
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

7,000



22 

Auction and Swarm Multi-Robot Task Allocation 
Algorithms in Real Time Scenarios 

José Guerrero and Gabriel Oliver 
Universitat de les Illes Balears (Dep. of Mathematics and computer Science) 

Spain 

1. Introduction 

A group of several autonomous robots (multi-robot system) can perform tasks that with 
only one of them would be impossible to carry out or would take much more time, 
moreover, they are more robust and even can be cheaper, etc than systems with a single 
robot. In general, the problems that have to be solved to benefit from all these advantages 
are divided into three main stages: task division/planning, task allocation and motion 
planning. Task division stage, consists on dividing the general and complex mission into 
simple tasks that can be carried out by a robot and, if it’s necessary, scheduling those 
simpler goals. The task allocation step will select the best robot or group of robots to execute 
each goal. Finally, the motion planning issues involve the robots’ motions coordination to 
get the assigned tasks. Although these steps have been explained as independent and 
sequential stages, they are tightly connected and the decisions made in one level affect the 
whole system performance. For example, in Zlot & Stentz (2006) the authors proposed a task 
allocation method that combined planning, task decomposition and task allocation. 
Although this and similar efforts can be found in the literature. Each one of these steps is 
still an open problem. This paper will be focused on multi robot task allocation (MRTA) 
issues, without taking into account the other problems. Task allocation is one of the main 
problems in multi-robot systems, very especially when the tasks must be executed before 
deadlines, that is, in real-time scenarios. In most cases this problem is an NP-hard problem, 
and therefore nowadays there is not any algorithm that in a reasonable computing time 
gives the optimal tasks allocation. Two main paradigms have been proposed in recent years 
to try to manage this problem in both real-time and non real-time scenarios: swarm and 
auction methods. At present, there does not exist any study that compares both strategies 
when the robots must carry out tasks with soft or hard real-time restrictions. Other works, 
for example Kalra & Martinoli (2006), compare auction and swarm methods but using tasks 
without deadlines. Therefore, the first objective of this work is to compare all those methods 
under different scenarios to identify the weak points of each paradigm when a deadline is 
assigned to the tasks. 
Firstly, our work presents and study three auction-like strategies based on existing ones: 
Sequential Unordered Auction (SUA), Earliest Deadline First Auction (EDFA) and 
Sequential Best Pair Auction (SBPA). In all these cases there is a central auctioneer who 
receives the bids from all the robots and decides the allocation of the tasks. These strategies 
differ between them on the way the auctioneer announces the tasks to the robots and on the 
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robots’ answers are processed. Besides the auction methods, a classical swarm strategy has 
been taken into account. The results show that in most cases the most complex 
algorithm(SPBA) outperforms the other auction based procedures. Besides EDFA is better 
than the simple SUA strategy. Finally, swarm strategy is better than EDFA or SUA when the 
number of robots and tasks is not very large. 
In Gerkey & Mataric (2004), the MRTA problem was divided using three axes: multi-task 
robots (MT) vs. single-task robots (ST) depending on whether multiple tasks can be assigned 
to the same robot or not. The second axes is single-robot tasks (SR) vs. multi-robot tasks (MR) 
where SR means that only one robot can be assigned to a task, while MR means that several 
robots (a coalition) can execute concurrently a task. The last axes is, instantaneous assignment 
(IA) vs. time-extended assignment (TE) where in IA the allocation is made without taking into 
account the future incoming tasks. In terms of this taxonomy, in this paper we focus on a ST-
SR-IA and MT-SR-IA task allocation, our previous work Guerrero & Oliver (2010) was focused 
on ST-MR-IA approaches in real time scenarios. In MT-SR-IA, each single robot must have the 
capabilities for deciding how to schedule its assigned tasks. Thus, we extend the original MT 
category to take into account problems where a robot has the schedule several tasks. For 
example, in the MT-SR-IA strategy implemented in this work, each robot decides in what 
order it will visit its assigned goals, that is, the robot has to solve the traveling Salesman 
Problem (TSP). We have to note that the TSP is also an NP-Hard problem. The results of our 
experiments show that in a MT-SR-IA system the local planning made by each robot is more 
important than the algorithm used by the central auctioneer. From these results, this work 
presents a new MRTA algorithm called Earliest Deadline First Best Pair (EDFBP) which, 
depending on the robots’ scheduling capabilities, uses a more (algorithmic) complex MRTA 
algorithm or it simplifies the task allocation process. 
A classical foraging task has been used to verify our methods. In this mission each object 
have to be gathered before an specific deadline. The performance measure used to compare 
the systems is the number of tasks finished before their deadline. A simulator developed by 
the authors, called RoboSim, has been used to execute most of the experiments, this 
simulator allows to execute a great number of tests, with a very large number of robots in 
the colony in a very short time. Some experiments with less robots has also been carried out 
with the well known Player/Stage simulator Collett et al. (2005). 
The rest of this paper is organized as follows: section 2 presents some relevant work in the 
field of multi-robot task allocation focused very specially on auction and swarm methods; 
section 3 shows a formal definition of the problem to solve and specifies the details of the 
real time foraging task; section 4 explains the algorithms implemented when only one task 
can be assigned to each robot; section 5 extends the algorithms already explained in section 
4 to allow multiple tasks assigned to the same robot (MT tasks) ; section 6 shows the results 
of the experiments using the swarm SUA, EDFA and SBPA methods; section 7 explain the 
new EDFBP strategy and the experiments carried out to validate it; finally, section 8 exposes 
some conclusions and the future work of our research. 

2. Related work 

A lot of research has been done to solve the multi robot task allocation problem, but it is still 
an open issue. The proposed solutions can be classified into three main groups: centralized, 
negotiation and self organized system(swarm). In centralized methods there is a central 
agent who has all the information about the tasks, the robots, environment, etc. and takes all 
the decisions. The centralized algorithms can use classical optimization methods, like for 
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example Linear Koes et al. (2005) or Dynamic programming, which get very good results in 
terms of number of tasks executed per time unit and of energy required by the robots, but 
they need too much computation time for being used in a dynamic environment. Some 
other centralized methods, like the best pair selection, use a greedy algorithm that produces 
a worse allocation but needs less time. This strategy has also been used for non centralized 
methods, like Broadcast Local Eligibility (BLE)Werger & Mataric (2000). In this work the 
SBPA is based in this concept, but on an environment where the robots use an auction to get 
the tasks. In the self organized or swarm systems each robot takes the decision by itself, 
without any kind of negotiation and executing very simple procedures like in Sahin et al. 
(2008). Probably, the most used swarm algorithms are the response threshold methods 
Agassounon & Martinoli (2002); Yang et al. (2009); Ferreira et al. (2010), where each robot 
has a stimuli associated with each task. When the level of the stimuli exceeds a threshold, 
the robot starts its execution. The pure threshold based systems, and in general the pure 
swarm systems, don’t require any kind of communication mechanisms. Some studies like 
Ducatelle et al. (2009) studied how the communication can improve the performance of their 
swarm method for foraging like tasks. Nonetheless, a disadvantage of these systems is the 
interference produced when two or more robots decide to execute the same task, when this 
task can only be executed by a single robot. The swarm method proposed in this work does 
not use any kind of communication between robots and they will only be able to get 
information from a central auctioneer. Finally, the negotiation methods are a middle way 
solutions, among these methods the most used ones are the auction based solutions like for 
example Gerkey & Mataric (2002); Dias & Stentz (2003); Vig (2006). In this kind of systems, 
the robots act as self-interest agents and they bid for tasks. The robot with the highest bid 
wins the auction process and gets the task. The bids are adjusted to the robots’ interest 
(capacity) to carry out the goal. Thus, the best robot for a specific task can be chosen, but 
they need communication mechanisms between robots. 
In this paper we focus on auction and swarm systems. In Zheng et al. (2006) the authors 
used an auction method with sequential allocation, similar to the SUA method developed in 
this work, but they improve the sequential results using a prediction of futures assignments. 
Our improvements of the sequential auctions are based on real time concepts like EDF, or on 
reducing the algorithmic complexity with EDFBP method. Hybrid methods, which combine 
both auction and swarm approaches, has also been introduced by several authors like 
Zhang et al. (2007) or Dasgupta & Hoeing (2008). In all these cases only a single robot can be 
assigned to the same task (SR scenario). A lot of works allow has been done to solve the 
multi-robot assignment problem (MR problem) where tightly cooperation between robots is 
required to execute a task Jones (2009); Vig (2006); Service & Adams (2010); Zheng & Koenig 
(2008). MR problems are out of the scope of this work and they have been studied by the 
authors in Guerrero & Oliver (2010; 2004) 
Very few work has been done to test swarm systems in real time scenarios, where the 
tasks must be executed before a deadline. In del Acebo & de-la Rosa (2008) the authors 
proposed a swarm method to solve conflicts between robots using a local planning and 
high communication skills to perform a local auction process. Hence, no learning 
algorithm was proposed to fit the algorithm’s parameters that, as the authors pointed, 
affect dramatically the results. The swarm algorithm proposed in our work is much more 
simple in order to simplify the comparison with the other methods. Auction strategies 
have also been used in real time scenarios, for example, in Jones et al. (2006) the robots 
learnt what to bid to increase the number of tasks that fulfill a deadline. A great effort has 
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been done to solve the scheduling and allocation problem on multi-processors systems 
Pinedo (2008). Some of these works use the well known Earliest Deadline First (EDF) 
Goossens et al. (2002), the same method used in this work to decide in what order the 
tasks must be auctioned. 
Finally, other works, like for example Kalra & Martinoli (2006), compare both auction and 

swarm without deadlines under different types of communication restrictions. The authors 

tried to use a classical response threshold algorithm, but in all cases the results with a 

deterministic selection were better. The same swarm strategy used in Kalra & Martinoli 

(2006) has been implemented to execute our swarm experiments. 

3. General task description 

In this section, we will formalize the task allocation problem previously sketched and we 
will explain the main problems that presents. 

We have a set of tasks 1 2{ , ,..., }nT t t t=  and a set of robots 1 2{ , ,..., }mR r r r=  where in general 

n m≠ . Each task ti has associated a set of characteristics 1 2{ , ,..., }i i i ilC C C C= , these 

characteristics can be, for example, the location of the task (x and y position), the amount of 

work to do (object’s weight, area to clean, ...), etc. Each task i has a set of restrictions RTi that 

must be satisfied by the robot or robots that will be assigned to it. Some examples of 

restrictions can be: number of robots that can simultaneously execute the task, sensorial 

skills that the robots must have, time restrictions like a deadline, etc. So, we want to find a 

task allocation function :A T R→  that assigns to each task a set of robots in such way that 

robots’ skill meet the task’s restrictions taking into account the task’s characteristics. We can 

also define a utility function :U A →ℜ  which given a task allocation returns its utility, that 

is, a real number that indicates how ”good” is an allocation. Thus, our goal will be to find a 

A function that maximize the total utility U. In this work the utility function will be the 

number of tasks that fulfill its deadline. 

3.1 Foraging task 

To validate the algorithms, the classical like foraging task will be used. This task is defined 

as follows: some randomly placed robots have to pick up some randomly placed objects in 

the environment. New objects can arrive to the environment following a poisson 

distribution. There is also a central agent who knows the position of all the objects and will 

inform (broadcast) this information to all the robots. Each object to gather has a weight and 

each robot has a work capacity. The robot’s work capacity is the amount of object’s weight 

that the robot can process per time unit. The robots stops when it is near an object and starts 

to process the object for a time equals to weight/work Capacity. After this time, the robot goes 

back to its idle state and tries to get another task. 

Each task has associated a utility (U), and a deadline time DLi. DLi is the time instant before 

which the task must be finished. The deadline time for a task will start its countdown just 

after the task appears in the environment. If the tasks’ deadline has been met, then the 

group receives the utility of the task as a benefit. Otherwise, the task will disappear of the 

environment and no other robot will be able to execute it anymore. Then, our goal will be 

maximize the total utility, and thus, minimize the number of tasks executed after its 

deadline. In the experiments executed all the tasks had the same utility. 
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4. Implemented approaches for ST-SR-IA 

In this section we will explain the four first approaches implemented in this work when 

only a task can be assigned simultaneously to a robot, that is, when the ST-SR-IA strategy is 

used. As it has been said, these strategies are: Sequential Best Pair Auction (SBPA), Earliest 

Deadline First Auction (EDFA), Serial Unordered Auction (SUA) and swarm. In all cases 

there will be a central auctioneer who will send the tasks information to the robots and 

decide what robot wins each task when the auction methods are executed. 

4.1 Serial best pair auction: SBPA 

We have used the classical best pair selection approach very similar to the selection method 

used in Broadcast of Local Eligibility (BLE) Werger & Mataric (2000) but into an auction 

process. Each time that a new task appears in the environment or when a robot finishes its 

execution, a central auctioneer starts a new auction round. The process followed by the 

auctioneer can be seen in algorithm 1. Firstly, it requests for a bid for each task to all the idle 

robots (lines 1-3). The idle robots (without any task assigned) bid using its expected time to 

finish the task, as long as they are able to execute the task before its deadline. Each robot 

uses its kinematic characteristics to know how much time it will need to finish a task. Then 

the auctioneer selects in each iteration the pair robot-task with the best execution time and 

notifies this election to the robot. This algorithm is similar to the studied in Gerkey & 

Mataric (2004). 

The detailed analysis of the algorithmic complexity of our SBPA algorithm (algorithm 1) is 
as follows: let’s n be the number of tasks (objects) and m the number of robots, then the 
complexity of the loop in lines 1-3 is O(m). To find the best robot-task pair (line 5) it is 
required to test each robot and each task, but in each iteration a robot and a task are 

removed, therefore the complexity of the lines 1-8 is 
( , )

0
( ( )( )))

min n m

i
O n i m i

=
− −∑ . Thus, the 

total algorithmic complexity of the SBPA algorithm is 
( , )

0
( ( )( ))

min n m

i
O m n i m i

=
+ − −∑ . As it 

can also be seen, in each iteration the auctioneer sends a award message to a robot, therefore 

the cost of the communication system is equal to ( ( , ))O m min n m+  

 

Algorithm 1 SBPA algorithm for the ST approach

1: for all unassigned task t do
2: Ask for a bid to all idle robots
3: end for
4: repeat
5: Select the best robot-task pair (best bid).
6: Send an award message to the selected robot
7: Remove the task and the robot of the list
8: until There is no more unassigned robots or tasks

 

4.2 Earliest Deadline First Auction: EDFA 

The earliest deadline first (EDF) is a very well known method in processors scheduling for 
real time environments. In these cases, the tasks (processes) are sorted by deadline, in such a 
way that the tasks with the nearest deadline are firstly processed. The same concept has 
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been used in this work to implement the Earliest Deadline First Auction (EDFA) strategy, as 
it can be seen in algorithm 2. When a new task appears or when a robot becomes idle, the 
central auctioneer orders all the available tasks by deadline, and sends a request to all the 
robots for the first task, the task with the earliest deadline. Then, the robots that are able to 
finish the task before the deadline bid for the task using its expected execution time. Finally, 
the auctioneer selects the best robot (the robot who is able to finish the task first). If there are 
more tasks, the task with the next earliest deadline is selected and the process starts again. 
 

Algorithm 2 EDFA algorithm for the ST approach

1: sort the list of tasks T by deadline (EDF)
2: for all task t in T do
3: Ask for a bid to all idle robots
4: Select the best bid
5: Send an award message to the assigned robot
6: end for  

 

Following the same reasoning as for the SBPA, the analysis of the EDFA complexity is as 
follows: let’s n be the number of tasks and m the number of robots, then, the complexity for 
the sorting algorithm (line 1) is O(nlog(n)). Then, the auctioneer must check each robot’s bid 
to get the best robot for a task, but we have to take into account that the robots already 
assigned to earlier objects does not need to be considered. Thus, in each iteration a robot is 

assigned to a task and the complexity will be equal to: 
min( , )

0
( ( ) ( ))

n m

i
O nlog n m i

=
+ −∑ . The cost 

of the communication is similar to the already explained for SBPA algorithm. 

4.3 Serial Unordered Auction: SUA 

This is the more simple auction strategy implemented in this work. As the tasks arrive to the 
central auctioneer, it starts a new auction round for each one of them. That is, the task are 
processed in a sequential way, like in a FIFO cue. When an auction round is started, the 
robots bids for this task using its expected execution time, as long as the robot is able to 
finish the task before the deadline. Then, the robots send their bid to the auctioneer who 
selects as the auction winner the robot with the minor execution time. Finally, if there are 
more tasks, a new auction process is started again until all objects have been processed. 
Thus, the central auctioneer does not have to make any decision about the order the task 
must be offered to the robots. 
The computational complexity analysis of this algorithm is as follows: let’s n be the number 
of tasks and m the number of robots, then the auctioneer for each task has to check all the 
bids, that in the worst case will be equal to the number of robots. Following the same 
reasoning as in the EDFA algorithm, we can see that the complexity of this algorithm is 

min( , )

0
( ( ))

n m

i
O m i

=
−∑ . The communication complexity is the same as in the EDFA strategy. 

4.4 Swarm 

In the swarm strategy each robot makes the decision about what task it will process by itself, 
without taking into account any other robot. As new tasks arrive, the central auctioneer 
sends to all the robots the information about them. Then, each idle robot selects the nearest 
task to it as its next objective. To select a task the distance between the robot and the task 
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must be lower than a value D, thus, we avoid assigning a robot to a very distant task. Other 
more complex strategies have been used, like response threshold, but, as was pointed in 
Kalra & Martinoli (2006) for tasks without deadlines, the nearest task first strategy 
outperform response threshold in all cases. The complexity of this selection algorithm is 
obviously O(n) where n is the number of tasks. Here the complexity of the communication 
system is equals to O(n) because the central auctioneer should send to all the robots the 
information of the n tasks. Table 5 summarizes the complexity of all the single task 
algorithms proposed in this work and includes a the new EDFBP method that will be 
explained later. 

5. Multi-task per robot: MT-SR-IA approaches 

In this section we will explain the MT-SR-IA strategy implemented for this work. In the 
MTSR- IA strategies the robots can have more than one assigned task, and therefore, they 
have to schedule all its objectives. In our case, each robot has an scheduling, P with the 
objects to gather, thus, this list is the path or plan that the robot will follow. When a robot 
receives a new offer to execute a task t it will try to add t in P creating a provisional 

scheduling    P P t′ = ∪ , in such a way that the total length of P ′ is as short as possible and 

all tasks in P ′ meet the deadline. Then, the robot bids for t using the difference of expected 
time between P ′ and P, that is, the bid value b(t) will be: 

 1( ) ( , )j jb t tExpected t t−=∑  (1) 

where tExpected(a, b) returns the expected time that the robots would need to go from task a 

to task b, the task t0 is the initial position of the robot. Other bidding strategies has also been 

tested, like bid the total execution time of the new path, but the equation 1 provided the best 

results. The central auctioneer will select the best robot (the robot with the lowest b value) 

using any of the already explained strategies (SUA, EDFA or SBPA). Finally, provisional 

path P’ is assigned to the selected robot. 
The minimization of the path P′ is a NP-Hard problem called the traveling salesman 

problem with deadlines in metric spaces, Δ-DLTSP, where the path to minimize can not be a 
cycle. A lot of work has been done to try to solve the Δ-DLTSP problem Bckenhauer et al. 
(2009); Bansal et al. (2004). In this paper the nearest neighbor strategy has been used to get P’ 
from P and t, that is, the new task is inserted between each two tasks in the path P, and the 
shortest one is selected. If there is no way to create a new path P’ that meets all the 
deadlines, the robot will not bid for the task. Let’s n be the number of tasks in P, then to 
create P’ we have to make n + 1 tests (places where insert the new task) and n + 1 more to 
verify that all tasks meet the deadline, therefore the complexity of this algorithm is O(n2). 
The complexity of this algorithm is quite low but its completeness is not bounded. 
This new strategy involves that the algorithm 1 has to be updated. As it can be seen in 
algorithm 3, now after each assignment the central auctioneer has to ask for a bid to all the 
robots again (lines 2-4) because the bidding of a robot in one iteration will depend on the 
decisions made in the last assignment. The SUA and EDFA methods have also been 
modified, in such a way that now the auctioneer asks for bids before auctioning each task. 
Thus, the complexity from the communication point of view, has been increased in all cases. 
Now for EDFA and SUA, for each task the auctioneer has to send a broadcast request to all 
the robots (1 message), wait for the m bids (one for each robot) and finally send the award to 
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the winner (1 message). Therefore the complexity of the communication is, in the worst case, 
O(n ∗ (m+2)) =O(nm). This is very similar for the SBPA method, but in each iteration of 
algorithm 3 the robot has to send a broadcast message requesting for the remaining tasks (1 
message), this message will be much more longer than the sent in a EDFA or SUA strategy. 
Then, the auctioneer receives the bids from all the robots (m messages) and finally it sends 
the award to the winner (1 message). The complexity from the communication point of view 

will be O(n ∗ (m + 2)) = O(nm), the same as in EDFA or SUA, but we have to take into 
account that the length messages will be longer. 
 

Algorithm 3 SBPA algorithm for the multi task approach (MT)

1: repeat
2: for all unassigned unassigned task t do
3: Ask for a bid to all robots
4: end for
5: Select the best robot-task pair (best bid).
6: Send an award message to the assigned robot
7: until There is no more unassigned robots or tasks

 
 

As it is shown in table 1, can be easily seen the algorithmic complexity of the algorithms 
with MT assignment must be recalculated. In all cases, the complexity has increased 
compared to the single task assignment algorithms. 
 

SUA O(nm)  

EDFA O(nlog(n) + nm)  

SBPA 
0

( ( ))
n

i

O n m n i
=

+ −∑  

Table 1. Complexity order of the algorithms introduced in this work in a multi task 
approach (MT). n is the number of tasks, m is the number of robots 

6. ST-SR-IA and MT-SR-IA experiments 

In this section we will show the results of the experiments carried out to study the behavior 
of the methods explained in sections 4 and 5, that is, the ST-SR-IA and MT-SR-IA 
approaches (SUA, EDFA, SBPA). 

6.1 Experiments design: RobSim and Payer/stage simulator 

We used a simulator, called RobSim, developed in our university to execute most of our 
experiments. RobSim is a simulator that allows to emulate the behavior of a very large 
population of robots and a huge number of tasks. After each time period the simulator 
updates the robots’ positions and processes all the events happened in that period: new 
object in the environment, task executed successfully, expired task’s deadline, etc . To speed 
up the simulation time, we assume that the robot can not collide with any other object in the 
environment and therefore, an obstacle avoidance algorithm is not needed. Thus, RobSim 
can be considered as a nonrealistic simulator but it is very useful tool to compare the global 
performance of the different tested strategies. To carry out more accurate experiments with 
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a less number of robots and tasks we have use the very well known and more realistic 
Player/Stage simulator. 
We have executed in the RoboSim experiments with the foraging task already explained in 
3.1. New objects to pick up appear in the environment following a poisson process with 
parameter λ, where λ is the average number of new tasks that will appear in the 
environment per time unit. Three different values of λ have been used: 0.05, 0.1, and 0.3. 
Moreover, the followings 5 different kinds of task sets were used: 

• 1st Environment (Uniform Tasks): all tasks had the same weight (1 weight unit) and the 
same deadline time (250 time units) 

• 2nd Environment (Weighted Tasks): all tasks had the same deadline time but their 
weights were generated following a uniform distribution between 1 and 70 weight 
units. 

• 3th Environment (Random Deadline): all tasks had the same weight but the tasks’ 
deadlines were generated according to a uniform distribution between 100 and 500 time 
units. 

• 4th Environment (Hybrid Tasks): similar to the Random Deadline but with a 
probability of 0.2, the new task has not an associated deadline, that is, it has no time 
restrictions. Therefore, tasks with and without deadlines coexist in the same 
environment. 

• 5th Environment (Tasks without deadline): there is no deadline assigned to any task, 
and its weight is equal to 1. 

All robots in the colony had the same characteristics they move in a 
160m.x160m.environment. The number of robots varied between 2 and 40. 1920 simulations 
were executed, each one lasting 10000 time units during which 270000 objects were 
processed. 

6.2 Experiments with RoboSim 

Here we will explain the main results of the experiments carried out with the RoboSim 
simulator over a large number of tasks and objects. 
Figure 1(a) shows the total number of objects finished when no deadline is assigned to the 

tasks and with a λ = 0.1 and a D = ∞ for the swarm strategy. The planning methods means 

(5th. environment) the strategies with a MT-SR-IA strategy, that is, when the local path 

scheduling, explained in section 5, is performed. The total length covered by all the robots 

under the same environment is shown in figure 1(b). The EDF strategy has not been tested 

because without deadlines its results are equal to the SUA method ones. As it can be seen, 

when the ST-SR-IA (no planning) is used in SUA strategy the number of tasks finished is 

increased in a quasi lineal way with regards to the number of robots. This number of tasks is 

greater than swarm strategy if the number of robots is grater than 28. On the one hand, the 

SBPA method is not affected by the local planning, in both cases MT and ST the number of 

tasks is very similar. On the other hand, the planning clearly improves the SUA strategy 

results getting similar results as the SBPA method. For all strategies, except for swarm, there 

is a number of robots from which the total traveled path decreases. In the swarm system this 

total length increases lineally regards to the number of robots due to the interference 

between robots, produced when two or more robots select the same task simultaneously. 

Figure 2(a) shows the total number of finished tasks with λ = 0.05 and figure 2(b) shows the 

total length traveled by all the robots in this same scenario. In this experiments the SUA 
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(b) Total length of the robots’ path. 
 

Fig. 1. Results without deadlines, with and without using planning. λ = 0.1 
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(b) Total length of the robots’ path. 
 

Fig. 2. Total length of the robots’ path without deadlines with and without using planning. 
λ = 0.05 
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strategy outperforms swarm with less robot than when λ was equal to 0.1. Besides, the number 

of robots from which the robots’ path length starts to decrease is also lower than in figure 1(b). 
The experiments carried out using tasks with deadlines (environments from 1st to 4th), 
show that all the strategies are very similar when the arrival ratio of tasks is low (low values 
of λ). Hence, we will focus on the scenarios with a high ratio of arrivals. Figure 3 shows the 
number of tasks executed before its deadline with λ = 0.3 and with two different set of tasks: 
environment 3 (random deadlines) and environment 4 (Hybrid Tasks). In both cases the 
SBPA without planning outperforms the planning version when the number of robots is 
low. In the 4th environment the number of robots from which the SBPA-planning is better 
than SBPA without planning is grater than in the 3th environment. This is because in the 3th 
environment all the tasks have a deadline, and in the 4th environment there are some tasks 
without time restriction. In any case, the behavior of the SUA and EDFA strategies is 
dramatically increased when the planning is used, therefore, in those cases the main key to 
improve the system is the use of a MT approach (planning). 

6.3 Experiments with player/stage 

In this section we will analyze in a deeper way the single task strategy (ST) when the 
number of robots is low. We will use the very realistic simulator Player/Stage, which will 
allow us to study the physical interference between robots, produced when 2 or more robots 
want to access to the same point of the space at the same time. The physical interference has 
already been studied by the authors in ST-MR-IA strategies Guerrero & Oliver (2010). 
To execute our experiments we have several pioneer 3DX robots, which have become a 
standard research platform in robotics. The dimensions of the environment was 18mx18m 
and the maximum robots’ velocity was 0.25m/s. The robots used this information to 
calculate the expected execution time and to decide if they were able to execute a task before 
the deadline. We used 200 objects randomly placed in each experiment and with a deadline 
time uniformly distributed between 12 and 70 seconds. When an object is gathered, it 
immediately appears another one in a random position, thus, the number of objects in the 
environment (M) is always the same. (M) is a parameter and its influence in the performance 
of the system will be tested in the experiments. 
Table 2 shows the number of tasks that do not meet its deadline using the SBPA strategy, 
where R is the number of robots. In all cases, this auction algorithm is better than the swarm 
system, very specially when the number of robots is increased. For example, with 12 robots 
this benefit can be around 60%. Furthermore, the maximum distance (D) has not a great 
impact on the results, by contrast, Kalra & Martinoli (2006) showed that without deadline 
this parameter can be very important. 
 

  R=4 R=8 R=12 

M=5 
D=9 

M=10 

67 (26%) 
90 (17%) 

38 (38%) 
48 (46%) 

18 (60%) 
48 (44%) 

M=5 
D=12 

M=10 

69 (39%) 
90 (29%) 

35 (53%) 
56 (47%) 

24 (63%) 
56 (47%) 

M=5 
D= ∞ 

M=10 

78 (32%) 
87 (33%) 

45 (46%) 
59 (46%) 

24 (61%) 
68 (23%) 

Table 2. Number of tasks that do not meet its deadline with the SBPA strategy, in brackets 
the percentage increase of tasks when swarm is used. 
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Tables 3 and 4 show the number of tasks that do not meet its deadline using SUA and 
EDFA, respectively. As it can be seen, in all cases the SBPA is better than both SUA and 
EDFA and, even in most cases, the swarm outperforms the SUA and EDFA results. The 
performance SUA/EDFA systems get better as the ratio between maximum distance and 
number of robots (R/D) increases. When there are a lot of robots with regards to the number 
of tasks, like for example if D = 9 and R = 4, the SUA/EDFA results are 17% worse than 

swarm, but with low values of R
D

 the results are SUA/EDFA 14% better than swarm. 

Moreover, the EDFA seems to improve, in most cases the system performance, very 
especially for the worst SUA cases. We have to note that these results are partially similar to 
the already shown in figure 3 where for a low number of robots, the swarm strategy can 
outperform SUA and EDFA. In the RoboSim experiments the distance D was infinity, and 

therefore the R
D

 ratio was the minimum possible. 

 
  R=4 R=8 R=12 

M=5 
D=9 

M=10 

105 (-17%) 
128 (-17%) 

94 (-54%) 
93 (-4%) 

98(-118%) 
96 (-13%) 

M=5 
D=12 

M=10 

102 (11%) 
128 (-2%) 

85 (-13%) 
94 (11%) 

89 (-39%) 
89 (15%) 

M=5 
D= ∞ 

M=10 

98 (14%) 
122 (6%) 

84 (0%) 
100 (9%) 

90 (-48%) 
88 (-13%) 

Table 3. Number of tasks that do not meet its deadline with the SUA strategy. The 
percentage of increase when swarm is used appears in brackets. 

 
  R=4 R=8 R=12 

M=5 
D=9 

M=10 

99 (-10%) 
135 (-24%) 

87 (-43%) 
87 (2%) 

78 (-73%) 
90 (-6%) 

M=5 
D=12 

M=10 

97 (15%) 
126 (0%) 

81 (-8%) 
97 (15%) 

91 (-42%) 
100 (-5%) 

M=5 
D= ∞ 

M=10 

96 (16%) 
132 (-2%) 

94 (-12%) 
94 (8%) 

85 (-39%) 
96 (-9%) 

Table 4. Number of tasks that do notmeet its deadlinewith the EDFA strategy. The 
percentage of increase when swarm is used appears in brackets. 

7. Earliest Deadline First Best Pair method (EDFBP) 

In this section we will propose a new auction like algorithm called Earliest Deadline First 
Best Pair (EDFBP), which is in a middle way between the EDFA and the SBPA. The objective 
of the EDFBP algorithm is to have the SBPA’s performance but with a lower algorithmic 
cost. To achieve this goal, EDFBP follows the algorithm 4, where firstly the central 
auctioneer orders all the tasks by deadline (line 1). Then, it selects a subset of this tasks (line 
2) and apply only over this subset the SBPA procedure (algorithm 1). In our case the total set 

of tasks (T) is split in several consecutive subsets using the β parameter (see algorithm 5). 
Thus, β is the percentage of the total number of tasks that will be processed as one unit by 
SBPA. When β = 1 the EDFBP will behave as a SBPA and when β = 0 it is a EDF algorithm. 
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(a) 3th Environment (random deadlines) 
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Fig. 3. Deadlines fulfillments with λ = 0.3 and different environments. 
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The algorithmic complexity of the EDFBP can be easily gotten as follows: let’s n be the 

number of tasks, m the number of robots and 
1

r
β

= . To simplify the process we will assume 

that all the partitions of T have the same number of tasks, and therefore | TW | always has 
the same value. Following the same reasoning as in section 4.2, the ordering process (line 1) 

has a complexity equal to O(nlong(n)). Then, the SBPA algorithm is performed over 
n

r
 tasks, 

and therefore its complexity must be equals to 
( , )

0
( ( )( ))

n
min m

r
i

n
O i m i

r=
− −∑ . Thus, the total 

complexity of the EDFBP algorithm is equal to: 
( , )

0
( ( ) ( )( ))

n
min m

r
i

n
O nlog n r i m i

r=
+ − −∑ . It is 

easy to see that the  complexity of the algorithm is in general lower than the complexity of 

the SBPA method and the lower value of β the greater algorithm complexity is. 
 

Algorithm 4 EDFBP algorithm

Require: T=List of unassigned tasks
1: sort T by earliest deadline
2: while T ≠ Ø do
3: TW ← tasksO f Interest(T)
4: SBPA (TW )
5: T ← T − TW
6: end while

Algorithm 5 tasksOfInterest

Require: T=List of unassigned tasks
1: sort T by earliest deadline
2: N ← MAX(1, β ∗ |T| )
3: TInt ← T[0..N]
4: return TInt  

 

Figure 4(a) shows the results of some experiments carried out to validate the EDFBP with 

the 3th environment, the environment with random deadlines, and with the single task (ST) 

approach. The β values are expressed in percentage, thus the EDFBP (50%) means the results 

with β = 0.5. These results show that with only a β = 0.5, that is splitting the T table in two, 

the results are very similar to the the SBPA strategy. This similar performances has been 

achieved with a much lower algorithmic cost. Figure 4(b) shows the same results but using 

the 1st. environment, that is the environment with all tasks with the same deadline. In this 

case, the results of the different values of β are more similar between them than in the last 

figure, but, like in the 3th environment, when β = 0.5 SBPA and EDFBP show very similar 

results. 

Figure 5 shows the total path traveled by all the robots in the same scenario as figure 4(b). 
As it can be seen there are no major differences between the 4 different strategies and can 
also be noted that the length is practically lineal with the number of robots. If we compare 
this results with an environment with a low λ value (see figure 1(b) or figure 2(b)), it can be 
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seen that now there isn’t any reduction in the length with regards to the number of robots, 
or at least, this reduction is not relevant with less than 40 robots. 

8. Conclusion and future work 

This work has studied how several different auction like algorithms and an swarm approach 

can carry out a set of tasks with an associated deadline. Three different auction methods has 

been proposed: SUA, EDFA, SBPA and a deterministic swarm approach. From the results of 

the experiments carried out, a forth method is also introduced, the EDFBP. The EDFBP is an 

hybrid between EDFA and SBPA, which, modifying a parameter β, can behave like a SUA 

or like a SBPA. A study of the algorithmic complexity has also been explained, the tables 5 

and 1 show the order of complexity of all the methods studied. As it can be seen, the 

complexity of EDFBP can be fitted to be between SUA or SBPA. 

Moreover, The results of the experiments show that in a single task scenario (ST), when only 

one task can be assigned to the same robot, the EDFA method outperforms the SUA and 

shows better results than a swarm approach when there are a lot of robots. In all cases the 

SBPA has better results than any other strategy. When the robots can have several task (MT 

approach) all the auction strategies have a similar performance. 

The work presented has some challenging aspects to add and to improve. For the time being 

we are focused on finding a method to learn on-line the β parameter of the EDFBP strategy. 

New experiments with the Player/stage simulator using much more robots and poisson 

arrivals for tasks are under consideration too. This new kind of experiments will allow us a 

more accurate analysis about the effects of our algorithm on real robots and a better 

comparison with the RoboSim results. The algorithm to schedule tasks explained in section 

5 is very simple, more complex and efficient methods should be tested. Some other futures 

improvements of our work could be: use an heterogeneous set of robots with different 

sensorial or computational characteristics, develop new methods to learn the expected 

execution time from the environment’s and robot’s characteristics or carry out new types of 

missions, for example cleaning the floor of a room or test our methods on the RoboCup 

Rescue simulator Kitano et al. (1999). 

 

Swarm O(n) 

SUA 
( , )

0
( ( ))

min n m

i
O m i

=
−∑  

EDFA 
( , )

0
( ( ) ( ))

min n m

i
O nlog n m i

=
+ −∑  

SBPA 
( , )

0
( ( )( ))

min n m

i
O n n i m i

=
+ − −∑  

EDFBP 
( , )

0
( ( ) ( )( ))

min n m

i

n
O nlog n r i m i

r=
+ − −∑  

Table 5. Complexity order of the algorithms introduced in this work in a single task 

environment (ST). n is the number of tasks, m is the number of robots and 
1

r
β

=  
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(b) 1th environment (all the tasks has the same deadline) 
 

Fig. 4. Deadlines fulfillments with EDFBP λ = 0.3, different β values and different 
environments. 
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Fig. 5. Total Length with EDFBP λ = 0.3, 1th environment (all the tasks has the same 

deadline) and different β values. 
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