
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

2

The Advantage of Intelligent Algorithms for TSP

Yuan-Bin MO
College of Mathematics and Computer Science, Guangxi University for Nationalities,

China

1. Introduction

Traveling salesman problem (TSP) means that a travelling salesman needs to promote
products in n cities (including the city where he lives). After visiting each city (each city can
be visited once), he returns to the departure city. Let’s suppose that there is one road to
connect each two cities. What is the best route to follow in order to minimize the distance of
the journey?
TSP has been proven to be a NP-hard problem, i.e. failure of finding a polynomial time
algorithm to get a optimal solution. TSP is easy to interpret, yet hard to solve. This problem
has aroused many scholars’ interests since it was put forward in 1932. However, until now,
no effective solution has been found.
Though TSP only represents a problem of the shortest ring road, in actual life, many

physical problems are found to be the TSP. Example 1, postal route. Postal route problem is

a TSP. Suppose that a mail car needs to collect mails in n places. Under such circumstances,

you can show the route through a drawing containing n+1 crunodes. One crunode means a

post office which this mail car departures from and returns to. The remaining n crunodes

mean the crunodes at which the mails need to be collected. The route that the mail car

passes through is a travelling route. We hope to find a travelling route with the shortest

length. Example 2, mechanical arm. When a mechanical arm is used to fasten the nuts for

the ready-to-assembling parts on the assembly line, this mechanical arm will move from the

initial position (position where the first nut needs to be fastened) to each nut in proper order

and then return to the initial position. The route which the mechanical arm follows is a

travelling route in the drawing which contains crunodes as nuts; the most economical

travelling route will enable the mechanical arm to finish its work within the shortest time.

Example 3, integrated circuit. In the course of manufacturing the integrated circuit, we often

need to insert thousands of electrical elements. It will consume certain energy when moving

from one electrical element to the other during manufacturing. How can we do to arrange

the manufacturing order to minimum the energy consumption? This is obviously a solution

for TSP. Except for the above examples, problems like route distribution of transportation

network, choice of tourist route, laying of pipelines needed for city planning and

engineering construction are interlinked with the problems of finding the shortest route. So,

it is of significance to make a study on the problem of the shortest route. This renders us a

use value.

As finding a solution for TSP plays an important role in the real life, since the TSP appeared,
it has attracted many scholars to make a study on it.

www.intechopen.com

 Traveling Salesman Problem, Theory and Applications

26

2. Mathematical description for the TSP and its general solving method

2.1 Mathematical description for the TSP

According to the definition of the TSP, its mathematical description is as follows:

 min ij ijd x∑ (2.1.1)

 s.t.
1

1
n

ij
j

x
=

=∑ 1,2,i n= A (2.1.2)

1

1
n

ij
i

x
=

=∑ 1,2,j n= A (2.1.3)

,

1ij
i j S

x S
∈

≤ −∑ 2 2, {1,2, }S n S n≤ ≤ − ⊂ A (2.1.4)

 {0,1}ijx ∈ , 1,2,i j n= A i j≠ (2.1.5)

Where ijd means the distance between the city i and city j; decision variable 1ijx = means

the route the salesman passes through (including the route from city i and city j); 0ijx =

means the route which isn’t chosen by the salesman. Objective function (2.1.1) means the

minimum total distance; (2.1.2) means that a salesman only can departure from the city i for

one time; (2.1.3) means that a salesman only can enter the city j for one time; (2.1.2) and

(2.1.3) only give an assurance that the salesman visits each city once, but it doesn’t rule out

the possibility of any loop; (2.1.4) requires that no loop in any city subset should be formed

by the salesman ; S means the number of elements included in the set S .

2.2 Traditional solving method for TSP

At present, the solving methods for TSP are mainly divided into two parts: traditional
method and evolution method. In terms of traditional method, there are precise algorithm
and approximate algorithm.

2.2.1 Precise algorithm for solving the TSP

Linear programming
This is a TSP solving method that is put forward at the earliest stage. It mainly applies to the
cutting plane method in the integer programming, i.e. solving the LP formed by two
constraints in the model and then seeking the cutting plane by adding inequality constraint
to gradually converge at an optimal solution.
When people apply this method to find a cutting plane, they often depend on experience. So
this method is seldom deemed as a general method.
Dynamic programming

 S is the subset of the set {2,3, }nA . k S∈ and (,)C S k means the optimal travelling route

(setting out from 1, passing through the points in S and ending to k). When 1S = ,

1{{ }, } kC k k d= and (2,3,)k n= A . When 1S > , according to the optimality principle, the

www.intechopen.com

The Advantage of Intelligent Algorithms for TSP

27

dynamic programming equation of TSP can be written as
{ }

(,) min [({ , },)]jk
j S k

C S k C S j k j d
∈ −

= − +

and the solution can be obtained by the iterative method based on dynamic programming.

As the time resource (i.e. time complexity) needed for dynamic programming is 2(2)nO n ⋅ ,

and its needed space resource (i.e. space complexity) is (2)nO n ⋅ , when n is added to a

certain point, these complexities will increase sharply. As a result, except for the minor

problem, this is seldom used.
Branch-bound algorithm
Branch-bound algorithm is a search algorithm widely used by people. It controls the
searching process through effective restrictive boundary so that it can search for the optimal
solution branch from the space state tree to find an optimal solution as soon as possible. The
key point of this algorithm is the choice of the restrictive boundary. Different restrictive
boundaries may form different branch-bound algorithms.
Branch-bound algorithm is not good for solving the large-scale problem.

2.2.2 Approximate algorithm for solving the TSP

As the application of precise algorithm to solve problem is very limited, we often use

approximate algorithm or heuristic algorithm. The result of the algorithm can be assessed by
*/C C ε≤ . C is the total travelling distance generated from approximate algorithm; *C is

the optimal travelling distance; ε is the upper limit for the ratio of the total travelling

distance of approximate solution to optimal solution under the worst condition. The value

of ε >1.0. The more it closes to 1.0, the better the algorithm is. These algorithms include:
Interpolation algorithm
Interpolation algorithm can be divided into several parts according to different interpolation
criteria. Generally it includes following steps:
Step 1. Choose the insertion edge (i and j) and insertion point k through a certain way.

Insert k into i and j to form { , , , , }i k jA A ;

Step 2. Follow the process in an orderly manner to form a loop solution.
Interpolation algorithm mainly includes:

1. Latest interpolation effect 2ε = . Time complexity: 2()O n .

2. Minimum interpolation effect 2ε = . Time complexity: 2(lg)O n n .

3. Arbitrary interpolation effect 21g 0.16nε = + . Time complexity: 2()O n .

4. Farthest interpolation effect 2 lg 0.16nε = + . Time complexity: 2()O n .

5. Convex interpolation effect ε (unknown). Time complexity: 2(lg)O n n .

Nearest-neighbour algorithm
Step 1. Choose one departure point randomly;
Step 2. Choose the nearest point in an orderly manner to add to the current solution until

the loop solution is formed.

Effect: (lg 1) 2nε = + . Time complexity: 2()O n
Clark & Wright algorithm

Step 1. Choose one departure point P randomly to calculate ij pi pj ijs d d d= + + ;

Step 2. Array ijs in ascending order;

Step 3. Connect each (,)i j in an orderly manner upon arrangement to form a loop

solution.

www.intechopen.com

 Traveling Salesman Problem, Theory and Applications

28

Effect: 2 lg 7 2 21nε = + . Time complexity: 2()O n
Double spanning tree algorithm
Step 1. First determine the minimum spanning tree.
Step 2. Determine the Euler loop by adding a repetitive edge to each edge of the tree;
Step 3. Eliminate the repetitive point in the sequence of Euler loop point to form a loop

solution.

Effect: 2ε = . Time complexity: 2()O n
Christofides algorithm
Step 1. First determine the minimum spanning tree;
Step 2. Solve the minimum weight matching problem to all the singular vertexes of the tree;
Step 3. Add the matching edge to the spanning tree to determine its Euler loop;
Step 4. Eliminate the repetitive point in the sequence of Euler loop point to form a loop

solution.

Effect: 2 3ε = . Time complexity: 3()O n

r opt− algorithm

This algorithm is a locally improved search algorithm and is put forward by Lin and other

people (1965). Its thought is to improve the current solution by exchanging r edges each

time according to the given initial loop. As for different r , we find from massive calculation

that 3 opt− is better than 2 opt− , and 4 opt− and 5 opt− are not better than 3 opt− . The

higher the r is, the more time the calculation will take. So we often use 3 opt− .

Effect: 2ε = (8, 4)n r n≥ ≤ . Time complexity: ()rO n
Hybrid algorithm

Use a certain approximate algorithm to find an initial solution and then improve the

solution by using one or several algorithms of r opt− .Usually, Hybrid algorithm will help

you to get better solution, but it takes a long time.
Probabilistic algorithm

Based on the given 0ε > , this algorithm is often used to solve the TSP within the range of

1 ε+ .Suppose that G is in the unit square and function ()t n is mapped to the positive ration

number and satisfies the following two conditions: (1) 2 2log logt n→ ; (2) to all n , n t is

the perfect square, so the steps are as follows:

Step 1. Form the network by using 1/2[()]t n n as size. Divide the unit square into ()n t n

and G into several ()n t n subgraphs;

Step 2. Use dynamic programming to find the optimal loop for each subgraph;

Step 3. Contract ()n t n subgraph into one point. The distance definition is the shortest

distance of the optimal sub-loop of the original subgraph. In addition, determine

the minimum generation number T of the new graph;

Step 4. See T ∪ {the optimal sub-loop of each optimal sub-loop of } as the close loop with

repetitive point and edge. According to the condition of the triangle inequality,

reduce the repetitive points and edges to find a TSP loop.

Effect: 1ε = + (give the positive number randomly). Time complexity: (lg)O n n .
As these traditional algorithms are local search algorithms, they only help to find a local

optimal solution when used for solving the TSP. It is hard to reach a global optimal solution

and solve large-scale problem. So, people started to look for an evolution algorithm to solve

the TSP.

www.intechopen.com

The Advantage of Intelligent Algorithms for TSP

29

3. Evolution algorithm for solving the TSP

As stated above, the traditional algorithms used to solve the TSP have some limitation. With
the development of evolution algorithm, many numerical optimization algorithms appear.
They are ACA, GA, SA, TS, PSO and IA, etc. These algorithms are, to some extent, random
search algorithms. ACA and PSO are typical parallel algorithms. Though they cannot
guarantee to help you to obtain an optimal solution within the limited time, they can give
you a satisfactory solution within the affordable time range. To figure out the effect of the
solution for TSP obtained by using optimization algorithm, we should consider the
algorithm’s search ability. Algorithm with strong optimization will produce better effect.
Algorithm which is easy to trap in local extremum often helps you to obtain the local
optimal solution for TSP.

3.1 Ant colony algorithm for solving the TSP

Ant colony algorithm (ACA) is a relatively new analogy evolution algorithm, which was put

forward by scholars such as Italian scholar Dorigo. They called it ant colony system and

used this ant colony to solve the TSP, achieving fairly good experimental result. As for ACA,

n represents the number of cities for the TSP; m represents the number of ant in the ant

colony; ijd (, 1,2, ,)i j n= A represents the distance between city i and city j ; ()ij tτ

represents the concentration of pheromone on the line of city i and city j at the time of

t .At the initial time, the concentration of pheromone on each route is similar to one another.

When (0)ij Cτ = , C is a constant. During the moving process, ant (1,2, ,)k m= A will

determine which direction it will change according to the concentration of pheromone on

each route. ()k
ijP t represents the probability for ant to move from city i to city j at the time

of t . Its formula is

allowed

() ()
tabu

() ()()

0
k

ij ij
k

k
is isij

s

t t
j

t tP t

other

α β

α β

τ η

τ η
∈

⎧
⎪ ∉⎪= ⎨
⎪
⎪⎩

∑ (3.1.1)

Wherein: tabuk (1,2, ,)k m= A means that ant k has passed through the set of the city. From

the beginning, tabuk has only one element, i.e. the departure city of ant k . With the process

of evolution, the elements for tabuk increase continuously; allowed {1,2, , } tabuk kn= −A

means the next city that ant k is allowed to choose. ijη represents the visibility, and is taken

from the reciprocal of the length of the route (,)i j ; ,α β regulates the relatively important

degree of pheromone concentrationτ and visibilityη .

As time goes by, the pheromone on each route gradually disappears. Parameter 1 ρ− is

used to represent the volatility of pheromone. After ω time, the ants complete one circle.

Pheromone concentration on each route can be adjusted according to the following formula:

 () ()ij ij ijt tτ ω ρ τ τ+ = ⋅ + Δ (0,1)ρ ∈ (3.1.2)

1

m
k

ij ij
k

τ τ
=

Δ = Δ∑ (3.1.3)

www.intechopen.com

 Traveling Salesman Problem, Theory and Applications

30

Wherein: k
ijτΔ means the pheromone concentration left on the route (,)i j by the k ants

during the process of this circle; ijτΔ means the total pheromone concentration released on

the route (,)i j by all the ants during the process of this circle.
 ACA not only uses the positive feedback principle which may, to some extent, quicken the
evolution process, but also is a parallel algorithm in nature. The ongoing process of
information exchange and communication between individuals helps to find a better
solution. It is easy to converge at a local extremum when there is only one individual.
However, through cooperation, multiple individuals will help us to get a certain subset of
the solution space, which provide a better environment for us to carry out a further
exploration on solution space. The movement of multiple individuals in the ant colony is
random. Actually, the measures taken to avoid the possibility of appearance of local
extremum slow down the velocity of convergence. When the scale of ant colony expands, it
will take a longer time to look for a better route.
In the light of the above problems, many scholars at home and abroad make an
improvement of the basic ACA. Though some achievements have been made, they are not
enough as a whole. Some principles are still needed to found to make a proof and test in
practice.

3.2 Solve the TSP through particle swarm optimization

Ant colony algorithm is a discrete random number algorithm, which is suitable for solving
the discrete optimization problem. TSP is a typical discrete optimization problem, so, since
the appearance of ant colony algorithm, many scholars have used this algorithm to solve the
TSP. However, as the travelling salesman problem is a NP, and the pheromone needs to be
updated when ant colony algorithm is iterated each time, so, when solving the large-scale
TSP, it will meet some problems such as slow searching speed. Though scholars at home
and abroad have made some efforts to accelerate the searching speed, but what they’ve
done is not enough as a whole. Some principles are still needed to found to make a proof
and test in practice. Particle swarm optimization is a continuous algorithm. Its iteration
formula is simple and easy to achieve. A slight improvement of this algorithm will help you
to solve the discrete optimization problem of the travelling salesman. As its iteration
formula is very simple, a use of this algorithm may help you to solve the slow searching
speed problem found from the ant colony algorithm.
At present, different improvement algorithms for PSO have been provided to solve the TSP.
In particular, great result has been made by Maurice who used discrete PSO algorithm to
solve the TSP.A hybrid PSO algorithm which is used to solve the TSP is provided on the
basis of GA, AC and SA. Application of PSO algorithm to solve the travelling salesman
problem is a fresh attempt. However, as the traditional PSO will easily trap in the local
optimal solution, we provide two improve strategies for the standard PSO and use them to
solve the TSP.

4. Solve the TSP through improved PSO algorithm

4.1 Solve the TSP through DPSO algorithm
4.1.1 DPSO principle

Dynamic programming is a typical deterministic algorithm for solving the optimization
problem. It is provided on the basis of the optimality principle and non-aftereffect and used
for the algorithm of multistage decision process. Optimality principle: any truncation of the

www.intechopen.com

The Advantage of Intelligent Algorithms for TSP

31

optimal decision still remains the optimal state; non-aftereffect: after truncation in any stage,
the decision made in the later stage is only connected to the initial state of this stage and has
no connection to others. Dynamic programming, through optimality principle and non-
aftereffect, analyze the optimization problem in stages to simplify the problem, which
greatly reduce the calculation steps.
PSO algorithm is an interactive parallel searching algorithm as well as a good attempt to
look for global extremum. However, when solving the optimization problem of high
dimensional function, as the mutual restraint exists between each dimensional variable,
disadvantage has been found when the PSO algorithm is used to solve this problem.
According to the numerical value test result, this algorithm is proven to be very effective
when the dimension is low. The solving process of dynamic programming is to simplify the
complex problem to obtain the solution. A combination of this with the property of PSO
algorithm will surely improve the optimal performance of the PSO algorithm.

As for the solution of the problem 1 2 imin () (, , ,), . . a , n i if f x x x s t x b= ≤ ≤x A 1,2, .i n= A

(4.1.1.1), a strategy should be provided to fix some variables and change the remaining

variables; i.e. partition the variable and approximate the optimal solution of the majorized

function through partitioning to convert the high dimensional optimization problem into

low dimensional optimization problem to get the condition optimal solution. Then fix the

other part to get the other group of condition optimal solution. Use this information to carry

out a comprehensive optimization process. Be aware that this strategy is different from the

principle of dynamic programming, because aftereffect exists when partition optimization is

applied. So, a strategy method concerning reasonable approximation of global extremum

should be provided for the partition optimization of aftereffect.
It is hard to decide the order of fixed variable in the process of calculation. Different
strategies can be used during the process of practical operation; after the algorithm traps in
the local extremum, it may pick some components to be fixed randomly from the local
optimal solution, or choose some components alternately; at the same time, transform the
original problem into two problems after some components are picked randomly. If the
dimension is too high, this problem can also be transformed into multiple problems to find a
solution. See the following problem

 1 2 3 4 5 6min (, , , , ,)f x x x x x x , (4.1.1.2)

If PSO algorithm gives a local optimal solution 1* 1* 1* 1*
1 2 6(, ,)x x x=x A , the following two

strategies can transform the high dimension optimization into low dimension optimization:

(1) pick several components randomly, e.g. pick 3 components 1* 1* 1*
1 2 4, ,x x x , then the result is

 1* 1* 1*
1 2 3 4 5 6min (, , , , ,)f x x x x x x (4.1.1.3)

A local optimal solution 1* 1* 2* 1* 2* 2*
1 2 3 4 5 6(, , , , ,)x x x x x x is given by using the PSO algorithm

again. Then pick some components randomly or alternately (for example, if you pick

components 1, 2 and 4 last time, you can pick components 3, 5 and 6 this time); in this way, a

new optimal problem is found. Continue the run until you find a satisfactory result. (2) Pick

some components randomly and divide the original problem into several problems,

including: ① 1* 1* 1*
1 2 3 4 5 6min (, , , , ,)f x x x x x x and 1* 1* 1*

1 2 3 4 5 6min (, , , , ,)f x x x x x x . It may write

down all the possible forms (i.e. 3
6 20C =) of the three variables to divide the original

www.intechopen.com

 Traveling Salesman Problem, Theory and Applications

32

problem into 20 optimization problems. ① If you think the dimension is too high, pick p (p

is relatively high in number) components randomly and transform the original problem into

several optimization problems. You can also list all the p
nC optimization problems and use

PSO algorithm to solve several optimization problems you get. Then compare the results of

these optimization problems and pick the best one to use as the local optimal solution next

step, and further analyze this solution until you find the satisfactory result.

4.1.2 Computational steps of the DPSO

As for the optimization problem of the formula (4.1.1.1), the key algorithm steps are as
follows:

Step 1. Randomly generate the initial population m . Under normal circumstances, 10m ≥ .

Step 2. After figure up certain algebras through PSO or after use PSO and find that the

target values within several successive algebras remain the same, set the optimal

solution as * 0 0 0
1 2(, ,)nx x x=x A .

Step 3. Pick []
2

n
 component randomly from the optimal solution *x and set it as

1 2
[]

2

0 0 0, ,
ni i ix x xA .

Step 4. Use PSO to solve the following two optimization problems

1 2

[]
2

0 0 0
1 2min () (, , , , , , ,)

ni i i nf f x x x x x x=x A A A A , (4.1.2.1)

and

1 2

[]
2

0 0 0
1 2min () (, , , , , , ,)

ni i i nf f x x x x x x=x A A A A . (4.1.2.2)

In these two optimization problems, one is the function of []
2

n
n − dimension and the other

is the function of []
2

n
 dimension.

Step 5. Choose the best result from these two optimization problems to use as the current

optimal solution *x to see if it can reach a satisfactory result. If not, iterate the steps

by starting from step 3; if a satisfactory result is obtained, terminate the
computational process and get the optimal solution.

Note: Other strategies may be applied to Step 3, and here is only one of them. In order to

ensure the rapid convergence of the algorithm, pick the optimal solution after each

calculation to use it as a particle for the calculation next time.

4.1.3 Solve the TSP through DPSO

For the TSP with n cities (1 2, , na a aA), use 1 2 1(, , , ,)i i in ia a a aA to represent the route (i.e.

1 2i i ina a a→ →A). 1 2, , ,i i ina a aA is an array of 1 2, , , na a aA and is called solution sequence.
As stated above, DPSO algorithm is applicable to the continuous problem. As TSP is a

typical discrete problem, its solution is a sequence or loop rather than a point within the

www.intechopen.com

The Advantage of Intelligent Algorithms for TSP

33

solution space. In order to apply DPSO to TSP, we introduce to you some definitions and

algorithms of the solution sequence.

Definition 1 Exchange and exchange sequence Exchange the j point and k point of the

solution sequence to form a new solution sequence. This is called exchange and is

indicated with (,)E j k .Exchange ija and ika in the solution sequence of

(, , , , , , ,)1 2a a a a ai i ij inikT = A A A . The new solution after exchange is (,)T E j k+ . The

ordered sequence 1 2(, , ,)mQ E E E= A after m times of exchanges is called exchange

sequence. Exchange T through the exchange sequence in an orderly manner to generate a

new solution. i.e.

 1 2 1 2(, , ,) [()]m mT Q T E E E T E E E+ = + = + + + +A A (4.1.3.1)

When 0m = , Q is equivalent to empty sequence. This means that formula (6.4.1.3.1) doesn’t

do any exchange for the solution sequence. Under such circumstances, you can add an
exchange result to the exchange sequence and place this exchange result to the end of the
sequence to form a new sequence.

Definition 2 Solution sequence difference As for any two solution sequences 1T and 2T

of the same TSP, the exchange sequence Q always exists. As a result, 2 1T T Q= + is

formed. Q is the difference of the solution sequences 2T and 1T , i.e. the result of

2 1T T− .When 1 1 2(, ,)nT a a a= A and 2 1 2(, ,)nT b b b= A are found, you can use the following

procedure 1 to calculate 2 1Q T T= − .
Procedure 1 Q = empty sequence

 for 1j = to n

 for 1i = to n

 if i ja b= and i j≠ then add (,)E i j to Q

 end
 end

In respect of 1T and 2T , there are many Qs to be used in the formula 2 1T T Q= + .

Definition 3 Product of decimal and exchange sequence (0,1)η∈ and exchange sequence is

Q which has an exchange of 0n . If 0 0

0 0

1m m

n n
η +

≤ < (0m is an integer from 0 to 0 1n −),

Qη ⋅ is the sequence formed by 0m exchange before Q .

Through this operation, the above algorithm can be used to solve the discrete optimization
problem like TSP.

4.1.4 Test and discussion of the performance of the algorithm

Use 14 points of the TSP provided by Huang Lan and other people to test the effectiveness
of the algorithm. Description of the 14 points of the TSP is listed in table 1.

Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14

X 16.47 16.47 20.09 22.39 25.23 22.00 20.47 17.20 16.30 14.05 16.53 21.52 19.41 20.09

Y 96.10 94.44 92.54 93.37 97.24 96.05 97.02 96.29 97.38 98.12 97.38 95.59 97.13 94.55

Table 1. Position data for 14 points

www.intechopen.com

 Traveling Salesman Problem, Theory and Applications

34

Use DPSO to carry out 8 times of tests and set the parameters as 1 0.53ω = , 1 0.35η = and

2 0.45η = . The number of the initial population is 600. Set the maximum iterative number as

300. The result as follows:

Test serial number 1 2 3 4 5 6 7 8

Get the algebra of
the optimum value

30.8785
58 30 58 58 58 58 93 196

Get the best route
each time

6-12-7-13-8-11-9-10-1-2-14-3-4-5

Tabela 2.

Algorithm analysis table

Number of the solution space (14-1)!/2=3 113 510 400

Average iterative number (58× 5+30+93+196)/8=76.125

Average search space for each test 600+76.125× 200=15825

Proportion of the search space to
solution space

15825/3113510400=0.000508%

Tabela 3.

From the above test, we can see that DPSO may go beyond the local extremum to gen the

final optimal solution for the problem. To achieve this, we should transform the high

dimension optimization into low dimension optimization. We should optimize the

remaining components while maintain some components unchanged; by doing this

alternately, the ability for algorithm to optimize the high dimension problem will be

strengthened. This improved algorithm only represents an improvement on the calculative

strategy front. It does not add additional calculation and step to the algorithm, hence,

maintaining the simplification of the PSO algorithm. At the same time, it helps to transform

a high dimension optimization problem into several low dimension optimization problems,

which will not complicate the calculation procedure.

4.2 Solve the TSP through MCPSO

When use MCPSO to solve the TSP, you also need to go through the relevant procedure
which is used by continuous optimization algorithm to solve the discrete optimization
problem; except for the above methods, MCPSO also has midpoint problem, so we
introduce you the following definition:

Definition Midpoint solution sequence Set two solution sequences 1 1 2(, ,)nT a a a= A and

2 1 2(, ,)nT b b b= A for n cities of TSP and make the solution sequence as

1 1 11 2 1 2(, , , , , , ,)n n n nT a a a b b b+ += A A (1 [/ 2]n n=).If repetitive point appears in the solution,

adjustment can be made according to the procedure 2 to make it become a feasible

solution sequence and call it a midpoint solution sequence of 1T and 2T .
Procedure 2

Step 1. Search for the repetitive point of
11 2, , , na a aA from

1 11 2, , ,n n nb b b+ + A and replace it

with 0;

www.intechopen.com

The Advantage of Intelligent Algorithms for TSP

35

Step 2. Search for the points which are different from the points of
1 11 2, , ,n n nb b b+ + A from

1 11 2, , ,n n na a a+ + A and replace the 0 point in an orderly manner.

4.2.1 Steps for MCPSO to solve the TSP

The steps for MCPSO algorithms to solve the TSP are as follows:

Step 1. Set relevant parameters l , 1β , 2β and δ , and begin to conduct initialization

complex. Each point is the solution sequence generated randomly and is indicated
with x ;

Step 2. Pick l solution sequences, good and bad, for rx and fx , and calculate the

midpoint sequence mx and ratio λ . Then determine the best solution sequence 1x ;

Step 3. Based on certain probability,

 Pick formula 1 2 1() ()p f r f fφ φ= + − + −x x x x x x through probability 1β

 Pick formula 1 2 1() ()p r r f fφ φ= + − + −x x x x x x through probability 2β

 Pick formula 1 2 1() ()p f f r fφ φ= + − + −x x x x x x through probability 1 21 β β− −

to get m new solution sequences px to replace the bad solution sequence fx to form a new

complex;
Step 4. If the satisfactory result is reached, go to Step 5; otherwise, go back to Step 2;
Step 5. Show the optimal solution.

4.2.2 Test and discussion of the performance of the algorithm

Test the algorithm based on the 14 points of the TSP provided by Huang Lan and other

people. The optimum value is 30.8785.We use this problem to test the optimal performance

of MCPSO algorithm. Its parameters are 0.85δ = , 1 0.675β = , 2 0.175β = and 50l = . The

pop-size is 600 and the upper limit of iterative number is 200. In order to facilitate

comparison, we also use SGA and ACO to solve this problem. These two have the same

pop-size and iteration upper limit as MCPSO. Each algorithm is run for 10 times. The

parameter setting for these two algorithms are: SGA: multiplying probability

0.2rP = ,crossing probability 0.6cP = and mutation probability 0.05mP = ; ACO: constant

20C = , pheromone factor 1α = , heuristic factor 1β = , and information keeping factor

0.8ρ = . The results of these algorithms are shown in the table 4.2.2.1 and the change curve

of average mean fitness is shown in the figure 4.2.2.1.
ACO and integer-coded SGA can be directly used to solve the discrete optimization
problems such as TSP. These algorithms have the ability to search for the global optimal
solution, but the efficiency is relatively low as they can only make a change based on the
probability. MCPSO is a continuous algorithm which introduces the group searching
mechanism of PSO into the complex method. It considers the global property between
solutions through geometry point, optimization and other principles so as to shorten the
distance between the solution with poor adaptability and the solution with good
adaptability. In order to avoid being trapped in the local extremum, certain probability will
be considered. Shortening the distance between bad solution and good solution will help
you to get the optimal solution in a more precise way within a short time, and greatly
enhance the searching ability. The appearance of the algorithm targeted to TSP solution

www.intechopen.com

 Traveling Salesman Problem, Theory and Applications

36

sequence not only helps to keep the above characteristics of MCPSO, but also guarantees the
effective application of MCPSO to discrete problems. As for the 14 points of TSP, the
running of MCPSO algorithm (7 out of 10 times) will help you to find the optimal solution
with relatively low iterative number. However, after 10 times of running of ACO and SGA,
no optimal solution is found. From this, we can see the advantage of MCPSO.

Algorithm

Number of
times of

reaching the
optimum

value

Minimum
algebra for

reaching the
optimum

value

Average algebra
for reaching the
optimum value

Best value
Average

value
Standard
deviation

ACO 0 N/A N/A 31.8791 33.6888 3.7000

SGA 0 N/A N/A 34.4509 35.9578 3.4209

MCPSO 7 35 143.57 30.8785 31.0262 0.7137

Table 4. Comparison of the results from three algorithms

Fig. 1.

5. Application of the improved PSO algorithm for the TSP

PCB’s digital control drilling problem can be described as follows: Process all the holes by

starting from the tool changing point (repetition and omission are not allowed). After the

processing, return to this point to do tool changing and processing for other aperture. In

terms of digital control programming, we should consider the order of drill hole processing

to minimize the time idle running, i.e. the best route problem of tool changing or the TSP

problem in nature. With regard to the processing problem for a series of holes, the

coordinate for these 20 holes has been listed in the figure 5.1. We use PCB-CAD software

and PSO, SGA, ACO, DPSO and MCPSO to solve this problem. The parameter setting for

PSO is: 0.25ω = , 1 0.3c = and 2 0.45c = . The speed will be indicated through exchange

sequence. The parameters of the other three algorithms are the same as above. The tool

Iterative number

M
e
a
n

 fitn
e
s
s

www.intechopen.com

The Advantage of Intelligent Algorithms for TSP

37

changing routes generated are shown in figures 5.1 to 5.6. The latter five algorithms are run

individually for 10 times with the upper limit of iterative number each time of 200 and pop-

size of 600. The figures presented are their optimal structures. The path lengths for the tool

changing routes generated from 6 algorithms are given in table 5.2.

No. x y No. x y No. x y

1 1 1 8 2.5 7.5 15 7 15.5

2 1 3 9 2.5 1 16 7 13.5

3 1 7 10 3.5 2 17 7 12.1

4 1 8 11 3.5 8.2 18 7 12

5 2.5 14 12 3.5 12.9 19 7 10

6 2.5 13.5 13 3.5 13.2 20 7 4

7 2.5 13 14 3.5 13.9

Table 5. Position for 20 holes

 Algorithm PCB-CAD ACO SGA PSO MCPSO DPSO

Average
length

61.5555 60.5610 58.6334 59.4244 43.4923 44.4978

Minimum
length

61.5555 56.7481 52.2687 53.2687 40.1203 40.1203

Table 6. Calculation result comparison

Fig. 5.1 Tool changing route chart generated from PCB-CAD

Fig. 5.2 Tool changing route chart generated from PSO

www.intechopen.com

 Traveling Salesman Problem, Theory and Applications

38

Fig. 5.3 Tool changing route chart generated from SGA

Fig. 5.4 Tool changing route chart generated from ACO

Fig. 5.5 Tool changing route chart generated from MCPSO

Fig. 5.6 Tool changing route chart generated from DPSO

www.intechopen.com

The Advantage of Intelligent Algorithms for TSP

39

From above, see can see that the lengths of tool changing routes generated from

optimization algorithms are shorter than that generated from PCB-CAD software, of which

the MCPCO enjoy the shortest length (about 29% shorter than others). Determination of the

best route for PCB digital control drilling can effectively solve the optimization problem of

the digital control programming in the course of PCB processing and develop a PCB

automatic programming system.

6. Summary

This article consists of the definition of TSP, mathematical description methods, traditional

solving methods for the TSP and problems existing in the traditional solving methods. At

the same time, it introduces the evolution algorithms for solving the TSP. Based on this, two

algorithms (MCPSO and DPSO) are provided. Finally, it shows us the best tool changing

route for the digital control drilling by using the algorithms given.

7. References:

[1] Mo Yuanbin, Expansion and Application of PSO (D). Hangzhou: Zhejiang University.

2007

[2] Garey M R, Johnson D S. Computers and Intractabilitys: A Guide to the Theory of NP-

Completeness [M]. San Francisco: Freeman WH , 1979.

[3] Maurice Clerc. Discrete Particle Swarm Optimization Illustrated by the Traveling Sales

man Problem [DB/OL].

 http: //www. mauriceclerc. net, 2000.

[4] Gao S，Han B,Wu X J．et al. Solving Traveling Sales2man Problem by Hybrid Particle

Swarm Optimization Algorithm [J]. Control and Decision, 2004, 19 (11) :1286-

1289.

[5] (US) Robert E. Larson (Writer). Chen Weiji (Translator). Dynamic Programming. 1st

edition. Beijing: Tsinghua University Press, 1984

[6] (US) Leon Cooper and Mary W. Cooper (Writers). Zhang Youwei (Translator).

Dynamic Programming. 1st edition. Beijing: National Defence Industrial Press,

1985

[7] Huang Lan and Wang Kangping, etc. Solve the Traveling Salesman Problem through

PSO Algorithm [J]. Journal of Jilin University, 2003 (4): 477-480．

[8] Meng Fanzhen, Hu Yunchang and Xu Hui, etc. Genetic Algorithm of the Traveling

Salesman Problem [J]. System Engineering Theory and Practice, 1997, 2 (7): 15-

21.

[9] Conley WC. Programming an automated punch or drill[J]. International Journal of

Systems Science, 1991, 22(11): 2039-2025.

[10] Wang Xiao and Liu Huixia. Modeling and Solving of the Best Tool Changing Route for

PCB Digital Control Drilling [J]. Journal of Computer Aided Design and Graphics.

2001, 13 (7): 590-593.

www.intechopen.com

 Traveling Salesman Problem, Theory and Applications

40

[11] Colorni, A., Dorigo, M., and Maniezzo, V. Distributed optimization by ant colonies.

Proceedings of the First European Conference on Artificial Life, Paris, France,

Varela, F. and Bourgine, P. (Eds.), Elsevier Publishing, 1991, 134-142.

www.intechopen.com

Traveling Salesman Problem, Theory and Applications

Edited by Prof. Donald Davendra

ISBN 978-953-307-426-9

Hard cover, 298 pages

Publisher InTech

Published online 30, November, 2010

Published in print edition November, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book is a collection of current research in the application of evolutionary algorithms and other optimal

algorithms to solving the TSP problem. It brings together researchers with applications in Artificial Immune

Systems, Genetic Algorithms, Neural Networks and Differential Evolution Algorithm. Hybrid systems, like Fuzzy

Maps, Chaotic Maps and Parallelized TSP are also presented. Most importantly, this book presents both

theoretical as well as practical applications of TSP, which will be a vital tool for researchers and graduate entry

students in the field of applied Mathematics, Computing Science and Engineering.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Yuan-bin Mo (2010). The Advantage of Intelligent Algorithms for TSP, Traveling Salesman Problem, Theory

and Applications, Prof. Donald Davendra (Ed.), ISBN: 978-953-307-426-9, InTech, Available from:

http://www.intechopen.com/books/traveling-salesman-problem-theory-and-applications/the-advantage-of-

intelligent-algorithms-for-tsp

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

