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1. Introduction    

As the integrity of VLSI (very large scale integration) circuits increases, their test has become 
more complex and time consuming task so that test cost has been significantly increased. 
Recent SoC (system on chip) design and test environments have deteriorated this trend 
more significantly. For example, the traditional scan cell ordering problem for low power 
testing is a well known NP-complete problem and has become more time consuming job as 
circuit density increases. In addition, as the SoC design environment takes root in the 
semiconductor industry, the test sequence for each IP (intellectual property) core comes to 
influence the total test time and the total power consumption of the system chip under test. 
Recently hot spot induced by scan testing also should be considered during SoC testing in 
order to improve circuit reliability and reduce unexpected yield loss. Test scheduling, 
therefore, became more important in order to meet the design specifications, such as the test 
time constraint, the power consumption limitation, the thermal constraint, and so on. 
Finally, SoC design methodology requires more test storage since more IP cores are 
integrated in a SoC product so that the test compression techniques are widely used to 
reduce both the test time and the external ATE (automatic test equipment) memory/channel 
requirements. In many cases, the test compression efficiency depends on the given test cube 
set and as the size of test cube set increases in SoC test environment, it will take too much 
time to calculate the optimal seed set for the given test cube set in case of arithmetic built-in 
self test (ABIST) scheme. 
ACO (ant colony optimization) meta-heuristic is an algorithm inspired by the real ant 
system in order to find the optimal solutions for TSP (travel salesman problem) which is 
well known to be an NP-complete problem and has been successfully applied to lots of NP-
complete problems in various fields. In this chapter, we try to transform several important 
problems in the field of SoC testing into ACO applicable ones, which are solved by the ACO 
meta-heuristic. For the ACO-based test applications, three important test problems such as 
test scheduling, scan cell ordering, and test seed calculation for ABIST, are selected. Each 
problem has unique characteristics in order to be transformed into ACO applicable one, so 
that bundles of techniques have been devised and will be described in this chapter. 
According to the experimental results, the ACO meta-heuristic could considerably improve 
the quality and cost efficiency of SoC test methodologies such as test scheduling, scan cell 
ordering, and test seed calculation. 
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2. SoC test scheduling using ACO heuristic 

The number of cores embedded in an SoC is increasing rapidly, and cores are more deeply 
embedded. Therefore, testing the cores by means of direct access through the SoC's I/O pins 
is almost impossible. In order to solve this problem, methods like the IEEE 1500 standard 
and Test Access Mechanism(TAM) have been proposed. An SoC test scheduling is a process 
to minimize the test application time of all built-in cores in the SoC under given constraints 
like TAM bandwidth and power budget. It includes the optimization of the test wrapper 
design, the assignment of TAM width to each core, and the determination of test start and 
finish time for each core. 
In this section, we introduce an ant colony optimization (ACO)-based SoC test scheduling 
method including power and layout information. The proposed method efficiently 
combines the rectangle packing method with ACO and improves the scheduling results by 
dynamically choosing the TAM widths for cores and changing the testing orders. The power 
dissipation and adjacency of cores are incorporated for actual testing conditions. 

2.1 ACO-based rectangle packing [Ahn, J.-H. & Kang, S., 2008] 
An SoC test scheduling problem can be formulated in terms of a 2-dimensional bin packing 
problem [Huang, Y. et al, 2001; Iyengar, V. et al, 2002]. The test time varies with TAM width 
in a staircase pattern, and the testing of a core is represented as a rectangle whose height 
indicates the TAM width assigned to that core and whose width denotes the test time of the 
core for the corresponding value of the TAM width. Thus, we can obtain a number of TAM 
width and test time combinations for the same core. Taken as a whole, a test scheduler 
chooses just one rectangle from the candidate rectangle set of each core and then packs it 
into a bin of a fixed height and an unlimited width until the bin is filled with rectangles of 
all cores embedded in SoC, while minimizing the overall width of the bin without 
overflowing the bin’s height. 
Now, we describe how the ACO algorithm can be implemented for a rectangle packing 
solution. A rectangle packing problem consists of two sub-parts: rectangle selection and 
rectangle packing. The ACO algorithm can be applied to part rectangle selection and/or 
rectangle packing. Through some experiments, we determined that ACO should be used 
only to select rectangles due to the computation time. Therefore, the rectangle packing 
method is based on the procedure used in [Ahn, J.-H. & Kang, S., 2006]. Before describing 
the implementation of ACO for the rectangle packing solution, some features related to 
ACO need to be clarified.  
a. Definition of Pheromone Trail τi(k) 
We define the pheromone trail, τi(k), as the favorability of choosing k as the TAM width 
assigned to core i and calculate it as 

 ( ) ( , ), 1 , , 1 2 , 2 ,gk
i i jj S

k k g i j m Wτ τ
∈

= ≤ ≤ ≤ ≤∑  (1) 

where S denotes the cores already visited by the current ant, gj is the TAM width selected 
for core j, m is the number of embedded cores, and W is the channel width of TAM. 
Consequently, (ki, gj) is the favorability of choosing k as the TAM width for core i when the 
TAM width assigned to core j is g.  
b. Heuristic Variable ηi  
The ACO algorithm combines pheromone information with heuristic values to find 
solutions, since heuristic parameters can help ACO be applicable to various conditions. 
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Here, we use a preferred TAM width for core i, wprefer(i), as the heuristic favorability, ηi. The 
calculation flow to seek wprefer(i) is shown in [Ahn, J.-H. & Kang, S., 2006]. 
c. Stochastic Decision with τi(k) and ηi 
 

 

Fig. 1. ACO-based rectangle selection 

The probability pi(k) that an ant will choose k for core i is given by 
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where ǃ≥1 if wprefer(i)=k and 1 otherwise. 
d. Policy for Pheromone Updating  
According to test scheduling results, pheromone trails are updated as follows: 

 ( , ) ( , ) ( , ),i j i j i jk g k g k gτ ρ τ τ= ⋅ + Δ  (3) 

where ρ is the evaporation parameter, which determines the speed of decay of pheromone; 
Δτ is the amount of pheromone deposited by the ant on the basis of the quality of the 
scheduling result and is defined as  

 ( , ) ,
i ji j k gk g Nτ λΔ = ⋅  (4) 

where 
i jk gN  indicates how many times k of core i and g of core j go together in the best 

scheduling result Sbest, and λ is the constant value to weigh.  
The method of rectangle selection using ACO is explained in the following example. As 
shown in Fig. 1, let an SoC include three cores. The rectangle sets of cores, Ri (1≤i≤3), can be 
represented as nodes linked with one another in the graph. At first, an ant randomly selects 
a starting node and a rectangle in that node. In Fig. 1, we assume that the ant chooses R1 as a 
starting node and rectangle r11. Then, the ant can select R2 or R3 as a next node. After 
arbitrarily selecting a next node, according to pheromone trails (ptable in the figure) stored 
in R1 and heuristic information, wprefer, the ant chooses a rectangle in that node. For example, 
if R2 becomes the next node, two pheromone trails, τ(w21, w11) and τ(w22, w11), and one 
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heuristic value, ηR2, are used to choose a rectangle in R2 by (5). As previously mentioned, 
τ(w21(or w22), w11) is the favorability of choosing w21(or w22) as the TAM width for core 2 
when the TAM width assigned to core 1 is w11, and ηR2 is the preferred TAM width of core 
2. In this example, we assumed that r21 in R2 is selected by (2). The ant continues this process 
until all nodes are visited just once. After choosing all rectangles in Ri, the ant packs them 
using the method used in [Ahn, J.-H. & Kang, S., 2006] and gets a scheduling result. Figure 1 
illustrates a scheduling result with three rectangles, r11, r21, and r32. Finally, the result is 
based on updating pheromone values. If the result is better than the current best result, 
pheromone values, such as τ(w21, w11) in R1 and τ(w32, w21) in R2, can be reinforced. 
In addition to basic ACO methods, we adopt several heuristic tips, such as iteration-best ant 
(Sib), global-best ant (Sgb), and lower limit of the pheromone values (τmin) [Glover, F. et al, 
2003; Stutzle, T. et al, 2000]. These methods are efficient means to balance exploitation of the 
best solution found and exploration of the solution space. Furthermore, we assume that just 
one ant per colony can form a pheromone trail. 

2.2 Thermal distribution consideration 
During testing, the peak power cannot be over the power limit of the system [Cota, E. et al, 
2003]. In addition, thermal management is also considered to reduce hot spots for the 
purpose of minimizing the local heating. In order to make thermal-aware scheduling, we 
added a thermal constraint by the analysis of geometrical adjacency of cores. It is for this 
reason that cooling effect diminishes when cores tested concurrently are geometrically close 
to each other. In [Liu, C. et al, 2005], the corresponding distance matrix is used to measure 
the adjacency of cores. However, as the matrix only represents the relative position within 
chip layout, the amount of adjacent area cannot be identified. Thus, we calculate the 
adjacency value as follows.  

 2 2( ( ) ( )) ( ( ) ( )) , 1 , ,ij i j i jADJ c x c x c y c y i j m= − + − ≤ ≤∑  (5) 

where ci denotes the unit cell of core i and ci(x) is the x-axis position of core i. cj, ci(y), cj(x) , 
and cj(y) can be defined in similar way. Position in X/Y-axis is normalized, and ranges from 
0 to 99. In order to get the effective adjacency value, the value can increase iff the distance 
between two cells is less than 10% of the longest distance. Since we normalize the chip size 
as (100, 100), the longest distance is 140 or so.   
a. Overall Test Scheduling Procedure 
 

 

Fig. 2. ACO-based test scheduling procedure 
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Fig. 3. Ant exploration process  

The ACO-based test scheduling procedure is given in Fig. 2. In Fig. 2, Ncolony denotes the 
number of ants in one colony, Nib is the iteration-best ant number, Ǆ is the waiting number 
until Sgb is used again, and ant_exploration means an ant’s action. The ACO parameters 
include the variables previously mentioned, such as Ncolony, Ǆ, λ, ǃ, ρ, τmin, and so on. R in Fig. 
2 (line 1) indicates the test wrapper set for embedded cores and wprefer is the preferred 
TAM width. 
In the ant exploration procedure as shown in Fig. 3, an ant will search the solution space 
continuously with new ri combinations. After choosing ri for all cores, Each ant packs them 
while minimizing the idle space. As in [Ahn, J.-H. & Kang, S., 2006], we use the packing 
method, which is based on TAM_optimizer [Iyengar, V. et al. 2002] for its simplicity and 
feasibility. Finally, if the packing result of the ant is better than the current best result, the 
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scheduler updates the best test time. wselected is the TAM width from the ACO-based rectangle 
selection process and wassigned is the TAM width assigned at the end. If a core doesn’t satisfy 
the power budget, the acceptable maximum power consumption in a whole chip level, and 
the adjacent limit, the acceptable adjacency value of cores tested concurrently, the core will 
not be selected by the ant. wassigned will be reinforced at the end of the ant exploration process, 
if the packing result is excellent. 

3. Experimental results 

We simulated three ITC’02 benchmark circuits to evaluate the proposed scheduling 

algorithm. The final results reported in this section are based on the following ACO 

parameter values: 

 Ncolony: 10, Ǆ: 10, ρ: 0.9~0.96, τmin: 2.0, τ(0): 20.0, ǃ : 10~20, λ: 0.2, 
where τ(0) is an initial value of a pheromone trail. To obtain parameter values that achieve 

good performance, tests using circuits with different sizes and structures are required. The 

parameter values used here are chosen for balancing the test application times with the 

calculation times through some experiments. 

 

TAM Width 

W=32 W=16 
SoC 

Name 
Power 

Constrants [Iyengar,
V. et al. 
2002] 

[Huang, 
Y. et al 
2002] 

Proposed
[Iyengar, 
V. et al. 
2002] 

[Huang, 
Y. et al 
2002] 

Proposed 

p22810 
No Power 
Constraint

246150 223462 238109 452639 446684 441408 

P9379 
No Power 
Constraint

975016 900798 896835 1851135 1791860 1783397 

No Power 
Constraint

23021 21389 21429 43723 42716 42315 

Pmax=2000 NA 24171 21437 NA 43221 42351 
d695 

Pmax=1500 NA 27573 23097 NA 45560 42587 

Table 1. Scheduling Results with Various Power Constraints 

Table 1 displays the results of an experiment in which various power constraints were used for 

the core test. The given TAM width is either 32 or 16 bits. First, in the experimental results 

without power budgets, we compare the test times of the proposed method with those of the 

method presented in [Iyengar, V. et al. 2002] and [Huang, Y. et al 2002] using the bin packing 

algorithm for test scheduling. As a result, compared with [Iyengar, V. et al. 2002], the test time 

reduction ratio increases by up to 8% at W=32 and 3% at W=16 on average. However, our 

results are almost similar to [Huang, Y. et al 2002]. Next, we show the experimental results 

incorporating power constraints on the power consumption model in [Huang, Y. et al 2002]. 

As the results demonstrate, though the reduction ratio is somewhat variable on a case-by-case, 

the proposed algorithm shows good performance in the main. When Pmax is set to 2000, the test 

time reduction ratio goes up to 16% at W=32 and 6% at W=16. 
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W=32 
SoC 

Name 100% 80% 60% 50% 30% 

21437 22350 22403 22571 23121 

W=16 

100% 80% 60% 50% 30% 

 

d695 

42351 42481 42481 42786 43456 

                                  (a)                                                                                     (b) 

Table 2. Scheduling Results with Thermal Management 

Finally, we introduce the scheduling results using thermal management in Table 2. As 
layout information on benchmark circuits is not available, we make it freely in terms of the 
numbers of scan flip-flops, inputs, outputs, and bidirectional ports of cores. The example 
floorplan of d695 is shown in Table 2 (a). Each rectangle denotes a core and center number 
in a rectangle is the core ID. Numbers in parentheses mean the scaling size of a core, (X-axis 
size, Y-axis size). The results are shown in Table 2 (b). To evaluate the scheduling results 
considering the core adjacency, we set the adjacency limit, ADJmax, to 30~100% of the 
maximum adjacency value among cores. 
Experimental results show that the adjacency constraint partly influences the scheduling 

results as we expected. When the adjacency limit goes down to 30 %, the scheduling time 

extends by up to 7%. The proposed algorithm can be utilized to estimate the overall test 

application time just with the number and size of flip-flops, memory and rough floorplan 

information. 

3. Scan cell ordering using ACO heuristic 

The scan-based test structure is widely used for its high controllability and observability, 

which is obtained by direct access to the memory elements in the circuit. Power 

consumption during a scan test is much greater than that of normal operation, because all 

scan flip-flops are clocked during shift operations, and a much larger percentage of the flip-

flops will change values in each clock cycle. Excessive power consumption during a test can 

cause several problems: circuit damage, yield loss, decreased system reliability, and 

increased product costs. Since the switching activities in scan flip-flops are the dominant 

source of test power consumption, the number of transitions during a scan test should be 

minimized to prevent these problems. Scan cell ordering methods have been proposed to 

reduce the switching activity in a scan-chain during scan test. Genetic algorithm (GA) is 

used to determine an optimized scan cell order [Jelodar, M. S. et al, 2006; Giri, C. et al, 2005]. 

However, the power reduction rate of these methods decreases as the number of scan-cells 

increases. 
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We propose an efficient scan-cell ordering method using an ACO meta-heuristic [Dorigo, M. 
et al, 1999] to reduce the transition count during scan testing. The ACO decision-making-
based experiential probability can provide a scan-cell order optimized with respect to both 
the sum of the Hamming distances between successive test vector columns and the total 
transition count during a scan test. According to the experimental results based on ISCAS 89 
benchmark circuits, the proposed scan cell ordering methodology could reduce considerable 
power consumption compared to the previous works. 
 

3.1 Proposed scan cell ordering methodology 
The basic idea of the proposed method is to arrange scan-cells to minimize the sum of 
Hamming distances between successive test vector columns. The total transition count can 
be decreased as the sum of Hamming distances between test vector columns decreases, 
because Hamming distances between test vector columns represent the number of 
transitions caused by shift operations during a scan test. As shown in Fig. 4, however, 
minimizing the sum of Hamming distances does not always result in minimum total 
transition count. Therefore, the order of scan-cells must be optimized with respect to both 
the sum of the Hamming distances and the total transition count. We use an ACO meta-
heuristic to find an optimal scan-cell order by formulating the ordering problem as a 
travelling-salesman problem (TSP). ACO is an algorithm inspired by the behaviour of real 
ants using pheromone trails to communicate. The pheromone trails are distributive and 
contain numerical information which the ants use to find solutions probabilistically.  
 

 

Fig. 4. Total transition count and hamming distance during scan shift 
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Fig. 5. An example of constructing a graph based on hamming distance 

The probability that a solution candidate is chosen to construct a solution is analogous to the 
amount of pheromone in trails formerly laid by the ants. The objective of scan-cell ordering 
using ACO is to find the minimum transition Hamiltonian cycle on the graph G=(C, L) 
where C={c1, c2, ... , cNc, Nc=the size of scan chain} is a set of scan-cell bit positions in a target 

scan chain and L={lij|(ci, cj)∈C', C'=subset of a Cartesian product C×C}, [L]≤Nc2 represents 
the Hamming distance between test vector column i and j corresponding to scan-cell bit 
positions i and j, respectively. Fig. 5 shows an example of constructing a graph using a set of 
test vectors and responses. 
Scan-cell ordering problems can be characterized as follows using ACO: 

• Jcicj is a Hamming distance between scan-cell bit positions i and j.  

• A={aij|(ci, cj)∈C'}, [A]≤Nc2 is a local information table between each scan-cell bit position. 

aij can be calculated as 1/Jcicj. So this value becomes larger as the Hamming distance 
decreases. 

• Jk is a total transition count estimated using the order constructed by an artificial ant k. 

• τk is a pheromone trail stored by an ant k. It can be calculated as 1/Jk. When the solution 
is constructed more efficiently, larger pheromone trails can be stored. 

• τ={τij|(ci, cj)∈C'}, [τ]≤Nc2 represents pheromone trails stored on the arc between scan-cell 

bit positions i and j. It can be calculated as follows: τij=(1-ρ)·τij+ρ·τk. The variable ρ∈(0, 1] 
is the pheromone trail evaporation coefficient. The evaporation of pheromone trails 
takes place to avoid overly-rapid convergence of the algorithm toward a sub-optimal 
solution. 

• pijk = [τij]ǂ · [aij]ǃ is the probability with which an ant k positioned in bit position i 
chooses the bit position j. The parameters ǂ and ǃ determine the relative weight of the 
total transition count and the sum of Hamming distances, respectively.  

According to these definitions, the proposed scan-cell ordering proceeds as shown in Fig. 6. 
Once the test vector columns are ordered by the proposed scan-cell ordering method, the 
rows of the test vectors are ordered again. A transition occurs when the MSB (most 
significant bit) of a test response to be scanned-out is different from the LSB (least significant 
bit) of the next test vector to be scanned-in. Since this transition is propagated throughout 
the whole scan chain, the number of transitions caused by this difference is equal to the 
length of a scan chain. To reduce these transitions, the consecutive test vectors are, therefore, 
arranged by the simple condition of whether the LSB of one vector is equal to the MSB of its 
predecessor’s response. 
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Fig. 6. Proposed scan cell ordering heuristic 

3.2 Experimental results 
Experiments were performed to compute scan test power reduction rates on the ISCAS’89 
benchmark circuits. Test vectors were generated from the full-scan versions of the circuits 
using the Synopsys Design Analyzer with two vector filling methods (random-fill (R-fill) 
and minimum-transition fill (MT-fill)) and two compaction types (high compaction and no 
compaction). The heuristic parameters of ACO were set to ǂ=1, ǃ=5 and ρ=0.5. All the 
experiments were carried out for 100 ant-cycles and averaged over 10 trials.  
 

Total Transition Reduction Rate 

R-fill & Compaction high R-fill & No-Compaction 
Circuits 

No. 
of 

scan 
cells 

[Jelodar, 
M. S. et 
al, 2006] 

[Giri, C. 
et al 
2005] 

Proposed 
[Jelodar, 
M. S. et 
al, 2006] 

[Giri, C. 
et al 
2005] 

Proposed 

s298 14 11.51% 11.81% 16.30% 7.65% 13.07% 15.02% 

s1423 74 17.01% 18.92% 24.19% 9.74% 11.39% 15.46% 

s5378 179 12.41% 13.53% 25.66% 6.73% 13.53% 18.34% 

s9234 211 10.41% 11.34% 29.19% 7.66% 8.19% 20.40% 

s13207 638 4.02% 4.25% 27.34% 3.12% 3.34% 20.02% 

s15850 534 5.15% 5.83% 26.84% 3.58% 4.03% 19.06% 

s35932 1728 2.87% 3.14% 42.95% 2.33% 2.69% 27.13% 

s38417 1636 1.76% 2.41% 18.44% 1.04% 1.03% 10.79% 

s38584 1426 2.58% 2.98% 24.14% 1.46% 1.55% 14.68% 

Table 3. Comparison using random-filled test vectors 
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Total Transition Reduction Rate 

MT-fill & Compaction high MT-fill & No-Compaction 
Circuits 

No. of
scan 
cells 

[Jelodar, 
M. S. et 
al, 2006] 

[Giri, C. 
et al 
2005] 

Proposed 
[Jelodar, 
M. S. et 
al, 2006] 

[Giri, C. 
et al 
2005] 

Proposed 

s298 14 17.80% 16.98% 26.78% 9.42% 10.57% 19.22% 

s1423 74 16.18% 19.16% 19.22% 27.28% 28.58% 41.59% 

s5378 179 11.35% 19.61% 25.20% 20.75% 18.11% 41.10% 

s9234 211 4.63% 9.43% 21.01% 10.15% 13.81% 31.48% 

s13207 638 2.60% 3.78% 19.79% 6.38% 7.86% 48.67% 

s15850 534 2.27% 4.81% 17.52% 8.53% 10.65% 42.41% 

s35932 1728 0.22% 6.00% 26.72% 3.47% 29.43% 82.50% 

s38417 1636 8.79% 15.67% 38.86% 21.78% 29.82% 84.19% 

s38584 1426 4.40% 4.30% 29.07% 2.36% 6.23% 51.55% 

Table 4. Comparison using minimum transition-filled test vectors 

Tables 3 and 4 include the comparison of the proposed method with previous works 
[Jelodar, M. S. et al, 2006; Giri, C. et al 2005] using R-filled and MT-filled test vectors, 
respectively, in terms of the transition reduction rates during scan testing. As can be seen in 
Table 3 and 4, the proposed method gave 14% to 42% power reduction for R-filled test 
vectors and 19% to 84% power reduction for MT-filled test vectors. The maintenance of the 
high reduction rates for the circuits that have a large number of scan-cells demonstrates that 
the proposed method can efficiently find an optimized scan-cell order regardless of circuit 
size. It shows, too, that power reduction rates obtained by the proposed method are superior 
to those of the previous works in all cases. 

4. ABIST triplet calculation using ACO heuristic 

In arithmetic built-in self test scheme [Gupta, S. et al, 1999; Chiusano, S. et al, 2000; Manich, 
S. et al 2007], the accumulator with an n-bit adder is used to generate a sequence of binary 
patterns by continuously accumulating a constant as shown in Figure 4-1. First, the initial 
vector is loaded into the accumulator register, and new test patterns are generated as a 
result of the iterative addition of the incremental value to the initial vector. Consecutive test 
patterns are described by the following equation: T0 = Sj, Ti = Ti-1 + Ij, (i = 1, 2, …, Lj), where 
Sj is the j-th initial vector, Ij is the increment value, Ti is the test pattern by j-th initial vector 
at the i-th cycle, and Lj is the total number of cycles. The combination of values (Sj, Ij, Lj), 
called as a triplet, will generate Lj + 1 test patterns. If n triplets are used to achieve target 
fault coverage, then random patterns will be applied to the CUT (circuit under test). 
Without a loss of generality, the number of the triplets, n, should be decreased without any 
loss of target fault coverage to reduce the test application time. 
The proposed methodology finds an optimal triplet by selecting the best solution in terms of 
fault coverage among the solutions of the ant agents generated by the ACO heuristic and by 
a local search algorithm. Once ants have completed their solution construction, the solutions 
are taken to their local optimum by the application of a local search routine. Then 
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pheromones are updated on the arcs of the locally optimized solutions. The local search 
procedure to send local solutions into the regions of the global ants is performed. The local 
search starts by generating a new triplet by cross-mutating two solutions that have been 
randomly selected from the global ants. Then the fault coverage of the random test patterns 
generated by the new triplet is calculated by fault simulation. If the fault coverage of the 
new triplet is higher than the minimum fault coverage of the global ant set, then the new 
triplet is sent to the region of the global ants, and the ant of which the fault coverage was the 
minimum is dropped from the global ant set. This process is repeated until a predefined 
number of successive iterations with no improvement in fitness values have been reached. 
Elitist ant system was used for the best ant selection. 
ACO based heuristic and local search method were implemented by C language, and Hope 
fault simulator [Lee, H. K. & Ha, D. S., 1991]  was used for the fault simulation of the test 
patterns generated by each ant agent. Experiments were performed on both largest ISCAS 
85 and ISCAS 89 benchmark circuits in terms of the fault coverage, the total test length, and 
the number of triplets. In most of the benchmark circuits, the proposed scheme showed the 
highest fault coverage, fewest triplets, and shortest test lengths. Since the memory and test 
channel bandwidth requirements of ATE directly depend on the number of triplets, even 
though the proposed scheme requires slightly longer test time in some benchmark circuits, 
the proposed scheme could reduce the test cost significantly. On average, the number of 
triplets of the proposed scheme was smaller than the previous schemes by about 0.8~63.0% 
for all the benchmark circuits. Reduced number of triplets can decrease the memory 
requirements of external ATE so that the proposed methodology can guarantee a 
considerable reduction of test costs. In addition, the proposed methodology reduced the 
average test length considerably compared to two previous schemes, respectively. The 
proposed scheme, therefore, can shorten the test application times significantly. 

4.1 Proposed triplet calculation methodology for ABIST 
The proposed methodology finds an optimal triplet by selecting the best solution in terms of 
fault coverage among the solutions of the ant agents generated by the ACO heuristic and by 
a local search algorithm. Once ants have completed their solution construction, the solutions 
are taken to their local optimum by the application of a local search routine. Then 
pheromones are updated on the arcs of the locally optimized solutions. In case of triplet 
calculation application, fault coverage is not available for heuristic information since new 
fault simulation is required for each generated ant so that the number of fault simulation 
increases impractically. Therefore, in the proposed methodology, instead of using heuristic 
information, a new local search method is applied to prevent local minimum problem. 
Procedural steps of the proposed scheme are summarized Fig. 7. First, an initial solution is 
created, and the values of pheromones and other variables are initialized. The initial 
solution consists of an initial vector, increment data, and test length, and is used as a seed to 
generate ant agents in the next processes. First, an initial vector, Sj = (s1, s2, s3, …, sn), where n 
is the total number of primary inputs of a CUT, is randomly generated. If the initial value is 
odd, then Sj is used for the increment data, Ij. If the initial value is even, Sj + 1 is used for Ij to 
ensure the generation of the maximum number of random test patterns. Random test 
patterns are generated by iteratively accumulating the initial vector, Sj, with the increment 
data, Ij, and are fault simulated until a predefined number of successive test patterns with 
no improvement in fault coverage have been reached. Then the final number of random test 
patterns will be the value for Lj. 
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Fig. 7. Proposed Triplet Calculation Flow 

New ants are created according to the fitness function, and then fault simulation is 
performed for random test patterns generated by each ant to achieve its fault coverage. The 
purpose of Step 2 is to create N new global ants using a Roulette wheel selection scheme by 
the following fitness function, 

 
1

( ) ( ) / ( ),
N

i i i
k

p k k kτ τ
=

= ∑  (1) 

where 1≤ i ≤ n, τi(k) is the pheromone value in the i-th primary input of ant k. pi(k) denotes 
the probability that the k-th ant lets the i-th primary input of CUT have a logic value of 1. 
After best ant set is selected, new ant agents are generated by cross-mutating randomly 
selected ants from the best ant set. Then the fault coverage of the random test patterns 
generated by the new ant is calculated by fault simulation. If the fault coverage of the new 
ant is higher than the minimum fault coverage of the best ant set, then the new ant is sent to 
the region of the best ants, and the ant of which the fault coverage was the minimum is 
dropped from the best ant set. If the fault coverage of the ant set meets the target fault 
coverage, the process stops. Otherwise, the trails of the best solution found in the present 
cycle are reinforced and the process repeats. At the end of every local search cycle, the 
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pheromone trails laid on the solutions found in this cycle are reinforced to facilitate the 
search around the specified point for the best solutions. The pheromone value in the i-th 
primary input of an ant k is calculated by the following equation, 

 ( ) ( ) ( ),
N

i i i
k

k k kτ τ τ= + Δ∑  (2) 

where Δτj(k) = 1/FCk. FCk means the fault coverage of an ant k. For this process, Elitist ant 
system has been used. In our previous work [Kang, S. et al, 2008], the normal ant system 
was used for the pheromone update. According to the experimental results, with the new 
ant system, the proposed system could considerably improve the memory requirement and 
test application time reduction, which will be discussed in the following sub-section. 

4.2 Experimental results 
The ACO based heuristic and GA-based local search method were implemented by C 
language, and Hope fault simulator was used for the fault simulation of the test patterns 
generated by each ant agent. Experiments were performed on both ISCAS 85 and ISCAS 89 
benchmark circuits. In case of ISCAS 89 benchmark circuits, scanned versions have been 
used. Table 5 shows the comparison between the proposed scheme and other arithmetic 
BIST schemes [Chiusano, S. et al, 2000; Manich, S. et al, 2007; Kang, S. et al, 2008] in terms of 
fault coverage (FC), the number of triplets (M), and total test length (L). In case of [Kang, S. 
et al, 2008] and the proposed method, the same test patterns were used so that the fault 
coverage results of the two schemes were the same. In most of the benchmark, the proposed 
scheme showed the highest fault coverage, fewest triplets, and shortest test lengths. On 
 

[Chiusano, S. et al 
2000] 

[Manich, S. et al, 
2007] 

[Kang, S. et al 
2008] 

Proposed 
Circuit 

FC M L FC M L FC M L FC M L 

c432 99.0 2 243 99.2 2 111 100 1 194 100 2 102 

c499 98.8 2 369 100.0 2 361 100.0 1 319 100.0 2 323 

c880 100.0 2 2104 100.0 2 1112 100.0 2 504 100.0 2 472 

c1355 99.4 2 1151 100.0 2 1409 100.0 1 827 100.0 1 801 

c1908 99.6 2 3773 99.9 2 3198 100.0 2 1819 100.0 2 1724 

c2670 95.6 66 10179 97.6 33 2016 100.0 28 1474 100.0 25 1483 

c3540 96.0 2 3467 97.1 2 2167 99.8 2 1696 99.8 2 1521 

c5315 98.8 2 1324 99.9 2 1453 100.0 1 925 100.0 1 824 

c6288 99.6 2 56 99.7 2 66 100.0 1 48 100.0 1 43 

c7552 96.0 128 4000 98.9 20 2918 98.7 20 2748 98.7 20 2654 

s1196 100.0 8 10000 100.0 8 2086 99.0 8 1731 99.0 7 1821 

s1238 94.7 8 7256 98.9 8 4977 99.0 6 2622 99.0 6 2211 

s1423 99.0 6 3100 99.5 6 630 100.0 6 921 100.0 6 879 

s5378 99.0 14 5000 98.9 14 2078 99.0 3 3568 99.0 5 2021 

s9234 NA NA NA 91.4 73 14803 93.5 5 5826 93.5 6 6712 

s13207 NA NA NA 97.2 42 14476 98.5 9 8248 98.5 9 8123 

s15850 NA NA NA 96.7 118 14902 96.6 8 5239 96.6 8 5039 

s38417 NA NA NA 99.5 224 10665 99.5 87 22021 99.5 86 22010 

s38584 NA NA NA 95.9 71 8449 97.4 43 4228 97.4 41 4321 

Table 5. Comparison of the proposed methodology with other arithmetic BIST schemes 
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average, the number of triplets of the proposed scheme was smaller than the previous 
schemes by about 0.8% ~ 63.0%. Fewer triplets entail reduced memory requirements and IO 
channel bandwidth of the external ATE so that the proposed methodology can guarantee a 
considerable reduction of test costs. In addition, the proposed methodology reduced the 
average test length by about 2.0% ~ 28.2%. The test length determines the total test time so 
that the proposed scheme can shorten the test application times significantly in arithmetic 
BIST based SoC testing. 

5. Concluding remarks 

In this chapter, three SoC test issues such as the low power test scheduling, the low power 
scan cell ordering, and the seed calculation for arithmetic BIST, are considered for ACO 
applications. Unique techniques and problem transformation to apply ACO meta-heuristic 
to each test issue are described and the experimental results are provided. According to the 
experimental results, ACO meta-heuristic based test methodologies for SoC test scheduling, 
scan cell ordering and test seed calculation could improve test efficiency and reduce the test 
cost significantly compared to the previous methodologies. 
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