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1. Introduction 

In urban networks, traffic signals are used to control vehicle movements so as to reduce 

congestion, improve safety, and enable specific strategies such as minimizing delays, 

improving environmental pollution, etc (Teklu et al., 2007). Due to the increasing in the 

number of cars and developing industry, finding optimal traffic signal parameters has been 

an important task in order to use the network capacity optimally. Through the last decade, 

developments in communications and information technologies have improved the classical 

methods for optimising the traffic signal timings toward the intelligent ones.  

There is an important interaction between the signal timings and the routes chosen by 

individual road users in road networks controlled by fixed time signals. The mutual 

interaction leads to the framework of a leader-follower or Stackelberg game, where the 

supplier is the leader and the user is the follower (Fisk, 1984). Network design problem 

(NDP) that it may contain the signal setting problem is characterized by the so called bi-

level structure. Bi-level programming problems generally are difficult to solve, because the 

evaluation of the upper-level objective involves solving the lower level problem for every 

feasible set of upper level decisions (Sun et al., 2006). On the upper level, a transport planner 

designs the network. Road users respond to that design in the lower level. This problem is 

known to be one of the most attractive mathematical problems in the optimization field 

because of non-convexity of feasible region that it has multiple local optima (Baskan, 2009).  

Moreover, the driver’s behaviours on the network should be taken into account when the 
traffic signal timings are optimised. When drivers follow the Wardrop’s (1952) first 
principle, the problem is called the “user equilibrium” (UE). On the other hand, it turns to 
the stochastic user equilibrium (SUE) in the case that the users’ face with the decision of 
route choice between the each Origin-Destination (O-D) pair for a given road network 
according to perceived travel time. The difference between SUE and UE approaches is that 
in SUE models each driver is meant to define ‘travel costs’ individually instead of using a 
single definition of costs applicable to all drivers. SUE traffic assignment takes into account 
the variability in driver’s perception of cost. This is done by treating the perceived cost on 
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particular path as a random variable distributed across the population of users, and so a 
different cost for each driver can be modelled. Using the probabilistic choice models, the O-
D demand is assigned to paths, where the cheapest path attracts the most flow.  Road users 
generally use a variety of routes between their origins and destinations in urban networks 
based on their perception of travel time. Hence, the SUE is more appropriate than the DUE 
assignment (Ceylan, 2002).  
A wide range of solution methods to the signal setting problem have been discussed in the 
literature. Allsop & Charlesworth (1977) found mutually consistent (MC) traffic signal 
settings and traffic assignment for a medium size road network. In their study, the signal 
setting and link flows were calculated alternatively by solving the signal setting problem for 
assumed link flows and carrying out the user equilibrium assignment for the resulting 
signal settings until convergence was achieved. The obtained mutually consistent signal 
settings and equilibrium link flows, will, however, in general be non-optimal as has been 
discussed by Gershwin & Tan (1979) and Dickson (1981). Abdullaal & LeBlanc (1979) 
reported the formulation and solution by means of the Hooke-Jeeves’ method for an 
equilibrium network design problem with continuous variables. An unconstraint 
optimisation problem in which the dependence of equilibrium flows on decision variables 
was dealt with as one of the decision variables is solved directly by means of the convex-
combination method. Suwansirikul et al. (1987) solved equilibrium network design problem 
that using a direct search based on the Hooke-Jeeves’ method for a small test network. The 
direct search method, however, is computationally intensive, because frequent evaluations 
of deterministic (or stochastic) user equilibrium traffic assignment are required. Hence, it 
was emphasized that the proposed method is only suitable for small example road 
networks. Heydecker & Khoo (1990) proposed a linear constraint approximation to the 
equilibrium flows with respect to signal setting variables and solved the bi-level problem as 
a constraint optimisation problem. Using the linear constraint approximation method to 
solve the bi level problem can be carried out in a number of iterations by which the resulting 
equilibrium flows are regressed as the signal setting variable changes in a simple linear 
form. 
Canteralla et al. (1991) proposed an iterative approach to solve the equilibrium network 
design problem, in which traffic signal settings are performed in two successive steps; green 
timing at each junction, and signal co-ordination on the network. Green timing calculation 
at each junction was based on a mixed binary linear program. Signal coordination for the 
whole network was performed by solving a discrete programming model with a total delay 
minimisation objective function. Yang & Yagar (1995) used derivatives of equilibrium flows 
and of the corresponding travel times to solve a bi-level program for the equilibrium 
network design problem for a signal control optimisation. Lee & Machemehl (1998) applied 
Genetic Algorithm (GA) to individual signalized intersection. Their objective function was a 
function of green split and the UE links flows. For stage length and cycle time optimization 
without considering offsets to minimise total travel time, Lee (1998) presented a comparison 
of GA and simulated annealing with iterative and local search algorithms and showed that 
different algorithms perform better for different network supply and demand scenarios. 
Chiou (1999) explored a mixed search procedure to solve an area traffic control optimization 
problem confined to equilibrium network flows, where good local optima can be effectively 
found via the gradient projection method. Ceylan & Bell (2004) is proposed GA approach to 
solve traffic signal control and traffic assignment problem is used to tackle the optimization 
of signal timings with SUE link flows. The system performance index is defined as the sum 
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of a weighted linear combination of delay and number of stops per unit time for all traffic 
streams. It is found that the GA method is effective and simple to solve equilibrium network 
design problem.  
The optimization methods developed so far to solve signal setting problem are either 
calculus and mathematically lengthy or are based on the heuristic approaches. Although 
proposed algorithms are capable of solving signal setting problem for a road network, an 
efficient algorithm, which is capable of finding the global or near global optima of the upper 
level signal timing variables considering the equilibrium link flows under SUE conditions, is 
still needed. This chapter deals with the problem of optimising traffic signal timings without 
considering offset term taking stochastic user equilibrium (SUE) conditions into account. A 
bi-level technique and MC approach have been proposed and compared, in which signal 
setting problem is dealt with as upper level problem whilst the SUE traffic assignment is 
dealt with as lower level problem. In this chapter, Ant Colony Optimization (ACO) 
approach which is arisen from the behaviours of real ant colonies is introduced to solve the 
upper level problem in which traffic signal timings are optimised. Although ACO 
algorithms are capable of finding global or near global optimum, it may be further 
improved to locate better global optima for any given problem. In this study, ACO Reduced 
Search Space (ACORSES) algorithm is used for finding better signal timings. It differs from 
other approaches in that its feasible search space (FSS) is reduced with best solution 
obtained so far using the previous information at the each iteration (Baskan et al., 2009). At 
the core of ACORSES, ants search randomly the solution within the FSS to reach global 
optimum by jumping on each direction. At the end of the each iteration, only one ant is near 
to global optimum. After the first iteration, when global optimum is searched around the 
best solution of the previous iteration using reduced search space, the ACORSES will reach 
to the global optimum quickly without being trapped in bad local optimum.  
In this chapter, signal timings are defined as cycle time and green time for each junction and 
stage, respectively. The objective function is adopted to minimise the total system cost of 
network as the system optimum formulation. In order to represent the route choice 
behaviours of drivers, the probit route choice model is used whilst SUE traffic assignment 
problem is solved by the method that proposed Sheffi (1985). The effectiveness of the 
proposed ACORSES algorithm is demonstrated through a numerical experiment. The 
results showed that the bi-level approach based on ACORSES is considerably effective 
according to MC approach in terms of the signal timings and the final values of degree of 
saturation to solve the problem of optimising traffic signal timings under SUE conditions. 
This chapter is organized as follows. The basic notations are defined in the next section. 
Section 3 is about the problem formulation. The solution methods for optimising signal 
timings under SUE conditions are given in Section 4. Numerical experiment is carried out in 
Section 5. Last section is about the conclusions.  

2. Notations 

A   matrix of signal timings 
c    cycle time for each junction of a given road network 

( ) [ ( , )]a ac q=c q,ψ ψ  the vector of all link travel times, where element ( , )a ac q ψ  is 

travel time on link a as a function of flow on the link itself and the 

signal setting variables, ( , ).c=ψ φ  

aC    perceived travel time on link a 
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ac    measured travel time on link a 

h [ ; , ]ph p w= ∀ ∈ ∀ ∈
w
P W  vector of all path flows 

Ii   intergreen time between signal stages  
J   number of junctions 
K   threshold value 

L   number of links 
M   numbers of signal stages at a signalised road network 

m   numbers of signal stages for a signalised junction, m M∀ ∈  

R   colony size 
sa   degree of saturation on link a 

[ ; ]aq a= ∀ ∈q L   vector of flow qa on link a 

( )ψ*q    vector of equilibrium link flows subject to signal parameters 

TC   total cost of a given road network 

[ ; ]wt w= ∀ ∈t W   vector of origin destination flows 

ψ    signal setting variables 

φ    vector of duration of green times 

Ω    feasible set of signal setting variables 

δ    link-path incidence matrix 

Λ    OD-path incidence matrix 
┚   vector of search space constraints at ACO    

β   variance of the perceived travel time 

aσ    standard error for each link a  

┙   random generated vector as initial solution for ACO  

3. Formulation 

The problem of optimising of signal setting variables ( , )ψ c φ= without considering offset 

term on a road network is defined as bi-level structure. The planners aim to minimise the 

total cost (TC) of a given road network on the upper level whilst the SUE link flows ( )ψ*
q  

on the lower level are dealt with altering signal timings. The objective function is therefore 

to minimise TC with respect to equilibrium link flows ( )ψ*
q  subject to signal setting 

constraints ( , )ψ c φ= . Mathematically the problem is defined as:  

 * *( , ( )) ( , ( ))

0

L

a a
a

Min TC q q t q
ψ Ω

ψ ψ ψ ψ=
∈

∑  (1) 

 subject to 
min max

min max

i 1

cycle time constraints for each junction

( , ) ; green time constraints for each stage

( )
m

i i

c c c

ψ c φ φ φ φ

φ I c m M
=

⎧ ⎫
⎪ ⎪

≤ ≤⎪ ⎪
⎪ ⎪= ∈Ω ≤ ≤⎨ ⎬
⎪ ⎪
⎪ ⎪+ = ∀ ∈⎪ ⎪⎩ ⎭
∑
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where  ( )ψ*
q  is implicitly defined by 

 Minimise ( , )
q

Z ψ q  

 subject to  = Λt h , δ=q h , 0≥h  

3.1 ACORSES algorithm for optimising of signal timings (upper-level problem) 

Ant algorithms were inspired by the observation of real ant colonies. Ants are social insects, 
that is, insects that live in colonies and whose behaviour is directed more to the survival of 
the colony as a whole than to that of a single individual component of the colony. Social 
insects have captured the attention of many scientists because of the high structuration level 
their colonies can achieve, especially when compared to the relative simplicity of the 
colony’s individuals. An important and interesting behaviour of ant colonies is their 
foraging behaviour, and, in particular, how ants can find shortest paths between food 
sources and their nest (Dorigo et al., 1999). Ants are capable of finding the shortest path 
from food source to their nest or vice versa by smelling pheromones which are chemical 
substances they leave on the ground while walking. Each ant probabilistically prefers to 
follow a direction rich in pheromone. This behaviour of real ants can be used to explain how 
they can find a shortest path (Eshghi & Kasemi, 2006).  

The ACO is the one of the most recent techniques for approximate optimization methods. 

The main idea is that it is indirect local communication among the individuals of a 

population of artificial ants. The core of ant’s behavior is the communication between the 

ants by means of chemical pheromone trails, which enables them to find shortest paths 

between their nest and food sources. This behaviour of real ant colonies is exploited to solve 

optimization problems. The general ACO algorithm is illustrated in Fig. 1. The first step 

consists mainly on the initialization of the pheromone trail. At beginning, each ant builds a 

complete solution to the problem according to a probabilistic state transition rules. They 

depend mainly on the state of the pheromone.  
 

Step 1: Initialize 
Pheromone trail 

Step 2: Iteration 
Repeat for each ant  
    Solution construction using pheromone trail 
    Update the pheromone trail 
Until stopping criteria 

Fig. 1. A generic ant algorithm  

Once all ants generate a solution, then global pheromone updating rule is applied in two 

phases; an evaporation phase, where a fraction of the pheromone evaporates, and a 

reinforcement phase, where each ant deposits an amount of pheromone which is 

proportional to the fitness. This process is repeated until stopping criteria is met. In this 

study, ACORSES algorithm proposed by Baskan et al. (2009) to solve upper-level problem is 

used to tackle the optimization of signal timings with stochastic equilibrium link flows. The 

ACORSES algorithm is based on each ant searches only around the best solution of the 
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previous iteration with reduced search space. It is proposed for improving ACO’s solution 

performance to reach global optimum fairly quickly. The ACORSES is consisted of three 

main phases; Initialization, pheromone update and solution phase. All of these phases build 

a complete search to the global optimum. At the beginning of the first iteration, all ants 

search randomly to the best solution of a given problem within the Feasible Search Space 

(FSS), and old ant colony is created at initialization phase. After that, quantity of pheromone 

is updated. In the solution phase, new ant colony is created based on the best solution from 

the old ant colony. Then, the best solutions of two colonies are compared. At the end of the 

first iteration, FSS is reduced by ┚ and best solution obtained from the previous iteration is 

kept. ┚ guides the bounds of search space during the ACORSES application, where ┚ is a 

vector, ǃj (j=1,2,....n), and n is the number of variables. The range of the ┚ may be chosen 

between minimum and maximum bounds of any given problem. Optimum solution is then 

searched in the reduced search space during the algorithm progress. The ACORSES reaches 

to the global optimum as ants find their routes in the limited space. 

Let the objective function given in Eq. (1) take a set of ψ  signal timing variables, 

1 1( , ,........., , )n nψ c cϕ ϕ= . On the assumption that each decision variable ψ  can take values 

from a domain [ ]min max,ψ ψ=Ω  for all ψ∈Ω . The presentation of signal timing variables, 

( , )ψ c φ= , based on ACO approach is given in Eq. (2). 

 

11 12 13 1 11 12 13 1

21 22 23 2 21 22 23 2

1 2 3 1 2 3

............... ; ............

............. ; ............

.. .. .. .. ..
A

.. .. .. .. .. .. ..

.. .. .. .. .. .. .. .. ..

............... ; .......

J M

J M

R R R RJ R R R RM

c c c c

c c c c

c c c c

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

⎡
⎢
⎢
⎢
⎢=
⎢

⎣

⎤
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

 (2) 

where M, J and R are the number of signal stages, the number of junctions at a signalised 

road network and the value of colony size, respectively. In order to optimise the objective 

function in ACO real numbers of decision variables are used instead of coding them as in 

GA. This is one of the main advantage of ACO approach that it provides to optimise the 

signal timings at a road network with less mathematically lengthy. Moreover, ACORSES 

algorithm has ability to reach to the global optimum quickly without being trapped in bad 

local optimum because it uses the reduced search space and the values of optimum signal 

timings are then searched in the reduced search space during the algorithm progress. The 

ACORSES reaches to the global optimum or near global optimum as ants find their routes in 

the limited space. In that algorithm, A consists of the cycle and green timings for each 

junction and stage at a given road network. In order to provide the constraint of cycle time 

for each junction, the green timings can be distributed to the all signal stages in a road 

network as follows (Ceylan & Bell, 2004): 

 min, min,
1 1

1

( )
m m

i
i i i k km

k k
i

k

c I
ϕϕ ϕ ϕ
ϕ = =

=

= + − −∑ ∑
∑

    i =1,2,....,m  (3) 
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3.2 The solution method for the lower level problem 

In this study, probit stochastic user equilibrium (PSUE) model is used to solve lower level 
problem. Probit model has the advantage of being able to represent perceptual differences in 
utility of alternatives on a road network. Although it behaves like the logit model for 
statistically independent paths, it has many advantages in the case of existing correlated 
paths at a network. For example, two paths that overlap for virtually their whole length are 
likely to be perceived very similarly by an individual since they have many links in 
common, but this cannot be captured by a logit model. This can lead to unrealistically high 
flows being assigned to the common parts of these paths of a given road network. The PSUE 
model is able to overcome these drawbacks, by supposing path costs are formed from a sum 
of link costs, with the error distribution (Clark & Watling, 2002). Therefore, PSUE model 
proposed by Sheffi (1985) is used to find path choice probabilities in order to overcome this 
drawback. To the best of our knowledge, this is the first time to date that the PSUE model is 
used to solve SUE traffic assignment problem at the lower level whilst the optimization of 
signal timings is dealt with upper level problem.  
Monte-Carlo simulation method is adopted to obtain probit choice probabilities so as to 

none of the analytical approximation methods can be practically applied to medium or large 

scale networks due to probit choice probabilities cannot be written in closed form. The 

advantage of the simulation method is that it does not require the sampling of perceived 

path travel times only perceived link travel times are sampled at every iteration thus 

avoiding path enumeration. The underlying assumption of probit model, the random error 

term of each alternative is assumed normally distributed. The notation  ξ ∼ MVN (μ,Σ) 

indicates that the vector of error terms ξ is multivariate normal (MVN) distributed with 

mean vector μ and covariance matrix Σ. The algorithm to solve PSUE is given as follows 

(Sheffi, 1985): 

Step 0. Initialization. Set n=1 

Step 1. Sampling phase. Sample ( )n
aC  from aC  ∼  N (ca , βca) for each link a. 

Step 2. Based on ( )n
aC , assign wt  to the shortest path connecting each O-D pair w. Obtain 

the set of link flows, ( )n
aq  

Step 3. Link flow averaging. Let ( ) ( 1) ( )( 1) /n n n
a a aq n q q n a−⎡ ⎤= − + ∀⎣ ⎦  

Step 4. Stopping criterion (standard error). Let ( ) ( ) ( ) 2

1

1
( )

( 1)

n
n m n

a a a
m

q q a
n n

σ
=

= − ∀
− ∑   

If 
( )

( )
max

n
a
na

a

K
q

σ⎧ ⎫⎪ ⎪ ≤⎨ ⎬
⎪ ⎪⎩ ⎭

, stop. The solution is ( )n
aq . Otherwise, set n=n+1 and go to step 1. 

where K is the predetermined threshold value. In PSUE algorithm, perceived link travel 

time for each link is random variable that is assumed to be normally distributed with mean 

equal to the measured link travel time and with variance of related link. According to this 

assumption, perceived link travel times for each link are sampled. Then, demand between 

each O-D pair w∈W assigned to the shortest path to obtain set of link flows, a∈L . The link 

flows have to be averaged at every iteration in order to compute the standard error to test 

for convergence of algorithm. The PSUE algorithm is terminated when the stopping 

criterion is met. 
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4. Solution methods 

4.1 The Mutually Consistent (MC) solution for optimising signal timings 

The MC solution process was proposed by Allsop (1974) and Gartner (1974). It is an iterative 

optimisation and assignment procedure that is very similar in nature to other iterative 

procedures in the literature. In this method, the upper level problem is solved by keeping 

the flows fixed, and then the traffic assignment problem is solved by keeping the signal 

timings fixed. MC calculation of signal timings and the corresponding equilibrium flows for 

bi-level problem starts with an initial assignment and tries to reach a MC solution by solving 

sequentially an equilibrium assignment problem and a traffic signal setting problem until 

two successive flow patterns or signal timings are close enough within a specified tolerance. 

If convergence is reached in a finite number of iterations, the solution is considered to be 

mutually consistent. This means that the signal settings generate a set of link costs which 

determine flow pattern such that these settings are optimal for it (Ceylan, 2002). The MC 

calculation is performed in the following steps. 

Step 0. Set k=0 for given signal timings ( )kψ , find the corresponding equilibrium flows 
( )*( )k

q ψ  by solving the problem of PSUE at the lower level. 

Step 1. Solve the upper level problem to obtain the optimal signal timings  ( 1)k+ψ  for the 

flows ( )*( )k
q ψ . 

Step 2. Update the travel time function of all links according to obtained signal timings 
( 1)k+ψ . 

Step 3. Calculate the corresponding equilibrium flows ( 1)*( )k+
q ψ by solving the PSUE 

problem. 

 At Step 3, method of successive averages (MSA) (Sheffi, 1985) smoothing is applied 

to the equilibrium link flows in the iterative process in order to overcome 

fluctuations on equilibrium link flows. The MSA smoothing approach is carried out 

using the following relationship. 
 

 ( 1) ( 1) ( )1 1
(1 )k k k

a a aq q q
k k

+ −= + −  

 

 where k is the iteration number and a is a set of links in L 

Step 4. Solve the upper level problem again to obtain the optimal signal timings  ( 2)k+ψ  

given by the  ( 1)*( )k+
q ψ . 

Step 5. Compare the values of ( 2)k+ψ and ( 1)k+ψ , if there is no change between ( 1)k+ψ and 

( 2)k+ψ then go to Step 6; otherwise, k=k+1 and go to Step 2. 

Step 6. Stop:  ( 1)k+ψ and ( 1)*( )k+
q ψ are the mutually consistent signal timings and 

equilibrium flows. 

The MC calculation process is terminated when the difference in values of signal timings or 

of PSUE flows between successive iterations is smaller than a predetermined threshold 

value. 
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4.2 The bi-level solution for optimising signal timings 

The problem of optimizing signal timings can be seen as a particular case of the NDP in 

which the signal timings play a critical role to optimize the performance of the network 

while the network topological characteristics are fixed. It is also a difficult problem because 

the evaluation of the upper level objective involves solving the lower level problem for 

every feasible set of upper level decisions. The complexity of the problem comes from the 

non-convexity of objective functions and constraints at both levels. In this chapter, the 

ACORSES algorithm is used to overcome this drawback. Although ACO algorithms are 

similar to other stochastic optimization techniques, the ACORSES differs from that it uses 

reduced search space technique to prevent being trapped in bad local optimum (Baskan et 

al., 2009). The solution steps for the bi-level solution are: 

Step 0. Initialisation, k=1. Set the user-specified ACO parameters (┚, R, ┙); represent the 

decision variables ψ  within the range minψ  and maxψ .  

Step 1.  If k=1 generate the initial random population of signal timings kψ  as shown in (2). 

Else generate random population of signal timings according to best signal timings 
obtained in Step 8 and ┚ vector of search space constraints. 
This step plays a critical role because the ACORSES uses the random generated 
population within the reduced search space at each iteration to prevent being 
trapped in bad local optimum.  

Step 2. Solve the lower level problem by solving the PSUE. This gives an equilibrium link 
flows for each link a in L.  

Step 3. Calculate the value of objective function using Eq. (1) in order to obtain old ant 
colony (Aold) in which signal timings are presented, for resulting signal timings at 
Step 1 and the equilibrium link flows resulting in Step 2.  

Step 4. Carry out the pheromone evaporation and updating phases. 
Step 5. Determine the search direction and generate the matrix of length of jump. 
Step 6. According to search direction and generated matrix of length of jump, produce the 

new ant colony (Anew). 
Step 7. Calculate the new values of objective function using produced new ant colony. 
Step 8. Compare the values of objective functions relating to the old and new ant colonies, 

then we have best decision variables, bestψ .    

Step 9. If the difference between the values of kψ and 1k+ψ  is less than predetermined 

threshold value, the algorithm is terminated. Else go to Step 1.  

5. Numerical example 

The test network is chosen that is used by Allsop & Charlesworth (1977) in order to show 

the performance of the ACORSES to optimise signal setting variables. The network topology 

and stage configurations are given in Fig. 2a and 2b, where figures are adapted from Ceylan 

& Bell (2004). Travel demands for each O-D are given in Table 1. This network has 20 O-D 

pairs and 20 signal setting variables at six signal-controlled junctions. The signal timing 

constraints are given as follows: 

minc , maxc = 60, 100 sec      cycle time for each junction 

minφ = 7 sec  minimum green time for signal stages 
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Origin/Destination A B D E F Origin totals 

A 
C 
D 
E 
G 

-- 
40 
400 
300 
550 

250 
20 

250 
130 
450 

700 
200 
-- 

30* 
170 

30 
130 
50* 
-- 
60 

200 
900 
100 
20 
20 

1180 
1290 
800 
480 
1250 

Destination totals 1290 1100 1100 270 1240 5000 
* where the travel demand between O-D pair D and E are not included in this numerical 
test which can be allocated directly via links 12 and 13 

Table 1. Travel demands for the test network 
 

1 

A 

C 

G 

F 

E 

D 

B 2 6 

3 5 

4 

6 

14 

5 

11 12 

13 

10 17 

21 

8 9 18 

20 

15 4 

23 22 

19 

7 16 

3 

1 2 

Legend  

 

 

  O-D 

 

Junction 

N

 

Fig. 2. (a) Layout for the test network (Ceylan & Bell, 2004) 
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 3 egatS 2 egatS 1 egatS      noitcnuJ  
 

1

16 

1 2

19

3

15 23 

20 
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14
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11 12 12

10

5 

6 
13 

8 9 8

17
21 

7 

18 
22

1 

2 

3 

4 

5 

6 

 

Fig. 2 (b) Stage configurations for the test network (Ceylan & Bell, 2004) 

The ACORSES is performed with the following user-specified parameters. ┚ vector should 
be chosen according to constraints of cycle time as proposed by Baskan et al. (2009). 
 Colony size (R) is 50. 
 Search space constraint for ACORSES is chosen as ┚= [100,100,....100]. 
 The length of jump is chosen as ǂ=1/random(10).  

5.1 The bi-level solution for the test network 

This numerical test attempted to show that the ACORSES is able to prevent being trapped in 
bad local optimum although the bi-level programming is non-convex. In order to overcome 
this non-convexity, the ACORSES starts with a large base of solutions, each of which 
provided that the solution converges to the optimum and it also uses the reduced search 
space technique. In ACORSES, new ant colony is created according to randomly generated ǂ 
value. In this reason, any of the newly created solution vectors may be outside the reduced 
search space. Therefore, created new ant colony prevents being trapped in bad local 
optimum. The ACORSES is able to achieve global optimum or near global optimum to 
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optimise signal timings because it uses concurrently the reduce search technique and the 
orientation of all ants to the global optimum. 
The application of the ACORSES to the test network can be seen in Fig. 3, where the 
convergence of the algorithm and the evaluation of the objective function are shown. As 
shown Fig. 3, the ACORSES starts the solution process according to signal timing 
constraints. It was found that the value of objective function is 133854 veh-sec at first 
iteration. The ACORSES keeps the best solution and then it uses the best solution to the 
optimum in the reduced search space. Optimum solution is then searched in the reduced 
search space during the algorithm progress.  The significant improvement on the objective 
function takes place in the first few iteration because the ACORSES starts with randomly 
generated ants in a large colony size. After that, small improvements to the objective 
function takes place since the pheromone updating rule and new created ant colony provide 
new solution vectors on the different search directions. Finally, the number of objective 
function reached to the value of 124587 veh-sec.  
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Fig. 3. Convergence behaviour of the bi-level solution 

The ACORSES is performed for the 297th iteration, where the difference between the values 

of kψ and 1k+ψ  is less than 1%, and the number of objective function is obtained for that is 

124587 veh-sec. The improvement rate is 7% according to the initial solution of objective 

function. Table 2 shows the signal timings and final value of objective function.  
 

Green timings in seconds Objective function 
(veh-sec) 

Junction 
number 

Cycle time 
c (sec) Stage 1 Stage 2 Stage 3 

1 86 7 79 - 

2 76 32 44 - 

3 69 38 31 - 

4 62 11 30 21 

5 74 11 35 28 

124587 

6 80 50 30 - 

Table 2. The final values of signal timing derived from the bi-level solution 
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The degrees of saturation are given in Table 3. No links are over-saturated and the final 
values of degree of saturation of them are not greater than 95%. 
 
 

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 

30 39 45 25 57 23 51 52 84 58 76 40 

s13 s14 s15 s16 s17 s18 s19 s20 s21 s22 s23  

60 25 38 74 93 68 81 84 76 93 33  

 

Table 3. The final values of degree of saturation (%) obtained from the bi-level solution 

5.2 MC solution for the test network 

The MC calculations were carried out with random generated initial set of signal timings for 

first iteration. It was found that the value of objective function is 129500 veh-sec at first 

iteration. The value of objective function decreases steadily as from the second iteration. As 

can be seen in Figure 4, after MC solution process, the value of objective function decreased 

to 125216 veh-sec from 129500 veh-sec. The improvement rate was also found 3% according 

to initial value of objective function.  
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Fig. 4. Convergence behaviour of the MC solution      

The final value of objective function and corresponding signal timings for the MC solution 

are given in Table 4. As can be seen in Table, the MC solution for optimize signal timings 

produces greater cycle times for each junction compared with the bi-level approach.  

Improvement rate  

            3% 
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Green timings in seconds Objective 
function (veh-sec)

Junction 
number 

Cycle time 
c (sec) Stage 1 Stage 2 Stage 3 

1 89 8 81 - 

2 100 50 50 - 

3 74 47 27 - 

4 81 17 41 23 

5 100 14 50 36 

125216 

6 91 58 33 - 

Table 4. The final values of signal timing derived from the MC solution 

Table 5 shows the degree of saturation for the MC solution. No links are over-saturated but 
some of them approach the critical degree of saturation (i.e. 100%).  
 

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 

28 43 35 27 54 26 54 56 95 60 65 37 

s13 s14 s15 s16 s17 s18 s19 s20 s21 s22 s23  

72 32 33 70 87 65 81 73 81 96 39  

Table 5. The final values of degree of saturation (%) obtained from the MC solution 

6. Conclusions 

In this chapter, ACORSES algorithm was used to optimize signal timings on a given road 

network without considering offset term using bi-level approach and MC solution 

procedures. The Allsop & Charlesworth’s test network was used to denote the performance 

of the ACORSES in terms of the value of objective function and the degree of saturation on 

links. According to the results, the final values of degree of saturation from the bi-level 

solution were not greater than 95% while no links are over-saturated but some of them 

approach the critical degree of saturation (i.e. 100%) for the MC solution. The ACORSES 

algorithm is performed on PC Core2 Toshiba machine and each iteration for this test 

network was not greater than 12.3 sec of CPU time in Visual Basic code. On the other hand, 

the computation effort for the MC solution on the same machine was carried out for each 

iteration in less than 15.4 sec of CPU time. 

The ACORSES algorithm was found considerably successful in terms of the signal timings 

and the final values of degree of saturation. Although the MC solution gives the similar 

results in terms of the value of objective function, it produces greater cycle times than the bi-

level solution. Moreover, the MC solution was also dependent on the initial set of signal 

timings and its solution was sensitive to the initial assignment.         
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