
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

4

Content Adaptation in Ubiquitous Computing1

Wanderley Lopes de Souza1, Antonio Francisco do Prado1,

Marcos Forte2 and Carlos Eduardo Cirilo1
1Federal University of São Carlos
2Federal University of São Paulo

Brazil

1. Introduction

According to the predominant computing environments, the history of Computing can be

classified into the initial period of mainframes, the current one of personal computers, and

the future one of Ubiquitous Computing whose goal is to provide the user with easy access

to and processing of information at any time and from anywhere (Hansmann et al., 2003).

Mobile communication has contributed to drive the leap of Computing into this new era,

since it has given users unprecedented choice and freedom, enabling them to search for new

and rewarding ways to conduct their personal and professional affairs. In just one decade,

mobile networks have allowed for a growth rate that took fixed networks almost a century

to achieve, and the advances in mobile technologies have led to the transition from voice-

exclusive services to web-based content services.

This globalized mobility requires new architectures and protocols that allow mobile

networks to connect easily to several types of services and content providers spread over the

Internet. The futuristic view of the mobile Internet presupposes users with different profiles

using different access networks and mobile devices, requiring personalized services that

meet their needs, availability and locations. In this context, it is necessary to describe

information about people, places, devices and other objects that are considered relevant for

the interaction between users and services, including the users and services themselves.

The fields of Ubiquitous Computing include content adaptation, which involves converting

an original content into a large number of formats compatible with the user preferences, the

access device capabilities, the access network characteristics, and the delivery context. Due

to the infinity of possible adaptations, the greater the quantity of available adaptation

services, the higher the chances of meeting the user’s needs.

The content adaptation can occurs at several points along the data path, including the origin

server, the user device, and the edge device. An essential requirement for carrying out this

process is the establishment of an adaptation policy, which defines what adaptation is to be

done on a given content, when, and who should do it. To be effective, this policy must take

into account information on users, devices, access network, content, and service agreement.

The purpose of this Ubiquitous Computing book chapter is to do a survey on our main

contributions in the field of content adaptation. The sequence of this chapter is organized as

1 Supported by INCT-MACC/ CNPq

www.intechopen.com

 Ubiquitous Computing

68

follows: section 2 deals with content adaptation, the Internet Content Adaptation Protocol

(ICAP), and an adaptation service that uses this protocol; section 3 deals with frameworks

for content adaptation, in particular the Internet Content Adaptation Framework (ICAF);

section 4 deals with ontologies and Web services for content adaptation, and an ICAF

extension for the use of these technologies; and section 5 presents some concluding remarks.

2. Content adaptation

Content adaptation involves modifying the representation of Internet content in order to

come up with versions that meet diverse user requirements and the distinct characteristics

of devices and access networks (Buchholz & Schill, 2003). Among the Internet content

adaptation services the following stand out (Beck et al., 2000):

a. Virus scan, searches for viruses before delivering the content to the user;

b. Ad Insertion, inserts advertisements into a content based on user interests and/ or location;

c. Markup Language Translation, allows devices that do not support Hypertext Markup

Language (HTML) pages but support other markup languages (e.g., Wireless Markup

Language) to receive the content of such pages;

d. Data compression, allows the origin server to send its content in compressed form so that

the edge device can extract it, thereby reducing the bandwidth used in this communication;

e. Content Filtering, redirects an unauthorized content request or blocks a response

containing unsuitable content;

f. Image Transcodification, processes image files in order, for example, to transform its

format, reduce its size and/ or resolution, or modify its color range; and

g. Language Translate, translates a Web page from one language to another.

These adaptation services require from an adaptation server special processing functions,

such as video and voice trans-coding, intelligent text processing and filtering, and many

others. Performing the adaptation services at the origin server has the advantage that the

content author has a full control on what and how to present the content to the user. On the

other hand, since these functions are quite different from the basic functions needed for

building Web servers, the authoring process becomes more complex and time consuming.

Another major drawback is the cost and the performance scalability issue of the origin

server. Performing the adaptation services at the end user device limits the adaptation to the

available functionality and capability of the device. It is therefore recommended to locate

these functions in a separate computer that could be shared by many different applications.

2.1 Internet Content Adaptation Protocol (ICAP)
ICAP (Elson & Cerpa, 2003) was first introduced in 1999 by Peter Danzig and John Schuster

from Network Appliance and further developed by the ICAP Forum, a coalition of Internet

businesses. ICAP is a client/ server application protocol running on the top of TCP/ IP,

similar in semantics and usage to HTTP/ 1.1, and designed to off-load specific Internet-

based content adaptation to dedicated servers. Each server may focus on a specific value

added service, thereby freeing up resources in the Web servers and standardizing the way

in which these services are implemented. At the core of this process there is an ICAP client

that intercepts HTTP messages and transmits them to the ICAP server for processing. The

ICAP server executes its adaptation service on these messages and sends them back to the

ICAP client. ICAP can be used in two modes as shown in Figure 1: request modification

mode (reqmode) and response modification mode (respmode).

www.intechopen.com

Content Adaptation in Ubiquitous Computing

69

Origin server

ICAP server

ICAP client

Client

(1)

(4)

(5)

(2)(3)

(6)

ICAP server

ICAP client

Client

(1)

(2)

(3)

(4)(5)

(6)

Origin server

 (a) (b)

Fig. 1. (a) ICAP reqmode (b) ICAP respmode

In the reqmode, a user Client sends a request to an Origin server. This request is intercepted

by an ICAP client, which redirects it to an ICAP server. The ICAP server may then: (a) send

back a modified version of the request containing the original URI, and the ICAP client may

then send the modified request to the Origin server, or may first pipeline it to another ICAP

server for further modification; (b) modify the request so that it points to a page containing

an error message instead of the original URI; (c) return an encapsulated HTTP response

indicating an HTTP error. Figure 1(a) shows a data flow, where the message sequences in

cases (a) and (b) are 1, 2, 3, 4, 5, and 6, while the message sequence in case (c) is 1, 2, 3, and 6.

The response modification mode (respmode) is intended for post-processing performed on a

HTTP response before it is delivered to the user client. The ICAP client forwards the request

directly to the Origin server. The Origin server’s response is intercepted by the ICAP client,

which redirects it to an ICAP server. The ICAP server may then: (a) send back a modified

version of the response; or (b) return an error. Figure 1(b) shows a data flow for this case.

Although it is an essential part, the transaction semantics defined by ICAP is of limited use

without a control algorithm, that determines what adaptation or processing function should

be requested for what HTTP request or response passing through the ICAP client.

2.2 Adaptation policy
One fundamental aspect in content adaptation is the definition of an adaptation policy, i.e.,

what adaptation services are to be offered, which local or remote adaptors will execute these

adaptations, and when the latter should be requested. The following information is

necessary regarding the adaptation environment: characteristics and capacities of the access

device; personal user information and preferences; conditions of the communication

network; characteristics of the requested content; and the terms of the service agreement

between the service provider and the end user. As proposed in (Forte et al., 2006) and

illustrated in Figure 2, this information can be described and stored in device, user, network,

content and Service Level Agreement (SLA) profiles.

www.intechopen.com

 Ubiquitous Computing

70

Fig. 2. Profiles and attributes

The user profile contains the user’s personal information and his content adaptation

preferences. Different users may wish to have different adaptations applied to a requested

content (e.g., one user prefers having images removed while another prefers the sound).

Adaptations not based on user preferences may be inconvenient or even undesirable.

The network profile can be dynamically obtained through agents that monitor parameters of

the communication network between provider and user. Parameters such as latency and

bandwidth guide some adaptation processes (e.g., images, video and audio on demand) so

that the adapted content is optimized for the conditions of the network of a given context.

The content profile, also generated dynamically, is based on characteristics of the requested

content. The applicable content modifications are determined based on information

extracted from the HTTP header and, if it is available, the set of content metadata.

The SLA profile contains the terms of the service agreement between the user and the access

provider, which can offer different plans, including bandwidth, connection time and added

value services, allowing users to choose the plan that best fits their needs.

The adaptation policy must also consider adaptation rules, which comprise a set of related

conditions and actions. These conditions refer to the profiles, reflecting the characteristics

and needs of the entities involved in the adaptation process, and determine the action to be

taken and the adaptation servers to be used. Figure 3 shows execution points for adaptation

rules: points 1 and 2 during the request stage, the former before the content search in the

cache and the latter after this search; points 3 and 4 during the response stage, the former

before the content storage in the cache and the latter after this storage. The execution point

definition for each rule depends on the adaptation service (e.g., an antivirus service should

be executed at point 3 to prevent a contaminated content from being stored in the cache).

Fig. 3. Execution points for processing adaptation rules

2.3 Content Classification and Filtering Service (CCFS)
CCFS allows for controlling the access to undesirable content. Three interrelated terms are

defined for this kind of service: (a) labeling is the process that describes a content associated

Profiles

Device

Display resolution

Operating System

Browser

Processor

Memory

Content

Type

Idiom

Title

SLA
User

 Connection Time

 Filtering Service

 Translation Service

User

Name

 Remove Images

Filter Profile

URLDB

KWDBNetwork
Delay

Bandwidth

Adaptation Proxy
1

4 3

2
User

Origin

Server

www.intechopen.com

Content Adaptation in Ubiquitous Computing

71

to a label without requiring the user to open the file to examine its content; (b) rating is the

process that confers values on a content based on certain suppositions/ criteria, and if the

content has a label, it already possesses a prequalification which may or may not be

accepted by the filter; (c) filtering is the process aimed at blocking access to a content by

comparing its classification against the system’s definition of undesirable content. It should

be noted that CCFS is not restricted solely to illegal (e.g., racism) or inappropriate contents

(e.g., pornography), but also to undesirable contents in a corporation (e.g., shopping, chats).

The oldest and most commonly employed classification method is based on proprietary

Uniform Resource Locator (URL) collections, in which each URL is associated to a specific

content category. When a page is requested, the classifier checks its address in the database

to find its category. With the category definition the filter can block or release the access to

the site, according to the configured Internet policy. Keeping these collections updated is a

challenge for CCFS suppliers, since the rate at which new Internet pages are created far

exceeds their capacity to classify them (ICOGNITO, 2002).

A second generation of classifiers executes the analysis and classification of all Web traffic

requested by the user on demand (e.g. keywords, textual analysis, labels, image

analysis).When a page is received, it is classified according to its content, and the system

blocks or releases that page in line with the pre-established filtering policy. The classification

process is subject to the following problems: (a) under-blocking, when the filter fails to block

undesired content, usually due to an outdated URL database or, in the dynamic approaches,

an incorrect content classification; (b) over-blocking, when the filter blocks a content unduly,

usually due to the use of keywords without context analysis. Pages on sexual education and

medicine are the most commonly affected by this last problem (Rideout et al., 2002).

The CCFS we developed (Forte et al., 2006), illustrated in Figure 4, is part of a general

architecture encompassing a set of dedicated adaptation servers and a content adaptation

proxy. The purpose is to allow access to the available Internet content, independently of the

device the user is employing, and to adapt the content according to the user’s preferences.

Fig. 4. CCFS general architecture

Proxy Manager
ICAP HTTP

Adaptation

Decision Engine
Cache Local Adapter

Content Adaptation Proxy

User

Content Server

Classification and

Filtering Manager

URL

Image

Textual

Keywords

 URL

Classification and Filtering Server (CFS)

ICAP Labels

www.intechopen.com

 Ubiquitous Computing

72

This architecture is based on the client-server model, in which the proxy captures the user’s

requests and the content server’s responses. The adaptation decision mechanism

implements the adaptation policy. If the adaptation policy defines the need for the CCFS,

the proxy will send an ICAP request to the Classification and Filtering Server (CFS).

The CFS was designed to allow for the easy integration of new Classification modules. The

Classification and Filtering Management module manages the Classification modules and,

using ICAP and including the ICAP and HTTP headers, manages the communications with

the Content Adaptation Proxy. It also filters the content based on the information sent by the

Classification modules. The profiles were implemented using the Composite Capability

/Preference Profile (CC/PP) (W3C, 2004a). Figure 5 shows a fragment of the user profile.

<rdf:Description rdf:ID="UserProfile">
<ccpp:component>
 <rdf:Description rdf:ID="Identification">
 <usr:UserName>mlobato</usr:UserName>
 <usr:Gender>Male</usr:Gender>
 <usr:Age>21</usr:Age>
 </rdf:Description>
</ccpp:component>
<ccpp:component>
 <rdf:Description rdf:ID="Preferences">
 <usr:ImageGrayScale>0</usr:ImageGrayScale>
 <usr:Filter_Profile>001</usr:Filter_Profile>
 <usr:UrlDB>001</usr:UrlDB>
 <usr:KWDB>005</usr:KWDB>
 </rdf:Description> ….

Fig. 5. Fragment of the user profile

The adaptation rules were implemented as clauses stored in a database, and they use the

Prolog inference mechanism to deduce the actions to be taken as a function of the conditions

to be met. Each adaptation executing point is represented at the rules base by a different

functor, allowing the rules of a given executing point to be processed. Figure 6 illustrates an

example of adaptation rule implementation to be invoked at the executing point 3.

Point_three(Ret,UserID.DeviceID,SLAID,Content):-
 contentIsText(Content),
 userPayforFilter(ContractID),
 =(Ret,’ content-filter.com filter’).

Fig. 6. Example of adaptation rule

In this adaptation rule the user identification (UserID), device identification (DeviceID),

service level agreement (SLAID), and content type (Content) are provided. If they met, the

action is stored in the variable Ret, which receives the values of the contentfilter.com and filter.

Figure 7 illustrates the sequence of a content adaptation. Starting from an HTTP request

from the user (1), the access provider sends the HTTP request to the adaptation proxy

together with the user identification (2). The adaptation decision mechanism pulls the user

profile and SLA from its database and verifies that the user chose a filtering service, which

www.intechopen.com

Content Adaptation in Ubiquitous Computing

73

needs the requested content and the content profile. Failing to locate this content in its

cache, the proxy sends a request to the origin content server (3) and, upon receiving a

response (4), dynamically creates the content profile. Since the requested content is of text

type, all the requisites of CFS’s rule are met. Then, the decision mechanism creates an ICAP

request, attaching the user’s preferences (e.g., icap:/ / adaptation.com/ filter?filter_profile=001

&urldb=001&kwdb=005&append) and the content received from the Web server, and sends

them through the proxy to the adaptation server (5). The latter executes the requested

adaptation and returns the result to the proxy (6), which in turn sends it to the user (7).

Fig. 7. Sequence of a content adaptation

An ICAP request encapsulates the ICAP header, the HTTP request header, the HTTP

response header and the requested page body, the last two only when operating in respmod.

When this request reaches the CFS, the following information is extracted from the ICAP

header: the categories of content to be blocked (e.g., filter_profile=001); the URL databases

and categorized domains that will be used (e.g., urldb=001); and, if the adaptation is in

respmod, the database of keywords (e.g., kwdb=005). The domain and URL page requested by

the user are extracted from the HTTP request header. In respmod the requested content will

be extracted (body), allowing for classification by keywords. Figure 8 shows the states model

of this ICAP request.

2.4 CCFS evaluation
For the CCFS performance evaluation three computers were employed: the first executing

Linux Fedora Core 2 (2Ghz – 256MB) and the others Windows 2000 (700Mhz – 256MB).

Because the variations in the response times of the Origin Servers, including those due to the

Internet throughput, could interfere on this evaluation, an Apache 2 server was installed.

This enabled the tested pages to be cloned, restricting the data flow to the computers

involved in the case study. The software described in (Forte et al., 2007) was employed for

the content adaptation proxy implementation, with the addition of specific CCFS profiles

and rules, and was installed on the Linux platform. The CFS and its database, containing

651,620 categorized sites and 29 keywords, were installed on a Windows 2000 platform. Five

predefined links have been accessed: two links were not blocked by the filter, one was

blocked because of its address domain and another because of its URL address, and the last

User Profile

Filter_Profile=001; URLDB=001

KWDB=005; APPEND=TRUE

SLA Profile

PayForFilter=True

Content Profile

Type=Text

Filtering Server Rule

PayForFilter=True; ContentType=Text

Adaptation Proxy

ISP

1
HTTP + USER ID

HTTP

2

7

USER

Content Adaptation

Server
ICAP

4
HTTPOrigin Content Server

5

6

3

Request Response

www.intechopen.com

 Ubiquitous Computing

74

Fig. 8. States model of an ICAP request for CCFS

was blocked due to a restricted keyword. The load was progressively increased, adding one

user every 1.5s up to the limit of 200 users, each user accessing a link every 5s. Figure 9

shows the results of these scenarios. The difference between the response times in reqmod

and respmod is due to the addition of the content classification routine based on keywords.

0
10

20
30
40

50
60
70

80
90

100

7 21 34 47 61 74 88 101 115 128 142 155 169 182 196
A
v
er
a
g
e
a
cc
es
s
ti
m
e
(m
s)

Simultaneous Users

Direct Reqmod Respmod

Fig. 9. Average response time versus number of users

For the CCFS efficiency evaluation the CFS and the Squid proxy (SourceForge, 2002) were

used in a Brazilian university administrative network, and in an informatics laboratory of

this university. During 48 hours 1,215,854 requests (6.8 GB) from the administrative network

and 409,428 requests (2.8 GB) from the laboratories’ network were checked. To minimize the

interference on the response time of the employees’ and students’ accesses, only the reqmod

was used by the adaptation server. Figure 10 depicts the results of this evaluation.

Category not found
Domain Classifying

domain urldb

Do (CheckDomain)

Filtering

category profile

Do (CheckProfile)

Body Classifying

body kwdb

Do (CheckBody)

Blocked

description

Do (CheckDomain)

Accepted

body

Do (CheckDomain)

ICAP request

Category based on URLCategory based on Domain

Category based on Body

Restricted category
Nonrestricted category

Category not found (respmod)

Category not found

ICAP response

URL Classifying

url urldb

Do (CheckUrl)

1

Category not found (reqmod)

1

www.intechopen.com

Content Adaptation in Ubiquitous Computing

75

Fig. 10. CCFS efficiency evaluation

Considering all the domains classified in the two networks, 3 were incorrectly classified in

restricted categories (over-blocking), and 22 were not classified passing incorrectly through

the filter (under-blocking). Among those that passed incorrectly through the filter, 19

belonged to .br domains, which demonstrates the lower efficiency of blacklists produced in

other countries. These 22 domains were tested again, with CCFS operating in respmod and

using keywords for the content analysis, and 16 were correctly categorized.

3. Frameworks for content adaptation

In the mid-90s most of the content adaptations were done in the proxy (Bharadvaj et al.,

1998; Smith et al., 1998). Since this approach tends to overload the proxy, services networks

were developed for intercepting the content delivery and adapting this content, and these

networks were mainly based on the Open Pluggable Edge Services (OPES) model

(Tomlinson et al., 2001). Since OPES distributes adaptations among dedicated servers, it

became feasible to build a single architecture offering several types of adaptation.

The OPES WG also developed the languages Intermediary Rule Markup Language (IRML)

and P for the specification of content adaptation rules. IRML is based on eXtensible Markup

Language (XML), and was designed to express service execution policies and to reflect the

interests of the origin server and user on a content transaction (Beck & Hofmann, 2003). P is

based on Smalltalk and C++, it is interpreted and has the following qualitative aspects:

exactness, flexibility, efficiency, simplicity, security and hardiness (Beck & Rousskov, 2003).

Several requirements must be considered when offering adaptation services. For instance, to

avoid overloading the proxy in a service network, it is important to distribute the adaptation

services among dedicated servers. Based on such requirements, the ideas of service

networks, and using the OPES model, some important works have been done.

(Beck & Hofmann, 2001) presents an architecture for executing content adaptations that

contains a decision-making mechanism based on a condition set. These conditions and

related actions constitute the adaptation rules, which are specified in IRML. However, these

conditions do not employ information related to the adaptation environment. (Ravindran et

al., 2002) proposes a framework to manage personalization of services, whose adaptation

policy is based on a combination of user preferences, device constraints, and content

characteristics. (Marques & Loureiro, 2004) presents an adaptation architecture specifically

designed for mobile devices, which offers image, audio, and text compression adaptations,

and uses access network information to decide the best adaptation to be carried out.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

D
 o

 m
 a

 i
 n

 s

Administrative Network

Accepted 1980 1170 992

Blocked 31 323 49

br com others
0

200

400

600

800

1000

1200

1400

D
 o

 m
 a

 i
 n

 s

Students Lab Network

Accepted 1229 704 640

Blocked 13 132 29

br com others

www.intechopen.com

 Ubiquitous Computing

76

Unlike the aforementioned works, we developed the Internet Content Adaptation

Framework (ICAF) (Forte et al., 2007), an extremely flexible framework thanks to the reuse

of its components. Moreover, this framework contains an adaptation policy based on the

user, device and SLA profiles, and based on the access network and content information.

3.1 Internet Content Adaptation Framework (ICAF)
ICAF has two main packages: Adaptation Proxy and Adaptation Server. The User and

Origin Server actors interact with the Adaptation Proxy through content requests and

responses. The Adaptation Proxy analyzes these interactions based on an adaptation policy

and uses the available services at the Adaptation Server, which in turn adapts the

transmitted content. Figure 11 illustrates the components of the Adaptation Proxy package.

Content Transfer Protocol is responsible for the communications between User and Origin

Server. It is generic enough to support most of the used protocols for content transmission

on the Internet, including: Hypertext Transfer Protocol (HTTP), Real-time Transport

Protocol (RTP), Simple Object Access Protocol (SOAP), and File Transfer Protocol (FTP).

Fig. 11. Components of the Adaptation Proxy package

Since the Adaptation Proxy requests remote adaptations to an Adaptation Server using

communication protocols, the Callout Protocol Client was defined for doing the remote

adaptation calls. This component supports different protocols, including those especially

created for this communication: ICAP, and OPES Callout Protocol (OCP) (Rousskov, 2005).

Cache was built to improve the ICAF’s performance. It temporarily stores requested contents

on the Internet, as well as Web pages, videos and images. Before requesting content to the

Origin Server, the Adaptation Proxy checks whether it is already in the Cache. If so, a request

to the Origin Server is avoided, speeding up the content delivery to the User.

Although it uses adaptation service modules, ICAF can do content adaptations locally via

the Local Adapter. As this component employs the proxy resources, its wide-scale use may

affect the Adaptation Proxy performance, and delay the content delivery to the User.

www.intechopen.com

Content Adaptation in Ubiquitous Computing

77

The Adaptation Proxy data flow is controlled by the Proxy Manager, which receives, through

the Content Transfer Protocol, the User requests and the Origin Sever responses. Using the

information carried in these communication primitives, the Proxy Manager asks for an

adaptation analysis to the Adaptation Decision. If adaptation is needed the Proxy Manager

invokes locally or remotely this service. To avoid an unnecessary content request, the Proxy

Manager checks if this content is already in the Cache.

The ICAF’s adaptation policy takes into account the user’s interests and preferences, device

capabilities and constraints, access network conditions, content characteristics, and SLA for

building the adaptation rules. It is implemented through the Adaptation Decision, Profile

Loader, Adaptation Rules Updater and Network Data Collector components.

The Profile Loader gets the user, device and SLA profiles in the ProfilesDB database. For

inserting these profiles in this database an Internet interface must be available, which could

be a Web page with a form where the user fills out the data related to these profiles. The

SLA profile could be inserted in the same way by the system administrator.

The ICAF policy is controlled by the Adaptation Decision that receives: the access network

conditions from the Network Data Collector, which monitors the network parameters; the

profiles stored in the ProfilesDB from the Profile Loader; and the content to be analyzed from

the Proxy Manager. Based on this information set, the Adaptation Decision uses the

adaptations rules to decide what adaptations will be done, which servers (local and/ or

remote) will execute these adaptations, and the order in which they will be executed.

To prevent processing of outdated rules, the Adaptation Rules Updater inserts, removes and

updates the adaptation rules implemented in the Adaptation Decision. The Rules Author

carries out these updates using an interface provided by the Adaptation Rules Updater.

The Content Adaptation Server is responsible for doing the content adaptations requested

by the Adaptation Proxy. Since different types of adaptation services can be offered, we

adopted the Component-Based Development approach to define a generic structure for the

Adaptation Servers, which includes the components illustrated in Figure 12. The Callout

Protocol Server handles the communications with the Adaptation Proxy, supporting several

protocols (e.g., ICAP, HTTP), analyzes the adaptation requests received from the Callout

Protocol Client, and defines the action to be taken and its parameters. Based on this

information, which is sent in the header of the appropriated protocol message, the Callout

Protocol Server asks for the requested adaptation to the Remote Adapter.

Fig. 12. Components of the Adaptation Server package

The Remote Adapter executes the content adaptations, its internal structure can vary

according to the type of adaptation offered by the Adaptation Server, and it carries out the

same functions of the Local Adapter but does not use the processing resources of the

Adaptation Proxy. The decision-making process of adapting the content locally or remotely

must consider the ratio between the execution times of the Callout Protocol and the content

www.intechopen.com

 Ubiquitous Computing

78

adaptation. The lower the ratio the more the decision will be in favor of the remote

adaptation. A design example of the Remote Adapter was presented in section 2.3.

ICAF was built to support the same ICAP operating modes and the same execution points

defined in section 2.2. It was also developed to offer a basic structure for creating Internet

content adaptation applications through the reuse of its components.

3.2 ICAF reuse and evaluation
Figure 13 shows the components used in a case study, where the following components

were reused by ICAF direct instantiation: Local Adapter, Remote Adapter, Proxy Manager,

Cache, Adaptation Rules Updater, Network Data Collector, and Profile Loader.

ICAF’s adaptation policy takes into account adaptation rules and information related to the

adaptation environment. Since there are several ways of implementing this policy, including

by a procedural language algorithm, several ICAP components were customized and new

components were added to this framework.

Fig. 13. ICAF reuse example

The Adaptation Decision is responsible for the decision-making process of the ICAF’s

adaptation policy. For this case study, this component was customized to perform with an

inference mechanism, based on adaptation rules and environment’s information, for

defining the adaptation services to be executed. The Adaptation Decision decides the adapter

(local or/ and remote) that will perform an adaptation and, if multiple adaptations are

required, decides the sequence of them. The inference mechanism was introduced through a

Prolog Knowledge Base (KB) for giving more flexibility to the ICAF́ s adaptation policy, and

for giving some “ intelligence” to the decision-making process.

To handle KB, the KB Manager was added to ICAF. It receives the updated adaptation rules

from Adaptation Rules Updater, translates these rules to Prolog, stores this translation in KB

and, when requested by the Adaptation Decision, carries out a query for retrieving

information on users, devices and access network. KB answers this query based on the user,

device and SLA profiles, and based on the access network and content information. Since

www.intechopen.com

Content Adaptation in Ubiquitous Computing

79

KB is implemented in Prolog and ProfilesDB in SQL, the SQL2Prolog component was added

to ICAF for enabling KB to receive and analyze profiles stored in ProfilesDB.

Three components were customized with specific interfaces, characterizing the reuse

through specialization. Content Transfer Protocol was specialized for transmitting content

requests and responses through HTTP, which consists of two fields: the header and the

payload (i.e., content). The content is modified by an HTTP parser, which identifies the

semantic actions of this protocol. Callout Protocol Client and Callout Protocol Server were

specialized to allow for ICAP communication between the Adaptation Proxy and the

Adaptation Server. Upon receiving a service request, Callout Protocol Client encapsulates the

actions, parameters and content in an ICAP request and sends it to Callout Protocol Server.

This latter component retrieves the information for doing a semantic analysis of this request,

and asks the requested service to the Remote Adapter. After receiving the adapted content

from the Remote Adapter, Callout Protocol Server encapsulates this content in an ICAP

response for returning it to the Adaptation Proxy.

ICAF was developed having in mind the definition of an adaptation policy with a short

processing time, and the offer of adaptation services without degradation of the Internet’s

infrastructure performance. In this case study, these requirements were evaluated

measuring the adaptation policy and content adaptation execution times on a network with

five computers: one Adaptation Proxy, three Adaptation Servers and one User. The

Adaptation Proxy implementation was based on (SourceForge, 2003), the implementations

of the Image Adapter (IA) and Virus Scan (VS) servers were based on (Network, 2001), and

the implementation of the Content Filter (CF) server was based on the CFS presented in

section 2.3. The Origin Servers were accessed directly from Internet content servers.

For the performance evaluation of this case study, the model described in (Mastoli et al,

2003) was employed, and the temporal collecting points T0 to T7 were defined for measuring:

the origin server response time T(Origin Server); the processing time of the adaptation

policy T(Analysis); the adaptation time consumed by the ICAP protocol and by the content

adaptations T(Adaptation); and the delivery time of the content to the user after executing

all adaptations T(Delivery). Figure 14 depicts these points and measuring times.

Fig. 14. Temporal collecting points and measuring times

For this evaluation 1,000 requests for www.folha.com.br were executed with five different

kinds of adaptation on this Web page: no adaptation (NA), using each one of the Adaptation

Servers (VS, IA, CF) independently, and combining these servers (VS+IA+CF). Figure 15

shows the T(Origin Server), T(Analysis), T(Adaptation) and T(Delivery) average times.

The origin server response times are by far the longest ones, and the adaptation policy

processing times are similar for all adaptations. Without adaptation (NA) it was consumed

121 ms, corresponding to 103 ms of origin server response time, 17 ms of adaptation policy

www.intechopen.com

 Ubiquitous Computing

80

Fig. 15. Measuring times versus adaptation services

processing time, and only 1 ms of delivery time. Therefore, the relatively short delay (17ms)

introduced by the inference mechanism can be considered satisfactory. With the VS and IA

servers the adaptation times were 5.3 ms and 2.5 ms respectively, and the delays introduced

by these servers can be also considered satisfactory. However, with the CF server the

adaptation time was 40 ms, and the delay introduced by this server is relevant.

4. Ontologies and Web services for content adaptation

To achieve interoperability among heterogeneous systems executing applications of a given

domain, it is essential to be able to share information, with a common and unambiguous

understanding of the terms and concepts used by these applications. In this context,

ontologies are important artifacts for making feasible the treatment of this heterogeneity.

Berners-Lee proposed the Semantic Web (Berners-Lee et al., 2001) as an evolution of the

traditional Web to allow for the manipulation of content by applications with the capacity to

interpret the semantics of information. The Web content can thus be interpreted by

machines through the use of ontologies, rendering the retrieval of information from the Web

less ambiguous and providing more precise responses to user requests.

The World Wide Web Consortium (W3C) guides the development, organization and

standardization of languages to promote interoperability among Web applications. These

languages include the Resource Description Framework (RDF) (W3C, 2004b), and the

Ontology Web Language (OWL) (W3C, 2004c).

OWL is a markup language used for publication and sharing of ontologies in the Web. In

this language, ontology is a set of definitions of classes, properties and restrictions relating

to the modes in which these classes and properties can be used.

Web services have been for years the basis of service-oriented architectures, but begun to

show deficiencies for service description, discovery, and composition due to the lack of

semantic support in Web Services Description Language (WSDL) (W3C, 2007), and in the

mechanism of storage and discovery services of Universal Description Discovery and

Integration (UDDI) (UDDI Spec TC, 2004). To integrate semantic Web to Web services the

Ontology Web Language for Services (OWL-S) (Martin et al., 2006) was developed.

OWL-S allows for the discovery, composition, invocation and monitoring of services, it has

a larger number of Application Programming Interfaces (APIs), and inherits tools from

OWL and from the Semantic Web Rule Language (SWRL) (Horrocks et al., 2003). OWL-S

combines elements of WSDL, OWL’s semantic markup and a language for rules description

(e.g., SWRL). The OWL-S model is composed of three parts: Service Model for describing

www.intechopen.com

Content Adaptation in Ubiquitous Computing

81

how a Web service operates; Service Grounding for describing the access to a Web service,

and Service Profile for describing what the Web service does.

Service Model specifies the communication protocol, telling what information the requester

must send to or receive from the service provider at a given moment of the transaction. This

module distinguishes two types of processes: atomic and composite. The first one supply

abstract specifications of the information exchanged with the requester, corresponding to

operations the supplier can directly execute. The latter is employed to describe collections of

processes (atomic or composite) organized through some type of flow control structure.

Service Grounding describes how atomic processes are transformed into concrete messages,

which are exchanged via a network or through a procedure call. A “one-on-one” mapping

of atomic processes for WSDL specifications is defined.

Service Profile is a high level specification of the service provider and service functionalities,

including: contact information of a provider/ service (e.g., serviceName, textDescription,

contactInformation); categorization attributes of the offered service (e.g., serviceParameter,

serviceCategory); and service functional representations in the form of Inputs, Outputs,

Preconditions, and Effects (IOPEs). IOPEs are described by the properties hasParameter,

hasInput, hasOutput, hasPrecondition, and hasEffect.

Since descriptions of OWL-S services are based on OWL, the OWL domain model can be

employed to structure the service descriptions, facilitating the reuse of OWL ontologies

already developed. In this sense, we extended ICAF for allowing the use of ontologies and

Web services in the development of content adaptation applications (Forte et al., 2008).

4.1 Adaptation policy specification with ontologies and Web services
One major challenge in Ubiquitous Computing is the description of the delivery context,

which is as a set of attributes that characterizes aspects related to the delivery of Web

content. For content adaptation the delivery context must contain even more information

that can be described in a set of profiles. For the CCFS development, presented in section 2,

these profiles were implemented using CC/ PP, and the adaptation rules were implemented

as clauses stored in a database and the Prolog inference mechanism was employed. In this

section we propose to specify the same profiles in OWL, and to employ semantics in the

adaptation rules description for facilitating their extension and the addition of new rules.

To make available an infrastructure of adaptation servers over the Internet, we propose to

use Web service technology, since it offers a large number of tools, and well-defined

standards. Moreover, the use of ontologies and the inclusion of semantics in these standards

help the migration from the proprietary solutions, for the discovery and composition of

services, to an open distributed architecture based on the semantic Web.

The following information about the adaptation servers is essential: characteristics;

communication needs (e.g., protocols, addressing); and the conditions, for the execution of

their services, which are described by the adaptation rules. We propose to make available

this information via the adaptation server profile and to specify it in OWL, and the services

information via the service profile and to specify it in OWL-S.

All ontology models for the OWL profiles are based on the EMF Ontology Definition

Metamodel (EODM) (IBM, 2004), which is derived from the OMG's Ontology Definition

Metamodel (ODM) and implemented in the Eclipse Modeling Framework (EMF). These

models use the following OWL components: Classes that are the basic building blocks of an

OWL ontology; Individuals that are instances of classes; Object properties to relate individuals

www.intechopen.com

 Ubiquitous Computing

82

to other individuals; and Datatype properties to relate individuals to data type, such as

integers, floats, and strings. OWL supports six main types of classes: named, intersection,

union, complement, restrictions, and enumerated.

The UserAgent field of the HTTP header is employed to identify the user’s access device and

to look up the device profile stored in the database. Figure 16 depicts an ontology model for

a device profile, describing the following characteristics: supported image formats

(Supported_image class); display information, including resolution (Display_Resolution class)

and colors (Color class); supported audio and video streaming (Streaming class); markup

languages supported by the device’s browser (Supported_Markup class), including their

properties (WML_UI, XHTML_UI and CHTML_UI classes); model and manufacturer

(Product_Info class); and security (Security class). One OWL characteristic present in this

model is the restriction insertion that helps the consistency checking and the validation of

this profile. For instance, Supported_ImageRestriction defines that the class Supported_Image

can only be instantiated with the individuals declared in the enumerated class Image_Format.

Fig. 16. Ontology model for a device profile

Figure 17 depicts an ontology model for a user profile. This model represents the User class

that encloses the Info and Service_Preferences subclasses. Info holds the following properties:

ID for retrieving the user’s information from the database, and FirstName/LastName for

identifying the user’s name. Service_Preferences contains the specifications of the adaptation

service properties, which can be configured by the user according to his/ her preferences.

www.intechopen.com

Content Adaptation in Ubiquitous Computing

83

ID_Required defines that the class Person has exactly one value for the property ID inside

Info. Three adaptation services are represented in this model: Antivirus, where the user can

choose to check or not viruses using a script language on a Web page; Image_Adapter, where

the user can define the action to be taken if a low throughput is detected (e.g., color and/ or

resolution reductions, conversion to black and white); Classification_and_Filtering, where the

user can define the content types to be blocked (e.g., sex, shopping, games) and which URLs

(URLDB), databases, and keywords (KWDB) will be used for the classification.

Fig. 17. Ontology model for a user profile

The network profile is built dynamically using the agents that monitor network parameters.

The information in this profile is used to guide some adaptation processes (e.g., images,

video and audio on demand), for the optimization of the content adaptation as a function of

the network current conditions. Figure 18 depicts an ontology model for a network profile.

Fig. 18. Ontology model for a network profile

The content profile is built dynamically using the characteristics of the requested content.

The needed and applicable adaptations to the content depend on information extracted from

the HTTP header (e.g., the content has text and/ or image, language) and depend on content

metadata, if available. Figure 19 depicts an ontology model for a content profile.

Fig. 19. Ontology model for a content profile

www.intechopen.com

 Ubiquitous Computing

84

The terms of the agreement between the access provider and the user are described in the

SLA profile. These providers offer to their users a variety of plans, including bandwidth,

connection time and several added value services, enabling the user to choose the plan that

best meets his/ her needs. Figure 20 depicts an ontology model for a SLA profile.

Fig. 20. Ontology model for a SLA profile

Some characteristics described in the adaptation server profile are related to the Quality of

Service (QoS), including the server’s Availability and Reliability, the last characteristic for

evaluating the successful execution rate. This information, allied to MaxProcessTime,

RequiredBandwidth and Cost, helps the decision-making process when the service discovery

finds more than one service provider satisfying the delivery context needs. This profile also

defines the communication protocol between the proxy and the adaptation server. Figure 21

shows an ontology model for an adaptation server profile, where Supported_Execution_Points

specifies four execution points for processing adaptation rules, with exactly the same

meaning found in section 2.2. To help in consistency checking and validation of this profile,

it is inserted Supported_ProtocolsRestriction, restricting Supported_Protocols to be instantiated

with individuals declared in Protocols, and Supported_Execution_PointsRestriction, restricting

Supported_ExecutionPoints to be instantiated with individuals declared in Exec_Points.

Fig. 21. Ontology model for an adaptation server profile

Service characteristics, including the necessary conditions for its execution, can be associated

to the adaptation process, represented by the Inputs and Outputs, or associated to the

service, represented by the Preconditions and Effects, which help the adaptation policy

deciding whether or not to execute a given service. Figure 22 depicts these associations.

www.intechopen.com

Content Adaptation in Ubiquitous Computing

85

Fig. 22. Associations of service characteristics

The service profile has the service characteristics and some exclusive functions that must be

specified in OWL-S. The main one is the mapping of OWL semantic specifications of other

profiles into WSDL syntactic specifications, allowing for the integration of ontologies and

Web services. The service profile also imports semantic specifications contained in other

profiles or other OWL ontologies to facilitate their reuse and to avoid ambiguities.

Figure 23 shows the OWL-S specification skeleton of a Markup Language Translation

Service (MLTS) profile. The Ontologies, to be imported to include the semantic information

needed for this service, are defined, the public ontology semwebglossary.owl, which specifies

terms of the semantic Web for avoiding ambiguous definitions, the content.owl profile, and

the device.owl profile are reused (1). SupportedMarkupLanguage class (2) and canBeConvertedTo

property (3), which will be used for defining the possible conversions to be carried out by

the service (4), are defined. The InputMarkupLanguage parameter indicates the markup

language to be converted (5), which is obtained from the Content_Type class of the content

profile, previously instantiated with information about the requested content. The

OutputMarkupLanguage parameter indicates the desired markup language that is defined in

the Supported_Markup class of the device profile, which in turn informs the supported

languages (6). The inputs, outputs, preconditions and effects are defined in the process

MarkupConverterProcess (7). The precondition SupportedTranslation is based on a SWRL rule

(8), which returns true when the needed translation belongs to the list defined in (4).

If it is not found a Web service that meets all the needs of a given adaptation, those needs

may be met by an appropriate composition of Web services, which should be identified. Let

S = {S1, S2,..., Sn} be a Web service set, where each Si is defined by a quadruple

 (), , ,i i i i
s s s sI O P E (1)

with its elements representing the sets of Inputs, Outputs, Preconditions and Effects of the

service Si. Let G = {G1, G2,...,Gm} be a goals set, where each goal Gj is defined by a quadruple

 (), , ,j j j j
g g g gI O P E (2)

with its elements representing the sets of Inputs, Outputs, Preconditions and Effects required

by the goal Gj. If there is at least one Si that satisfies

1 1

n m
ji

s g

i j

I I
= =

⊆∪ ∪ and
1 1

n m
ji

s g

i j

P P
= =

⊆∪ ∪ and (3)

www.intechopen.com

 Ubiquitous Computing

86

1 1

n m
ji

s g

i j

O O
= =

⊇∪ ∪ and
1 1

n m
ji

s g

i j

E E
= =

⊇∪ ∪ (4)

…

<!ENTITY gloss "http://www.personal-reader.de/rdf/semwebglossary.owl">
<!ENTITY device "http://www.adaptationsrv.org/device.owl">
<!ENTITY content "http://www.adaptationsrv.org/content.owl">
…

<owl:Class rdf:ID="SupportedMarkupLanguage">
 <owl:oneOf rdf:parseType="Collection">
 <factbook:Language rdf:about="&gloss;#HTML"/>
 <factbook:Language rdf:about="&gloss;#XHTML"/>
 <factbook:Language rdf:about="&gloss;#XML"/>
 <factbook:Language rdf:about="&gloss;#CHTML"/>
 <factbook:Language rdf:about="&gloss;#WML"/>
 </owl:oneOf>
</owl:Class>
<owl:ObjectProperty rdf:ID="canBeConvertedTo">
 <rdfs:domain rdf:resource="#SupportedMarkupLanguage"/>
 <rdfs:range rdf:resource="#SupportedMarkupLanguage"/>
</owl:ObjectProperty>
<rdf:Description rdf:about="&gloss;#HTML"><canBeConvertedTo rdf:resource="&gloss;#WML"/></rdf:Description>
<rdf:Description rdf:about="&gloss;#HTML">< canBeConvertedTo rdf:resource="&gloss;#XHTML"/></rdf:Description>
<rdf:Description rdf:about="&gloss;#HTML">< canBeConvertedTo rdf:resource="&gloss;#XML"/></rdf:Description>
<rdf:Description rdf:about="&gloss;#HTML">< canBeConvertedTo rdf:resource="&gloss;#cHTML"/></rdf:Description>
<rdf:Description rdf:about="&gloss;#XML">< canBeConvertedTo rdf:resource="&gloss;#XHTML"/></rdf:Description>
…

<process:Input rdf:ID="InputMarkupLanguage">
 <process:parameterType rdf:datatype="&xsd;#anyURI">&content;#Content_Type
 </process:parameterType>
</process:Input>
<process:Input rdf:ID="OutputMarkupLanguage">

<process:parameterType rdf:datatype="&xsd;#anyURI">&device;#Supported_Markup
</process:parameterType>

</process:Input>
…

<process:AtomicProcess rdf:ID="MarkupConverterProcess">
 <process:hasInput rdf:resource="#InputMarkupLanguage"/>
 <process:hasInput rdf:resource="#OutputMarkupLanguage"/>
 <process:hasInput rdf:resource="#InputString"/>
 <process:hasOutput rdf:resource="#OutputString"/>
 <process:hasPrecondition rdf:resource="#SupportedTranslation"/>
 <process:hasEffect rdf:resource= ="#MarkupLanguageConverted”/>
</process:AtomicProcess>
…

<expr:SWRL-Condition rdf:ID="SupportedTranslation">
 <rdfs:label>canBeConvertedTo(InputMarkupLanguage, OutputMarkupLanguage)</rdfs:label>
 <expr:expressionLanguage rdf:resource="&expr;#SWRL"/>
 <expr:expressionObject><swrl:AtomList><rdf:first>
 <swrl:IndividualPropertyAtom>
 <swrl:propertyPredicate rdf:resource="#canBeConvertedTo"/>
 <swrl:argument1 rdf:resource="#InputMarkupLanguage"/>
 <swrl:argument2 rdf:resource="#OutputMarkupLanguage"/>
 </swrl:IndividualPropertyAtom>
 </rdf:first></swrl:AtomList></expr:expressionObject>
</expr:SWRL-Condition>
…

3

2

7

6

5

8

4

1

Fig. 23. OWL-S specification skeleton of a MLTS profile

www.intechopen.com

Content Adaptation in Ubiquitous Computing

87

then Si is put in the services list that provides the required content adaptation. Otherwise, if

there is at least one Si that satisfies (3), there is no service to carry out alone the adaptation,

the composition algorithm is activated. Otherwise, the adaptation cannot be carried out.

One of the techniques used for the services composition is forward chaining (Lara et al., 2005).

Starting from a goal Gj, where an Si is found that satisfies (3), a new goal is defined

 Gk = (), , ,k k k k
g g g gI O P E (5)

where

 k
gI = i

sO and k
gP = i

sE (6)

This process is repeated until (4) is satisfied, otherwise the adaptation cannot be carried out.

4.2 Extended Internet Content Adaptation Framework (EICAF)
ICAF was extended to deal with ontologies and Web services. Figure 24 shows the EICAF

component model, where the following ICAF components were reused: Local Adapter, Cache,

Content Transfer Protocol, Network Data Collector and Remote Adapter. The components Callout

Protocol (Client and Server), Proxy Manager and Service Profile Updater were modified to

include new interfaces and functionalities for using semantic profiles and new protocols.

Matching and Composition, Ontologies Manager and Reasoner are new components, introduced

for managing the ontologies and for processing the adaptation policy.

Callout Protocol Client and Callout Protocol Server support ICAP and SOAP. The first, already

supported by ICAF, was kept to allow for communication with the servers previously

developed. The second was introduced to provide compatibility with Web services.

Fig. 24. EICAF component model

www.intechopen.com

 Ubiquitous Computing

88

Ontologies Manager handles the storage, retrieval and processing of the static ontologies

(device, user, SLA, adaptation server and service profiles) that are stored in a relational

database. This component also treats the service profiles that are inserted through Service

Profile Updater. The stored dynamic ontologies are generated on demand, from the

information obtained by the I_NData interface, for the network profile generation, and by

the I_Cdata interface, for the content profile generation.

To help the addition of new service profiles, Service Profile Updater provides a Web interface,

where the service author can insert information related to the adaptation services to be

converted to an OWL-S specification. Figure 25 shows some pages of this interface.

Fig. 25. Web interface for the insertion of service profiles

Initial page (A) is for insertion of service general information, mainly on the used protocol

and the execution points for invoking the service: if ICAP is used, then this will be the only

page available; if SOAP is used, then page (B) will be loaded. The operations are listed on

this page, starting with the URI insertion of service WSDL specification, whose information

will be converted in an OWL-S Service Grounding. Information about service profile URI is

also inserted on page (B), and the ontologies to be imported are defined. On page (C) the

mapping table of OWL semantic descriptions for WSDL parameters is filled out with the

parameters inserted from information kept in WSDL file. The SWRL rules are specified in

the Preconditions and Effects text boxes, and Generate Service Profile generates this profile.

EICAF was implemented in Java using several public APIs. The API OWL-S and the

relational database MySQL were used in Ontologies Manager. The API Pellet was used in

Reasoner, and the SPARQL module of the API OWL-S was used in Matching and Composition.

This component makes requests based on SPARQL, using information contained in profiles

and information inferred by the Reasoner, to locate the services that have inputs and outputs

compatible with the delivery context. The results of these requests are filtered to check their

conformity to preconditions and effects and, if a services composition is needed, Matching

and Composition will manage the execution order of them. Next, this component sends to

Proxy Manager, via the I_ADecision interface, the information regarding the services to be

invoked. Proxy Manager forwards this information, via the I_CPClient interface, to Callout

www.intechopen.com

Content Adaptation in Ubiquitous Computing

89

Protocol Client that asks the services to the appropriated Adaptation Servers, which in turn

execute these services. Last, Proxy Manager sends the adapted content to the User.

Figure 26 illustrates the tasks of the Web services composition mechanism by means of a

delivery context example in which the user accesses the Web via a mobile phone. The

notation profile.class – context information indicates the profile name, the class name, and the

context information to be stored in this class. Since the user hired CCFS, the Pay_for_Filtering

property of the SLA profile was configured as true. Once this profile information has been

collected, the initial goal G1 = (HTML, XHTML, Pay_ for_Filtering, _) is established, and the

search for services to carry out this service is started. Matching and Composition discovers that

the CCFS S1 = (HTML, HTML, Pay_for_Filtering, _) meets the Inputs and Preconditions, but

does not support the Output XHTML. Since the goal G1 was only partially achieved, a new

goal G2 = (HTML, XHTML, _ , _) is established. A new search discovers that the MLTS S2 =

(HTML, XHTML, _ , _) meets completely this new goal, ending this composition process.

Fig. 26. Example of a delivery context

Fig. 27. Execution sequence of a content adaptation

Figure 27 illustrates the use of profiles and rules by means of an execution sequence of a

content adaptation. Based on a user HTTP or WAP request (1), Internet Service Provider

(ISP) sends the HTTP request to the Adaptation Proxy with the User identification (2). The

Ontology Manager of the Adaptation Proxy employs the USER_ID for retrieving the user’s

User.Filter_Profile – 001

SLA.Services – Pay_for_Filtering

Device.DisplayResolution – 320x200

Device.Supported_Markup – XHTML

Network.WAN – GPRS

Network.RTT – 10

Content.Type – HTML

Content.URL – www.test.com

www.intechopen.com

 Ubiquitous Computing

90

profile, the SLA_ID of the user’s profile for retrieving the SLA profile, and the HTTP

User_Agent for retrieving the device profile. The need for executing a content adaptation on

the user’s request is verified (exec_point_1 and exec_point_2 of the adaptation server profile).

If so, the required services for this adaptation are executed (5)(6). If the requested content is

not in the Cache of the Adaptation Proxy, it sends a request to the Origin Server (3), which

responds with the content (4). Ontology Manager extracts information from this content to

complete the content profile. It is verified if the content of the Origin Server response needs

to be adapted (exec_point_3 and exec_point_4 of the adaptation server profile). If so, the

required services for this adaptation are executed (5)(6). Lastly, the duly adapted content is

sent to the ISP (7), which forwards it to the User (8).

4.3 EICAF evaluation
A case study was conducted involving the configuration illustrated in Figure 28: computers

(1) and (2) were configured with Windows XP (700Mhz/ 256MB, 3Ghz/ 1GB) and computer

(3) with the Linux Fedora Core 2 (2Ghz/ 256MB). The Apache JMeter was installed in

computer (1) to simulate user access, and the Adaptation Proxy with the CCFS and MTS

profiles was installed in computer (2). Because the variations in the response times of the

Origin Servers, including those due to the Internet throughput, could interfere on this

evaluation, an Apache 2 server with the virtual hosts resource was installed in computer (3).

This enabled the tested pages to be cloned, restricting the data flow to the computers

involved in the case study. A Tomcat/ Axis server with the respective Remote Adapters,

which played the role of Adaptation Server, was also installed in computer (3).

Fig. 28. Configuration in the case study

Five predefined links have been accessed for 5 minutes with three of these links blocked by

the domain addresses. They were accessed using desktops and mobile phones, distributed

randomly among the users, so that in some cases the MLTS would have to be used. The load

was progressively increased, adding one user every 1.5s up to the limit of 20 users, each user

accessing a link every 5s. To simulate different devices, 20 samplers were configured with

the JMeter, each containing a different User-Agent.

Two test scenarios were defined: using ontologies, and carrying out the discovery and

composition services on demand, an average response time of 425 ms was obtained; without

using ontologies, and defining the discovery and composition services manually, an average

response time of 38 ms was achieved. The difference of 387 ms between these two average

response times can be attributed: 38.4% to the OWL-S API initialization, including all its

www.intechopen.com

Content Adaptation in Ubiquitous Computing

91

dependencies (e.g., Jena); 25.6% to the ontologies load and validation, corresponding to the

dynamic and static profiles; and 36% to the matching and composition function. These

values were obtained with the IDE Netbeans profiler tool. Figure 29 indicates an increase in

response time and in processing demand caused by the use of ontologies in EICAF.

Fig. 29. Average Response Time versus Number of Users

From a qualitative standpoint, should be considered the enhanced flexibility and precision

resulting from the use of semantics in the discovery and composition mechanism that

aids the service authorship, and gives the user a high degree of satisfaction. It should

also be considered that this response time tends to decrease with the semantic APIs

improvement.

5. Conclusion

Applications involving multimedia usually require a certain level of QoS and, if this quality

cannot be guaranteed over the Internet, these applications should be able to adapt to the

available quality. ICAP defines the syntax and semantic for exchanging the content between

the ICAP client and the ICAP server, but it does not define any adaptation policy. In this

sense, we proposed a general architecture that considers a set of elements described in a set

of profiles, which affect the quality of the content delivered to the user, for controlling the

adaptation functions provided by the ICAP server. This architecture was employed in the

development of a CCFS. We also proposed ICAF, a component-based framework that

provides a flexible infrastructure for the Internet content adaptation domain, and we

described an experiment reusing this framework. Finally, we proposed the use of ontologies

and Web services to facilitate the development of content adaptation applications. To this

end, ICAF was extended to allow for the use of ontologies and Web services, existing

components were reused and adapted, and new components were introduced, thus

broadening the range of applications that can be developed from EICAF.

6. References

Beck, A.; Hofmann, M. & Condry, M. (2000). Example Services for Network Edge Proxies,

Internet-Draft, The Internet Society,

www.intechopen.com

 Ubiquitous Computing

92

 http:/ / standards.nortelnetworks.com/ opes/ non-wg-doc/ draft-beck-opes-esfnep-

01.txt

Beck, A.; Hofmann, M (2001). Enabling the Internet to Deliver Content-Oriented Services, In:

Web Caching and Content Deliver, A. Bestavros & M. Rabinovich (Eds), pp. 109-124,

Elsevier, ISBN 0-444-50950-X, The Netherlands

Beck, A. & Hofmann, M. (2003). IRML: A Rule Specification Language for Intermediary

Services, Internet-Draft, The Internet Society,

 http:/ / tools.ietf.org/ html/ draft-beck-opes-irml-03

Beck, A. & Rousskov, A. (2003). P: Message Processing Language, OPES Internet-Draft, The

Internet Society, http:/ / tools.ietf.org/ html/ draft-ietf-opes-rules-p-00

Berners-Lee, T.; Hendler, J. & Lassila, O. (2001). The Semantic Web. Scientific American, May

2001, http:/ / citeseerx.ist.psu.edu/ viewdoc/ download?doi=10.1.1.115.9584&rep=

rep1&type=pdf

Bharadvaj, H.; Joshi, A. & Auephanwiriyakul, S. (1998). An Active Transcoding Proxy to

Support Mobile Web Access, Proceedings of the 17th Symposium on Reliable Distributed

Systems, pp. 118-123, ISBN 0-8186-9218-9, West Lafayette-IN (USA), October 1998,

IEEE Computer Society, USA

Buchholz, S. & Schill, A. (2003). Adaptation-Aware Web Caching: Caching in the Future

Pervasive Web, Proceedings of the 13th GI/ITG Conference Kommunikation in verteilten

Systemen (KiVS), pp. 55-66, ISBN 3-540-00365-7, Leipzig (Germany), Februray 2003,

Springer-Verlag, Germany

Forte, M.; Souza, W. L. & Prado, A. F. (2006). A content classification and filtering server

for the Internet, Proceedings of the 21st Annual ACM Symposium on Applied

Computing, Vol. 2, pp. 1166 – 1171, ISBN 1-59593-108-2, Dijon (France), April 2006,

ACM, USA

Forte, M.; Claudino, R. A. T.; Souza, W. L.; Prado, A. F. & Santana, L. H. Z. (2007). A

Component-Based Framework for the Internet Content Adaptation Domain,

Proceedings of the 22nd Annual ACM Symposium on Applied Computing, Vol. 2, pp.

1450-1455, ISBN 1-59593-480-4, Seoul (Korea), March 2007, ACM, USA

Forte, M; Souza, W. L. & Prado, A. F. (2008). Using ontologies and Web services for content

adaptation in Ubiquitous Computing, Journal of Systems and Software, Vol. 81 , No 3,

 March 2008, pp. 368-381, ISSN 0164-1212

Elson, J. & Cerpa, A. (2003). Internet Content Adaptation Protocol (ICAP), Request for

Comments 3507, The Internet Society,

 http:/ / www.icap-forum.org/ documents/ specification/ rfc3507.txt

Hansmann, U.; Merk, L.; Nicklous, M. S. & Stober, T. (2003). Pervasive Computing. Springer-

Verlag, ISBN 3-540-00218-9, Germany

Horrocks, I. et al (2003). SWRL: A Semantic Web Rule Language Combining OWL and

RuleML, DAML, http:/ / www.daml.org/ 2003/ 11/ swrl/

IBM (2004). IBM Integrated Ontology Development Toolkit,

 http:/ / www.alphaworks.ibm. com/ tech/ semanticstk

ICOGNITO Technologies Ltd (2002). Dynamic Filtering of Internet Content: An Overview of

Next Generation Filtering Technology, http:/ / www.icognito.com

www.intechopen.com

Content Adaptation in Ubiquitous Computing

93

Lara, R. et al. (2005). D2.4.2 Semantics for Web Service Discovery and Composition,

KnowledgeWeb,

 http:/ / knowledgeweb.semanticweb.org/ semanticportal/ deliverables/ D2.4.2.pdf

Marques, M. C. & Loureiro, A. F. (2004). Adaptation in Mobile Computing, Proceedings of the

22nd Brazilian Symposium on Computer Networks, pp. 439-452, Gramado-RS (Brazil),

Mai 2004, Brazilian Computer Society, Brazil

Martin, D. et al. (2006). OWL-S: Semantic Markup for Web Services. DAML,

 http:/ / www.ai.sri.com/ daml/ services/ owl-s/ 1.2/ overview/

Mastoli, V.; Desai, V.; Shi, W (2003). SEE: a service execution environment for edge

services, Proceedings of the Third IEEE Workshop on Internet Applications, pp. 61-65,

ISBN 0-7695-1972-5, San Jose-CA (USA), June 2003, IEEE Computer Society,

USA

Network Apliance Inc (2001). Demo ICAP-Server by Network Appliance,

 http:/ / www.icap-forum.org/ icap?do=resources&subdo=specification

Ravindran, G.; Jaseemudin, M. & Rayhan, A (2002). A Management Framework for Service

Personalization, In: Management of Multimedia on the Internet, Lecture Notes in

Computer Science (LNCS) 2496, Kelvin C. Almeroth & Masum Hasan (Eds), pp.

276-288, Springer-Verlag, ISBN 3-540-44271-5, Germany

Rideout, V.; Richardson, C. & Resnick, P. (2002). See No Evil: How Internet Filters Affect the

Search for Online Health Information, The Henry J. Kaiser Family Foundation,

http:/ / www.kff.org/ entmedia/ 20021210a-index.cfm

Rousskov, A (2005). Open Pluggable Edge Services (OPES) Callout Protocol (OCP) Core,

Request for Comments 4037, The Internet Society,

 https:/ / tools.ietf.org/ html/ rfc4037

Smith, J.; Mohan, R. & Li, C. (1998). Content-based Transcoding of Images in the Internet,

Proceedings of the 1998 IEEE International Conference on Image Processing, Vol. 3, pp. 7-

11, ISBN 0-8186-8821-1, Chicago-IL (USA), October 1998, IEEE Computer Society,

USA

SourceForge (2002). Squid Web Proxy as ICAP Client,

 http:/ / icap-server.sourceforge.net/ squid.html

SourceForge (2003). Shweby Proxy Server, http:/ / shweby.sourceforge.net/

Tomlinson, G.; Chen, R. & Hofmann, M. (2001). A Model for Open Pluggable Edge Services,

Internet- Draft, The Internet Society,

 http:/ / tools.ietf.org/ html/ draft-tomlinson-opes-model-00

UDDI Spec TC (2004). UDDI Version 3.0.2, OASIS,

 http:/ / www.uddi.org/ pubs/ uddi_v3.htm

W3C (2004a). Composite Capability/ Preference Profiles (CC/ PP): Structure and

Vocabularies 1.0,

 http:/ / www.w3.org/ TR/ CCPP-struct-vocab/

W3C (2004b). RDF/ XML Syntax Specification (Revised),

 http:/ / www.w3.org/ TR/ REC-rdf-syntax/

W3C (2004c). OWL Web Ontology Language Overview,

 http:/ / www.w3.org/ TR/ owl-features/

www.intechopen.com

 Ubiquitous Computing

94

W3C (2007). Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language,

http:/ / www.w3.org/ TR/ wsdl20/

www.intechopen.com

Ubiquitous Computing

Edited by Prof. Eduard Babkin

ISBN 978-953-307-409-2

Hard cover, 248 pages

Publisher InTech

Published online 10, February, 2011

Published in print edition February, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The aim of this book is to give a treatment of the actively developed domain of Ubiquitous computing.

Originally proposed by Mark D. Weiser, the concept of Ubiquitous computing enables a real-time global

sensing, context-aware informational retrieval, multi-modal interaction with the user and enhanced

visualization capabilities. In effect, Ubiquitous computing environments give extremely new and futuristic

abilities to look at and interact with our habitat at any time and from anywhere. In that domain, researchers are

confronted with many foundational, technological and engineering issues which were not known before.

Detailed cross-disciplinary coverage of these issues is really needed today for further progress and widening

of application range. This book collects twelve original works of researchers from eleven countries, which are

clustered into four sections: Foundations, Security and Privacy, Integration and Middleware, Practical

Applications.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Wanderley Lopes de Souza, Antonio Francisco do Prado, Marcos Forte and Carlos Eduardo Cirilo (2011).

Content Adaptation in Ubiquitous Computing, Ubiquitous Computing, Prof. Eduard Babkin (Ed.), ISBN: 978-

953-307-409-2, InTech, Available from: http://www.intechopen.com/books/ubiquitous-computing/content-

adaptation-in-ubiquitous-computing

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

