decreases the area of a TPG. If
we permute columns in the test sequence as illustrated in Figure 6, a TPG is simplified to the
structure with the area of 49 equivalent gates.

Vectors permutation

Further we can permute test patterns in the test sequence. Exchanging the order of test
patterns in the test sequence, like shown in Figure 7, simplifies a TPG structure to the area
of 38 equivalent gates.

79Stochastic Approach to Test Pattern Generator Design

www.intechopen.com

Fig. 5. TPG structure modification: after replacing the flip-flop type.

Fig. 6. TPG structure modification: after permutating columns.

Fig. 7. TPG structure modification: after permutating vectors.

Fig. 8. TPG structure modification: after MSIR structure splitting.

80 Stochastic Optimization - Seeing the Optimal for the Uncertain

www.intechopen.com

Structure splitting

Splitting a MISR structure into several parts (Figure 8) may potentially lead to the further
reduction of its area. Implementing the exemplar TPG in the form of two independent MISRs
results in the structure whose complexity is only 35 equivalent gates.
A change of the MISR structure, the order of the test patterns in a test sequence, the bit-order
of the test patterns and the number of parts a MISR is split to may result in a substantial
reduction of the TPG area. The solution space is very broad: for an n-bit TPG producing the
sequence of m test patterns there are about 24n−2km!n!n possible solutions; therefore, effective
optimization procedure is required to find an acceptable practical solution.

3. Genetic algorithm

The intelligent stochastic optimization is implemented through genetic algorithm (GA)
(Goldberg, 1989). The GA’s intrinsic parallelism allows searching within a broad database
of solutions in the search space simultaneously. There is some risk of converging to a local
optimum, but efficient results in other optimization problem areas (Korošec & Šilc, 2008;
Papa & Koroušić-Seljak, 2005; Papa & Šilc, 2002) encouraged us to use GA approach in TPG
synthesis optimization. Our version of the GA, which was already presented in (Garbolino
& Papa, 2010), is adapted to the problem to be able to optimize multiple design aspects, i.e.,
type of flip-flops, presence of inverters, order of patterns in test sequence, and bit-order of a
test pattern.

3.1 TPG encoding

In the initialization phase of the GA the structure of a TPG, order of test patterns, and their
bit order are encoded with three different chromosomes. These three chromosomes do not
interact with each other, but are used to concurrently optimize the structure of a TPG, the order
of the test patterns, and the bit order of test patterns. They have to be optimized concurrently
since their influence on the final solution is interdependent.
The first chromosome, which encodes the structure of n-bit TPG, looks like

C1 = i11i12i13i14 . . . in1in2in3in4, (1)

where ijx represents a binary value; j (j = 1, 2, . . . , n) determines each flip-flop and x
determines the properties of a flip-flop (see Table 1).

position property value 0 value 1
1 flip-flop type D-type T-type
2 inverted input no inverter inverter
3 feedback input no feedback feedback
4 inverted output no inverter inverter

Table 1. Flip-flop properties

The second and third chromosome, which encode the order of the test patterns, and the bit
order of test patterns, look like

C2 = a1a2 . . . am, (2)

81Stochastic Approach to Test Pattern Generator Design

www.intechopen.com

Fig. 9. Crossover: TPG configuration (top), pattern and bit orders (bottom).

where m is the number of test vectors and aj (j = 1, 2, . . . , m) is the label number of the test
vector from the initial vector list, and

C3 = b1b2 . . . bn, (3)

where n is the number of flip-flops in the structure and bj (j = 1, 2, . . . , n) is the label number
of the bit order of the initial test patterns.

3.2 Population initialization

The population consists of N chromosomes, of each type. Depending on requirements and
input settings, the initial chromosome of the configuration can be set as (i) random values on
all positions, (ii) with values 0 on all positions, (iii) with values 1 on all positions, (iv) based
on some input configuration. For the last three possibilities the values are permutated with
some given probability to avoid identical chromosomes.
The initial chromosomes for orders are set as (i) random distribution of order values or (ii)
consecutive order of numbers. In the latest case some chromosomes are permutated to ensure
versatile chromosomes. While the numbers in these two chromosomes represent the order
of patterns or bits in patterns, their values cannot be duplicated and also consecutive values
cannot be missed; both conditions must be considered during the initialization.

3.3 Genetic operators

The elitism strategy prevents losing the best found solution by memorizing it. Better
solutions have more influence on the new generation due to the substitution of the least-fit
chromosomes with the equal number of the best-ranked chromosomes. The ratio of all
chromosomes in the population to be replaced is set by r.
In a two-point crossover scheme, chromosome mates are chosen randomly and, with a
probability pc, all values between two randomly chosen positions are swapped. This leads
to the two new solutions that replace the original solutions. Figure 9(top) shows the example
of crossover with crossover points on positions 3 and 12.
The crossover in case of test patterns order and bit-order of the test patterns is performed with
the interchange of positions that store the ordered numbers within the range (order-based
crossover); for an example within the range [2, 4], see Figure 9(bottom).
In the mutation process each value of the chromosome mutates with a probability pm . Since
a high mutation rate results in a random walk through GA search space, pm has to be low
enough. Two different types of mutation are applied (see Figure 10 for details): bit inversion
that changes the configuration for the first chromosome and position-based mutation for the
other two chromosomes, where pattern order and bit order are changed.

82 Stochastic Optimization - Seeing the Optimal for the Uncertain

www.intechopen.com

Fig. 10. Mutation: TPG configuration (top), pattern and bit orders (bottom).

3.4 Fitness evaluation

After modifying the solutions, the whole new population is ready to be evaluated. The
external evaluation tool is used to evaluate each new chromosome created by GA, and TPG
cost approximation is obtained for each solution. The obtained cost approximation does not
exactly represent an area overhead of the given solution. It rather reflects in quantitative
form some set of properties of TPG that make its structure either more or less susceptible for
effective area reduction during actual synthesis process.
On the basis of the equations for the register’s next-state, values of the outputs of the
modifying logic for each vector but last in the test sequence can be derived. In (Garbolino
& Papa, 2008) an Espresso (UC Berkeley, 1988) boolean optimization software was used for
approximate cost estimation of the modifying logic. On the one hand, the cost approximation
provided by the Espresso software was quite accurate in majority of cases. On the other hand,
however, its use led to long computation times of a GA what limited the applicability of the
complete tool to small and medium size circuits only. Moreover, the approach proposed
in (Garbolino & Papa, 2008) was focused on reducing an area of the modifying logic only,
neglecting the complexity of MISR at all.
In this work the authors used a new function fc for cost evaluation of the TPG, which
was already proposed in (Garbolino & Papa, 2010). The detailed formula of the function is
provided below:

fc(TPGi) = CMISR
xi

X
+ CMF

bi

B

1 − li

n

1 − ei

n
, (4)

where

• n is the width of test patterns, the number of stages of the TPG, the maximum number of
outputs of the module implementing modification function;

• m is the number of patterns in a test sequence;

• i is the index of the given individual in the population, i.e. the index for the TPG structure
and its parameters;

• TPGi is the structure of the TPG corresponding to the i-th individual in the population;

• CMF and CMISR are the coefficients that enable a user to control whether to put more stress
on minimizing the complexity of modifying logic or a MISR, respectively;

• xi is the number of XOR gates required to implement the MISR for the TPGi structure;

• X is the maximum number of XOR gates that may be used to built up the n-bit MISR
composed of D- and T-type flip-flops (X = 3n − 1 in the case where there is a T-type
flip-flop, feedback tap and parallel input in every stage of the MISR);

• bi is the total number of bit flips at the outputs of the module implementing modification
function for the TPGi structure, produced during the generation of deterministic test
patterns in consecutive m clock cycles;

83Stochastic Approach to Test Pattern Generator Design

www.intechopen.com

• B is the maximum possible number of bit flips at the outputs of the module implementing
modification function during m consecutive clock cycles (B = n(m − 2));

• li is the number of the outputs of the module implementing modification function for the
TPGi structure that keep constant value during generating deterministic test patterns in
consecutive m clock cycles;

• ei is the total number of MISR inputs that can be fed from the same output of the module
implementing modification function for the TPGi structure.

The cost evaluation function aims at reducing the size of the modifying logic module by
minimizing the number of bit flips bi at the outputs of the module. In addition, it favors
such structures of the TPG in which some number (li) of parallel inputs of the MISR can
be driven by a constant value or where several (ei) parallel inputs of the MISR can be
driven by the same output of the modifying logic module. At the same time the function
promotes the less complex structures of the MISR by reducing the number xi of XOR gates
that are necessary to construct the register. Through appropriately setting the values of CMF

and CMISR coefficients, the user may decide whether the function will put more stress on
minimizing the complexity of modifying logic or a MISR.
Note that the functionality of the inverter at the input of the flip-flop can be implemented by
substituting the XOR gate with the XNOR one, or vice versa. Similarly, instead of adding the
NOT gate at the Q output of the flip-flop, the complemented output Q can be used. Therefore,
an employment of the inverted inputs or outputs of the MISR does not influence the cost of
the register and that is why the number of inverters has not been involved in the TPG cost
evaluation function fc.
It turned out that the TPG structures with lower value of the cost evaluation function tend to
have lower area overhead than those with higher value of the function. Moreover, although
the function delivers less accurate cost approximation than Espresso software, it is much faster
and it tries to reduce the area overhead of the whole TPG instead of modifying logic only.

4. Results

The initial TPG structure is based on the desired sequence of test patterns. The GA operators
try to make new configuration while checking the allowed TPG structure and using the
external evaluation tool. The evaluation tool calculates the cost of a given structure. The
best structure, found during the optimization, is chosen and implemented.
Considering the chromosome length and short pre-experimental tests we set GA parameters
to give the results in an acceptable computing time. Population size for each circuit was in the
range from 60 to 300 (depending on circuit complexity), while the number of generations was
about 5 times the population size. Crossover and mutation probabilities did not change with
circuits and were 0.8 and 0.01, respectively.
The results are presented for all ISCAS’85 and some ISCAS’89 test benchmark circuits.
These circuits are used to benchmark various test pattern generation systems. ISCAS
benchmark suite has been introduced in simple netlist format at the International Symposium
of Circuits and Systems in 1985 (ISCAS’85), and was expanded with additional circuits at 1989
Symposium. ISCAS’85 benchmarks are purely combinational circuits while these belonging
to the ISCAS’89 set are sequential structures equipped with a scan path.
The compact sets of deterministic test patterns for ISCAS’85 and ISCAS’89 circuits were
obtained from MINTEST ATPG tool (Hamzaoglu & Patel, 1998). For each benchmark, the

84 Stochastic Optimization - Seeing the Optimal for the Uncertain

www.intechopen.com

Circuit Test Number
pattern of test
width patterns

c432 36 27
c499 41 52
c880 60 16
c1355 41 84
c1908 33 106
c2670 233 44
c3540 50 84
c5315 178 37
c6288 32 12
c7552 207 73
s349 24 13
s382 24 25
s386 13 63
s400 24 24
s444 24 24
s510 25 54
s526 24 49
s1196 32 113
s1238 32 121
s1494 14 100
s5378 214 97
s9234 247 105

Table 2. Benchmark properties.

test pattern width (number of inputs of the circuit under test) and the number of test
patterns (number of test vectors that are mutually different and together provide 100% fault
coverage of stuck-at faults in the circuit) are given in the second and third column of Table 2,
respectively.
Table 3 presents the results of the approach used in (Garbolino & Papa, 2010). Here, the total
cost - in terms of equivalent gates - for the optimized TPG structure is presented. It is common
assumption that TPG shares D-type flip-flops with the circuit under test. The cost of the
combinational logic part of a TPG only was taken into account, while it represents a real area
overhead for the given TPG (excluding area of the output D-type flip-flops, multiplexers and
the binary pattern counter, since these elements need to be in any TPG). An initial solution
was derived by randomly choosing a structure of the MISR as well as order of vectors in
a test sequence and order of bits in test vectors. Synthesis of TPGs was carried out using
a commercial synthesis tool and a standard cell library for a 0.35 µm technology. The last
column of Table 3 shows the achieved improvement. Note that each of the last two columns of
the table contains several numbers (subcolumns) for each benchmark circuit. These numbers
correspond to the best, the worst and the average solution, respectively, obtained during 10
independent runs of the genetic algorithm.
Tables 4-6 show the synthesis results for the TPG structure proposed in this study. The first,
second and third column of the table contain, respectively, the name of the benchmark, the
number of parts a MISR is split to (1, 2 or 4) and the type of the TPG structure (NC or OHC).

85Stochastic Approach to Test Pattern Generator Design

www.intechopen.com

Circuit Optimized Improvement
TPG in %

best worst average best worst average

c432 329.3 358.9 347.5 12.2 4.3 7.4
c499 448.7 517.9 485.7 20.9 8.7 14.4
c880 345.6 402.2 367.9 11.4 -3.1 5.7
c1355 698.9 789.4 747.8 2.1 -10.6 -4.8
c1908 1078.8 1165.2 1127.8 12.0 5.0 8.0
c2670 2669.4 2777.5 2727.9 -0.8 -4.9 -3.0
c3540 1353.8 1437.3 1395.5 4.5 -1.4 1.5
c5315 1744.7 1845.2 1807.4 8.7 3.4 5.4
c6288 128.7 173.0 146.0 30.9 7.1 21.6
c7552 3876.6 4048.6 3948.9 0.3 -4.1 -1.6
s349 85.2 175.3 103.5 47.9 -7.3 36.6
s382 180.3 207.6 196.6 28.7 17.9 22.2
s386 280.7 310.0 295.2 15.5 6.7 11.2
s400 173.6 199.3 184.6 32.8 22.9 28.6
s444 176.6 194.6 188.0 29.1 21.9 24.5
s510 438.1 473.3 458.0 16.0 9.2 12.1
s526 362.6 400.2 380.3 17.2 8.7 13.2
s1196 1195.5 1279.7 1244.9 5.8 -0.8 1.9
s1238 1271.0 1314.9 1292.0 7.3 4.1 5.7
s1494 487.3 537.9 515.5 8.3 -1.2 3.0
s5378 4909.4 5107.7 4963.6 7.0 3.3 6.0
s9234 5994.8 6405.6 6150.4 7.1 0.8 4.7

Table 3. Results of TPG area based on the approach in (Garbolino & Papa, 2010).

The label NC denotes the TPG which modifying logic is fed solely by the outputs of a MISR
or MISRs while the label OHC is a symbol of the TPG that contains the one-hot counter. For
the sake of clarity the TPG structure discussed in (Garbolino & Papa, 2010) as well as the
two proposed in this study are henceforth denoted as TPG+BC, TPG+NC and TPG+OHC,
respectively.
Columns 4 and 5 of Tables 4-6 include the cost - in terms of equivalent gates - of the initial
and optimized TPG structure, respectively. An initial solution was derived in the same way
like in (Garbolino & Papa, 2010). The same synthesis tool and target technology were also
used to carry out synthesis of TPGs. The achieved improvement is shown in the last column
of each of the tables. Similarly to Table 3 each of the last two columns of Tables 4-6 contains
several numbers (subcolumns) for each benchmark circuit. These numbers correspond to the
best, the worst and the average solution, respectively, obtained during 10 independent runs
of the genetic algorithm. In the case of the TPG+NC structure the cost of the combinational
logic part of a TPG only is taken into account, excluding area of the output D-type flip-flops,
multiplexers and binary pattern counter, since these elements need to be in any TPG. The cost
of the TPG+OHC structure is calculated in a similar way but it also includes the area of the
one-hot counter. The obtained value is further diminished by the area of the binary counter.
The last step results from the fact that in the TPG+OHC structure the one-hot counter replaces
the binary counter in a role of a test pattern counter. Since the area of a test pattern counter

86 Stochastic Optimization - Seeing the Optimal for the Uncertain

www.intechopen.com

Circuit Initial Optimized Improvement
TPG TPG in %

best worst average best worst average
c432 1 NC 389.9 261.8 288.7 270.1 32.8 25.9 30.7

OHC 486.7 358.6 385.5 366.9 26.3 20.8 24.6
2 NC 381.2 255.5 281.1 266.0 33.0 26.3 30.2

OHC 478.0 352.3 377.9 362.8 26.3 20.9 24.1
4 NC 372.9 243.8 294.1 259.5 34.6 21.1 30.4

OHC 469.7 340.6 390.9 356.3 27.5 16.8 24.2
c499 1 NC 564.8 361.6 404.8 384.1 36.0 28.3 32.0

OHC 784.7 581.4 624.7 604.0 25.9 20.4 23.0
2 NC 569.8 364.9 403.5 387.8 36.0 29.2 31.9

OHC 789.7 584.8 623.3 607.6 25.9 21.1 23.1
4 NC 525.6 363.9 399.5 386.4 30.8 24.0 26.5

OHC 745.4 583.8 619.4 606.3 21.7 16.9 18.7
c880 1 NC 392.2 188.9 204.2 198.1 51.8 47.9 49.5

OHC 440.4 237.2 252.5 246.3 46.1 42.7 44.1
2 NC 398.8 185.6 207.2 197.9 53.5 48.0 50.4

OHC 447.1 233.9 255.5 246.2 47.7 42.9 44.9
4 NC 388.5 190.6 224.2 201.6 50.9 42.3 48.1

OHC 436.8 238.9 272.5 249.9 45.3 37.6 42.8
c1355 1 NC 761.1 514.3 549.2 535.6 32.4 27.8 29.6

OHC 1141.2 894.4 929.4 915.8 21.6 18.6 19.8
2 NC 739.1 513.9 554.2 536.9 30.5 25.0 27.4

OHC 1119.3 894.1 933.0 916.9 20.1 16.6 18.1
4 NC 772.7 518.6 560.5 542.8 32.9 27.5 29.8

OHC 1152.9 898.8 940.7 923.0 22.0 18.4 19.9
c1908 1 NC 1206.8 1048.1 1110.0 1071.7 13.1 8.0 11.2

OHC 1704.1 1545.4 1607.3 1568.9 9.3 5.7 7.9
2 NC 1235.1 971.0 1103.4 1051.7 21.4 10.7 14.9

OHC 1732.3 1468.2 1600.6 1548.9 15.2 7.6 10.6
4 NC 1189.2 1005.2 1134.3 1040.6 15.5 4.6 12.5

OHC 1686.4 1502.5 1631.6 1537.8 10.9 3.3 8.8
c2670 1 NC 2772.2 2040.4 2079.3 2049.2 26.4 25.0 26.1

OHC 2949.5 2217.7 2256.6 2226.5 24.8 23.5 24.5
2 NC 2668.4 2030.4 2092.6 2051.3 23.9 21.6 23.1

OHC 2845.7 2207.7 2269.9 2228.5 22.4 20.2 21.7
c3540 1 NC 1422.7 1204.5 1292.3 1261.4 15.3 9.2 11.3

OHC 1802.9 1584.7 1672.5 1641.6 12.1 7.2 8.9
2 NC 1439.0 1240.4 1306.3 1267.1 13.8 9.2 11.9

OHC 1819.2 1620.6 1686.4 1647.2 10.9 7.3 9.5
4 NC 1405.1 1242.4 1314.3 1271.4 11.6 6.5 9.5

OHC 1785.2 1622.6 1694.4 1651.6 9.1 5.1 7.5

Table 4. Results of TPG area (part 1).

87Stochastic Approach to Test Pattern Generator Design

www.intechopen.com

Circuit Initial Optimized Improvement
TPG TPG in %

best worst average best worst average
c5315 1 NC 1884.7 1384.8 1424.4 1401.9 26.5 24.4 25.6

OHC 2024.8 1524.8 1564.4 1541.9 24.7 22.7 23.8
2 NC 1849.1 1374.5 1408.7 1394.5 25.7 23.8 24.6

OHC 1989.2 1514.5 1548.8 1534.5 23.9 22.1 22.9
4 NC 1909.4 1390.8 1418.4 1403.0 27.2 25.7 26.5

OHC 2049.4 1530.8 1558.4 1543.0 25.3 24.0 24.7
c6288 1 NC 186.6 80.2 90.1 84.5 57.0 51.7 54.7

OHC 213.6 107.1 117.1 111.5 49.8 45.2 47.8
2 NC 192.6 77.5 91.5 84.5 59.8 52.5 56.1

OHC 219.6 104.5 118.4 111.3 52.4 46.1 49.3
4 NC 182.0 73.2 91.1 82.1 59.8 49.9 54.9

OHC 208.9 100.1 118.1 108.7 52.1 43.5 48.0
c7552 1 NC 3857.3 3218.6 3225.6 3219.3 16.6 16.4 16.5

OHC 4178.9 3540.2 3547.2 3540.9 15.3 15.1 15.3
2 NC 3861.3 3183.0 3218.3 3214.8 17.6 16.7 16.7

OHC 4182.9 3504.7 3539.9 3536.4 16.2 15.4 15.5
s349 1 NC 153.3 72.8 94.1 84.2 52.5 38.6 45.1

OHC 185.6 105.1 126.4 116.5 43.4 31.9 37.2
2 NC 153.3 73.8 90.1 81.9 51.8 41.2 46.6

OHC 185.6 106.1 122.4 114.2 42.8 34.0 38.5
4 NC 159.7 76.8 92.8 83.5 51.9 41.9 47.7

OHC 192.0 109.1 125.1 115.8 43.1 34.8 39.7
s382 1 NC 249.1 170.6 186.3 178.2 31.5 25.2 28.5

OHC 335.3 256.8 272.4 264.3 23.4 18.7 21.2
2 NC 262.8 172.3 192.9 181.2 34.4 26.6 31.0

OHC 348.9 258.5 279.1 267.4 25.9 20.0 23.4
4 NC 257.1 164.7 191.3 176.5 36.0 25.6 31.3

OHC 343.3 250.8 277.4 262.7 26.9 19.2 23.5
s386 1 NC 332.0 268.8 287.7 278.9 19.0 13.3 16.0

OHC 610.4 547.2 566.1 557.3 10.4 7.2 8.7
2 NC 324.3 253.5 288.7 269.1 21.8 11.0 17.0

OHC 602.7 531.9 567.1 547.5 11.8 5.9 9.2
s400 1 NC 243.2 152.0 193.3 172.5 37.5 20.5 29.1

OHC 324.0 232.9 274.1 253.3 28.1 15.4 21.8
2 NC 233.5 154.7 181.3 169.6 33.8 22.4 27.4

OHC 314.3 235.5 262.1 250.4 25.1 16.6 20.3
4 NC 225.2 154.7 184.9 171.8 31.3 17.9 23.7

OHC 306.0 235.5 265.8 252.7 23.0 13.2 17.4

Table 5. Results of TPG area (part 2).

88 Stochastic Optimization - Seeing the Optimal for the Uncertain

www.intechopen.com

Circuit Initial Optimized Improvement
TPG TPG in %

best worst average best worst average
s444 1 NC 223.5 151.4 185.9 168.0 32.3 16.8 24.8

OHC 304.4 232.2 266.8 248.9 23.7 12.3 18.2
2 NC 226.5 156.0 182.0 171.1 31.1 19.7 24.4

OHC 307.4 236.8 264.5 252.3 22.9 14.0 17.9
4 NC 234.2 158.7 176.3 169.5 32.2 24.7 27.6

OHC 315.0 239.5 257.1 250.3 24.0 18.4 20.5
s510 1 NC 508.6 406.2 452.4 436.6 20.1 11.1 14.2

OHC 739.1 636.7 682.9 667.1 13.9 7.6 9.7
2 NC 546.9 409.8 453.7 433.3 25.1 17.0 20.8

OHC 777.4 640.3 684.2 663.8 17.6 12.0 14.6
4 NC 513.9 417.5 460.4 439.6 18.8 10.4 14.5

OHC 744.4 648.0 690.9 670.1 13.0 7.2 10.0
s526 1 NC 471.4 341.3 384.2 360.4 27.6 18.5 23.5

OHC 675.2 545.2 588.1 564.3 19.3 12.9 16.4
2 NC 433.8 343.6 385.5 361.3 20.8 11.1 16.7

OHC 637.7 547.5 589.4 565.2 14.1 7.6 11.4
4 NC 455.1 340.6 378.5 357.3 25.1 16.8 21.5

OHC 658.9 544.5 582.4 561.2 17.4 11.6 14.8
s1196 1 NC 1266.0 1113.7 1175.9 1141.5 12.0 7.1 9.8

OHC 1800.5 1648.2 1710.4 1676.0 8.5 5.0 6.9
2 NC 1259.0 1108.7 1184.9 1143.8 11.9 5.9 9.1

OHC 1793.6 1643.2 1719.4 1678.4 8.4 4.1 6.4
4 NC 1266.0 1117.3 1178.5 1154.9 11.7 6.9 8.8

OHC 1800.5 1651.9 1713.1 1689.4 8.3 4.9 6.2
s1238 1 NC 1367.2 1213.1 1286.3 1236.6 11.3 5.9 9.5

OHC 1944.2 1790.2 1863.4 1813.7 7.9 4.2 6.7
2 NC 1333.6 1202.8 1285.3 1251.9 9.8 3.6 6.1

OHC 1910.6 1779.9 1862.4 1829.0 6.8 2.5 4.3
4 NC 1376.1 1209.8 1259.7 1230.3 12.1 8.5 10.6

OHC 1953.2 1786.9 1836.8 1807.4 8.5 6.0 7.5
s1494 1 NC 546.9 448.1 488.6 466.9 18.1 10.6 14.6

OHC 1012.2 913.4 954.0 932.2 9.8 5.8 7.9
2 NC 535.9 448.7 494.0 470.3 16.3 7.8 12.2

OHC 1001.2 914.1 959.3 935.6 8.7 4.2 6.6
s5378 1 NC 5344.9 4741.1 4741.1 4741.1 11.3 11.3 11.3

OHC 5794.2 5190.5 5190.5 5190.5 10.4 10.4 10.4
s9234 1 NC 6374.0 5738.4 5749.7 5740.4 10.0 9.8 9.9

OHC 6866.0 6230.3 6241.6 6232.3 9.3 9.1 9.2
2 NC 6444.2 5761.0 5761.0 5761.0 10.6 10.6 10.6

OHC 6936.2 6252.9 6252.9 6252.9 9.9 9.9 9.9

Table 6. Results of TPG area (part 3).

89Stochastic Approach to Test Pattern Generator Design

www.intechopen.com

is excluded from the cost calculation for the TPG+BC and TPG+NC structures, it seems to be
justified to subtract its area from the total cost of the TPG+OHC structure as well.
Analysis of the contents of Tables 3-6 leads to the following observations.

• Average improvement values are positive for all benchmarks except three in the case of
the TPG+BC structure and for all benchmarks in the case of the TPG+NC and TPG+OHC
structures. Therefore, an application of the proposed optimization algorithm leads to
reduction in area overhead of the TPG in majority of cases. Moreover, if the result is
negative (increase in area overhead in comparison with an initial solution) there is high
probability that running GA tool again will provide improvement in results.

• The TPG+NC is the structure that is the most susceptible for a significant area reduction by
an application of the proposed optimization algorithm while the TPG+BC structure seems
to be the most resistive for optimization.

• The degree of TPG area optimization is much better in the case of small and medium size
test patterns sets (e.g. more than 50% improvement). This may partially result from the
fact that in the case of large pattern sets the population size and the number of generations
were limited so that the runtime of GA tool was acceptable.

• A huge reduction of TPG area is possible for particular test sets - like in the case of c880,
c6288 and s349 benchmarks. A closer examination of these cases revealed that GA tool
found TPG structures where some parallel inputs of the MISR can be tied either to the
power supply or to the ground while several other PIs of the MISR are fed from the same
output of the modifying logic.

• Dividing the MISR into several shorter registers may lead to a further reduction of the TPG
area. However, an improvement is rather insignificant.

In the framework of this study all experiments were carried out on a PC equipped with the
quad-core Intel 2.66 GHz microprocessor and 4 GB of RAM. Computation time, that varies
from several seconds up to several hours for different circuits, is proportional to the number
of patterns in a test set and the number of bits in test patterns as well as the size of population
and the number of generations of GA. However, in order to obtain satisfactory results of
GA execution the population size and the number of generations need to be proportionally
increased with the growth of the size of a test pattern set. Thus, the size of a test pattern set
influences computation time both directly and indirectly through the parameters of GA.
On the other hand, since TPG design is off-line and one-time optimization process,
optimization effectiveness is considered more important than reducing the computation time.
Therefore execution times that are less than one day are still acceptable. Moreover, according
to the observations for large test pattern sets containing more than several vectors some time
consuming procedures of the evaluation software can be turned off (it was actually done in
(Garbolino & Papa, 2010)) without a significant influence on the final result. In consequence,
this will lead to essential reduction of computation time.
In order to evaluate the TPG+NC structure optimized by the GA algorithm, which has been
proposed in this study, the authors compared it with some other state-of-the-art solutions
(Bellos et al., 2002) and (Cao et al., 2008) as well as with TPGs presented in some of their
previous works (Garbolino & Papa, 2008) and (Garbolino & Papa, 2010). Table 7 reports the
area overhead of all the above-mentioned TPG structures for several benchmarks. Because
test pattern sets that were used in (Bellos et al., 2002) and (Cao et al., 2008) differ from those

90 Stochastic Optimization - Seeing the Optimal for the Uncertain

www.intechopen.com

a) b) c) d) e)
c432 0.47 N/A 0.11 0.34 0.25
c499 0.47 0.23 0.10 0.21 0.17
c880 0.44 N/A 0.29 0.36 0.19
c1355 0.44 0.25 0.09 0.20 0.15
c1908 0.44 0.38 0.32 0.31 0.28
c2670 0.36 0.17 N/A 0.26 0.20
c3540 0.46 N/A N/A 0.32 0.29
c5315 0.40 N/A N/A 0.26 0.21
c6288 0.48 0.67 0.54 0.34 0.19
c7552 0.37 0.28 N/A 0.26 0.21

Table 7. A comparison of different approaches through area_per_bit: a) (Bellos et al., 2002), b)
(Cao et al., 2008), c) (Garbolino & Papa, 2008), d) (Garbolino & Papa, 2010), and e) this study.

exploited in (Garbolino & Papa, 2008) and (Garbolino & Papa, 2010), the area is expressed
in terms of equivalent gates per bit of a test pattern set. The calculation for area_per_bit is
performed with the following equation, as already defined and used in (Garbolino & Papa,
2008) and (Garbolino & Papa, 2010):

area_per_bit =
area

test_pattern_width × number_o f _test_patterns
. (5)

The TPG+NC structure outperforms TPGs worked out in (Bellos et al., 2002) and (Garbolino
& Papa, 2010) for all considered benchmarks. It has also lower area overhead than solutions
presented in (Cao et al., 2008) and (Garbolino & Papa, 2008) for all benchmarks but one (c2670
and c1355, respectively).
Thus, a MISR combined with combinational logic that modifies the state diagram of the
register proves to be an effective TPG solution, particularly after its structure has been
optimized by the GA algorithm proposed by the authors. On the other hand, feeding the
inputs of the modifying logic block from the outputs of a counter in addition to the outputs of
the MISR seems to be a wrong approach because it leads to deterioration of the results.

5. Conclusion

Whenever a TPG fails to provide the desired fault coverage within the given test length,
application specific deterministic TPGs are employed. Deterministic TPGs are more complex
than pseudo random TPGs since they employ additional logic to prevent generation of
non-useful test patterns. Area overhead is one of the important issues in the design of
deterministic TPGs. In this work, a deterministic TPG is presented that is based on a single
MISR or several MISRs composed of D and T-type flip-flops, XOR and XNOR two input gates
and inverters.
Artificial intelligence structure optimization of a TPG is performed by a genetic algorithm
combined with a relatively fast but simple cost approximation function. Instead of performing
actual boolean optimization or synthesis of a TPG the function only examines some properties
of the components of a TPG (i.e. a MISR and a modifying logic) that influence their area and
expresses these properties in a numerical form.
Among a few TPG structures that have been considered in this study and which are all based
on the above-mentioned concept, one turns out to be particularly susceptible to reduction

91Stochastic Approach to Test Pattern Generator Design

www.intechopen.com

of its area by the use of the proposed GA-based tool. Experimental results prove that this
TPG structure outperforms - with respect to the area overhead - several other state-of-the art
solutions.

6. References

Aktouf, C., Robach, C., Kač, U. & Novak, F. (1999). On-line testing of embedded architectures
using idle computations and clock cycles, 5th IEEE International On-line Testing
Workshop, pp. 28–32.

Bellos, M., Kagaris, D. & Nikolos, D. (2002). Test set embedding based on phase
shifters, EDCC-4: Proceedings of the 4th European Dependable Computing Conference on
Dependable Computing, Springer-Verlag, London, UK, pp. 90–101.

Bolzani, L., Sanchez, E., Schillaci, M. & Squillero, G. (2007). Co-evolution of test programs and
stimuli vectors for testing of embedded peripheral cores, pp. 3474 –3481.

Cao, B., Xiao, L. & Wang, Y. (2008). A low power deterministic test pattern generator for bist
based on cellular automata, Electronic Design, Test and Applications, IEEE International
Workshop on 0: 266–269.

Chakrabarty, K., Iyengar, V. & Murray, B. T. (2000). Deterministic built-in test pattern
generation for high-performance circuits using twisted-ring counters, IEEE Trans.
Very Large Scale Integr. Syst. 8(5): 633–636.

Corno, F., Prinetto, P., Rebaudengo, M. & Sonza Reorda, M. (1996). Gatto: a genetic
algorithm for automatic test pattern generation for large synchronous sequential
circuits, Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions

on 15(8): 991 –1000.
Corno, F., Prinetto, P. & Sonza Reorda, M. (1996). A genetic algorithm for automatic generation

of test logic for digital circuits, Tools with Artificial Intelligence, 1996., Proceedings Eighth
IEEE International Conference on, pp. 10 – 16.

Corno, F., Sonza Reorda, M., Squillero, G. & Violante, M. (2000). A genetic algorithm-based
system for generating test programs for microprocessor ip cores, pp. 195 –198.

Drechsler, R. & Drechsler, N. (2002). Evolutionary Algorithms for Embedded System Design,
Kluwer Academic Publishers, Norwell, MA, USA.

Dufaza, C., Chevalier, C. & L.F.C., L. Y. V. (1993). Lfsrom - a hardware test pattern generator
for deterministic iscas85 test sets, Proc. 2nd IEEE Asian Test Symposium, Bejing, China,
pp. 160–165.

Edirisooriya, G. & Robinson, J. (1992). Design of low cost rom based test generators,
Proceedings IEEE VLSI Test Symposium, pp. 61–66.

Favalli, M. & Dalpasso, M. (2002). An evolutionary approach to the design of on-chip
pseudorandom test pattern generators, DATE ’02: Proceedings of the conference on

Design, automation and test in Europe, IEEE Computer Society, Washington, DC, USA,
p. 1122.

Fin, A. & Fummi, F. (2003). Genetic algorithms: the philosopher’s stone or an effective
solution for high-level tpg?, HLDVT ’03: Proceedings of the Eighth IEEE International
Workshop on High-Level Design Validation and Test Workshop, IEEE Computer Society,
Washington, DC, USA, p. 163.

92 Stochastic Optimization - Seeing the Optimal for the Uncertain

www.intechopen.com

Fiser, P. (2007). Pseudo-random pattern generator design for column-matching bist, DSD
’07: Proceedings of the 10th Euromicro Conference on Digital System Design Architectures,
Methods and Tools, IEEE Computer Society, Washington, DC, USA, pp. 657–663.

Garbolino, T. & Hlawiczka, A. (1999). A new lfsr with d and t flip-flops as an effective
test pattern generator for vlsi circuits, EDCC-3: Proceedings of the Third European
Dependable Computing Conference on Dependable Computing, Springer-Verlag, London,
UK, pp. 321–338.

Garbolino, T. & Hlawiczka, A. (2002). Efficient test pattern generators based on specific
cellular automata structures, Microelectronics Reliability 42(6): 975 – 983.

Garbolino, T., Hlawiczka, A. & Kristof, A. (2000). Fast and low-area tpgs based on t-type
flip-flops can be easily integrated to the scan path, ETW ’00: Proceedings of the IEEE
European Test Workshop, IEEE Computer Society, Washington, DC, USA, p. 161.

Garbolino, T. & Papa, G. (2008). Test pattern generator design optimization based on genetic
algorithm, IEA/AIE ’08: Proceedings of the 21st international conference on Industrial,
Engineering and Other Applications of Applied Intelligent Systems, Springer-Verlag,
Berlin, Heidelberg, pp. 580–589.

Garbolino, T. & Papa, G. (2010). Genetic algorithm for test pattern generator design, Applied
Intelligence 32(2): 193–204.

Garvie, M. & Thompson, A. (2003). Evolution of self-diagnosing hardware, ICES’03:
Proceedings of the 5th international conference on Evolvable systems, Springer-Verlag,
Berlin, Heidelberg, pp. 238–248.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Guo, R., Li, B., Zou, Y. & Zhuang, Z. (2007). Hybrid quantum probabilistic coding genetic
algorithm for large scale hardware-software co-synthesis of embedded systems,
pp. 3454 –3458.

Hakmi, A.-W., Wunderlich, H.-J., Zoellin, C., Glowatz, A., Hapke, F., Schloeffel, J. & Souef, L.
(2007). Programmable deterministic built-in self-test, pp. 1 –9.

Hamzaoglu, I. & Patel, J. H. (1998). Test set compaction algorithms for combinational
circuits, ICCAD ’98: Proceedings of the 1998 IEEE/ACM international conference on
Computer-aided design, ACM, New York, NY, USA, pp. 283–289.

Hellebrand, S., Rajski, J., Tarnick, S., Venkataraman, S. & Courtois, B. (1995). Built-in test for
circuits with scan based on reseeding of multiple-polynomial linear feedback shift
registers, IEEE Trans. Comput. 44(2): 223–233.

Khalil, M., Robach, C. & Novak, F. (2002). Diagnosis strategies for hardware or software
systems, J. Electron. Test. 18(2): 241–251.

Korošec, P. & Šilc, J. (2008). Using stigmergy to solve numerical optimization problems,
Computing and Informatics 27(3): 377–402.

Mazumder, P. & Rudnick, E. M. (1999). Genetic algorithms for VLSI design, layout & test
automation, Prentice Hall PTR, Upper Saddle River, NJ, USA.

Novák, O., Plíva, Z., Nosek, J., Hlawiczka, A., Garbolino, T. & Gucwa, K. (2004). Test-per-clock
logic bist with semi-deterministic test patterns and zero-aliasing compactor, J.
Electron. Test. 20(1): 109–122.

Papa, G. & Koroušić-Seljak, B. (2005). An artificial intelligence approach to the efficiency
improvement of a universal motor, Eng. Appl. Artif. Intell. 18(1): 47–55.

93Stochastic Approach to Test Pattern Generator Design

www.intechopen.com

Papa, G. & Šilc, J. (2002). Automatic large-scale integrated circuit synthesis
using allocation-based scheduling algorithm, Microprocessors and Microsystems
26(3): 139–147.

Parker, K. (2003). The boundary-scan handbook, Third edition, Kluwer Academic Publishers.
Sanchez, E. & Squillero, G. (2007). Evolutionary techniques applied to hardware optimization

problems: Test and verification of advanced processors, in L. Jain, V. Palade &
D. Srinivasan (eds), Advances in Evolutionary Computing for System Design, Vol. 66 of
Studies in Computational Intelligence, Springer Berlin / Heidelberg, pp. 303–326.

Sudireddy, S., Kakade, J. & Kagaris, D. (2008). Deterministic built-in tpg with segmented fsms,
pp. 261 –266.

Touba, N. & McCluskey, E. (2001). Bit-fixing in pseudorandom sequences for scan bist, IEEE
Transactions on Computer-Aided Design of Integrated Circuits And Systems 20(4): 545–555.

UC Berkeley (1988). Espresso, http://www-cad.eecs.berkeley.edu:80/software/
software.html.

van de Goor, A. J. (1991). Testing semiconductor memories: theory and practice, John Wiley & Sons,
Inc., New York, NY, USA.

94 Stochastic Optimization - Seeing the Optimal for the Uncertain

www.intechopen.com

Stochastic Optimization - Seeing the Optimal for the Uncertain

Edited by Dr. Ioannis Dritsas

ISBN 978-953-307-829-8

Hard cover, 476 pages

Publisher InTech

Published online 28, February, 2011

Published in print edition February, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Stochastic Optimization Algorithms have become essential tools in solving a wide range of difficult and critical

optimization problems. Such methods are able to find the optimum solution of a problem with uncertain

elements or to algorithmically incorporate uncertainty to solve a deterministic problem. They even succeed in

â€œfighting uncertainty with uncertaintyâ€ ​. This book discusses theoretical aspects of many such algorithms

and covers their application in various scientific fields.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Gregor Papa and Tomasz Garbolino (2011). Stochastic Approach to Test Pattern Generator Design,

Stochastic Optimization - Seeing the Optimal for the Uncertain, Dr. Ioannis Dritsas (Ed.), ISBN: 978-953-307-

829-8, InTech, Available from: http://www.intechopen.com/books/stochastic-optimization-seeing-the-optimal-

for-the-uncertain/stochastic-approach-to-test-pattern-generator-design

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

