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1. Introduction 

Advances in sensor technology have brought about extensive research in the field of image 

fusion. Image fusion is the combination of two or more source images which vary in 

resolution, instrument modality, or image capture technique into a single composite 

representation (Hill et al., 2002).  Thus, the source images are complementary in many ways, 

with no one input image being an adequate data representation of the scene.  Therefore, the 

goal of an image fusion algorithm is to integrate the redundant and complementary 

information obtained from the source images in order to form a new image which provides 

a better description of the scene for human or machine perception (Kumar & Dass, 2009).  

Image fusion is essential for computer vision and robotics systems in which fusion results 

can be used to aid further processing steps for a given task.  Image fusion techniques are 

practical and fruitful for many applications, including medical imaging, security, military, 

remote sensing, digital camera and consumer use.  There are many cases in medical imaging 

where viewing a series of images individually is not convenient.  For example, magnetic 

resonance imaging (MRI) and computed tomography (CT) images provide structural and 

anatomical information with high resolution. Positron emission tomography (PET) and 

single photon emission computed tomography (SPECT) images provide functional 

information with low resolution.  Therefore, the fusion of MRI or CT images with PET or 

SPECT images can provide the needed structural, anatomical, and functional information 

for medical diagnosis, anomaly detection and quantitative analysis (Daneshvar & 

Ghassemian, 2010).  Moreover, the combination of MRI and CT images can provide images 

containing both dense bone structure and soft tissue information (Yang et al., 2010).  

Similarly, the combination of MRI-T1 images provides greater details of anamotical 

structures while MRI-T2 images provides greater contrast between normal and abmormal 

tissue matter, and thus, their fusion can also help to extract the features needed by 

physicians (Wang, 2008). In security applications, thermal/infrared images provide 

information regarding the presence of intruders or potential threat objects (Zhang & Blum, 

1997).   For military applications, such images can also provide terrain clues for helicopter 

navigation.  Visible light images provide high-resolution structural information based on the 

way in which light is reflected.  Thus, the fusion of thermal/infrared and visible images can 

be used to aid navigation, concealed weapon detection, and surveillance/border patrol by 
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humans or automated computer vision security systems (Qiong et al., 2008).  In remote 

sensing applications, the fusion of multi-spectral low-resolution remote sensing images with 

a high-resolution panchromatic image can yield a high-resolution multispectral image with 

good spectral and spatial characteristics (Chibani, 2005).  As a visible light image is taken by 

a CCR device at a given focal point, certain objects in the image may be in focus while others 

may be blurred and out of focus.  For digital camera applications and consumer use, the 

fusion of images taken at different focal points can essentially create an image having 

multiple focal points in which all objects in the scene are in focus (Zhang, 1999).   

The most basic of image fusion approaches include spatial domain techniques using simple 

averaging, Principal Component Analysis (PCA) (Chavez & Kwarteng, 1989), and the 

Intensity-Hue-Saturation (IHS) transformation (Tu et al., 2001). However, such methods do 

not incorporate aspects of the human visual system in their formulation.  It is well known 

that the human visual system is particularly sensitive to edges at their various scales (Tabb 

& Ahuja, 1997).  Based on this fact, multi-resolution image fusion techniques have been 

proposed in order to yield more visually accurate fusion results. These approaches 

decompose image signals into low-pass and high-pass coefficients via a multi-resolution 

decomposition scheme, fuse low-pass and high-pass coefficients according to specific fusion 

rules, and perform an inverse transform to yield the final fusion result.  The use of different 

fusion rules for low-pass and high-pass coefficients provides a means of yielding fusion 

results inspired by the human visual system.  Pixel-based image fusion algorithms fuse 

detail coefficients pixels individually based on either selection or weighted averaging.  

Motivated by the fact that applications requiring image fusion are interested in integrating 

information at the feature level, region-based image fusion algorithms use segmentation to 

extract regions corresponding to perceived objects from the source images, and fuse regions 

according to a region activity measure (Piella, 2003). Because of their general formulations, 

both pixel- and region-based fusion rules can be adopted using any multi-resolution 

decomposition technique, allowing for a convenient means of comparing the performance of 

multi-resolution decomposition schemes for image fusion while keeping the fusion rules 

constant.  The most common of multi-resolution decomposition schemes for image fusion 

have been the pyramid transforms and wavelet transforms.  Particularly, pixel- and region-

based image fusion algorithms using the Laplacian Pyramid (LP) (Burt & Adelson, 1983), 

Discrete Wavelet Transform (DWT) (Mallat, 1989), and Stationary Wavelet Transform (SWT) 

(Rockinger, 1997) have been proposed.   
Although much of the research in image fusion has strived to formulate effective image 
fusion techniques which are consistent with the human visual system, the mentioned multi-
resolution decomposition schemes and their respective image fusion algorithms are 
implemented using standard arithmetic operators which are not suitable for processing 
images. Conversely, the Logarithmic Image Processing (LIP) model was proposed to 
provide a nonlinear framework for visualizing images using a mathematically rigorous 
arithmetical structure specifically designed for image manipulation (Jourlin & Pinoli, 2001).  
The LIP model views images in terms of their graytone functions, which are interpreted as 
absorption filters.  It processes graytone functions using a new arithmetic which replaces 
standard arithmetical operators. The resulting set of arithmetic operators can be used to 
process images based on a physically relevant image formation model.  The model makes 
use of a logarithmic isomorphic transformation, consistent with the fact that the human 
visual system processes light logarithmically. The model has also shown to satisfy Weber’s 
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Law, which quantifies the human eye’s ability to perceive intensity differences for a given 
background intensity (Pinoli, 1998).  As a result, image enhancement, edge detection, and 
image restoration algorithms utilizing the LIP model have yielded better results (Deng et al., 
2009; Debayle et al., 2006). 
However, an unfortunate consequence of the LIP model for general practical purposes is 

that the dynamic range of the processed image data is left unchanged causing information 

loss and signal clipping.  Moreover, specifically for image fusion purposes, the combination 

of source images in regions of vastly different mean intensity yield visually poor results 

even though their processing is motivated by a relevant physical model.  It is therefore 

advantageous to formulate a generalized image processing framework which is able to 

effectively unify the LIP and standard processing frameworks into a single framework.  

Consequently, the Parameterized Logarithmic Image Processing (PLIP) model was 

formulated. The PLIP model is a generalization of the LIP model which attempts to 

overcome the mentioned shortcomings of the standard processing and LIP models and can 

yield visually more pleasing outputs (Panetta et al., 2008).  A mathematical analysis shows 

that in fact LIP and standard mathematical operators are instances of the generalized PLIP 

framework.  Adaptations of edge detection and image enhancement algorithms using the 

PLIP model have demonstrated the improved performance achieved by the parameterized 

framework (Panetta et al., 2007; Wharton et al. 2008).   In this chapter, we investigate the use 

of the PLIP model for image fusion applications.  New multi-resolution decomposition 

schemes and image fusion rules using the PLIP model are introduced, and consequently, 

new pixel- and region-based image fusion algorithms using the PLIP model are proposed. 

The remainder of this chapter is organized as follows:  Section 2 provides a brief overview of 
commonly used multi-scale image decomposition techniques. Section 3 provides 
background information for pixel-based image fusion algorithms, while Section 4 provides 
background information for region-based image fusion algorithms.  Section 5 describes the 
LIP and PLIP models, and in particular, analyzes the advantageous properties of the 
proposed PLIP model.  Section 6 subsequently introduces the proposed multi-scale image 
decomposition techniques and image fusion algorithms. Section 7 describes the quality 
metric used for quantitative assessment of image fusion quality. Section 8 compares the 
proposed image fusion algorithms with existing standards via computer simulations.  
Section 9 draws conclusions based on the presented experimental results.   

2. Multi-resolution image decomposition schemes 

2.1 Laplacian Pyramid (LP) 

The LP uses the Gaussian Pyramid to provide a multi-resolution image representation for an 

image I (Burt & Adelson, 1983).  Analysis and synthesis using the LP is illustrated in Figure 

1. Each analysis stage consists of low-pass filtering, down-sampling, interpolating, and 

differencing steps in order to generate the approximation coefficients ( )
0
ny and detail 

coefficients ( )
1
ny at scale n.  The approximation coefficients at a scale n > 0 are generated by 

 ( ) ( 1)
0 0 2

n ny w y −

↓
⎡ ⎤= ∗⎣ ⎦  (1) 

where (0)
0y I= and w is a 2D low-pass filter, usually defined as  
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⎢ ⎥
⎢ ⎥=
⎢ ⎥
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⎢ ⎥⎣ ⎦

 (2) 

The detail coefficients at scale n are consequently calculated as a weighted difference 
between successive levels of the Gaussian Pyramid, and is given by 

 ( ) ( ) ( 1)
1 0 0 2

4n n ny y w y +

↑
⎡ ⎤= − ∗ ⎣ ⎦  (3) 

The synthesis procedure begins from the approximation coefficient at the high 
decomposition level N.  Each synthesis level reconstructs approximation coefficients at a 
scale n < N by 

 ( ) ( ) ( 1)
0 1 0 2

4n n ny y w y +

↑
⎡ ⎤= + ∗ ⎣ ⎦  (4) 

 
 
 

 
 

Fig. 1. Laplacian Pyramid analysis and synthesis 

2.2 Discrete Wavelet Transform (DWT) 

The 2D separable DWT uses a quadrature mirror set of 1D filters to provide a multi-

resolution scheme for an image I with added directionality relative to the LP (Mallat, 1989).  

Analysis and synthesis using the DWT is illustrated in Figure 2.  The DWT is able to provide 

perfect reconstruction while using critical sampling.  Each analysis stage consists of filtering 

along rows, down-sampling along columns, filtering along columns, and down-sampling 

along rows in order to generate the approximation coefficient sub-band ( )
0
ny  and detail 

coefficient sub-bands ( )
1
ny , ( )

2
ny , and ( )

3
ny  at scale n. Given a 1D low-pass wavelet analysis 

filter g and a 1D low-pass wavelet analysis filter h, the approximation coefficients at a scale    

n > 0 are generated by 

 ( ) ( 1)
0 0 2 2C

R

n n
C Ry g g y −

↓ ↓

⎡ ⎤⎡ ⎤= ∗ ∗⎣ ⎦⎢ ⎥⎣ ⎦
 (5) 

where (0)
0y I= , and the subscripts R and C denote operations performed along rows and 

columns, respectively.   Similarly, the detail coefficients at scale n are calculated by 

 ( ) ( 1)
1 0 2 2C

R

n n
C Ry h g y −

↓ ↓

⎡ ⎤⎡ ⎤= ∗ ∗⎣ ⎦⎢ ⎥⎣ ⎦
 (6) 
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 ( ) ( 1)
2 0 2 2C

R

n n
C Ry g h y −

↓ ↓

⎡ ⎤⎡ ⎤= ∗ ∗⎣ ⎦⎢ ⎥⎣ ⎦
 (7) 

 ( ) ( 1)
3 0 2 2C

R

n n
C Ry h h y −

↓ ↓

⎡ ⎤⎡ ⎤= ∗ ∗⎣ ⎦⎢ ⎥⎣ ⎦
 (8) 

and are oriented horizontally, vertically, and diagonally, respectively. The synthesis 
procedure begins from the wavelet coefficients at the highest decomposition level N.  
Filtering and up-sampling steps are performed in order to perfectly reconstruct the image 
signal.  Each synthesis level reconstructs approximation coefficients at a scale n < N by 

 

( ) ( 1) ( 1)
0 0 12 2 2

( 1) ( 1)
2 32 2 2

ˆˆ ˆ

ˆ ˆˆ

R R
C

R R
C

n n n
R C C

n n
R C C

y g g y h y

h g y h y

+ +

↑ ↑ ↑

+ +

↑ ↑ ↑

⎡ ⎤⎡ ⎤ ⎡ ⎤= ∗ ∗ + ∗ +⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤+ ∗ ∗ + ∗⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

  (9) 

where ĝ and ĥ  are 1D low-pass and high-pass wavelet synthesis filters, respectively. 

 
 

 

Fig. 2. Discrete Wavelet Transform analysis and synthesis 

2.3 Discrete Wavelet Transform (SWT) 

Both the DWT and LP are shift-variant due to the down-sampling step which they employ.  

Therefore, the alteration of transform coefficients may introduce artifacts when processed 

using the DWT and to a lesser extent, the LP.  It can introduce artifacts into the fusion results 

particularly for cases in which source images are misregistered.  The SWT is a shift-invariant, 

redundant wavelet transform which attempts to reduce artifact effects by up-sampling 

analysis filters rather than down-sampling approximation images at each level of 

decomposition (Fowler, 2005). Therefore, each analysis stage calculates the approximation 

coefficient sub-band ( )
0
ny  and detail coefficient sub-bands ( )

1
ny , ( )

2
ny , and ( )

3
ny  at scale n by   

 ( ) ( ) ( ) ( 1)
0 0
n n n n

C Ry g g y −= ∗ ∗  (10) 

 ( ) ( ) ( ) ( 1)
1 0
n n n n

C Ry h g y −= ∗ ∗  (11) 

 ( ) ( ) ( ) ( 1)
2 0
n n n n

C Ry g h y −= ∗ ∗  (12) 

 ( ) ( ) ( ) ( 1)
3 0
n n n n

C Ry h h y −= ∗ ∗  (13) 

where 
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 ( ) ( 1)

2

n ng g −

↑
⎡ ⎤= ⎣ ⎦  (14) 

 ( ) ( 1)

2

n nh h −

↑
⎡ ⎤= ⎣ ⎦  (15) 

and (0)g g= , (0)h h= . 

3. Pixel-based fusion using multi-resolution decomposition schemes 

A generalized pixel-based multi-resolution image fusion algorithm is illustrated in Figure 3.  
The input source images are transformed using a given multi-resolution image 
decomposition technique T. One fusion rule is used to fuse the approximation coefficients at 
the highest decomposition level. A second fusion rule is used to fuse the detail coefficients at 
each decomposition level. The resulting inverse transform yields the final fused result.  
Although image fusion algorithms are expected to withstand minor registration differences, 
the source images to be fused are assumed to be registered. 
 
 

 

Fig. 3. A generalized pixel-based multi-resolution image fusion algorithm 

Misregistered source images should be subjected to registration preprocessing steps 

independent to the image fusion algorithm.  The approximation coefficients at the highest 

level of decomposition N are most commonly fused via uniform averaging.  This is because 

at the highest level of decomposition, the approximation coefficients are interpreted as the 

mean intensity value of the source images with all salient features encapsulated by the detail 

coefficient sub-bands at their various scales (Piella, 2003). Therefore, fusing approximation 

coefficients at their highest level of decomposition by averaging maintains the appropriate 

mean intensity needed for the fusion result with minimal loss of salient features.  Given 

1

( )
,0

N
Iy and 

2

( )
,0

N
Iy , the approximation coefficient sub-bands of images I1 and I2, respectively, at 

the highest decomposition level N, the approximation coefficients for the fused image F at 

the highest level of decomposition is given by 

 1 2

( ) ( )
,0 ,0( )

,0
2

N N
I IN

F

y y
y

+
=  (16) 

Conversely, the detail coefficients of the source images correspond to salient features such 

as lines and edges detected at various scales.  Therefore, fusion rules for detail coefficients at 
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each decomposition level should be formulated in order to preserve these features. Such 

fusion rules are inspired by the human visual system, which is particularly sensitive to 

edges. Many pixel-based detail coefficient fusion rules have been proposed. In this work, 

two common detail coefficient fusion rules are considered.  

3.1 Absolute maximum detail coefficient fusion rule 
The absolute maximum (AM) detail coefficient fusion rule selects the detail coefficient in 

each sub-band with greatest magnitude (Piella, 2003). For each of the i high-pass sub-bands 

at each level of decomposition n, the multiplicative weights for fusion are given by 

 ( )
( ) ( )
( ) ( )

1 2

1 2

( ) ( )
, ,( )

( ) ( )
, ,

1 , ,
,

0 , ,

n n
I i I in

i n n
I i I i

y k l y k l
k l

y k l y k l
λ

⎧ >⎪= ⎨
≤⎪⎩

 (17) 

For each of the i high-pass sub-bands at each level of decomposition n, the detail coefficients 

of the fused image F are determined by 

 ( ) ( ) ( ) ( )( ) ( )
1 2

( ) ( ) ( ) ( ) ( )
, , ,, , , 1 , ,n n n n n

F i i I i i I iy k l k l y k l k l y k lλ λ= + −  (18) 

3.2 Burt and Kolczynski’s detail coefficient fusion rule 
Burt and Kolczynski’s (BK) detail coefficient fusion rule combines detail coefficients based 

on an activity and match measure (Burt & Kolczynski, 1993). The activity measure for each 

wxw local window of each sub-band i is calculated for each source image, given as  

 ( ) ( )( )
( )

2( ) ( )
, ,

,

, ,n n
I i I i

k l W

a k l y k k l l
Δ Δ ∈

= + Δ + Δ∑  (19) 

The local match measure of each sub-band measures the correlation of each sub-band 

between source images, and is given as  

 ( )
( )( )

( )
( )( )

( ) ( )
1 2

1 2

1 2

( ) ( )
, ,

,( )
, , ( ) ( )

, ,

2 , ,

,
, ,

n n
I i I i

k l Wn
I I i n n

I i I i

y k k l l y k k l l

m k l
a k l a k l

Δ Δ ∈

+ Δ + Δ + Δ + Δ

=
+

∑
 (20) 

Comparing the match measure to a threshold th determines if detail coefficients are to be is 

combined by simple selection or by weighted averaging. The associated weights for fusion 

are given by 

 ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( )

1 2 1 2

1 2 1 2

1 2

1 2 1 2

1 2

( ) ( ) ( )
, , , ,

( ) ( ) ( )
, , , ,

( )
, , ( ) ( ) ( )( )

, , , ,

( )
, ,

1 , , , ,

0 , , , ,

1 ,1 1
, , , ,,

2 2 1

1 ,1 1

2 2 1

n n n
I I i I i I i

n n n
I I i I i I i

n
I I i n n nn

I I i I i I ii

n
I I i

I

m k l th a k l a k l

m k l th a k l a k l

m k l
m k l th a k l a k lk l

T

m k l
m

T

λ

≤ >

≤ ≤

⎛ ⎞−
+ > >⎜ ⎟= ⎜ ⎟−⎝ ⎠

⎛ ⎞−
− ⎜ ⎟⎜ ⎟−⎝ ⎠

( ) ( ) ( )
1 2 1 2

( ) ( ) ( )
, , , ,, , , ,n n n
I i I i I ik l th a k l a k l

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪ > ≤⎪
⎩

 (21) 
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For each of the i high-pass sub-bands at each level of decomposition n, the detail coefficients 
for the fused image F are again determined by (18). 

4. Region-based fusion using multi-resolution decomposition schemes 

Pixel-based image fusion approaches determine the detail coefficients of a fused image on a 

per pixel basis.  Namely, they use the transform data at local neighborhoods to individually 

determine each detail coefficient of the ultimate fusion result.  Applications which utilize 

image fusion schemes are by in large more interested in fusing the various objects found in 

the original source images.  This suggests that information regarding feature instead of the 

pixels themselves should be incorporated into the fusion process. This provides the 

motivation for region-based image fusion algorithms (Piella, 2003). Region-based fusion 

algorithms use image segmentation to guide the fusion process. A generalized region-based 

multi-resolution fusion algorithm is illustrated in Figure 4. The source images are once again 

first transformed using a given multi-resolution decomposition scheme. They are segmented 

using a segmentation algorithm, yielding a shared region representation which is thereby 

used to aid the fusion of detail coefficients at each scale.  The detail coefficients in each 

region at each scale are fused based on their level of activity in the given region.  The fusion 

of approximation coefficients at the highest level of decomposition remains unchanged. The 

result is a more robust fusion approach which can overcome blurring effects and improve 

sensitivity to noise and misregistration known in pixel-based approaches. Moreover, region-

based image fusion have allowed for a broader class of fusion rules to be formulated.  The 

choice of segmentation algorithm used in region-based image fusion directly affects the 

fusion result.   Segmentation algorithms which have been used in region-based image fusion 

algorithms include watershed (Lewis et al., 2004), K-means (Khan et al., 2007), texture-based 

(Li et al., 2003), pyramidal linking (Piella, 2003), and mean-shift segmentation (Shuang & 

Zhilin, 2008).  In this paper, mean-shift segmentation is used for all region-based approaches 

because of its robustness and because it has previously been applied for image fusion 

purposes yielding promising results. It may be substituted with another segmentation 

algorithm. As this paper is primarily concerned with the use of the nonlinear frameworks 

and multi-resolution schemes for image fusion, a discussion of appropriate segmentation 

algorithms for image fusion is considered outside of the scope of this work. The main 

objective here is to ultimately extend the use of parameterized logarithmic image fusion to 

region-based approaches.   

 

 

Fig. 4. A generalized region-based multi-resolution image fusion algorithm 
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4.1 Mean-shift segmentation 
Mean-shift segmentation is a specific application of the mean-shift procedure (Comanicu & 
Meer, 2002).  The mean shift procedure is an adaptive gradient ascent which can be used for 
mode detection, and is thus a nonparametric tool for feature space analysis.  Given a radially 
symmetric kernel K(x) with a monotonically decreasing profile function k(x), the kernel G(x) 
is defined as a kernel with profile function  

 ( ) ( )g x k x′= −  (22) 

For n data points xi, i = 1, …, n, the mean shift is defined by 

 ( )

2

1

, 2

1

n
i

i
i

h G
n

i

i

x x
x g

h
m x x

x x
g

h

=

=

⎛ ⎞−
⎜ ⎟⎜ ⎟
⎝ ⎠= −
⎛ ⎞−
⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑
 (23) 

where h is a bandwidth parameter and x is the center of the kernel G.  The mean shift 
procedure iteratively calculates the center position of the kernel G by 

 

2

1

1 2

1

n
j i

i
i

j
n

j i

i

y x
x g

h
y

y x
g

h

=

+

=

⎛ ⎞−
⎜ ⎟
⎜ ⎟
⎝ ⎠=
⎛ ⎞−
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

∑
 (24) 

The procedure is guaranteed convergence, which is arrived when the estimate has a 
gradient of zero. By representing images as a 2D lattice of p-dimensional vectors, where p = 
1 corresponds to grayscale, p = 3 corresponds to color, and p > 3 corresponds to 
multispectral images, the space of the lattice can be referred to as the spatial domain and the 
gray level, color, or spectral data can be referred to as the range domain. Accordingly, a 
multi-variate kernel K can be defined by 

 ( )
2 2

, 2

s r

hs hr p
s rs r

C x x
K x k k

h hh h

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (25) 

where hs is a spatial bandwidth parameter, hr is a range bandwidth parameter, and C is a 
normalizing constant.  Accordingly, a mean-shift filtering is proposed, where each pixel is 
mapped to its spatial and range convergence point.  The mean-shift segmentation merges 
results from the mean-shift filtering algorithm by grouping pixels whose resulting 
convergence points are closer than hs in the spatial domain and hr in the range domain.  
Therefore, the hs and hr parameters are the only user selected parameters for the 
segmentation (Tao et al. 2007). A shared region representation for region-based image fusion 
purposes is yielded using mean-shift segmentation by individually segmenting each of the 
source images, and by then splitting overlapping regions into new regions.  An example of a 
shared region representation yielded using mean-shift segmentation is shown in Figure 5.  
To maintain consistency in segmentation results across different scales, successive down- 
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 a)  b) c) d) e) 

Fig. 5. (a)(b) Original “brain” source images, (c) mean-shift segmentation result of (a),  
(d) mean-shift segmentation result of (b), (e) shared region representation for region-based 
image fusion 

sampling is performed to yield a shared region representation at each level of 
decomposition based on the image decomposition scheme used for image fusion. 

4.2 Region-based detail coefficient fusion rules 
Most any fusion rule formulated for pixel-based fusion can be easily formulated in terms of 
regions. The extension to regions merely involves calculating activity measures, match 
measures, and fusion weights for each region R instead of each pixel (Piella, 2003). For 
example, the activity measure for each region of each sub-band i of each source image can 
be defined by 

 ( ) ( )( )
( )

2( ) ( )
, ,

,

,n n
I i I i

k l R

a R y k l
∈

= ∑  (26) 

where |R| is the area of the region R.  Similarly, the match measure ( )
1 2

( )
, ,

n
I I im R  and the 

multiplicative fusion weight ( )( )n
i Rλ  for each region of each sub-band i can be defined.  For 

each of the i high-pass sub-bands at each level of decomposition n, the detail coefficients of 

the fused image F in each region R are determined by 

 ( ) ( ) ( ) ( )( ) ( )
1 2

( ) ( ) ( ) ( ) ( )
, , ,1n n n n n

F i i I i i I iy R R y R R y Rλ λ= + −  (27) 

5. Parameterized logarithmic image processing (PLIP) model 

5.1 Formulation 
The LIP model was originally developed to provide a representation and processing 
framework for images in a bounded intensity range which is consistent with the physical 
laws of image combination and amplification.  The model processes images as absorption 
filters known as graytones based on M, the maximum value of the range of I, and is 
characterized by its isomorphic transformation which mathematically emulates the relevant 
nonlinear physical model which the LIP model is based on. A new set of LIP mathematical 
operators, namely addition, subtraction, and scalar multiplication, are consequently defined 
for graytones g1 and g2 and scalar constant c in terms of this isomorphic transformation, thus 
replacing traditional mathematical operators with nonlinear operators which attempt to 
characterize the nonlinearity of image arithmetic (Jourlin & Pinoli, 2001).  For example, LIP 
addition emulates the intensity image projected onto a screen when a uniform light source is 
filtered by two graytones placed in series.  Subsequently, LIP convolution is also defined for 
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a graytone g and filter w (Palomares et al., 2005).  The framework is consistent with several 
properties of the human visual system, such as brightness range inversion, Weber’s law, 
saturation characteristics, and the psychophysical notion.   However, it has been shown that 
psychophysical laws can be context-dependent, and thus, the constants governing these 
psychophysical laws are indeed parametric (Krueger, 1989). Thus, the PLIP model 
generalizes the concept of nonlinear image processing frameworks initially proposed in the 
form of the LIP model by adding parameterization to the model.   
Table 1 summarizes and compares the LIP and PLIP mathematical operators.  In its most 
general form, the PLIP model generalizes graytone calculation, arithmetic operations, and 
the isomorphic transformation independently, giving rise to the model parameters µ, Ǆ, k, λ, 
and ǃ.  To reduce the number of parameters needed for image fusion, this paper considers 
the specific instance in which µ = M, Ǆ = k = λ, and ǃ = 1, effectively resulting in a single 
model parameter Ǆ.  In this case, The PLIP model generalizes the isomorphic transformation 
which defines the LIP model by accordingly choosing values for Ǆ.  Practically, for images in 
[0, M), the value of Ǆ can either be chosen such that Ǆ ≥ M for positive Ǆ or can take on any 
negative value. The resulting PLIP mathematical operators based on the parameterized 
isomorphic transformation can be subsequently derived.   
 

 LIP Model PLIP Model 

Graytone g M I= −  g Iμ= −
 Addition 1 2

1 2 1 2

g g
g g g g

M
++ = + −  1 2

1 2 1 2

g g
g g g g

γ
⊕ = + −#  

Subtraction 
1 2

1 2

2

g g
g g M

M g
−

−
− =

−
 1 2

1 2

2

g g
g g k

k g

−
Θ =

−
#  

Scalar 
Multiplication 

1
1 1

c
g

c g M M
M

×
⎛ ⎞× = − −⎜ ⎟
⎝ ⎠

 1
1 1

c
g

c g γ γ
γ

⎛ ⎞
⊗ = − −⎜ ⎟

⎝ ⎠
#  

Isomorphic 
Transformation ( ) ln 1

g
g M

M
ϕ ⎛ ⎞= − −⎜ ⎟

⎝ ⎠
 

( )1 1 exp
g

g M
M

ϕ − ⎡ ⎤⎛ ⎞= − − −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

( ) ln 1
g

g βϕ λ
λ

⎛ ⎞= − ⋅ −⎜ ⎟
⎝ ⎠

#
 

1

1( ) 1 exp
g

g
β

ϕ λ
λ

−
⎡ ⎤−⎛ ⎞⎢ ⎥= − ⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦

#  

Graytone 
Multiplication 

( ) ( )( )1
1 2 1 2g g g gϕ ϕ ϕ−

•• =  ( ) ( )( )1
1 2 1 2g g g gϕ ϕ ϕ−• =# # # #  

Convolution ( )( )1w g w gϕ ϕ−
∗∗ = ∗  ( )( )1w g w gϕ ϕ−∗ = ∗# # #

 

Table 1. Summary of the LIP and PLIP operators 

5.2 Properties  
The PLIP properties to be discussed refer to the specific instance of the PLIP model in which 
µ = M, Ǆ = k = λ, and ǃ = 1.  Similar intuitions are deduced for the more general cases.   
1. The PLIP model operators revert to the LIP model operators with Ǆ = M.   
2. It can be shown that  

 1lim ( ) lim ( )a a a
γ γ

ϕ ϕ −

→∞ →∞
= =# #  (28) 
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Since ϕ#  and 1ϕ −#  are continuous functions, the PLIP model operators revert to 

arithmetic operators as |Ǆ| approaches infinity and therefore, the PLIP model 
approaches standard linear processing of graytone functions as |Ǆ| approaches infinity.  
Depending on the nature of the algorithm, an algorithm which utilizes standard linear 
processing operators can be found to be an instance of an algorithm using the PLIP 
model with Ǆ = ∞.   

3. The PLIP model can generate intermediate cases between LIP operators and standard 
operators by choosing Ǆ in the range (M, ∞).   

4. For input graytones in [0, M), the range of PLIP addition and multiplication with Ǆ in 
[M, ∞] is [0, Ǆ].   

5. For input graytones in [0, M), the range of PLIP subtraction with Ǆ in [M, ∞] is (-∞, Ǆ].   
6. It can be shown that the PLIP operators obey the associative, commutative, and 

distributive laws and unit identities.   
7. The operations satisfy the 4 requirements for image processing frameworks (Jourlin & 

Pinoli, 2001) and an additional 5th one.  Namely, (1) the image processing framework 
must be based on a physically relevant image formation model; (2) The mathematical 
operations must be consistent with the physical nature of images; (3) The operations 
must be computationally effective; (4) The framework must be practically fruitful; (5) 
The framework must minimize the loss of information. 

 

         
 a) b) (c) 

         
 d) e) f) 

Fig. 6. (a) “Lena” image , (b) “Cameraman” image, image addition using (c) Ǆ = 256 (LIP 
model case), (d) Ǆ = 300, (e) Ǆ = 600, (f) Ǆ = 108 

The 5th requirement essentially states that when visually “good” images are processed, the 
output must also be visually “good” (Panetta et al., 2008).  The PLIP model satisfies the 
requirements by selecting values of Ǆ which expands the dynamic range of outputs in order 
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to minimize information loss while also retaining non-linear, logarithmic functionality 
according to a physical model.  This property is illustrated in Figure 6.  The LIP addition 
provides a good contrast between Lena and the cameraman, but there is also a loss of 
information in the output, namely in the area corresponding to the cameraman’s coat.  PLIP 
addition with Ǆ = 300 is able to yield a good contrast while also minimizing loss of 
information.  Thus, for positive Ǆ, the PLIP model physically provides a balance between the 
standard linear processing model and the LIP model.  Conversely, negative values of Ǆ may be 
selected for cases in which added brightness is needed to yield more visually pleasing results. 

6. Image fusion using the PLIP model 

Adapting image fusion algorithms with the PLIP model require a mathematical formulation 
of multi-resolution decomposition schemes and coefficient fusion rules in terms of the 
model.  The combination of the parameterized logarithmic image decomposition techniques 
with parameterized logarithmic fusion rules yields a new set of image fusion algorithms 
which are based on the PLIP model.  The parameterized logarithmic multi-resolution  
decomposition schemes and fusion rules are defined for graytone functions.  Therefore, 
images are converted to graytone functions before PLIP-based operations are performed and 
converted from graytone functions to images after PLIP-based operation are performed.   

6.1 Parameterized logarithmic multi-scale image decomposition schemes 
6.1.1 Parameterized Logarithmic Laplacian Pyramid (PL-LP) 
The approximation coefficients for a graytone function g at a scale n > 0 are generated by 

 ( ) ( 1)
0 0 2

n ny w y −

↓
⎡ ⎤= ∗⎣ ⎦## #  (29) 

where ( )
0
ny# = g and w is the low-pass filter defined in (2).  The detail coefficients at scale n are 

then generated by 

 ( )( ) ( ) ( 1)
1 0 0 2

4n n ny y w y +

↑
⎡ ⎤= Θ ∗ ⎣ ⎦

# ## # #  (30) 

The inverse procedure begins from the approximation coefficient at the high decomposition 
level N.  Each synthesis level reconstructs approximation coefficients at a scale i < N by each 
synthesis level by 

 ( )( ) ( ) ( 1)
0 1 0 2

4n n ny y w y +

↑
⎡ ⎤= ⊕ ∗ ⎣ ⎦## # #  (31) 

6.1.2 Parameterized Logarithmic Discrete Wavelet Transform (PL-DWT) 
The PL-DWT at decomposition level n follows directly from (44) and (45).  The PL-DWT for 
a graytone function g at a scale n > 0 is calculated by  

 ( ) ( )( )( )( ) ( )1
0 0
n n

DWT DWTW y W yϕ ϕ−=# # # # #  (32) 

where (0)
0y# = g.  Similarly, the inverse procedure begins from the discrete wavelet coefficients 

at the highest decomposition level N.  Each synthesis level reconstructs approximation 

coefficients at a scale       i < N by each synthesis level by 
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 ( )( ) ( )( )( )( )( ) ( )1 1 1
0 0
n n

DWT DWT DWT DWTW W y W W yϕ ϕ− − −=# # ## # # #   (33) 

 
 

 

Fig. 7. Parameterized Logarithmic Wavelet Transform analysis and synthesis 

6.1.3 Parameterized Logarithmic Stationary Wavelet Transform (PL-SWT) 
The PL-SWT also follows directly from (44) and (45).  The forward and inverse PL-SWT for a 
graytone function g at a scale n > 0 is calculated by 

 ( ) ( )( )( )( ) ( )1
0 0
n n

SWT SWTW y W yϕ ϕ−=# # # # #  (33) 

 ( )( ) ( )( )( )( )( ) ( )1 1 1
0 0
n n

SWT SWT SWT SWTW W y W W yϕ ϕ− − −=# # ## # # #  (34) 

 
 

 
 

 

 
 

 

 

 

 

 

 
 a) b) c) 

 
 
 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 
 d) e) f) 

Fig. 8. (a) Original “Trui” image, top-left: approximation sub-band, magnitude of top-right: 
horizontal sub-band, bottom-left: vertical sub-band, bottom-right: diagonal sub-band 
magnitude of horizontal sub-band using the DWT and PLIP model operators with                  
(b) Ǆ = 256 (LIP model case), (c) Ǆ = 300, (d) Ǆ = 500, (e) Ǆ = 700, (f) standard operators 
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Figure 7 illustrates the analysis and synthesis stages using PLIP wavelet transforms, where 
W is a type of wavelet transform (e.g. DWT, SWT, etc.) with a given set of wavelet filters 
(Courbebaisse, 2002).  As the parameterized logarithmic decomposition approaches 
essentially makes use of standard decomposition schemes with added pre-processing and 
post-processing in the form of the isomorphic transformation calculations, they can be 
computed with minimal added computation cost.   
Figure 8 illustrates the advantages yielded using parameterized logarithmic multi-resolution 
schemes.  The wavelet decomposition using Ǆ = 256 (LIP model case) predominantly extracts 
the hair features from the image.  As Ǆ increases, it is particularly apparent that the hair 
textures are less emphasized and that the scarf, hat, and facial edges and textures are more 
emphasized.  The wavelet decomposition using standard operators extracts the most texture 
and edge information from the scarf, hat, and face in the image, and close to none of the 
texture of the hair.  Visually, it is seen that the wavelet decomposition using the PLIP model 
operators with Ǆ = 300 provides the best balance between extracting the hair, scarf, hat, and 
facial features in the image.  Ultimately, the salient features which need to be extracted at 
each scale for further processing are task and image dependent, and thus, the PLIP model 
parameter can be tuned accordingly.   

6.2 Parameterized Logarithmic image fusion rules 

Both the approximation coefficient and detail coefficient fusion rules should also be adapted 

according to the PLIP model.  For
1

( )
,0

N
Iy# and 

2

( )
,0

N
Iy# , the approximation coefficient sub-bands of 

images I1 and I2, respectively, at the highest decomposition level N yielded using a given 

parameterized logarithmic multi-resolution decomposition technique, the approximation 

coefficients for the fused image F at the highest level of decomposition using simple 

averaging is given by 

 ( )
1 2

( ) ( ) ( )
,0 ,0 ,0

1

2
N N N

F I Iy y y= ⊗ ⊕# ## # #  (35) 

In general, an approximation coefficient fusion rule can be adapted according to the PLIP 
model by 

 ( ) ( )( )( )1 2

( ) ( ) ( )1
,0 ,0 ,0,N N N

F A I Iy R y yϕ ϕ ϕ−=# # # # # #  (36) 

where RA is an approximation coefficient fusion rule implemented using standard 
arithmetic operators.  An analysis of the PLIP operation in Table 1 and (35) yields a simple 
interpretation of the effect of Ǆ on fusion results.  Practically, Ǆ can be interpreted as a 
brightness parameter, where negative values of Ǆ yield brighter fusion results and positive 
values of Ǆ yield darker fusion results.  This is achieved while also maintaining the fusion 
identity that the fusion of identical source images is the source image itself. Therefore, 
improved visual quality is achieved within an image fusion context and not as a result of an 
independent image enhancement process.  The influence of the parameterization on fusion 
results is not limited to this naïve observation, however, as Ǆ also influences the multi-scale 
decomposition scheme and the detail coefficient fusion rule.  The fusion rules for details 
coefficients at each decomposition level for pixel- or region-based approaches are similarly 
adapted according to the PLIP model via the parameterized isomorphic transformation.  In 
general, a detail coefficient fusion rule can be adapted according to the PLIP model by 
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 ( ) ( )( )( )1 2

( ) ( ) ( )1
, , ,,n n n

F i D I i I iy R y yϕ ϕ ϕ−=# # # # # #  (37) 

where RD is a pixel- or region-based detail coefficient fusion rule implemented using 
standard arithmetic operators. 

7. Quantitative image fusion quality assessment 

When an ideal fusion result is available, it can be used as a reference image to guide image 
fusion quality assessment. Measures such as the root mean square error (RMSE), normalized 
least square error (NLSE), peak signal-to-noise ratio (PSNR), correlation (CORR), difference 
entropy (DE), and mutual information (MI) can be used to relate the fusion result to the 
reference image, thus providing a means of assessing image fusion quality (Liu et. al, 2008).  
These measures are summarized in Table 2 for a fusion result F given a reference image I. 
However, an ideal reference image is usually not known, and thus, quality assessment 
becomes a non-trivial task.  Blind objective performance assessment of image fusion quality 
is still an open problem requiring more research in order to provide valuable objective 
evaluation (Piella, 2003).  The metrics proposed in (Xydeas & Petrovic, 2000) and (Piella & 
Heijmans, 2003) tend to favor fusion results which transfer more edge information into 
fusion results, and are therefore vulnerable to noisy test cases. Conversely, mutual-
information-based metrics (Qu et al., 2002) tend to favor fusion approaches which 
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hF Normalized histogram of F 

Table 2. Summary of the reference-based measure for image fusion quality assessment 
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transfer relatively less edge information but are less sensitive to noise, such as region-based 

and even simple averaging approaches. Nonetheless, to gain objective perspective not on 

the fusion rule or standard decomposition scheme of choice, but rather the improvement of 

fusion results using the PLIP model, fusion results are assessed quantitatively using the 

Piella and Heijmans image fusion quality metric.  The metric measures fusion quality based 

on how much the fusion result reflects the original source images. Bovik’s quality index 

(Wang, 2002) is used to relate the fused result to its original source images. The quality 

index Q0 proposed by Bovik to measure the similarity between two sequences x and y is 

given by 

 0 2 2 2 2

2 2xy x y x y

x y x y x y

Q
σ μ μ σ σ
σ σ μ μ σ σ

= ⋅ ⋅
+ +

 (38) 

where σx and σy are the sample standard deviations of x and y, respectively, σxy is the sample 

covariance of x and y, and µx and µy are the sample means of x and y, respectively.  For two 

images I and F, a sliding window technique is utilized to calculate the quality index                   

Q0(I, F|w) at each local wxw window. The average of these quality indexes is used to 

measure the similarity between I and F, and is given by 

 ( ) ( )0 0

1
, , |

w W

Q I F Q I F w
W ∈

= ∑  (39) 

The resulting similarity index ranges from 0 to 1, with two identical images yielding a Q0 

equal to 1.  Defining s(I|w) as the saliency, and in this case, the variance of the image I in a 

local window wxw window, the quality of the fused result can be assessed by first 

calculating local weights λ(w) for the source images I1 and I2, given by 

 ( ) ( )
( ) ( )

1

1 2

|

| |

s I w
w

s I w s I w
λ =

+
 (40) 

and then calculating the fusion quality index Q(I1,I2,F) for the fused result F by 

 ( ) ( ) ( ) ( )( ) ( )( )1 2 0 1 0 2

1
, , , | 1 , |

w W

Q I I F w Q I F w w Q I F w
W

λ λ
∈

= + −∑  (41) 

 

 

                              
  a) b) c) d) 

Fig. 9. (a)(b) Original “clock” source images, respective weights (c)c·λ (d) c·(1-λ) used for 
image fusion quality assessment 
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The metric assesses fusion quality by calculating the local quality indexes between the fused 
image and the two source images, and weighting them according to the local saliency 
between the source images. To better reflect the human visual system, another weight is 
added to give more weight to regions in which the saliency of the source images is greater.  
Defining the overall saliency of a window C(w) by 

 ( ) ( ) ( )( )1 2max | , |C w s I w s I w=  (42) 

The weighted fusion quality index QW(I1,I2,F) is given by 

 ( ) ( ) ( ) ( ) ( )( ) ( )( )1 2 0 1 0 2, , , | 1 , |w
w W

Q I I F c w w Q I F w w Q I F wλ λ
∈

= + −∑  (43) 

where 

 ( ) ( )
( )

'

'
w W

C w
c w

C w
∈

=
∑

 (44) 

As Q0 yields a maximum value of 1 for identical input images, higher fusion quality metric 
values indicate better fusion results.  Figure 9 provides a graphical representation of the 
weights which are calculated by the quality metric in order to assess the quality of image 
fusion results.   

8. Experimental results 

The effectiveness of the proposed algorithms is illustrated via computer simulations. In 
general, three cases are considered for these experiments: 1) the extreme case in which the 
PLIP model operators yield the LIP model operators (Ǆ = M), 2) standard operators, which 
are the extreme case of PLIP model operators with Ǆ = ∞, 3) the case in which Ǆ takes on a 
value other than M or ∞.  For easy reference, we refer to these cases as the LIP model 
operator case, standard operator case, and PLIP model operator case, respectively, though in 
reality, all are cases of the proposed PLIP-based approach. It should be noted that image 
fusion algorithms employing LIP-based multi-resolution image decomposition schemes and 
fusion rules have not even been introduced to our knowledge.  Thus, we refer to the LIP-LP, 
LIP-DWT, and LIP-SWT image fusion algorithms as the image fusion algorithms which use 
PLIP operators with Ǆ = M to implement the fusion rules and LP, DWT, and SWT, 
respectively. Consequently, the PL-LP, PL-DWT, and PL-SWT image fusion algorithms are 
compared to the traditional LP and LIP-LP; traditional DWT and LIP-DWT; and traditional 
and LIP SWT image fusion algorithms, respectively. The algorithms were tested over a 
range of different image classes, including out-of-focus, medical, surveillance, and remote 
sensing images.   A portion of these results are presented here.  It is assumed that the input 
source images are registered, although it is expected that image fusion algorithms be able to 
handle minor registration differences.  There are many factors which influence image fusion 
using multi-resolution decomposition schemes, including the type of multi-resolution 
decomposition scheme, the number of decomposition levels, the choice of filter bank, and 
the fusion rule used to fuse coefficients at each scale.  This paper emphasizes the transform 
which is used while keeping all other factors constant.  In these experimental results, N = 3 
for all methods, and both the pixel- and region-based fusion rules are examined.  For the 
wavelet-based approaches, biorthogonal 2.2 filters are used. The fusion results are compared 
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quantitatively by first normalizing source images and fused results to the range 0-255, and 
then using the Piella and Heijmans image fusion quality metric QW with w = 7. This metric is 
used to determine the optimal parameter value for Ǆ, with the resulting fused image thereby 
taken to be the result for a given parameterized logarithmic image fusion algorithm.  This 
demonstrates the ability to tune the PLIP model parameter in order to optimize results 
according to any metric used for quality assessment.   
 

    
 a) b) c) d) 

    
 e) f) g) h)  

Fig. 10.  (a)(b) Original “navigation” source images, image fusion results using the LP/AM 
fusion rule, and PLIP model operators with (c) Ǆ = 256 (LIP model case), QW = 0.3467,         
(d)  Ǆ = 300, QW = 0.7802, (e) Ǆ = 430, QW = 0.8200, (f) Ǆ = 700, QW = 0.8128 (g) Ǆ = 108,             
QW = 0.7947, (h) standard operators, QW = 0.7947 

 

Fig. 11. Plot of QW vs. Ǆ for image fusion results in Figure 9, indicating a maximum at                
Ǆ = 430, QW = 0.8200 

Figure 10 illustrates the fundamental themes which have been discussed so far, particularly 
highlighting the necessity for the added model parameterization.  Figure 10.c shows that 
firstly, the PLIP model reverts to the LIP model with Ǆ = M = 256, and secondly, that the 
combination of source images using this extreme case may still be visually unsatisfactory 
given the nature of the input images, even though the processing framework is based on a 
physically inspired model. Figure 10.d-f illustrates the way in which fusion results are 
affected by the parameterization, with the most improved fusion performance yielded by 
the proposed approach using parameterized multi-resolution decomposition schemes and 
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fusion rules relative to both the standard processing extreme and the LIP model extreme 
with  Ǆ = 430.  Namely, this result using the proposed approach has better visual contrast 
between roads and terrain, and provides the proper base luminance to effectively 
differentiate between the grass and bushes. Figure 11 plots the QW quality metric as a 
function of Ǆ, and reflects the qualitative observation indicating Figure 10.e as the best 
fusion output. Lastly, Figure 10 also shows using the AM fusion rule that the PLIP operators 
revert to standard mathematical operators as Ǆ approaches infinity. 

 

         
 a) b)  c) d) e) 

         
 f)  g) h) i)  j) 

         
  k) l) m) n)  o) 

         
 p) q) r) s) t) 

Fig. 12.  Zoomed regions of (a)(b) Original “clocks” source images, image fusion results 
using (c)LP and RB, (d), LIP-LP and RB, (e) PL-LP and RB, (f)(g) original “brain” source 
images, image fusion results using (h) SWT and RB, (i) LIP-SWT and RB, (j) PL-SWT and RB 
(k)(l) original “navigation” source images, image fusion results using (m) DWT and AM, (n) 
LIP-DWT and AM, (o) PL-DWT and AM (p)(q) original “remote sensing” source images, 
image fusion results using (r) SWT and BK, (s) LIP-SWT and BK, (t) PL-SWT and BK 

Zoomed details highlighting specific contrast differences of selected fusion results are 
shown in Figure 12. Selected image fusion results showing more global luminance 
differences can be found in Figure 13. Qualitatively, it is seen that the image fusion 
approaches using the PLIP model operator case yield more informative fusion results with 
more visually pleasing contrast.  The zoomed details in the 1st row of Figure 12 show that 
the lines and numbers in the clock images are sharper and clearer in the fusion result using 
the PLIP model operator case.  The 2nd row shows that the proposed method is able to better 
capture the terrain information and road information of the respective source images.  The 
3rd row shows the improved contrast of tissue information and dense bone structure yielded   
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 a) b) c)  d) e) 

     
 f)  g) h)  i)  j)  

     
 k) l) m) n) o)  

     
 p)  q) r) s)  t) 

Fig. 13.  (a)(b) Original “clocks” source images, image fusion results using (c)LP and RB, (d), 
LIP-LP and RB, (e) PL-LP and RB, (f)(g) original “brain” source images, image fusion results 
using (h) SWT and RB, (i) LIP-SWT and RB, (j) PL-SWT and RB (k)(l) original “navigation” 
source images, image fusion results using (m) DWT and AM, (n) LIP-DWT and AM, (o) PL-
DWT and AM (p)(q) original “remote sensing” source images, image fusion results using (r) 
SWT and BK, (s) LIP-SWT and BK, (t) PL-SWT and BK 

by the proposed method. Lastly, the 4th row shows that the proposed fusion approaches are 
able to better capture the subtle features at the point at which the roads intersect.  Thus, the 
experimental results highlight the improvement of fusion results yielded using the PLIP model 
operators.  While the standard operator extreme can often give adequate results, the contrast 
and luminance can be improved by choosing a value of Ǆ which both reflects the human visual 
system and meets the dynamic range requirements of the input images. While the LIP model 
operator extreme can improve the performance of image fusion relative to standard operator 
extreme when the source images are similar in luminance (as in the case of the clocks images), 
it yields visually inadequate results for source images with greatly different local base 
luminance.  This is particularly visible for input images in which one of the source images is 
predominantly dark as in the case of the “navigation” and “brain” images. 
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The quantitative observations are reflected by their corresponding quality metric values in 

Table 3, in which rows correspond to the basic multi-resolution decomposition scheme 

and fusion rule employed and columns correspond to the image processing operators (LIP 

model operator case, standard operator case, or PLIP model operator case) used to 

implement the given decomposition scheme and fusion rule.  It should be noted that a 

single, constant-size window is used in calculating the quality metric values.  Thus, such 

an evaluation may be dependent on how well the window size reflects the scale of the 

objects of interest in the source images, and may not be able to effectively quantify 

differences in fusion results even when qualitative visual differences are seen. This 

provides a rationalization as to why the perceived visual improvement of the proposed 

methods may in some cases only translate to a small increase in the quality metric values, 

and continues to affirm the fact that objective image fusion quality assessment is still an 

open research topic.  However, the rank of the scores are generally indicative of relative 

performance, and to standardize the testing procedure and to maintain the same 

formulation of the metric as it was originally proposed, the same parameters are used to 

calculate quality metric values for all test cases.  Thus, the quantitative analysis serves as 

an objective means of validating subjective observations.  The quality metric values in 

Table 2 show that in all cases, fusion algorithms using the parameterized logarithmic 

multi-resolution decomposition schemes and fusion rules outperform their respective 

general linear processing model counterparts. 

9. Conclusions 

This paper derived decomposition schemes and image fusion rules based on the PLIP 

model. The PLIP based multi-resolution decomposition schemes were developed and 

thoroughly applied for image fusion purposes. PLIP model properties were analyzed, and 

their implications for image fusion were verified by experimental means. The new multi-

resolution decomposition schemes and fusion rules yields new image fusion tools which 

are able to provide visually more pleasing fusion results. A new class of image fusion 

algorithms, namely those based on the PL-LP, PL-DWT, and PL-SWT were proposed.  The 

images are fused in the transform domain using novel pixel-based or region-based rules.  

Using a number of pixel-based and region-based fusion rules, one can combine the 

important features of the input images in the transform domain to compose an enhanced 

image. The proposed algorithms were tested and compared to traditional and LIP multi-

resolution image fusion algorithms over a number of different image classes including 

out-of-focus, medical, surveillance, and remote sensing images, whose applications can 

make use of image fusion to improve perception for computer-aided or computer vision 

systems.  These experimental results showed that the proposed image decomposition and 

image algorithms improved image fusion quality both qualitatively and quantitatively. 

The Qualitatively, the fusion results using the proposed algorithms provided better 

contrast and the necessary luminance needed for fusion purposes. Quantitatively, the 

proposed outperformed traditional and LIP multi-resolution image fusion algorithms 

using the Piella and Heijmans quality metric to objectively assess image fusion quality. 

The novelty of the proposed PLIP-based image fusion schemes lie in the combination of 

multi-resolution image fusion techniques with physically inspired proccessing models.  
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