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1. Introduction   

Geomorphology is the science that studies landscape evolution, thus stands in the centre of 

the Earth's surface sciences, where, geology, seismology, hydrology, geochemistry, 

geomorphology, atmospheric dynamics, biology, human dynamics, interact and develop a 

dynamic system (Murray, 2009). Usually the relationships between the various factors 

portraying geo-systems are non linear. Neural networks which make use of non–linear 

transformation functions can be employed to interpret such systems. Applied 

geomorphology, for example, adaptive environmental management and natural hazard 

assessment on a changing globe requires, expanding our understanding of earth surface 

complex system dynamics. The inherent power of self organizing maps to conserve the 

complexity of the systems they model and self–organize their internal structure was 

employed, in order to improve knowledge in the field of landscape development, through 

characterization of drainage basins landforms and classification of recent depositional 

landforms such as alluvial fans. The quantitative description and analysis of the geometric 

characteristics of the landscape is defined as geomorphometry. This field deals also, with the 

recognition and classification of landforms.  

Landforms, according to Bishop & Shroder, (2004) carry two geomorphic meanings. In 

relation to the present formative processes, a landform acts as a boundary condition that can 

be dynamically changed by evolving processes. On the other hand formative events of the 

past are inferred from the recent appearance of the landform and the material it consists of. 

Therefore the task of geomorphometry is twofold: (1) Quantification of landforms to derive 

information about past forming processes, and (2) determination of parameters expressing 

recent evolutionary processes. Basically, geomorphometry aims at extracting surface 

parameters, and characteristics (drainage network channels, watersheds, planation surfaces, 

valleys side slopes e.t.c), using a set of numerical measures derived usually from digital 

elevation models (DEMs), as global digital elevation data, now permit the analysis of even 

more extensive areas and regions. These measures include slope steepness, profile and plan 

curvature, cross- sectional curvature as well as minimum and maximum curvature, (Wood, 

1996a; Pike, 2000; Fischer et al., 2004). Numerical characterizations are used to quantify 
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generic landform elements (also called morphometric features), such as point–based features 

(peaks, pits and passes), line-based features (stream channels, ridges, and crests), and area 

based features (planar) according to Evans (1972) and Wood, (1996b).  

 In the past, manual methods have been widely used to classify landforms from DEM, 

(Hammond, 1964). Hammond's (1964) typology, first automated by Dikau et al., (1991), was 

modified by Brabyn, (1997) and reprogrammed by Morgan & Lesh, (2005). Bishop & 

Shroder, (2004) presented a landform classification of Switzerland using Hammond’s 

method. Most recently, Prima et al., (2006) mapped seven terrain types in northeast Honshu, 

Japan, taking into account four morphometric parameters. Automated terrain analyses 

based on DEMs are used in geomorphological research and mainly focus on morphometric 

parameters (Giles & Franklin, 1998; Miliaresis, 2001; Bue & Stepinski, 2006). Landforms as 

physical constituents of landscape may be extracted from DEMs using various approaches 

including combination of morphometric parameters subdivided by thresholds (Dikau, 1989; 

Iwahashi & Pike, 2007), fuzzy logic and unsupervised classification (Irvin et al., 1997; 

Burrough et al., 2000; Adediran et al., 2004), supervised classification (Brown et al., 1998; 

Prima et al., 2006), probabilistic clustering algorithms (Stepinski & Collier, 2004), 

multivariate descriptive statistics (Evans, 1972; Dikau, 1989; Dehn et al.,2001) discriminant 

analysis (Giles, 1998), and neural networks (Ehsani & Quiel, 2007).  

The Kohonen self organizing maps (SOM) (Kohonen, 1995) has been applied as a clustering 

and projection algorithm of high dimensional data, as well as an alternative tool to classical 

multivariate statistical techniques. Chang et al., (1998, 2000, 2002) associated well log data 

with lithofacies, using Kohonen self organizing maps, in order to easily understand the 

relationships between clusters. The SOM was employed to evaluate water quality (Lee & 

Scholtz, 2006), to cluster volcanic ash arising from different fragmentation mechanisms 

(Ersoya et al., 2007), to categorize different sites according to similar sediment quality 

(Alvarez–Guerra et al., 2008), to assess sediment quality and finally define mortality index 

on different sampling sites (Tsakovski et al., 2009). SOM was also used for supervised 

assessment of erosion risk (Barthkowiak & Evelpidou, 2006). Tselentis et al., (2007) used P-

wave velocity and Poisson ratio as an input to Kohonen SOM and identified the prominent 

subsurface lithologies in the region of Rion–Antirion in Greece. Esposito et al., (2008) 

applied SOM in order to classify the waveforms of the very long period seismic events 

associated with the explosive activity at the Stromboli volcano. Achurra et al., (2009) applied 

SOM in order to reveal different geochemical features of Mn-nodules, that could serve as 

indicators of different paleoceanographic environments. Carniel et al., (2009) describe SOM 

capability on the identification of the fundamental horizontal vertical spectral ratio 

frequency of a given site, in order to characterize a mineral deposit. Ferentinou & 

Sakellariou (2005, 2007) applied SOM in order to rate slope stability controlling variables in 

natural slopes. Ferentinou et al., (2010) applied SOM to classify marine sediments. 

As evidenced by the above list of references, modeling utilizing SOM has recently been 
applied to a wide variety of geoenvironmental fields, though in the 90s, this approach was 
mostly used for engineering problems but also for data analysis in system recognition, 
image analysis, process monitoring, and fault diagnosis. It is also evident that this method 
has a significant potential. 
Alluvial fans are prominent depositional landforms created where steep high power 
channels enter a zone of reduced stream power and serve as a transitional environment 
between a degrading upland area and adjacent lowland (Harvey, 1997). Their morphology 
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resembles a cone segment with concave slopes that typically range from less than 25 degrees 
at the apex to less than 1 degree at the toe (Figure 1a). 
 

 

Fig. 1. (a) Schematic representation of a typical alluvial fan, and (b) representation of a 
typical drainage basin 

Alluvial fan characterization is concerned with the determination of the role of the fluvial 
sediment supply for the evolution of fan deltas. The analysis of the main controlling 
factors on past and present fan processes is also of major concern in order to distinguish 
between the two dominant sedimentary processes on alluvial fan formation and 
evolution: debris flows and stream flows. Crosta & Frattini, (2004), among others, have 
worked in two dimensional planimetric area used discriminant analysis methods, while 
Giles, (2010), has applied morphometric parameters in order to characterize fan deltas as a 
three dimensional sedimentary body. There are studies which have explored on a 
probabilistic basis the relationships, between fan morphology, and drainage basin geology 
(Melton, 1965; Kostaschuck et al., 1986; Sorisso-Valvo & Sylvester, 1993; Sorisso-Valvo, 
1998). Chang & Chao (2006), used back propagation neural networks for occurrence 
prediction of debris flows. 
In this paper the investigation focuses on two different physiographic features, which are 

recent depositional landforms (alluvial fans) in a microrelief scale, and older landforms of 

drainage basin areas in a mesorelief scale (Figure 1b). In both cases landform 

characterization, is manipulated through the technology of self organising maps (SOMs). 

Unsupervised and supervised learning artificial neural networks were developed, to map 

spatial continuum among linebased and surface terrain elements. SOM was also applied 

as a clustering tool for alluvial fan classification according to dominant formation 

processes. 

2. Method used  

2.1 Self organising maps 
Kohonen's self-organizing maps (SOM) (Kohonen, 1995), is one of the most popular 
unsupervised neural networks for clustering and vector quantization. It is also a powerful 
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visualization tool that can project complex relationships in a high dimensional input space 
onto a low dimensional (usually 2D grid).  It is based on neurobiological establishments that 
the brain uses for spatial mapping to model complex data structures internally:  different 
sensory inputs (motor, visual, auditory, etc.) are mapped onto corresponding areas of the 
cerebral cortex in an ordered form, known as topographic map. The principal goal of a SOM 
is to transform an incoming signal pattern of arbitrary dimension n into a low dimensional 
discrete map. The SOM network architecture consists of nodes or neurons arranged on 1-D 
or usually 2-D lattices (Fig. 2). Higher dimensional maps are also possible, but not so 
common. 
 
 

 

Fig. 2. Examples of 1-D, 2-D Orthogonal and 2-D Hexagonal Lattices 

Each neuron has a d dimensional weight vector (prototype or codebook vector) where d is 

equal to the dimension of the input vectors. The neurons are connected to adjacent neurons 

by a neighborhood relation, which dictates the topology, or structure, of the map.  

The SOM is trained iteratively. In each training step a sample vector x from the input data 

set is chosen randomly and the distance between x and all the weight vectors of the SOM, is 

calculated by using an Euclidean distance measure. The neuron with the weight vector 

which is closest to the input vector x is called the Best Matching Unit (BMU). The distance 

between x and weight vectors is computed using the equation below: 

   } ’minc i ix m x m/ ? /   (1) 

where ||.|| is the distance measure, typically Euclidean distance. After finding the BMU, 

the weight vectors of the SOM are updated so that the BMU is moved closer to the input 

vector in the input space. The topological neighbors of the BMU are treated similarly. The 

update rule for the weight vector of i is 

    * + * + * + * + * + * +1i i ci ix t m t a t h t x t m t- ? - Ç / ×É Ú   (2) 

where x(t) is an input vector which is randomly drawn from the input data set, a(t) 
function is the learning rate and t denotes time. A Gaussian function hci(t) is the 
neighborhood kernel around the winner unit mc, and a decreasing function of the distance 
between the ith and cth nodes on the map grid. This regression is usually reiterated over 
the available samples. 
All the connection weights are initialized with small random values. A sequence of input 

patterns (vectors) is randomly presented to the network (neuronal map) and is compared to 

weights (vectors) “stored” at its node. Where inputs match closest to the node weights, that 
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area of the map is selectively optimized, and its weights are updated so as to reproduce 

the input probability distribution as closely as possible. The weights self-organize in the 

sense that neighboring neurons respond to neighboring inputs (topology which preserves 

mapping of the input space to the neurons of the map) and tend toward asymptotic 

values that quantize the input space in an optimal way. Using the Euclidean distance 

metric, the SOM algorithm performs a Voronoi tessellation of the input space (Kohonen, 

1995) and the asymptotic weight vectors can then be considered as a catalogue of 

prototypes, with each such prototype representing all data from its corresponding 

Voronoi cell.  

2.2 SOM visualization and analysis 
The goal of visualization is to present large amounts of information in order to give a 

qualitative idea of the properties of the data. One of the problems of visualization of 

multidimensional information is that the number of properties that need to be visualized is 

higher than the number of usable visual dimensions.  

SOM Toolbox (Vesanto, 1999; Vesanto & Alboniemi, 2000), a free function library package 

for MATLAB, offers a solution to use a number of visualizations linked together so that one 

can immediately identify the same object from the different visualizations (Buza et al., 1991). 

When several visualizations are linked in the same manner, scanning through them is very 

efficient because they are interpreted in a similar way. There is a variety of methods to 

visualize the SOM. An initial idea of the number of clusters in the SOM as well as their 

spatial relationships is usually acquired through visual inspection of the map. The most 

widely used methods for visualizing the cluster structure of the SOM are distance matrix 

techniques, especially the unified distance matrix (U-matrix). The U-matrix visualizes 

distances between prototype vectors and neighboring map units and thus shows the cluster 

structure of the map. Samples within the same unit will be the most similar according to the 

variables considered, while samples very different from each other are expected to be 

distant in the map. The visualization of the component planes help to explain the results of 

the training. Each component plane shows the values of one variable in each map unit. 

Simple inspection of the component layers provides an insight to the distribution of the 

values of the variables. Comparing component planes one can reveal correlations between 

variables.  

Another visualization method offered by SOM is displaying the number of hits in each map 

unit.  Training of the SOM, positions interpolating map units between clusters and thus 

obscures cluster borders. The Voronoi sets of such map units have very few samples (“hits”) 

or may even be empty. This information is utilized in clustering the SOM by using zero-hit 

units to indicate cluster borders.  

The most informative visualizations of all offered by SOM are simple scatter plots and 

histograms of all variables. Original data points (dots) are plot in the upper triangle, 

though map prototype values (net) are plot on the lower triangle. Histograms of main 

parameters are plot on the diagonal. These visualizations reveal quite a lot of information, 

distributions of single and pairs of variables both in the data (upper triangle) and in the 

trained map (lower triangle). They visualize the parameters in pairs in order to enhance 

their correlations. A scatter diagram can extend this notion to the multiple pairs of 

variables. 
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3. Study area  

The case study area is located on the northwestern part of the tectonically active Gulf of 
Corinth which is an asymmetric graben in central Greece trending NW-SE across the 
Hellenic mountain range, approximately perpendicular to the structure of Hellenides 
(Brooks & Ferentinos, 1984; Armijo et al., 1996). The western part of the gulf, where the 
study area is located, is presently the most active with geodetic extension rates reaching up 
to 14-16 mm/yr (Briole et al., 2000). The main depositional landforms along this part of the 
gulf’s coastline are coastal alluvial fans (also named fan deltas) which have developed in 
front of the mouths of fourteen mountainous streams and torrents. Alluvial fan 
development within the study area is the result of the combination of suitable conditions for 
fan delta formation during the Late Holocene. Their evolution and geomorphological 
configuration is affected by the tectonic regime of the area (expressed mainly by 
submergence during the Quaternary), weathering and erosional surface processes 
throughout the corresponding drainage basins, mass movement (especially debris flows), 
and the stabilization of the eustatic sea-level rise about 6,000 years ago (Lambeck, 1996). 
 

 

Fig. 3. Simplified lithological map of the study area 

Apart from the classification of microscale landforms, such as the above mentioned coastal 

alluvial fans, this study also focuses on mesoscale landforms characterization. This attempt 

concerns the hydrological basin areas of the streams of (from west to east) Varia, Skala, 

Tranorema, Marathias, Sergoula, Vogeri, Hurous, Douvias, Gorgorema, Ag. Spiridon, 

Linovrocho, Mara, Stournarorema and Eratini, focusing on the catchments of Varia and 
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Skala streams. Landforms distribution within the studied drainage basins are mainly 

controlled by the bedrock lithology. Therefore, it is important to outline the geology of the 

area. The basic structural pattern of the broader area of the drainage basins was established 

during the Alpine folding. The drainage basins are dominated by geological formations of 

the geotectonic zones of Parnassos–Ghiona, Olonos-Pindos and Ionian and the Transitional 

zone between those of Parnassos–Ghiona and Olonos-Pindos. The easternmost basins 

(Eratini and part of Stournarorema) are made up of Tithonian to Senonian limestones of the 

Parnassos–Ghiona zone and the Transitional Sedimentary Series (limestones of Upper 

Triassic to Paleocene age and sandstones and shales of the Paleocene–Eocene flysch). The 

majority of the catchments consist of the Olonos–Pindos zone formations which are 

represented by platy limestones of Jurassic-Senonian age and Upper Cretaceous - Eocene 

flysch lithological sequences (mainly sandstones and shales). Part of the westernmost Varia 

drainage system drains flysch formations (mainly marls, sandstones and conglomerates) of 

the Ionian zone. A simplified lithological map of the catchments is presented in Fig3. 

Tectonically the area is affected by an older NW-SE trending fault system, contemporaneous 

to the Alpine folding and a younger one having an almost E-W direction with the active 

normal fault of Marathias (Gallousi & Koukouvelas, 2007) and normal faults located in the 

broader area of Trizonia Island being the most significant. 

4. Application of SOM in landform characterization - Input variables and data 
preparation 

This research is based on quantitative and qualitative data depicting the morphology and 

morphometry of fans and their drainage basins. These data derived from field-work, SRTM 

DEM data and topographic and geological maps at various scales. The correlation between 

geomorphological features (expressed by morphometric parameters) of the drainage basins 

and features of their fan deltas was detected, in order to determine the role of the fluvial 

sediment supply for the evolution of the fan deltas.  

A simplified lithological map of the area was constructed from the geological maps of 

Greece at the scale of 1:50,000 obtained from the Institute of Geology and Mineral 

Exploration of Greece (I.G.M.E.). The lithological units cropping out in the basins area were 

grouped in three categories including limestones, flysch formations (sandstones, shales and 

conglomerates) and unconsolidated sediments. The area cover occupied from each one of 

the three main lithological types in the area of each basin was also estimated.  

The identification and delineation of the fans was based upon field observations, aerial 

photo interpretation and geological maps of the surficial geology of the area at the scale of 

1:50,000 (Paraschoudis, 1977; Loftus & Tsoflias, 1971). Detailed topographic diagrams at the 

scale of 1:5.000, were used for the calculation of the morphometric parameters of the fan 

deltas. All topographic maps were obtained from the Hellenic Military Geographical 

Service (H.M.G.S). The elevation of the fan apex was measured by altimeter or GPS for 

most of the studied fans. All measurements and calculations of the morphometric 

parameters were performed using Geographical Information System (GIS) functions. The 

morphometric variables obtained for each fan and its corresponding drainage basin are 

described in Table 1. 

Table 2 presents the values of the (fifteen) morhometric parameters measured and estimated 

for the coastal alluvial fans and their drainage basins. 
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Drainage basin morphometric parameters 

 Morphometric Parameter Symbol Explanation 

1 Drainage basin area (Ab) 
The total planimetric area of the basin above 
the fan apex, measured in km2.

2 Basin crest (Cb) 
The maximum elevation of the drainage basin 
given in m.

3 
Perimeter of the drainage 
basin 

(Pb) 
The length of the basin border measured in 
km.

4 
Total length of the 
channels within the 
drainage basin

(Lc) Measured in km. 

5 
Total length of 20 m 
contour lines within the 
drainage basin 

(┋Lc) Measured in km. 

6 Basin relief (Rb) 
Corresponds to the vertical difference between 
the basin crest and the elevation of fan apex, 
given in m.

7 
Melton’ s ruggedness 
number 

(M) 

An index of basin ruggedness (Melton, 1965, 
Church and Mark, 1980) calculated by the 
following formula: 
M=RbAb-0.5

8 Drainage basin slope (Sb) 

Obtained using the following equation : 
Sb=e┋Lc/Ab 
e is the equidistance (20m for the maps that 
were used in this study).

9 Drainage basin circularity (Cirb) 
It is given by the equation: 
Cirb=4┨Ab/Pb2 and expresses the shape of the 
basin. 

10 Drainage basin density (Db) 
The ratio of the total length of the channels to 
the total area of the basin.

Fan delta morphometric parameters 

11 Fan area (Af) 
The total planimetric area of each fan, 
measured in km2.

12 Fan length (Lf) 
The distance between the toe (coastline for 
most of the fans) and apex of the fan, 
measured in m.

13 Fan apex (Apf) The elevation of the apex of the fan in m. 

14 Fan slope (Sf) 
The mean gradient measured along the axial 
part of the fan.

15 Fan concavity (Cf) 

An index of concavity along the fan axis defined 
as the ratio of a to b, where a is the elevation 
difference between the fan axis profile and the 
midpoint of the straight line joining the fan apex 
and toe, and b is the elevation difference between 
the fan toe and midpoint.

Table 1. Definition of drainage and fan delta morphometric parameters 
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Stream/fan 

name 
Ab Cb Pb Lc ┋Lc Rb M Sb Cirb Db Af Lf Apf Sf Cf 

1 Varia 27.5 1420 26.5 85.9 592.2 1376 0.26 0.43 0.49 3.13 4.2 2.6 44 0.017 1.10 

2 Skala 28.2 1469 25.6 80.6 785.1 1375 0.26 0.56 0.54 2.86 4.2 2.9 94 0.033 1.29 

3 Tranorema 30.3 1540 26.4 112.4 798.7 1452 0.26 0.53 0.55 3.70 1.6 2.1 88 0.042 1.05 

4 Marathias 2.3 880 6.8 6.6 52.8 788 0.52 0.46 0.63 2.87 0.4 0.6 92 0.157 1.28 

5 Sergoula 18.4 1510 19.7 59.7 569.8 1456 0.34 0.62 0.60 3.24 0.5 1.2 54 0.046 1.16 

6 Vogeni 2.4 1035 7.9 5.6 63.7 817 0.53 0.53 0.49 2.34 0.7 1.3 218 0.167 1.38 

7 Hurous 6.8 1270 11.6 23.2 158.6 1054 0.41 0.47 0.63 3.43 2.7 2.8 216 0.077 1.63 

8 Douvias 6.8 1361 10.6 23.6 190.3 1269 0.49 0.56 0.77 3.46 0.6 1.6 92 0.059 1.42 

9 Gorgorema 2.5 1060 7.3 6.2 67.7 1012 0.64 0.55 0.59 2.52 0.1 0.6 48 0.082 1.18 

10 
Ag. 

Spiridon 1.0 585 4.4 3.5 32.2 515 0.50 0.62 0.69 3.39 0.1 0.7 70 0.095 1.33 

11 Linovrocho 3.6 1020 8.6 11.3 86.4 926 0.49 0.47 0.62 3.09 0.3 1.2 94 0.080 1.04 

12 Mara 2.1 711 6.8 7.8 51.4 651 0.45 0.50 0.57 3.76 0.2 0.8 60 0.076 1.14 

13 
Stournaro- 

rema 47.1 1360 31.5 142.1 1236.0 1268 0.18 0.53 0.60 3.02 4.7 4.5 92 0.021 1.56 

14 Eratini 3.4 1004 8.8 8.6 77.7 974 0.53 0.46 0.55 2.55 0.3 0.7 30 0.044 1.30 

Table 2. Values of the measured morphometric parameters for the 14 alluvial fans and their 
drainage basins 

Two more qualitative parameters were studied, the existence or not of a well developed 
channel in fan area (R), and the geological formation that prevails in the basin area (GEO). 
Channel occurrence or absence was coded in a binary condition, whereas geological 
formation prevalence was coded according to relative erodibility. 
 

Nr Stream/fan name GEO R Nr Stream/fan name GEO R 

1 Varia flysch 1 8 Douvias limestone 1 

2 Skala limestone 1 9 Gorgorema flysch 1 

3 Tranorema flysch 0 10 Ag. Spiridon flysch 0 

4 Marathias limestone 1 11 Linovrocho flysch 1 

5 Sergoula limestone 0 12 Mara flysch 1 

6 Vogeni limestone 0 13 Stournarorema flysch 1 

7 Hurous flysch 1 14 Eratini limestone 0 

Table 3. Values of the studied categorical parameters for the 14 alluvial fans and their 
drainage basins 
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Satellite derived DEMs were also used for digital representation of the surface elevation. 
The source were global elevation data sets from the Shuttle Radar Topography Mission 
(SRTM)/SIR-C band data, (with 1 arc second and 3 arc seconds) released from (NASA). In 
this study, two DEMs were re-projected to Universal Transverse Mercator (UTM) grid, 
Datum WGS84, with 250m and 90m spacing. In the proposed semi-automatic method, it is 
necessary to implement algorithms, which identify landforms from quantitative, numerical 
attributes of topography. Morphometric analysis of the study area was performed using the 
DEM and the first and second derivatives (slope, aspect, curvature, plan and profile 
curvature), applying Zevenbergen & Thorne (1987) method. Morphometric feature analysis 
and extraction of morphometric parameters are implemented in the open source SAGA GIS 
software, version 2.0 (SAGA development team 2004). Routines were applied in order to 
perform terrain analysis and produce terrain forms using Peuker & Douglas (1975), method. 
This method considers the slope gradients to all lower and higher neighbors for the cell 
being processed. For example, if all the surrounding neighbor cells have higher elevations 
than the cell being processed, the cell is a pit and vice versa is a peak. If half of the 
surrounding cells are lower in elevation and half are higher in elevation, then the cell being 
processed is on a hill-slope. The cell being processed is identified as a ridge cell if only one 
of the neighboring cells is higher, and, conversely, a channel when only one neighbor cell is 
lower. When slope gradients are considered, a hill-slope cell can be further characterized 
between a convex or concave hill-slope position. At locations with positive values for slope, 
channels have negative cross sectional curvature whereas ridges have positive cross 
sectional curvatures.  The differentiation to plan hill-slopes is performed by using a 
threshold.  
 

Symbol Description 
Nr of data samples in 
250m DEM spacing of 
the whole data set 

Nr of data samples in 90m 
DEM spacing of the subset 
of Varia and Scala basin 

-9 Pit 26 113 

-7 Channel 825 6,322 

-2 
Concave break 
form valleys 

683 5,284 

0 Flat 99 1,060 

1 Pass 4 371 

2 
Convex break 
form ridges 

713 5,441 

7 Ridge 805 6,289 

9 Peak 17 138 

Table 4. Terrain form classification according to Peuker & Douglas method 

Sampling procedure for the data set describing the drainage basins and alluvial fan regions, 
was performed. A sampling function was applied to the derivatives grids in order to 
prepare a matrix of sample vectors. The produced ASCII file was exported to MATLAB in 
order to use SOM artificial neural networks. The main geomorphological elements 
according to Peuker and Douglas (1975) method, are channels, ridges, convex breaks and 
concave breaks and are presented in Table 4. Pits, peaks and passes are not so often in the 
study area. The morphometric parameters derived were used as input to SOM. Data 
preparation in general is a diverse and difficult issue. It aims to, select variables and data 
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sets to be used for building the model, clean erroneous or uninteresting values from the 
data. It also aims to transform the data into a format which the modelling tool can best 
utilize and finally normalize the values in order to accomplish a unique scale and avoid 
problems of parameter prevalence according to their high values. 
The quality of the SOM obtained with each normalization method is evaluated using two 

measures as criteria: the quantization error (QE) and the topographic error (TE). QE is the 

average distance between each data set data vector and its best mapping unit, and thus, 

measures map resolution (Kohonen, 1995). TE is used as a measure of topology 

preservation. The map size is also important in the SOM model. If the map is too small, it 

might not explain some important differences, but if the map is too large (i.e. the number of 

map units is larger than the number of samples), the SOM can be over fitted (Lee & Scholz, 

2006). Under the condition that the number of neurons could be close to the number of the 

samples, the map size was selected, for each application. 

5. Results 

5.1 Microscale landform characterization (coastal alluvial fan classification) 
The application of the SOM algorithm in the current data set, and the result of the clustering 

are presented through the multiple visualization in Fig.4. The examined variables are the 

morphometric parameters of the alluvial fans and their corresponding drainage basins, 

analytically presented in Tables 1 and 2. The lowest values of QE and TE were obtained 

using logistic function which scales all possible values between [0,1]. Batch training took 

place in two phases. The initial phase is a robust one and then a second one is fine-tuning 

with a smaller neighborhood radius and smaller (learning rate). During rough initial 

neighborhood radius and learning rate were large. Gradually the learning rate decreased 

and was set to 0.1, and radius was set to 0.5.  

Visualization in Fig. 4 consists of 19 hexagonal grids (the U-matrix upper left, along with the 

17 component layers and a label map on the lower right). The first map on the upper left 

gives a general picture of the cluster tendency of the data set. Warm colors represent the 

boundaries of the clusters, though cold colors represent clusters themselves. In this matrix 

four clusters are recognized. In Fig.5a and Fig.5c the same vislualization is presented 

through hit numbers in Fig. 5a and the post–it labels in Fig. 5c. The hit numbers in the 

polygons represent the record number, of the data set that belong to the same neighborhood 

(cluster). Through the visual inspection of both Fig.5a and Fig.5c, one corresponds the hit 

numbers to the particular record, which is the alluvial fan name. Four clusters were 

generated. The records that belong to the same cluster are mapped closer and have the same 

color. For example, Marathias and Vogeni belong to the same cluster represented with blue. 

The common characteristics of these two fans are visualized through Fig. 4. Using similarity 

coloring and position, one can scan through all the parameters and reveal that these two 

records mapped in the upper corner of each parameter map have always the same values 

represented by similar color. 

Except from general clustering tendency, scanning through parameter layers one can 

reveal correlation schemes, always following similarity colouring and position. Each 

parameter map is accompanied with a legend bar that represents the range values of the 

particular parameter. Drainage basin area (Ab) is correlated with fan area (Apf) and fan 

length (Lf). 
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Fig. 4. SOM visualization through U-matrix (top left), and 17 component planes, one for 
each parameter examined. The figures are linked by position: in each figure, the hexagon in 
a certain position corresponds to the same map unit 

Total length of channels (Lc) within basin area (Ab), and total length of contours (┋Lc) within 
the drainage basin are also correlated (see red and yellow circles in Fig. 4). Basin crest (Cb), 
and basin relief (Rb) are inversely correlated (see green circle in Fig. 4). Melton’s’ ruggedness 
number is inversely correlated to fan slope (Sf), but correlated to channel development in fan 
area (see black circles in Fig. 4). The geological formation prevailing to basin area seems to 
be inversely correlated to concavity, (i.e. limestone basins have produced less concave fans 
compared to the flysch ones). Concavity (Cf) is also correlated to fan area (Apf). 
Analysis of each cluster is then carried out to extract rules that best describe each cluster by 
comparing with component layers. The rules to model and predict the generation of alluvial 
fans, are extracted by mapping the four clusters presented in Fig.5 with the input 
morphometric parameters (component planes) in Fig.4. Prior to rules extraction each input 
variable is divided in three categories, that is low and high and medium. The threshold value, 
which separates each category, is determined from the component planes legend bar in Fig.4. 
In the following description, the response of the given data to the map (adding hits number) 
for each cluster was calculated as a cluster index value (CIV). The higher the cluster index 
value the stronger the cluster and therefore the most important in the data set and the most 
representative for the study area. 
Cluster 1: Varia, Skala, Sergoula, Stournarorema, Tranorema. The cluster index was 
calculated (5). Varia and Tranorema form a subgroup. Stournarorema and Scala form a 
second subgroup. This group includes fans formed by streams with well developed 
drainage networks and large basins with high values of basin relief. The produced fans are 
extensively and relatively gently sloping (with a mean slope of 0.03). Varia, Skala, Sergoula 
and Stournarorema fans have a triangular shape and resemble small deltas while Tranorema 
has a more semicircular morphology. These fans are intersected by well developed and 
clearly defined distributary channels consisting of coarse grained material (pebbles, cobles 
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and few boulders). These are generally aggrading fans with an active prograding area near 
the river mouth. The fans of this group are characterized as fluvial dominated. 
Cluster 2: Marathias, Vogeni. The cluster index is (2). This second group involves fans 
formed by torrents with small drainage basins. They have developed laterally overlaying or 
confining fans of the cluster 1. Their shape is conical, they do not present well developed 
channels and are also characterized from high fan gradients (mean fan slope reaches 0.4). 
Flysch formations prevail in their basin area. According to these features, they seem to be 
debris flow dominated. Their formation and evolution is inferred to be highly governed 
from the two serious landslides of Marathias and Sergoula, occurred in the study area. 
Cluster 3: Gorgorema, Mara, Linovrocho, Ag. Spyridon, Eratini. The cluster index is (5). This 
group includes alluvial fans formed by streams of well developed drainage networks with 
large basins dominated by the presence of flysch formations. The fans are elongated and 
have well developed and clearly defined distributary channels, relatively incised in the most 
proximal part of the fan, near the apex, which become  indefinite at the lower part near the 
coastline. The slope of their surface (mean gradient of 0.08) is higher than the slope of the 
cluster 1 fans and lower than those of cluster 2. According to these findings they are 
characterized as fluvial dominated with debris flow influences.  
Cluster 4: Hurus and Douvias. The cluster index value is (2). The drainage basins of these 
two streams have similar features. These two fans are elongated and have well developed 
distributary channels, low slope values and high concavity. Their main characteristic is the 
large fan area if compared with the catchment area. The anomalously large Hurus torrent 
alluvial fan in relation to its drainage basin area is interpreted to be the result of abnormally 
high sediment accumulation at the mouth of this torrent. This exceptional accumulation rate 
is attributed to reduce of marine processes effectiveness due to the presence of Trisonia 
Island in front of the torrent mouth. This island protects the area of the fan resulting in 
deposition of the fluvio-torrential material. They are characterised as fluvial dominated fans. 
 

 

Fig. 5. Different visualizations of the clusters obtained from the classification of the 
morphological variables through SOM. (a) Colour code using k-means; (b) Principal 
component projection; (c) Label map with the names of the alluvial fans, using k-means. . 
The four clusters are indicated through the coloured circles 
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In Table 5 the rules governing each class are described.  
 

Explanation Symbol Group1 Group2 Group3 Group4 

Cluster  Index 
Value  CIV 5 2 5 2 

  

fluvial 
dominated debris flow

fluvial 
dominated 
with debris 

flow 
influences 

fluvial 
dominated 

  

Varia, Skala, 
Sergoula, 

Stournarorema, 
Tranorema 

Marathias, 
Vogeni 

Ag. 
Spyridon, 

Mara, 
Gorgorema, 
Linovrocho, 

Eratini 
Dounias, 
Hurous 

Drainage basin area (Ab) > 15.8 High < 15.8 Low < 15.8 Low Medium 

Basin crest (Cb) > 1160 High < 1160 Low < 1160 Low > 1160 High 

Perimeter of the 
drainage basin (Pb) >15.4 High < 15.4 Low < 15.4 Low < 15.4 Low 

Total length of the 
channels within the 
drainage basin (Lc) > 48.6 High < 48.6 Low < 48.6 Low < 48.6 Low 

Total length of 20 m 
contour lines within 
the drainage basin (┋Lc) > 421 High < 421 Low < 421 Low < 421 Low 

Basin relief (Rb) < 437 Low > 437 High > 437 High < 437 Low 

Melton’ s 
ruggedness number (M) < 0.4 Low > 0.4 High > 0.4 High Medium 
Drainage basin 
slope (Sb) Medium to high <0.08 Low <0.08 Low >0.08 High 

Drainage basin 
circularity (Cirb) <0.60 Low <0.60 Low Medium >0.60 High 
Drainage basin 
density (Db) > 3.05 High < 3.05 Low Medium > 3.05 High 

Fan area (Af) >1.97 High <1.97 Low <1.97 Low Medium 

Fan length (Lf) <1.93 High >1.93 Low >1.93 Low >1.93 Medium 

Fan apex (Apf) not clear > 100 High < 100 Low > 100 High 

Fan slope (Sf) < 0.03 Low > 0.03 High Medium < 0.03 Low 

Fan concavity (Cf) not clear >1.28 High Medium >1.28 High 
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Well developped 
channels  R Yes No Yes Yes 
Prevailing 
geological 
formation in basin 
area Geo Limestone Flysch Flysch Limestone 

Table 5. Clusters originating from SOM classification 

5.2 Mesoscale landform characterization using unsupervised SOM 
The systematic classification of landforms, their components, and associations, as well as 
their regional structure is one prerequisite for understanding geomorphic systems on 
different spatial and temporal scales (Dikau & Schmidt, 1999). The aim is to locate any 
correlation schemes between first and second derivatives describing the basin areas and 
alluvial fan regions, and examine clustering tendency of the data to certain line or surface 
morphometric features, (i.e. channels, ridges, planar surfaces).  The data set comprised 3222 
records, from a 250m spacing DEM, covering the whole study area (i.e. fourteen drainage 
basins and corresponding alluvial fans). 
In order to assess the optimum SOM, 11 SOMs were developed. Learning of SOM was 
performed with random initial weighs of the map units. The initial radius was set to 3 and 
the final radius to 1. The initial learning rate was set to 0.5 and the final to 0.05. 
Experimenting towards SOM optimization the size of the map progressively augmented 
from 70 to 300, with a decreasing (QE) from 0.37 to 0.25. The optimum architecture was built 
through trial and error procedure. The SOM which gave the best map had QE 0.111 after 
1000 epochs (Fig. 6). The optimum architecture was used in 10 more trials with random 
initial weights, so as to test the influence, on (QE). According to the findings of this study, 
there was no influence, which is probably attributed to the long time of training. That is, 
initial random weight values are being trained and Euclidian distances between input data 
vectors and best matching units decrease and reach the minimum value and become stable.  
 

 

Fig. 6. Effect of number of epochs on average quantization error 
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a 

 

 
b 

Fig. 7. (a) SOM visualization through U-matrix (top left), and 6 component planes, one for 
each parameter examined (b) from left to right, through, Davis - Bouldin validity index 
versus cluster number,  colour coding, and clustering using k-means (upper left (1) counting 
clockwise, (9) in the centre 

9 Clusters  
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Fig. 8. SOM visualization through scatter diagrams of studied morphometric parameters 

The next step is the analysis, interpretation and labeling of the map units as morphometric 
features. Correlation between slope and elevation, curvature and plan curvature is 
displayed through U-matrix (Fig. 7) and scatter diagrams (Fig. 8). Profile curvature is 
inversely correlated to plan curvature. No clear correlation on aspect and the other 
derivatives is portrayed. 
U-matrix shows no clear separation between clusters, but using k-means algorithm and Davis 
– Bouldin (1979) index (Fig. 7b), it seems that 9 existing clusters correspond to different terrain 
forms. From the component planes, it can be seen that the features differentiating the clusters 
are the following presented in Table 7. In this table, the categorized map units and the 
corresponding morphometric features are summarized. For example ridges in the study area 
are represented with clusters 1,2,7 but with different slope and elevation conditions. This 
feature corresponds to both steeper and slopes representing an approximately flat area. 
Cluster 9 corresponds to flat area, possibly planation areas, in higher elevation almost flat 
terrain. Cluster 3 and 8 correspond to channels, with different slope conditions. 
The black boxes plotted in Fig.8 refer to convex ridges, and the cyan boxes to concave 
channels. In order to hunt correlations between parameters, one should scan through the 
scatter diagrams in the lower triangle (resulting after training) where both data and map 
units are plot. According to SOM training, channels (negative concavities) are recognized 
and constitute two subgroups from low to steep slopes. Convex ridges are also recognized 
separated in classes from moderate to steep slopes. Planar surfaces are also recognized and 
differentiated according to slope angle. It is evident in Fig.8, that planar surfaces of gentle to 
steep slopes exist, in the study area. 
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Class Morphometric 
element 

Slope (び) Elevation 
(m) 

Curvature Profile 
curvature

Plan 
curvature 

Aspect 

Cluster 1  Ridge 
Medium 
(16) 

Medium to 
High  580 
to 1070 

+ 0 + E to SE 

Cluster 2  Ridge 
Medium 
to High > 
(16) 

High > 750 + 0 + W 

Cluster 3  Channel 
High > 
(23) 

Medium - 
High > 560

- + - W 

Cluster 4  Planar 
Medium 
to high 

High > 750 0 + 0 E to N 

Cluster 5 Planar 
Low to 
Medium 

Low < 560 0 + 0 E to NE 

Cluster 6 Chanel Very Low Low - + - E 

Cluster 7  Ridge Low Low + - + S to SW 

Cluster 8  Chanel High Low - + - W 

Cluster 9  Planar Low High 0 0 0 NE to E 

Table 7. Clusters originating from SOM 

5.3 Mesoscale landform characterization using supervised SOM 
SOM algorithm was proposed, as an alternative procedure for terrain analysis to Peuker and 
Douglass method. SOM training was performed with a subset of the DEM, referring to Varia 
and Scala drainage basins (see Fig.3). Six morphometric parameters were used, as input and 
a two-dimensional output of 3,000 neurons. Sampling procedure for the data set describing 
the drainage basins was performed. A sampling function was applied to the derivatives 
grids in order to prepare a matrix of sample vectors. The sampling was performed to the 
DEM and DEM derivatives, at 90m spacing. Problems handling memory had to be faced, 
this is why a small subset of the training DEM was used. The produced ASCII file was 
exported to MATLAB in order to use SOM unsupervised neural networks.  The data set is 
presented in Table 4. The data dimensions was 25,024 x 6. 
At the beginning of the learning procedure, neurons in the SOM were distributed randomly. 
The BMUs (final classes) with minimum average (QE) 0.135 were extracted. The number of map 
units was finally set to 3,000. Turning the SOM into a supervised classifier the final error was 
30%. In table 8 the results of the applied normalizations are displayed. The error of supervised 
clustering is also presented. “HistD” normalization gave the best results, after 1,000 iterations. 
 

Normalization method QE TE error 

histC 0.182 0.040 36.8 

Var 0.40 0.045 35.4 

Log 0.198 0.036 28.4 

Logistic 0.34 0.054 33.61

Range 0.180 0.050 41.52

histD 0.210 0.033 27.92

Table 8. Normalization methods, and calculated QE and TE, for supervised clustering 
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Fig. 9. Outcome of Peuker and Douglas  classification 

The results of the supervised clustering are presented in Fig. 10. The results illustrate a 

very clear distinction between the disparate morphometric features. Line-based and 

planar features were mainly recognized. A rather good network of ridges and channels 

with different slope classes is revealed. Compared to the outcome of classic morphometric 

analysis in Fig. 9 the outcome we get through SOM seems more compact, with a very 

good representation of crest lines. According to Peuker and Douglas method about 41% of 

the area are concave and convex breaks, 27 % are channels and 28% are ridges. As 

expected point- based features such as peaks, passes and pits cover only 4% of the study 

area. This is probably attributed to the fact that point based features are comparatively 

rare. 

 
 

 

Fig. 10. Outcome of SOM clustering 
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6. Discussion 

Given that geomorphological mapping is the basis for terrain assessment, a 
geomorphological map was constructed, to validate the results of the SOM drainage basin 
landscape mesoscale classification, for the catchments of Varia and Skala streams which are 
the two westernmost among the studied basins (Fig.11). Geomorphological mapping was 
performed using a 1:50,000 base topographic map through fieldwork, and aerial photo 
interpretation taking also into account previous geological maps. 
 

 

Fig. 11. Geomorphological map of the Varia and Skala streams and drainage basin areas, 
bedrock lithology is derived by the geological maps of (IGME) and field observations 

The purpose of the mapping, which was its comparison with the SOM derived classification 
map, was the main criterion for the selection of the scale of the map. The scale is critical for 
effective information delivery. The final map provides information on the distribution of 
geological formations while landforms identifying landscape features created by surface 
processes were recorded combining field inspection with maps and aerial photo 
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interpretation. These landforms which include erosional planation surfaces ranging in 
elevation from 500 m to 1,000m, stream channels and valleys of various shape, knickpoints, 
abrupt slope breaks, gentler slope changes, ridges and crests, alluvial fans and cones, intense 
channel downcutting, provide information on earth surface form processes.  
Comparative observation of the geomorphological map, Peuker and Douglas classification, 

and the SOM clustering reveals information on the accuracy of the landscape 

characterization approach through SOM. Both methods identified stream channels of the 

drainage networks with very accurately. The more well developed high order channels like 

those of the main streams of the networks were better detected and recognized using SOM. 

Additionally, SOM identified correctly ridges and drainage divides providing an ideal 

method for drawing drainage basins borders. On the other hand landforms like erosional 

planation surfaces or knickpoints (discrete negative steps in the longitudinal profile of a 

river), are not identifiable on the SOM clustering. 

In terms of evaluation results, Peuker and Douglas method and SOM, were compared, with 
an oblique view, overlaying contour lines (Figure 12). SOM is much closer to the 
geomorphological mapping, approach, and has much more potential for identification of 
non-point morphometric features than Peuker and Douglas method. The overall pattern of 
channels, ridges and planes is similar in both methods, but the SOM results are more 
concrete and seem to resemble to the classification of the geomorphological mapping, which 
recognizes unique landforms. Furthermore, the SOM capability of identifying crest lines on 
mountain ranges is also important. Last, the SOM method does not rely on curvature and 
slope tolerance values.  In this method, the slope parameter, elevation and aspect, are 
important in characterizing classes, rather than just being a threshold to separate horizontal 
surfaces from sloping surfaces. Using the whole potential of the slope parameter in 
extracting features that are more informative is one of the advantages of the SOM. 
Concerning the accuracy of the alluvial fan classification utilizing SOM it is obvious that this 
approach provides one of the best methods to characterize alluvial fans considering the 
correlation between alluvial fans and geomorphometric characteristics and quantitative 
morphometric indices of their corresponding drainage basins. 
 

 

Fig. 12. Classification results (a) Terrain analysis according to SOM clustering, (b) Terrain 
analysis according to Peuker and Douglas 
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The results of the SOM characterization of the studied coastal alluvial fans according to the 
primary processes which are responsible for their formation and evolution, in four classes 
are in good agreement with a classification of the same fans performed in previous study 
based on entirely qualitative geomorphological observations and investigation of the 
relationship between pairs of selected fan – basin morphometric variables (Karymbalis, 
2007). Especially the grouping of Marathias and Vogeri fans (cluster 2) and their 
characterization as debris flow dominated is validated by the existence of two landslides 
triggered by earthquakes activity along the Marathias normal fault scarp (Gallousi & 
Koukouvelas, 2007). Field observation showed that these two fans have formed by coarse 
grained material supplied by landslides. One of the advantages of the method is that 
provides the opportunity to correlate quantitative variables with qualitative information in 
order to achieve better results in alluvial fan classification. 

7. Conclusion 

The purpose of this study is to investigate the effectiveness of  Self Organising Map (SOM), 
as a clustering tool in the field of applied geomorphology for mapping meso and microrelief 
scale morphometric elements. Unsupervised artificial neural networks, which use 
knowledge discovery methods, were developed in order to detect the trend of the data to 
clustering in microrelief scale according to alluvial fan formation and evolution process and 
in mesorelief scale according to linebased and planar morphometric features. SOM was also 
used as a semiautomatic tool in terrain analysis, with an accuracy result of 70%.  
Comparison of the geomorphological map and the SOM mesoscale landform classification 
results for two drainage basins in central Greece showed that the applied methodology is a 
promissing method for the mapping of drainage network channels. Furthermore, this 
approach resulted in successful identification of ridges and crests providing a good way to 
draw drainage divides and border hydrological basins. Compared to classic terrain analysis 
method, SOM presented a more concrete and accurate result in line base and planar 
elements. 
The systematic and objective method which was applied in the field of alluvial fan 
classification, compared to statistical methods (Karymbalis et al., 2010) and 
geomorphological observations, was reasonable and accurate. This method could be applied 
as a generic tool of alluvial fan classifier to larger data sets, in order to assess and interpret 
dominant formation processes, through the study of many morphometric features 
describing alluvial fans and corresponding drainage basins. 
In both mesoscale and microscale the SOM proved an efficient scalable tool for the analysis 
of geomorphometric features as meaningful landform elements, and uses the full potential 
of morphometric characteristics, leading to better understanding complex geomorphological 
systems.  
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