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1. Introduction

Advancements in silicon technology, micro-electro-mechanical systems (MEMS), wireless
communications, and digital electronics have led to the proliferation of wireless sensor
networks (WSNs) in a wide variety of application domains including military, health, ecology,
environment, industrial automation, civil engineering, and medical. This wide application
diversity combined with complex sensor node architectures, functionality requirements, and
highly constrained and harsh operating environments makes WSN design very challenging.
One critical WSN design challenge involves meeting application requirements such as lifetime,
reliability, throughput, delay (responsiveness), etc. for myriad of application domains.
Furthermore, WSN applications tend to have competing requirements, which exacerbates
design challenges. For example, a high priority security/defense system may have both
high responsiveness and long lifetime requirements. The mechanisms needed for high
responsiveness typically drain battery life quickly, thus making long lifetime difficult to
achieve given limited energy reserves.
Commercial off-the-shelf (COTS) sensor nodes have difficulty meeting application
requirements due to the generic design traits necessary for wide application applicability.
COTS sensor nodes are mass-produced to optimize cost and are not specialized for any
particular application. Fortunately, COTS sensor nodes contain tunable parameters (e.g.,
processor voltage and frequency, sensing frequency, etc.) whose values can be specialized
to meet application requirements. However, optimizing these tunable parameters is left to the
application designer.
Optimization techniques at different design levels (e.g., sensor node hardware and software,
data link layer, routing, operating system (OS), etc.) assist designers in meeting application
requirements. WSN optimization techniques can be generally categorized as static or dynamic.
Static optimizations optimize a WSN at deployment time and remain fixed for the WSN’s
lifetime. Whereas static optimizations are suitable for stable/predictable applications, static
optimizations are inflexible and do not adapt to changing application requirements and
environmental stimuli. Dynamic optimizations provide more flexibility by continuously
optimizing a WSN/sensor node during runtime, providing better adaptation to changing
application requirements and actual environmental stimuli.
This chapter introduces WSNs from an optimization perspective and explores optimization
strategies employed in WSNs at different design levels to meet application requirements
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Design-level Optimizations

Architecture-level bridging, sensorweb, tunneling

Component-level
parameter-tuning (e.g., processor voltage and frequency,

sensing frequency), MDP-based dynamic optimization

Data Link-level load balancing and throughput, power/energy

Network-level
query dissemination, data aggregation, real-time, network

topology, resource adaptive, dynamic network reprogramming

Operating System-level event-driven, dynamic power management, fault-tolerance

Table 1. Optimizations (discussed in this chapter) at different design-levels.

as summarized in Table 1. We present a typical WSN architecture and architectural-level
optimizations in Section 2. We describe sensor node component-level optimizations and
tunable parameters in Section 3. Next, we discuss data link-level Medium Access Control
(MAC) optimizations and network-level routing optimizations in Section 4 and Section 5,
respectively, and operating system-level optimizations in Section 6. After presenting these
optimization techniques, we focus on dynamic optimizations for WSNs. There exists much
previous work on dynamic optimizations e.g., (Brooks & Martonosi, 2000); (Hamed et al.,
2006); (Hazelwood & Smith, 2006); (Hu et al., 2006), but most previous work targets the
processor or cache subsystem in computing systems. WSN dynamic optimizations present
additional challenges due to a unique design space, stringent design constraints, and varying
operating environments. We discuss the current state-of-the-art in dynamic optimization
techniques in Section 7 and propose a Markov Decision Process (MDP)-based dynamic
optimization methodology for WSNs to meet application requirements in the presence of
changing environmental stimuli in Section 8. Numerical results validate the optimality of our
MDP-based methodology and reveal that our methodology more closely meets application
requirements as compared to other feasible policies.

2. Architecture-level Optimizations

Fig. 1 shows an integrated WSN architecture (i.e., a WSN integrated with external networks)
capturing architecture-level optimizations. Sensor nodes are distributed in a sensor field to
observe a phenomenon of interest (i.e., environment, vehicle, object, etc.). Sensor nodes
in the sensor field form an ad hoc wireless network and transmit the sensed information
(data or statistics) gathered via attached sensors about the observed phenomenon to a
base station or sink node. The sink node relays the collected data to the remote requester
(user) via an arbitrary computer communication network such as a gateway and associated
communication network. Since different applications require different communication
network infrastructures to efficiently transfer sensed data, WSN designers can optimize
the communication architecture by determining the appropriate topology (number and
distribution of sensors within the WSN) and communication infrastructure (e.g., gateway
nodes) to meet the application’s requirements.
An infrastructure-level optimization called bridging facilitates the transfer of sensed data to
remote requesters residing at different locations by connecting the WSN to external networks
such as Internet, cellular, and satellite networks. Bridging can be accomplished by overlaying
a sensor network with portions of the IP network where gateway nodes encapsulate sensor

3. Sensor Node Component-level Optimizations
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2. Architecture-level Optimizations

Fig. 1. Wireless sensor network architecture.

node packets with transmission control protocol or user datagram protocol/internet protocol
(TCP/IP or UDP/IP).
Since sensor nodes can be integrated with the Internet via bridging, this WSN-Internet
integration can be exploited to form a sensor web. In a sensor web, sensor nodes form a
web view where data repositories, sensors, and image devices are discoverable, accessible,
and controllable via the World Wide Web (WWW). The sensor web can use service-oriented
architectures (SoAs) or sensor web enablement (SWE) standards (Mahalik, 2007). SoAs
leverage extensible markup language (XML) and simple object access protocol (SOAP)
standards to describe, discover, and invoke services from heterogeneous platforms. SWE is
defined by the OpenGIS Consortium (OGC) and consists of specifications describing sensor
data collection and web notification services. An example application for a sensor web
may consist of a client using WSN information via sensor web queries. The client receives
responses either from real-time sensors registered in the sensor web or from existing data in
the sensor data base repository. In this application, clients can use WSN services without
knowledge of the actual sensor nodes’ locations.
Another WSN architectural optimization is tunneling. Tunneling connects two WSNs by
passing internetwork communication through a gateway node that acts as a WSN extension
and connects to an intermediate IP network. Tunneling enables construction of large virtual
WSNs using smaller WSNs (Karl & Willig, 2005).

3. Sensor Node Component-level Optimizations

COTS sensor nodes provide optimization opportunities at the component-level via tunable
parameters (e.g., processor voltage and frequency, sensing frequency, duty cycle, etc.), whose
values can be specialized to meet varying application requirements. Fig. 2 depicts a sensor
node’s main components such as a power unit, storage unit, sensing unit, processing unit,
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Fig. 2. Sensor node architecture with tunable parameters.

and transceiver unit along with potential tunable parameters associated with each component
(Karl & Willig, 2005). In this section, we discuss these components and associated tunable
parameters.

3.1 Sensing Unit
The sensing unit senses the phenomenon of interest using sensors and an analog to digital
converter (ADC). The sensing unit’s tunable parameters can control power consumption
by changing the sensing frequency and the speed-resolution product of the ADC. Sensing
frequency can be tuned to provide constant sensing, periodic sensing, and/or sporadic
sensing. In constant sensing, sensors sense continuously and sensing frequency is limited
only by the sensor hardware’s design capabilities. Periodic sensing consumes less power than
constant sensing because periodic sensing is duty-cycle based where the sensor node takes
readings after every T seconds. Sporadic sensing consumes less power than periodic sensing
because sporadic sensing is typically event-triggered by either external (e.g., environment) or
internal (e.g., OS- or hardware-based) interrupts. The speed-resolution product of the ADC
can be tuned to provide high speed-resolution with higher power consumption (e.g., seismic
sensors use 24-bit converters with a conversion rate on the order of thousands of samples per
second) or low speed-resolution with lower power consumption.

3.2 Processing Unit
The processing unit consists of a processor (e.g., Intel’s Strong ARM (StrongARM, 2010),
Atmel’s AVR (ATMEL, 2009)) whose main tasks include controlling sensors, gathering and
processing sensed data, executing WSN applications, and managing communication protocols

3.3 Transceiver Unit

3.4 Storage Unit

3.5 Actuator Unit

3.6 Location Finding Unit
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3.1 Sensing Unit

3.2 Processing Unit

and algorithms in conjunction with the operating system. The processor’s tunable parameters
include processor voltage and frequency, which can be specialized to meet power budget and
throughput requirements. The processor can also switch between different operating modes
(e.g., active, idle, sleep) to conserve energy. For example, the Intel’s StrongARM consumes 75
mW in idle mode, 0.16 mW in sleep mode, and 240 mW and 400 mW in active mode while
operating at 133 MHz and 206 MHz, respectively.

3.3 Transceiver Unit
The transceiver unit consists of a radio (transceiver) and an antenna, and is responsible for
communicating with neighboring sensor nodes. The transceiver unit’s tunable parameters
include modulation scheme, data rate, transmit power, and duty cycle. The radio contains
different operating modes (e.g., transmit, receive, idle, and sleep) for power management
purposes. The sleep state provides the lowest power consumption, but switching from the
sleep state to the transmit state consumes a large amount of power. The power saving modes
(e.g., idle, sleep) are characterized by their power consumption and latency overhead (time to
switch to transmit or receive modes). Power consumption in the transceiver unit also depends
on the distance to the neighboring sensor nodes and transmission interferences (e.g., solar
flare, radiation, channel noise).

3.4 Storage Unit
Sensor nodes contain a storage unit for temporary data storage since immediate data
transmission is not always possible due to hardware failures, environmental conditions,
physical layer jamming, and energy reserves. A sensor node’s storage unit typically consists
of Flash and static random access memory (SRAM). Flash is used for persistent storage of
application code and text segments whereas SRAM is for run-time data storage. One potential
optimization uses an extremely low-frequency (ELF) Flash file system, which is specifically
adapted for sensor node data logging and operating environmental conditions. Storage unit
optimization challenges include power conservation and memory resources (limited data and
program memory, e.g., the Mica2 sensor node contains only 4 KB of data memory (SRAM)
and 128 KB of program memory (Flash)).

3.5 Actuator Unit
The actuator unit consists of actuators (e.g., mobilizer, camera pan tilt), which enhance the
sensing task. Actuators open/close a switch/relay to control functions such as camera or
antenna orientation and repositioning sensors. Actuators, in contrast to sensors which only
sense a phenomenon, typically affect the operating environment by opening a valve, emitting
sound, or physically moving the sensor node. The actuator unit’s tunable parameter is
actuator frequency, which can be adjusted according to application requirements.

3.6 Location Finding Unit
The location finding unit determines a sensor node’s location. Depending on the application
requirements and available resources, the location finding unit can either be global positioning
system (GPS)-based or ad hoc positioning system (APS)-based. The GPS-based location
finding unit is highly accurate, but has high monetary cost and requires direct line of sight
between the sensor node and satellites. The APS-based location finding unit determines a
sensor node’s position with respect to landmarks. Landmarks are typically GPS-based position-
aware sensor nodes and landmark information is propagated in a multi-hop fashion. A sensor
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node in direct communication with a landmark estimates its distance from a landmark based
on the received signal strength. A sensor node two hops away from a landmark estimates its
distance based on the distance estimate of a sensor node one hop away from a landmark via
message propagation. When a sensor node has distance estimates to three or more landmarks,
the sensor node computes its own position as a centroid of the landmarks.

3.7 Power Unit
The power unit supplies power to a sensor node and determines a sensor node’s lifetime.
The power unit consists of a battery and a DC-DC converter. The electrode material and
the diffusion rate of the electrolyte’s active material affect the battery capacity. The DC-DC
converter provides a constant supply voltage to the sensor node.

4. Data Link-level Medium Access Control Optimizations

Data link-level medium access control (MAC) manages the shared wireless channel and
establishes data communication links between sensor nodes. Traditional MAC schemes
emphasize high quality of service (QoS) (Rappaport, 1996) or bandwidth efficiency
(Abramson, 1985); (IEEE Standards, 1999), however, WSN platforms have different priorities
(Sohraby et al., 2007) thus inhibiting the straight forward adoption of existing MAC protocols
(Chandrakasan et al., 1999). For example, since WSN lifetime is typically an important
application requirement and batteries are not easily interchangeable/rechargeable, energy
consumption is a primary design constraint for WSNs. Similarly, since the network
infrastructure is subject to changes due to dying nodes, self-organization and failure recovery
is important. To meet application requirements, WSN designers tune MAC layer protocol
parameters (e.g., channel access schedule, message size, duty cycle, and receiver power-
off, etc.). This section discusses MAC protocols for WSNs with reference to their tunable
parameters and optimization objectives.

4.1 Load Balancing and Throughput Optimizations
MAC layer protocols can adjust wireless channel slot allocation to optimize throughput while
maintaining the traffic load balance between sensor nodes. A fairness index measures load
balancing or the uniformity of packets delivered to the sink node from all the senders. For the
perfectly uniform case (ideal load balance), the fairness index is 1. MAC layer protocols that
adjust channel slot allocation for load balancing and throughput optimizations include Traffic
Adaptive Medium Access Protocol (TRAMA) (Rajendran et al., 2003), Berkeley Media Access
Control (B-MAC) (Polastre et al., 2004), and Zebra MAC (Z-MAC) (Rhee et al., 2005).
TRAMA is a MAC protocol that adjusts channel time slot allocation to achieve load balancing
while focusing on providing collision free medium access. TRAMA divides the channel
access into random and scheduled access periods and aims to increase the utilization of the
scheduled access period using time division multiple access (TDMA). TRAMA calculates
a Message-Digest algorithm 5 (MD5) hash for every one-hop and two-hop neighboring
sensor nodes to determine a node’s priority. Experiments comparing TRAMA with both
contention-based protocols (IEEE 802.11 and Sensor-MAC (S-MAC) (Ye et al., 2002)) as well as
a scheduled-based protocol (Node-Activation Multiple Access (NAMA) (Bao & Garcia-Luna-
Aceves, 2001)) revealed that TRAMA achieved higher throughput than contention-based
protocols and comparable throughput with NAMA (Raghavendra et al., 2004).
B-MAC is a carrier sense MAC protocol for WSNs. B-MAC adjusts the duty cycle and time
slot allocation for throughput optimization and high channel utilization. B-MAC supports

4.2 Power/Energy Optimizations
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3.7 Power Unit

4. Data Link-level Medium Access Control Optimizations

4.1 Load Balancing and Throughput Optimizations

on-the-fly reconfiguration of the MAC backoff strategy for performance (e.g., throughput,
latency, power conservation) optimization. Results from B-MAC and S-MAC implementation
on TinyOS using Mica2 motes indicated that B-MAC outperformed S-MAC by 3.5x on average
(Polastre et al., 2004). No sensor node was allocated more than 15% additional bandwidth as
compared with other nodes, thus ensuring fairness (load balancing).
Z-MAC is a hybrid MAC protocol that combines the strengths of TDMA and carrier sense
multiple access (CSMA) and offsets their weaknesses. Z-MAC allocates time slots at sensor
node deployment time by using an efficient channel scheduling algorithm to optimize
throughput, but this mechanism requires high initial overhead. A time slot’s owner is the
sensor node allocated to that time slot and all other nodes are called non-owners of that time
slot. Multiple owners are possible for a given time slot because Z-MAC allows any two
sensor nodes beyond their two-hop neighborhoods to own the same time slot. Unlike TDMA,
a sensor node may transmit during any time slot but slot owners have a higher priority.
Experimental results from Z-MAC implementation on both ns-2 and TinyOS/Mica2 indicated
that Z-MAC performed better than B-MAC under medium to high contention but exhibited
worse performance than B-MAC under low contention (inherits from TDMA-based channel
access). The fairness index of Z-MAC was between 0.7 and 1, whereas that of B-MAC was
between 0.2 to 0.3 for a large number of senders (Rhee et al., 2005).

4.2 Power/Energy Optimizations
MAC layer protocols can adapt their transceiver operating modes (e.g., sleep, on and off) and
duty cycle for reduced power and/or energy consumption. MAC layer protocols that adjust
duty cycle for power/energy optimization include Power Aware Multi-Access with Signaling
(PAMAS) (Stojmenović, 2005); (Karl & Willig, 2005), S-MAC (Ye et al., 2002), Timeout-MAC
(T-MAC) (Van Dam & Langendoen, 2003), and B-MAC.
PAMAS is a MAC layer protocol for WSNs that adjusts the duty cycle to minimize radio
on time and optimize power consumption. PAMAS uses separate data and control channels
(the control channel manages the request/clear to send (RTS/CTS) signals or the receiver
busy tone). If a sensor node is receiving a message on the data channel and receives an
RTS message on the signaling channel, then the sensor node responds with a busy tone on
the signaling channel. This mechanism avoids collisions and results in energy savings. The
PAMAS protocol powers off the receiver if either the transmit message queue is empty and
the node’s neighbor is transmitting or the transmit message queue is not empty but at least
one neighbor is transmitting and one neighbor is receiving. WSN simulations with 10 to 20
sensor nodes with 512-byte data packets, 32-byte RTS/CTS packets, and 64-byte busy tone
signal packets revealed power savings between 10% and 70% (Singh & Raghavendra, 1998).
PAMAS optimization challenges include implementation complexity and associated area cost
because the separate control channel requires a second transceiver and duplexer.
The S-MAC protocol tunes the duty cycle and message size for energy conservation. S-
MAC minimizes wasted energy due to frame (packet) collisions (since collided frames must
be retransmitted with additional energy cost), overhearing (a sensor node receiving/listening
to a frame destined for another node), control frame overhead, and idle listening (channel
monitoring to identify possible incoming messages destined for that node). S-MAC uses a
periodic sleep and listen (sleep-sense) strategy defined by the duty cycle. S-MAC avoids frame
collisions by using virtual sense (network allocation vector (NAV)-based) and physical carrier
sense (receiver listening to the channel) similar to IEEE 802.11. S-MAC avoids overhearing
by instructing interfering sensor nodes to switch to sleep mode after hearing an RTS or CTS
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packet (Stojmenović, 2005). Experiments conducted on Rene Motes (Culler et al., 2002) for a
traffic load comprising of sent messages every 1-10 seconds revealed that a IEEE 802.11-based
MAC consumed 2x to 6x more energy than S-MAC (Ye et al., 2004).
T-MAC adjusts the duty cycle dynamically for power efficient operation. T-MAC allows a
variable sleep-sense duty cycle as opposed to the fixed duty cycle used in S-MAC (e.g., 10%
sense and 90% sleep). The dynamic duty cycle further reduces the idle listening period. The
sensor node switches to sleep mode when there is no activation event (e.g., data reception,
timer expiration, communication activity sensing, or impending data reception knowledge
through neighbors’ RTS/CTS) for a predetermined period of time. Experimental results
obtained from T-MAC protocol implementation on OMNeT++ (Varga, 2001) to model EYES
sensor nodes (EYES, 2010) revealed that under homogeneous load (sensor nodes sent packets
with 20- to 100-byte payloads to their neighbors at random), both T-MAC and S-MAC yielded
98% energy savings as compared to CSMA whereas T-MAC outperformed S-MAC by 5x
under variable load (Raghavendra et al., 2004).
B-MAC adjusts the duty cycle for power conservation using channel assessment information.
B-MAC duty cycles the radio through a periodic channel sampling mechanism known as low
power listening (LPL). Each time a sensor node wakes up, the sensor node turns on the radio
and checks for channel activity. If the sensor node detects activity, the sensor node powers
up and stays awake for the time required to receive an incoming packet. If no packet is
received, indicating inaccurate activity detection, a time out forces the sensor node to sleep
mode. B-MAC requires an accurate clear channel assessment to achieve low power operation.
Experimental results obtained from B-MAC and S-MAC implementation on TinyOS using
Mica2 motes revealed that B-MAC power consumption was within 25% of S-MAC for low
throughputs (below 45 bits per second) whereas B-MAC outperformed S-MAC by 60% for
higher throughputs. Results indicated that B-MAC performed better than S-MAC for latencies
under 6 seconds whereas S-MAC yielded lower power consumption as latency approached
10 seconds (Polastre et al., 2004).

5. Network-level Data Dissemination and Routing Protocol Optimizations

One commonality across diverse WSN application domains is the sensor node’s task to sense
and collect data about a phenomenon and transmit the data to the sink node. To meet
application requirements, this data dissemination requires energy-efficient routing protocols
to establish communication paths between the sensor nodes and the sink. Typically harsh
operating environments coupled with stringent resource and energy constraints make data
dissemination and routing challenging for WSNs. Ideally, data dissemination and routing
protocols should target energy efficiency, robustness, and scalability. To achieve these
optimization objectives, routing protocols adjust transmission power, routing strategies, and
leverage either single-hop or multi-hop routing. In this section, we discuss protocols, which
optimize data dissemination and routing in WSNs.

5.1 Query Dissemination Optimizations
Query dissemination (transmission of a sensed data query/request from a sink node to a
sensor node) and data forwarding (transmission of sensed data from a sensor node to a sink
node) requires routing layer optimizations. Protocols that optimize query dissemination and
data forwarding include Declarative Routing Protocol (DRP) (Coffin et al., 2000), directed
diffusion (Intanagonwiwat et al., 2003), GRAdient Routing (GRAd) (Poor, 2010), GRAdient
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5. Network-level Data Dissemination and Routing Protocol Optimizations

5.1 Query Dissemination Optimizations

Fig. 3. Data aggregation.

Broadcast (GRAB) (Ye et al., 2005), and Energy Aware Routing (EAR) (Raghavendra et al.,
2004); (Shah & Rabaey, 2002).
DRP targets energy efficiency by exploiting in-network aggregation (multiple data items are
aggregated as they are forwarded by sensor nodes). Fig. 3 shows in-network data aggregation
where sensor node I aggregates sensed data from source nodes A, B, and C, sensor node
J aggregates sensed data from source nodes D and E, and sensor node K aggregates sensed
data from source nodes F, G, and H. The sensor node L aggregates the sensed data from sensor
nodes I, J, and K, and transmits the aggregated data to the sink node. DRP uses reverse path
forwarding where data reports (packets containing sensed data in response to query) flow in
the reverse direction of the query propagation to reach the sink.
Directed diffusion targets energy efficiency, scalability, and robustness under network
dynamics using reverse path forwarding. Directed diffusion builds a shared mesh to deliver
data from multiple sources to multiple sinks. The sink node disseminates the query, a process
referred to as interest propagation (Fig. 4(a)). When a sensor node receives a query from a
neighboring node, the sensor node sets up a vector called the gradient from itself to the
neighboring node and directs future data flows on this gradient (Fig. 4(b)). The sink node
receives an initial batch of data reports along multiple paths and uses a mechanism called
reinforcement to select a path with the best forwarding quality (Fig. 4(c)). To handle network
dynamics such as sensor node failures, each data source floods data reports periodically at
lower rates to maintain alternate paths. Directed diffusion challenges include formation of
initial gradients and wasted energy due to redundant data flows to maintain alternate paths.
GRAd optimizes data forwarding and uses cost-field based forwarding where the cost metric
is based on the hop count (i.e., sensor nodes closer to the sink node have smaller costs and
those farther away have higher costs). The sink node floods a REQUEST message and the data
source broadcasts the data report containing the requested sensed information. The neighbors
with smaller costs forward the report to the sink node. GRAd drawbacks include wasted
energy due to redundant data report copies reaching the sink node.
GRAB optimizes data forwarding and uses cost-field based forwarding where the cost metric
denotes the total energy required to send a packet to the sink node. GRAB was designed for
harsh environments with high channel error rate and frequent sensor node failures. GRAB
controls redundancy by controlling the width (number of routes from the source sensor node
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Fig. 4. Directed diffusion: (a) Interest propagation; (b) Initial gradient setup; (c) Data delivery
along the reinforced path.

to the sink node) of the forwarding mesh but requires that sensor nodes make assumptions
about the energy required to transmit a data report to a neighboring node.
EAR optimizes data forwarding and uses cost-field based forwarding where the cost
metric denotes energy per neighbor. EAR optimization objectives are load balancing and
energy conservation. EAR makes forwarding decisions probabilistically where the assigned
probability is inversely proportional to the neighbor energy cost so that paths consuming more
energy are used less frequently (Raghavendra et al., 2004).

5.2 Real-Time Constrained Optimizations
Critical WSN applications may have real-time requirements for sensed data delivery
(e.g., a security/defense system monitoring enemy troops or a forest fire detection
application). Failure to meet the real-time deadlines for these applications can have
catastrophic consequences. Routing protocols that consider the timing constraints for real-
time requirements include Real-time Architecture and Protocol (RAP) (Lu et al., 2002) and a
stateless protocol for real-time communication in sensor networks (SPEED) (He et al., 2003).
RAP provides real-time data delivery by considering the data report expiration time (time
after which the data is of little or no use) and the remaining distance the data report needs to
travel to reach the sink node. RAP calculates the desired velocity v = d/t where d and t denote
the destination distance and packet lifetime, respectively. The desired velocity is updated at
each hop to reflect the data report’s urgency. A sensor node uses multiple first-in-first-out
(FIFO) queues where each queue accepts reports of velocities within a certain range and then
schedules transmissions according to a report’s degree of urgency (Raghavendra et al., 2004).
SPEED provides real-time data delivery and uses an exponentially weighted moving average
for delay calculation. Given a data report with velocity v, SPEED calculates the speed vi of the
report if the neighbor Ni is selected as the next hop and then selects a neighbor with vi > v to
forward the report to (Raghavendra et al., 2004).

5.3 Network Topology Optimizations
Routing protocols can adjust radio transmission power to control network topology (based
on routing paths). Low-Energy Adaptive Clustering Hierarchy (LEACH) (Heinzelman et al.,
2000) optimizes the network topology for reduced energy consumption by adjusting the
radio’s transmission power. LEACH uses a hybrid single-hop and multi-hop communication

5.4 Resource Adaptive Optimizations

6. Operating System-level Optimizations

6.1 Event-Driven Optimizations

6.2 Dynamic Power Management
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5.2 Real-Time Constrained Optimizations

5.3 Network Topology Optimizations

paradigm. The sensor nodes use multi-hop communication to transmit data reports to a
cluster head (LEACH determines the cluster head using a randomized distributed algorithm).
The cluster head forwards data to the sink node using long-range radio transmission.

5.4 Resource Adaptive Optimizations
Routing protocols can adapt routing activities in accordance with available resources. Sensor
Protocols for Information via Negotiation (SPIN) (Kulik et al., 2002) optimizes performance
efficiency by using data negotiation and resource adaptation. In data negotiation, sensor
nodes associate metadata with nodes and exchange this metadata before actual data
transmission begins. The sensor nodes interested in the data content, based on metadata,
request the actual data. This data negotiation ensures that data is sent only to interested nodes.
SPIN allows sensor nodes to adjust routing activities according to available energy resources.
At low energy levels, sensor nodes reduce or eliminate certain activities (e.g., forwarding of
metadata and data packets) (Sohraby et al., 2007).

6. Operating System-level Optimizations

A sensor node’s operating system (OS) presents optimization challenges because sensor node
operation falls between single-application devices that typically do not need an OS and
general-purpose devices with resources to run traditional embedded OSs. A sensor node’s OS
manages processor, radio, I/O buses, and Flash memory, and provides hardware abstraction
to application software, task coordination, power management, and networking services.
In this section, we discuss several optimizations provided by existing OSs for sensor nodes
(Sohraby et al., 2007).

6.1 Event-Driven Optimizations
Sensor nodes respond to events by controlling sensing and actuation activity. Since sensor
nodes are event-driven, it is important to optimize the OS for event handling. WSN OSs
optimized for event handling include TinyOS (TinyOS, 2010) and PicOS (Akhmetshina et al.,
2002).
TinyOS operates using an event-driven model (tasks are executed based on events). TinyOS
is written in the nesC programming language and allows application software to access
hardware directly. TinyOS’s advantages include simple OS code, energy efficiency, and a
small memory foot print. TinyOS challenges include introduced complexity in application
development and porting of existing C code to TinyOS.
PicOS is an event-driven OS written in C and designed for limited memory microcontrollers.
PicOS tasks are structured as a finite state machine (FSM) and state transitions are triggered
by events. PicOS is effective for reactive applications whose primary role is to react to events.
PicOS supports multitasking and has small memory requirements but is not suitable for real-
time applications.

6.2 Dynamic Power Management
A sensor node’s OS can control hardware components to optimize power consumption.
Examples include Operating System-directed Power Management (OSPM) (Sinha &
Chandrakasan, 2001) and MagnetOS (Barr & et al., 2002), each of which provide mechanisms
for dynamic power management. OSPM offers greedy-based dynamic power management,
which switches the sensor node to a sleep state when idle. Sleep states provide energy
conservation, however, transition to sleep state has the overhead of storing the processor
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state and requires a finite amount of wakeup time. OSPM greedy-based adaptive sleep
mechanism disadvantages include wake up delay and potentially missing events during sleep
time. MagnetOS provides two online power-aware algorithms and an adaptive mechanism
for applications to effectively utilize the sensor node’s resources.

6.3 Fault-Tolerance
Since maintenance and repair of sensor nodes is typically not feasible after deployment, sensor
nodes require fault-tolerant mechanisms for reliable operation. MANTIS (Abrach & et al.,
2003) is a multithreaded OS that provides fault-tolerant isolation between applications by not
allowing a blocking task to prevent the execution of other tasks. In the absence of fault-tolerant
isolation, if one task executes a conditional loop whose logical condition is never satisfied,
then that task will execute in an infinite loop blocking all other tasks. MANTIS facilitates
simple application development and allows dynamic reprogramming to update the sensor
node’s binary code. MANTIS offers a multimodal prototyping environment for testing WSN
applications by providing a remote shell and command server to enable inspection of the
sensor node’s memory and status remotely. MANTIS challenges include context switch time,
stack memory overhead (since each thread requires one stack), and high energy consumption.

7. Dynamic Optimizations

Dynamic optimizations enable in-situ parameter tuning and empowers the sensor node to
adapt to changing application requirements and environmental stimuli throughout the sensor
node’s lifetime. Dynamic optimizations are important because application requirements
change over time and environmental stimuli/conditions may not be accurately predicted at
design time. Although some OS, MAC layer, and routing optimizations discussed in prior
sections of this chapter are dynamic in nature, in this section we present additional dynamic
optimization techniques for WSNs.

7.1 Dynamic Voltage and Frequency Scaling
Dynamic voltage and frequency scaling (DVFS) adjusts a sensor node’s processor voltage
and frequency to optimize energy consumption. DVFS trades off performance for reduced
energy consumption by considering that the peak computation (instruction execution) rate is
much higher than the application’s average throughput requirement and that sensor nodes
are based on CMOS logic, which has a voltage dependent maximum operating frequency.
Min et al. (Min et al., 2000) demonstrated that a DVFS system containing a voltage scheduler
running in tandem with the operating system’s task scheduler resulted in a 60% reduction
in energy consumption. Yuan et al. (Yuan & Qu, 2002) studied a DVFS system for sensor
nodes that required the sensor nodes to insert additional information (e.g., packet length,
expected processing time, and deadline) into the data packet’s header. The receiving sensor
node utilized this information to select an appropriate processor voltage and frequency to
minimize the overall energy consumption.

7.2 Software-based Dynamic Optimizations
Software can provide dynamic optimizations using techniques such as duty cycling, batching,
hierarchy, and redundancy reduction. Software can control the duty cycle so that sensor
nodes are powered in a cyclic manner to reduce the average power draw. In batching,
multiple operations are buffered and then executed in a burst to reduce startup overhead cost.
Software can arrange operations in a hierarchy based on energy consumption and then invoke

7.3 Dynamic Network Reprogramming

8. MDP-based Dynamic Optimizations

8.1 Dynamic Optimization Methodology
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6.3 Fault-Tolerance

7. Dynamic Optimizations

7.1 Dynamic Voltage and Frequency Scaling

7.2 Software-based Dynamic Optimizations

low energy operations before high energy operations. Software can reduce redundancy by
compression, data aggregation, and/or message suppression. Kogekar et al. (Kogekar et al.,
2004) proposed an approach for software reconfiguration in WSNs. The authors modeled the
WSN operation space (defined by the WSN software components’ models and application
requirements) and defined reconfiguration as the process of switching from one point in the
operation space to another.

7.3 Dynamic Network Reprogramming
Dynamic network reprogramming reprograms sensor nodes to change/modify tasks by
disseminating code in accordance with changing environmental stimuli. Since recollection
and reprogramming is not a feasible option for most sensor nodes, dynamic network
reprogramming enables the sensor nodes to perform different tasks. For example, a WSN
initially deployed for measuring relative humidity can measure temperature statistics after
dynamic reprogramming. The MANTIS OS provides this dynamic reprogramming ability
(Section 6.3).

8. MDP-based Dynamic Optimizations

In this section, we extend our discussion of dynamic optimizations using an MDP-based
dynamic optimization (Munir & Gordon-Ross, 2009) as a specific example. MDP is suitable
for WSN dynamic optimizations because of MDP’s inherent ability to perform dynamic
decision making. We propose MDP as a method to perform parameter tuning-based dynamic
optimizations. Traditional microprocessor-based systems use DVFS for energy optimizations.
DVFS only provides a partial tuning for sensor nodes because sensor nodes are distinct from
traditional systems in that they have embedded sensors coupled with an embedded processor.
For example, the sensing frequency dictates the amount of processed and communicated
data. We propose dynamic voltage, frequency, and sensing frequency scaling (DVFS2) to
provide enhanced optimization potential as compared to DVFS for WSNs. Our MDP-based
optimization focuses on DVFS2 but is equally applicable for extensive design spaces with
more tunable parameters (e.g., transmission power, packet transmission interval, etc.).

8.1 Dynamic Optimization Methodology
Fig. 5 depicts the process diagram for our dynamic optimization, which consists of three
logical domains: the application characterization domain, the communication domain, and
the sensor node tuning domain.
The application characterization domain refers to the WSN application’s
characterization/specification where the application manager/designer (one who
manages/designs a WSN) defines various application metrics (e.g., lifetime, throughput,
reliability, etc.) based on application requirements. The application manager/designer
also assigns weight factors to application metrics which signify the weightage or relative
importance of each application metric with respect to other metrics. The objective function or
reward function signifies the overall reward (revenue) for given application requirements. The
application metrics along with associated weight factors represent the objective/reward function
parameters.
The communication domain (depicted by the sink node in Fig. 5) encompasses the
communication network between the application manager and the sensor nodes. The
application manager transmits the objective or reward function parameters to the sink node
via the communication domain which in turn relays these parameters to the sensor nodes.
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Fig. 5. Process diagram for parameter tuning-based dynamic optimizations for WSNs.

The sensor node tuning domain consists of sensor nodes and performs sensor node parameter
tuning. Each sensor node contains a dynamic optimization controller, which orchestrates the
dynamic optimization process. The dynamic optimization controller module receives the
reward function parameters and invokes an online optimization algorithm to determine an
optimal or near-optimal sensor node state (tunable parameter value settings).
Our proposed methodology reacts to environmental stimuli via a dynamic profiler module,
which monitors environmental changes over time and captures unanticipated environmental
situations not predictable at design time. The dynamic profiler module profiles the profiling
statistics (e.g., wireless channel condition, number of packets dropped, battery energy, etc.).
The dynamic profiler module informs the dynamic optimization controller as well as the
application manager of the profiled statistics. The dynamic optimization controller processes
the profiling statistics to determine if the current operating state meets the application
requirements. If the current operating state does not meet the application requirements,
the dynamic optimization controller reinvokes the online optimization algorithm (e.g., MDP-
based or any other) to determine the new operating state. This feedback process continues to
ensure the selection of a good operating state to better meet application requirements in the
presence of changing environmental stimuli.

8.2 Dynamic Optimization Formulation
In this subsection, we formulate the constructs of our MDP-based dynamic optimization
(Munir & Gordon-Ross, 2009). Although we describe dynamic optimization constructs with
reference to MDP, our formulation provides insight into any other dynamic optimization
algorithm.

8.2.1 State Space

8.2.2 Decision Epochs and Actions
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8.2 Dynamic Optimization Formulation

8.2.1 State Space
The state space S for our MDP-based dynamic optimization methodology given N tunable
parameters is defined as:

where Si denotes the state space for tunable parameter i, ∀ i ∈ and ×

denotes the Cartesian product. The state space S consists of a total of I states as given
by the state space cardinality Each tunable parameter’s state space Si consists of n
tunable values:

where denotes the number of tunable values in Si. S is a set of N-tuples formed by taking
one tunable parameter value from each tunable parameter. A single N-tuple s ∈ S is given as:

Each N-tuple represents a sensor note state. We point out that some N-tuples in S may not
be feasible (such as invalid combinations of processor voltage and frequency) and can be
regarded as do not care tuples.
For example, given three tunable parameters, S can be written as:

S = Vp × Fp × Fs (4)

where Vp, Fp, and Fs denote the state space for a sensor node’s processor voltage, processor
frequency, and sensing (sampling) frequency, respectively.

8.2.2 Decision Epochs and Actions
The decision epochs refer to the points of time during a sensor node’s lifetime at which the
sensor node makes a decision regarding its operating state (i.e., whether to continue operating
in the current state or transition to another state). We consider a discrete time process where
time is divided into periods and a decision epoch corresponds to the beginning of a period.
The sequence of decision epochs is represented as:

where the random variable N corresponds to the sensor node’s lifetime (each individual time
period in T can be denoted as time t).
At each decision epoch, a sensor node’s action determines the next state to transition to given
the current state. The sensor node action in state i ∈ S is defined as:

where ai,j denotes the action taken at time t that causes the sensor node to transition to state j
at time t + 1 from the current state i. If ai,j = 1, the action is taken and if ai,j = 0, the action is
not taken.
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8.2.3 Policy and Performance Criterion
For each given state s ∈ S, a policy π determines whether an action a ∈ As is taken or not at
a decision epoch. A performance criterion compares the performance of different policies. The
sensor node selects an action prescribed by a policy based on the sensor node’s current state.
The sensor node receives a reward r (Xt, Yt) as a result of selecting an action Yt at decision
epoch t where the random variable Xt denotes the state at decision epoch t. The expected total
reward υ

π

N(s) denotes the expected total reward over the decision making horizon N given a
specific policy π (Puterman, 2005); (Stevens-Navarro et al., 2008):

υ
π
N(s) = lim

N→∞
Eπ

s

[

EN

{

N

∑
t=1

r(Xt, Yt)

}]

(7)

where Eπ
s represents the expected reward with respect to policy π and the initial state s (the

system state at the time of the expected reward calculation) and EN denotes the expected
reward with respect to the probability distribution of the random variable N. We can write (7)
as (Puterman, 2005):

υ
λ

N(s) = Eπ
s

{

∞

∑
t=1

λ
t−1r(Xt, Yt)

}

(8)

which gives the expected total discounted reward. We assume that the random variable N is
geometrically distributed with parameter λ and hence the distribution mean is 1/(1 − λ)
(Stevens-Navarro et al., 2008). The parameter λ can be interpreted as a discount factor, which
measures the present value of one unit of reward received one period in the future. Thus,
υ

λ

N(s) represents the expected total present value of the reward (income) stream obtained
using policy π (Puterman, 2005). Our objective is to find a policy that maximizes the expected
total discounted reward i.e., a policy π

∗ is optimal if:

υ
π
∗

(s) ≥ υ
π(s) ∀ π ∈ Π (9)

where Π denotes the set of admissible policies.

8.2.4 State Dynamics
The state dynamics of the system (sensor node) can be delineated by the state transition
probabilities of the embedded Markov chain. We formulate our sensor node policy as
a deterministic dynamic program (DDP) because the choice of an action determines the
subsequent state with certainty. Our sensor node DDP policy formulation uses a transfer
function to specify the next state. A transfer function defines a mapping τt(s, a) from S× As →

S, which specifies the system state at time t + 1 when the sensor node selects action a ∈ As in
state s at time t. To formulate our DDP as an MDP, we define the transition probability function
as:

8.2.5 Reward Function
The reward function captures application metrics and sensor node characteristics. Our reward
function characterization considers the power consumption (which affects the sensor node
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8.2.3 Policy and Performance Criterion

8.2.4 State Dynamics

8.2.5 Reward Function

Fig. 6. Reward functions: (a) Power reward function fp(s, a); (b) Throughput reward function
ft(s, a); (c) Delay reward function fd(s, a).

lifetime), throughput, and delay application metrics. We define the reward function f (s, a)
given the current sensor node state s and the sensor node’s selected action a as:

where fk(s, a) and ωk denote the reward function and weight factor for the kth application
metric, respectively, given that there are m application metrics. Our objective function
characterization considers power, throughput, and delay (i.e., m = 3) (additional application
metrics can be included) and is given as:

f (s, a) = ωp fp(s, a) + ωt ft(s, a) + ωd fd(s, a) (12)

where fp(s, a) denotes the power reward function, ft(s, a) denotes the throughput reward
function, and fd(s, a) denotes the delay reward function (Fig. 6); ωp, ωt, and ωd represent the
weight factors for power, throughput, and delay, respectively.
We define linear reward functions for application metrics because an application metric
reward (objective function) typically varies linearly, or piecewise linearly, between the
minimum and maximum allowed values of the metric (Stevens-Navarro et al., 2008).
However, a non-linear characterization of reward functions is also possible and depends
upon the particular application. Our methodology works for any characterization of reward
function. We define the power reward function (Fig. 6(a)) in (11) as:

fp(s, a) =











1, 0 < pa ≤ LP

(UP − pa)/(UP − LP), LP < pa < UP

0, pa ≥ UP

(13)
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where pa denotes the power consumption of the current state given action a taken at time t and
the constant parameters LP and UP denote the minimum and maximum allowed/tolerated
sensor node power consumption, respectively. Similar equations can be written for ft(s, a)
and fd(s, a).
State transitioning incurs a cost associated with switching parameter values from the current
state to the next state (typically in the form of power and/or execution (time) overhead). We
define the transition cost function h(s, a) as:

h(s, a) =

{

Hi,a if i �= a

0 if i = a
(14)

where Hi,a denotes the transition cost to switch from the current state i to the next state as
determined by action a. Note that a sensor node incurs no transition cost if action a prescribes
that the next state is the same as the current state.
Hence, the overall reward function r(s, a) given state s and action a at time t is:

r(s, a) = f (s, a)− h(s, a) (15)

which accounts for the power, throughput, and delay application metrics as well as state
transition cost.

8.2.6 Optimality Equation
The optimality equation, also known as Bellman’s equation, for expected total discounted
reward criterion is given as (Puterman, 2005):

where υ(s) denotes the maximum expected total discounted reward. The salient properties of
the optimality equation are: the optimality equation has a unique solution; an optimal policy
exists given conditions on states, actions, rewards, and transition probabilities; the value of the
discounted MDP satisfies the optimality equation; and the optimality equation characterizes
stationary policies.
The solution of (16) gives the maximum expected total discounted reward υ(s) and the MDP-
based optimal policy π

∗ (or π
MDP), which gives the maximum υ(s). π

MDP prescribes the
action a from action set As given the current state s for all s ∈ S. There are several methods
to solve the optimality equation (16) such as value iteration, policy iteration, and linear
programming, however in this work we use the policy iteration algorithm. The details of
the policy iteration algorithm can be found in (Puterman, 2005).

8.3 Numerical Results
In this section, we compare the performance (based on expected total discounted reward
criterion) of our proposed MDP-based DVFS2 optimal policy π

∗ (πMDP) with several fixed
heuristic policies using a representative WSN platform. We use the MATLAB MDP tool
box (Chadès et al., 2005) implementation of the policy iteration algorithm (Puterman, 2005)
to determine the MDP-based optimal policy. Given the reward function, sensor node state
parameters, and transition probabilities, (8) gives the expected total discounted reward. Our
reference WSN platform consists of eXtreme Scale Motes (XSM) sensor nodes (Dutta et al.,

8.3.1 Fixed Heuristic Policies for Performance Comparisons

8.3.2 MDP Specifications
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8.2.6 Optimality Equation

8.3 Numerical Results

Parameter i1 = [2.7, 2, 2] i2 = [3, 4, 4] i3 = [4, 6, 6] i4 = [5.5, 8, 8]

pi 10 units 15 units 30 units 55 units

ti 4 units 8 units 12 units 16 units

di 26 units 14 units 8 units 6 units

Table 2. Power consumption pi, throughput ti, and delay di parameters for wireless sensor
node state i = [Vp, Fp, Fs] (Vp is specified in volts, Fp in MHz, and Fs in KHz). Parameters are
specified as a multiple of a base unit where one power unit is equal to 1 mW, one throughput
unit is equal to 0.5 MIPS, and one delay unit is equal to 50 ms. Parameter values are based on
the XSM mote.

2005); (Dutta & Culler, 2005). The XSM motes have an average lifetime of 1,000 hours
of continuous operation with two AA alkaline batteries, which can deliver 6 Whr or an
average of 6 mW (Dutta et al., 2005). The XSM platform integrates an Atmel ATmega128L
microcontroller (ATMEL, 2009), a Chipcon CC1000 radio operating at 433 MHz, and a 4
Mbit serial flash memory. The XSM motes contain infra red, magnetic, acoustic, photo, and
temperature sensors. To represent sensor node operation, we analyze a sample application
domain that represents a typical security system or defense application (henceforth referred
to as a security/defense system).

8.3.1 Fixed Heuristic Policies for Performance Comparisons
We consider the following four fixed heuristic policies for comparison with our MDP policy:

• A fixed heuristic policy π
POW that always selects the state with the lowest power

consumption.

• A fixed heuristic policy π
THP that always selects the state with the highest throughput.

• A fixed heuristic policy π
EQU that spends an equal amount of time in each of the

available states.

• A fixed heuristic policy π
PRF that spends an unequal amount of time in each of the

available states based on a specified preference for each state. For example, given a
system with four possible states, the π

PRF policy may spend 40% of the time in the first
state, 20% of the time in the second state, 10% of the time in the third state, and 30% of
the time in the fourth state.

8.3.2 MDP Specifications
We compare different policies using the expected total discounted reward performance criterion.
The state transition probability for each sensor node state is given by (10). The sensor node’s
lifetime and the time between decision epochs are subjective and may be assigned by an
application manager according to application requirements. A sensor node’s mean lifetime
is given by 1/(1 − λ) time units, which is the time between successive decision epochs (which
we assume to be 1 hour). For instance for λ = 0.999, the sensor node’s mean lifetime is
1/(1 − 0.999) = 1000 hours ≈ 42 days.
For our numerical results, we consider a sensor node capable of operating in four
different states (i.e., I = 4 in (1)). Each state has a set of allowed actions
prescribing transitions to available states. For each allowed action a in a state, there
is a pair where ra specifies the immediate reward obtained by taking action a
and pa denotes the probability of taking action a.
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λ Sensor Lifetime π
MDP

π
POW

π
THP

π
EQU

π
PRF

0.94 16.67 hours 10.0006 7.5111 9.0778 7.2692 7.5586

0.95 20 hours 12.0302 9.0111 10.9111 8.723 9.0687

0.96 25 hours 15.0747 11.2611 13.6611 10.9038 11.3339

0.97 33.33 hours 20.1489 15.0111 18.2445 14.5383 15.1091

0.98 50 hours 30.2972 22.5111 27.4111 21.8075 22.6596

0.99 100 hours 60.7422 45.0111 54.9111 43.6150 45.3111

0.999 1000 hours 608.7522 450.0111 549.9111 436.15 453.0381

0.9999 10,000 hours 6088.9 4500 5499.9 4361.5 4530.3

0.99999 100,000 hours 60890 45000 55000 43615 45303

Table 4. The effects of different discount factors λ for a security/defense system. Hi,j = 0.1 if
i �= j, ωp = 0.45, ωt = 0.2, ωd = 0.35.

Table 2 summarizes state parameter values for each of the four states i1, i2, i3, and i4. We define
each state using a [Vp, Fp, Fs] tuple where Vp is specified in volts, Fp in MHz, and Fs in KHz.
For instance, state one i1 is defined as [2.7, 2, 2], which corresponds to a processor voltage of
2.7 volts, a processor frequency of 2 MHz, and a sensing frequency of 2 KHz (2000 samples
per second). We assume, without loss of generality, that the transition cost for switching from
one state to another is Hi,a = 0.1 if i �= a.
Our selection of the state parameter values in Table 2 corresponds to XSM mote specifications.
The XSM mote’s Atmel ATmega128L microprocessor has an operating voltage range of 2.7 to
5.5 V and a processor frequency range of 0 to 8 MHz. The ATmega128L throughput varies
with processor frequency at 1 MIPS per MHz, thus allowing a WSN designer to optimize
power consumption versus processing speed (ATMEL, 2009). Our chosen sensing frequency
also corresponds with standard sensor node specifications. The Honeywell HMC1002
magnetometer sensor (Honeywell, 2009) consumes on average 15 mW of power and can be
sampled in 0.1 ms on the Atmel ATmega128L microprocessor, which results in a maximum
sampling frequency of approximately 10 KHz (10,000 samples per second). The acoustic
sensor embedded in the XSM mote has a maximum sensing frequency of approximately 8.192
KHz (Dutta et al., 2005).
Table ?? summarizes the minimum L and maximum U reward function parameter values
for application metrics (power, throughput, and delay) and associated weight factors for
a security/defense system. We selected reward function parameter values according to
typical application requirements for a security/defense system (Akyildiz et al., 2002). For
instance, a data sensitive and time critical security/defense system with stringent minimum
and maximum tolerable delay might require a comparatively large minimum throughput in
order to obtain a sufficient number of sensed data samples for meaningful analysis.
For brevity, we select a single sample WSN platform configuration and application, but we
point out that our proposed MDP model and methodology works equally well for any other
WSN platform and application.
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Fig. 7. The effects of different discount factors on the expected total discounted reward for a
security/defense system. Hi,j = 0.1 if i �= j, ωp = 0.45, ωt = 0.2, ωd = 0.35.

8.3.3 Results
In this subsection, we present the results for a security/defense system for our MDP-based
optimal policy and the fixed heuristic policies (Section 8.3.1). We evaluate the effects of
different discount factors, different state transition costs, and different application metric
weight factors on the expected total discounted reward. The magnitude of difference in the
total expected discounted reward for different policies is important as it provides relative
comparisons between the different policies.
Table 4 and Figure 7 depict the effects of different discount factors λ on the heuristic policies
and π

MDP for a security/defense system when the state transition cost Hi,j is held constant at
0.1 for i �= j. Since we assume the time between successive decision epochs to be 1 hour, the
range of λ from 0.94 to 0.99999 corresponds to a range of average sensor node lifetime from
16.67 to 100,000 hours ≈ 4167 days ≈ 11.4 years. Table 4 and Figure 7 show that π

MDP results
in the highest expected total discounted reward for all values of λ and corresponding average
sensor node lifetimes. For instance, when the average sensor node lifetime is 1,000 hours
(λ = 0.999), π

MDP results in a 26.08%, 9.67%, 28.35%, and 25.58% increase in expected total
discounted reward as compared to π

POW, π
THP, π

EQU , and π
PRF, respectively. On average

over all discount factors λ, π
MDP results in a 25.57%, 9.48%, 27.91%, and 25.1% increase in

expected total discounted reward as compared to π
POW, π

THP, π
EQU , and π

PRF, respectively.
Figure 8 depicts the effects of different state transition costs on the expected total discounted
reward for a security/defense system with a fixed average sensor node lifetime of 1000 hours
(λ = 0.999). Figure 8 shows that π

MDP results in the highest expected total discounted reward
for all transition cost values. Figure 8 also shows that the expected total discounted reward for
π

MDP is relatively unaffected by state transition cost. This relatively constant behavior can be
explained by the fact that our MDP optimal policy does not perform many state transitions.
π

MDP performs state transitions primarily at sensor node deployment or whenever a new
MDP-based optimal policy is determined as the result of changes in application requirements.
Figure 9 shows the effects of different reward function weight factors on the expected total
discounted reward for a security/defense system when the average sensor node lifetime is
1,000 hours (λ = 0.999) and the state transition cost Hi,j is held constant at 0.1 for i �= j.
We explore various weight factors that are appropriate for different security/defense system
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Fig. 8. The effects of different state transition costs on the expected total discounted reward
for a security/defense system. λ = 0.999, ωp = 0.45, ωt = 0.2, ωd = 0.35.
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Fig. 9. The effects of different reward function weight factors on the expected total discounted
reward for a security/defense system. λ = 0.999, Hi,j = 0.1 if i �= j

specifics (i.e., (ωp, ωt, ωd) = {(0.35, 0.1, 0.55), (0.45, 0.2, 0.35), (0.5, 0.3, 0.2), (0.55, 0.35, 0.1)}).

Figure 9 reveals that π
MDP results in the highest expected total discounted reward for all

weight factor variations.

9. Conclusions

WSNs have been employed in diverse application domains each with different and competing
application requirements. Given this diversity, meeting application requirements is a
challenging design task. Optimization techniques at different design levels help meet
these application requirements. In this chapter, we discussed WSNs from an optimization
perspective. We presented a typical WSN architecture along with several possible integration
scenarios with external IP networks for ubiquitous availability of WSN offered services (e.g.,
sensed temperature and humidity statistics). We discussed COTS sensor node components
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9. Conclusions

and associated tunable parameters that can be specialized to provide component-level
optimizations. We presented data link-level and network-level optimization strategies
focusing on MAC and routing protocols, respectively. Our presented MAC protocols targeted
load balancing, throughput, and energy optimizations and routing protocols addressed query
dissemination, real-time data delivery, and network topology. Different OS optimizations
include event-driven execution, dynamic power management, and fault-tolerance.
Even though many of the optimizations offered by MAC, routing, and the OS are
dynamic in nature, we focused on dynamic optimizations separately due to their increasing
research significance. Traditional DVFS-based optimizations only tune processor voltage
and frequency, however, sensor nodes possess other tunable parameters (e.g., sensing
frequency, transmission power) whose tuning can increase the potential for meeting
application requirements. In this chapter, we proposed an MDP-based dynamic optimization
methodology to optimally tune sensor node parameters. Our proposed methodology is
adaptive and dynamically determines the new MDP-based optimal policy (sensor node
operating state) whenever application requirements change (which may be in accordance
with changing environmental stimuli). We compared our MDP-based methodology with four
fixed heuristic policies. Numerical results revealed that our MDP-based policy outperformed
other heuristic policies for all sensor node lifetimes, state transition costs, and application
metric weight factors. Future research trends in WSN dynamic optimizations include the
investigation of lightweight online algorithms suitable for sensor nodes with constrained
resources and incorporation of profiling statistics to provide feedback to the optimization
algorithms.
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