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1. Introduction 

Metals play important roles in the life processes of microbes. Some metals, such as Fe, Zn, Cu, 
Ni, and Co are of vital importance for many microbial activities when occur at low 
concentrations. These metals are often involved in the metabolism and redox processes as 
parts of enzyme cofactors or participators in the electron transfer in microbial respiration 
(Zandvoort et al., 2006). However, metals at high concentrations are inhibitory or even toxic to 
living organisms. Essential metals in the enzymes can be displaced by toxic metals which have 
the similar structure, thus resulting in the enzymes inactivation or damage (Bruins et al., 2000). 
Heavy metals contaminants have posed great challenge to wastewater treatment. Large 

quantity of heavy metals are released from mineral rock weathering and anthropogenic 

sources such as metalliferous mining and smelting, electroplating, batteries, fertilizers, and 

pigments industries (Sirianuntapiboon & Ungkaprasatcha, 2007; Ong et al., 2005a). Due to 

their high toxicity and environmental recalcitrance, remediation of heavy metal is of urgent 

importance. Many techniques have been tried out to remove heavy metals from wastewater. 

Physicochemical methods, such as chemical precipitation, ion exchange, adsorption, 

electrolysis, chemical oxidation/reduction and membrane technologies, are found to be 

ineffective or rather expensive or generate toxic slurries (Liu et al., 2003; Pamukoglu & 

Kargi, 2006). Biological treatment is considered a promising technique for bioremediation of 

heavy metals wastewater, since it can degrade organic pollutant in the wastewater and 

simultaneously transform heavy metals. 

Aerobic granulation is a novel environmental biotechnological technique which draws 
intensive interest in the last 20 years. Aerobic granules, as defined as self-immobilized 
microbial aggregates, are usually cultivated in sequencing batch reactors (SBRs). When 
compared with conventional activated sludge, the aggregation of microorganisms into 
compact granules brings extra benefits such as excellent settleability, high biomass retention, 
diverse microbial structure, and the ability to resist high organic and toxic loadings (Su & 
Yu, 2005; Tay et al., 2001). Due to the excellent abilities of aerobic granular sludge, they have 
been employed to treat wastewaters containing organic pollutants, N, P, heavy metals, and 
dyes etc (Beun et al., 2001; Chen et al., 2008; Cheng et al., 2008; Liu et al., 2009; Wang et al., 
2007; Wang et al., 2010). 

Source: Environmental Management, Book edited by: Santosh Kumar Sarkar,  
 ISBN 978-953-307-133-6, pp. 258, September 2010, Sciyo, Croatia, downloaded from SCIYO.COM
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Heavy metals can be transformed into states with low mobility or toxicity by aerobic 
granules through physicochemical and biological processes. Cell walls and the extracellular 
polymeric substances (EPS) provide rich binding sites for metals. Microbial activities of 
aerobic graules are also capable of metal detoxification. Moreover, the unique layer 
structure of aerobic granules gives them addiditional advantages in metal-resistance. While 
bioremediating heavy metals, microbial activities of granules are stimulated or inhibited by 
metals depending on their concentrations. Aim of this study was to give a detailed 
description of the interaction between heavy metals and aerobic granular sludge, including 
possible metal-microbe interplay patterns, main metal uptake behaviour and mechanism, 
influence of metals on the reactor performance, and the metal-resistance strategies of aerobic 
granules. Better understanding of these interactions and influence factors helps to raise 
rational operation strategies for the bioremediation of heavy metals wastewaters. 

2. Metal-microbe interaction and metal speciation 

Bioavailability of heavy metals highly depends on environmental conditions, such as pH, 

alkalinity, redox potential, and activities of microorganisms (van Hullebusch et al., 2005a). 

Heavy metals mainly exist in the forms of Me2+, MeSO4, and MeCl- at pH<7, while 

MeHCO3+ and MeCO3 are dominant at pH>7 (Hietala & Roane, 2009). In the study of 

Sandrin & Maier (2002), the ionic cadmium (Cd2+) concentration at pH 4 was 44 mg/L while 

it decreased to 4 mg/L at pH 7. Metal bioavailability is enhanced under acidic conditions, 

thus increasing the potentional metal toxicity. Metal bioavailability is also influenced by 

redox potential. High redox potential (800 to 0 mV) favors metal solubility while low redox 

potential (0 to -400 mV) immobilises metal in precipitated forms (Hietala & Roane, 2009). 

Microbial bioremediation affects the fate of heavy metals. Heavy metals can not be degraded 

in microbial metabolism/co-metabolism process. Bioremediation of heavy metals is 

accomplished by the conversions between inorganic and organic forms or the inorganic 

valence changes through redox (Ramasamy et al.,2007). At least four general approaches are 

involved in the bioremediation of heavy metals, which are summarized in Fig.1. 

1. Biosorption 
Biosorption between positively charged heavy metals and negatively charged cell walls 
occurs commonly in the biological treatment system. Moreover, cell walls and EPS secreted 
by cells consist of complex substances, such as lipopolysaccharides, proteins and 
carbohydrates. These chemicals contain abundant functional groups which provide sorption 
sites for metal binding and metal immobilization. 
2. Intracellular bioaccumulation 
Heavy metal can be accumulated within cells via membrane transport systems. Heavy 
metals are first bound to extracellular ligands and then get transported through cell wall 
with these ligands. Once inside the cell wall, metals are inactived, localized within 
intracellular structures, or participate in biochemical process (Sigg, 1987). 
3. Direct enzymatic reduction 
The principle of reductive biotransformation of heavy metals lies on the decrease of mobility 
and toxicity when metals are reduced to lower redox states. In the direct reduction process, 
metal-reducing microorganisms use the oxidized form of metals (such as Cr (VI), U (VI), and 
Tc (VII)) as electron accepters and transform them into reduced species (Cr (III), U (IV), and 
Tc (IV)). Aerobic or anaerobic reduction of Cr (VI) to Cr (III) has been accomplished by a 
wide range of microorganisms (Kamaludeen et al., 2003).  
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4. Indirect enzymatic reduction 
Reductive biotransformation also facilitates indirect metal immobilization. Metal-reducing 
and sulfate-reducing bacteria are usually involved in this process. Electrons extracted from 
the oxidation of organic compounds or hydrogen are used to reduce Fe (III), Mn (IV), and 
SO42- to Fe (II), Mn (III), and H2S. Heavy metals then interact with these reduced products to 
form separate or multicomponent insoluble species (van Hullebusch et al., 2005b). Indirect 
enzymatic reduction often happens in sedimentary and subsurface environments or in 
anaerobic wastewater treatment reactors. The most active reduced products are Fe (II) and 
H2S. Fe (II) is used as electron donor in the reduction of Cr (VI) to Cr (III) by Fe-reducing 
bacteria, such as Geobacter, Desulfuromonas, Shewanella, and Pelobacter. (Coates et al., 1996; 
Wielinga et al., 2001). Heavy metals in up-flow anaerobic sludge bed (UASB) reactors are 
often precipitated by sulphide produced by sulphate biological reduction, which enables the 
simultaneous removal of heavy metal, sulphate, and organic pollutants (De Lima et al., 2001; 
Sierra-Alvarez et al., 2006). 
 

 

Fig. 1. Possible metal-microbe interaction 

The speciation and bioavailability of heavy metals are highly affected by the physicochemical 
properties of wastewater treatment system and microbial activities. Heavy metals in the 
system usually can be classified to five groups (Li et al., 2009; van Hullebusch et al., 2006): 
1. Exchangeable fraction 
2. Carbonate fraction 
3. Fe/Mn oxide-combined fraction 
4. Organic matter/sulfides bound fraction 
5. Residual fraction 
Property of each fraction varies, making the total heavy metals concentration a poor 
indicator of metal bioavailability and toxicity. The residual and exchangeable fractions 
possess the highest mobility, since these metals can be easily released through ion exchange. 
Metals trapped in the Fe/Mn oxide will be leached if redox condition in the system changes. 
Organic matter always has high affinity towards heavy metals. However, decomposition or 
oxidation of organic ligands occur with time, resulting in the exposure of heavy metals. 
Sulfide fraction is insoluble and thus exhibits lower toxicity. However, chemical states of 
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sulfide are dependent on the system conditions. Metal release happens during the oxidation 
of sulfide precipitate under oxygen-rich conditions (Salomons, 1995). 

3. Biosorption of heavy metals by aerobic granular sludge 

Bioremediation of heavy metals can occur through several pathways. However, biotic and 
inactive sludge show limited differences in metal uptake capacity in batch mode studies. 
Sirianuntapiboon & Ungkaprasatcha (2007) studied the uptake capacity of bio-sludge 
towards Pb2+ and Ni2+. It was found that the uptake capacity decreased by 10-30% after 
autoclaving, indicating the significant role of adsorption in the remediation process. 

3.1 Biosorption behavior of aerobic granular sludge 
Various biosorbents, such as fungus, algae, bacteria, and activated sludge, have been used to 
remove heavy metals. The maximum adsorption capacities for Cd2+ of these biosorbents lie 
in a range of 22-153 mg/g, and those for Zn2+ and Cu2+ were 14-170 and 5.9-130 mg/g dry 
biomass (Liu et al., 2004). Table 1 summarizes the maximum adsorption capacities of 
granular sludge and some commercially available adsorbents. As can be seen from Table 1, 
aerobic granules have comparable adsorption capacities with other biosorbents. 
Furthermore, the dense structure and excellent settling ability of aerobic granular sludge 
make it more feasible than those suspended biosorbents. Aerobic granules also exhibited 
high removal capacities when compared with some commercially available resins and 
granular activated carbon (GAC). 
Biosorption of heavy metals is a rapid process and usually reaches equilibrium within 
several hours. The adsorption process experiences a relatively fast initial sorption followed 
by a slower and longer uptake. At the beginning of adsorption, a large number of vacant 
active sites are available for heavy metals, and the driving force provided by the metal 
concentration differences between the granule surface and solution is large. As the active 
sites are gradually occupied by metals, the adsorption process slows down. Heavy metals 
can enter the pores within the granules and subsequently get adsorbed. However, the 
interior adsorption needs to overcome lager mass transfer resistance.  
The adsorption capacity depends on various system parameters, such as pH, temperature, 
and ionic strength. Among them, pH is the most important factor by affecting the chemistry 
of both the biomass surface and heavy metals. The adsorption capacities of aerobic granules 
are usually enhanced at higher solution pH. For example, the biosorption capacities of 
aerobic granules increased from ~20 mg Pb2+/g to 44 mg Pb2+/g when the solution pH was 
increased from 3.0 to 4.0 (Yao et al., 2008). Cu (II) adsorbed by aerobic granules at pH 3 was 
19.25 mg/g and that at pH 5 was 36.72 mg/g (Gai et al., 2008). It is believed that the biomass 
surface is protonized at low pH. The protonized ligands and metal cations will compete for 
binding sites. As the pH increases, more functional groups with negative charges become 
exposed, which results in the biosorption capacity enhancement (Gai et al., 2008; Hawari & 
Mulligan et al., 2006a). Higher temperature always favors the adsorption process through 
the increase in surface activity and kinetic energy of the solute (Sag & Kutsal, 2000). 
However, the influences of temperature are usually insignificant and operating the 
adsorption system at high temperature is impractical. 
Table 1 also shows even in the same system, the adsorption affinity varies for different 
metals. The metals are adsorbed preferentially in the order of Pb (II)> Zn (II)> Cu (II)> Cd 
(II)> Ni (II)> Co (II), which maybe related with the covalent index of metal ions (Brady & 
Tobin, 1995; Leung et al., 2001; Puranik & Paknikar, 1999). 
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Adsorbent Metal 
qmax 

(mg/g dry 
biomass) 

pH Reference 

Aerobic granules Cd (II) 566 7 Liu et al, 2003 
Aerobic granules Pb (II) 87.7 5.5 Yao et al., 2008 
Aerobic granules 

 
Co (II) 
Zn (II) 

55.5 
62.5 

7 
5 

Sun et al., 2008 

Aerobic granules 
Cd (II) 
Zn (II) 
Cu (II) 

625 
204 
52.9 

7 
6 
5 

Liu et al., 2004b 

Anaerobic granules 
Co (II) 
Ni (II) 

8.4 
7.9 

6 
van Hullebusch et 

al., 2004 

Calcium treated 
anaerobic granules 

Pb (II) 
Cd (II) 
Cu (II) 
Ni (II) 

255 
60 
55 
26 

5.5 
Hawari & Mulligan, 

2006a 

Commercial resins 
Duolite GT-73 

Pb (II) 
Cd (II) 
Cu (II) 
Ni (II) 

122 
105 
61 
60 

4.5-5.0 Vaughan et al., 2001 

Commercial resins 
Amberlite IRC-718 

Pb (II) 
Cd (II) 
Cu (II) 
Ni (II) 

290 
258 
127 
129 

4.5-5.0 Vaughan et al., 2001 

GAC Pb (II) 26 4.0-4.5 Suh & Kim, 2000 

Table 1. Maximum adsorption capacities (qmax) of different sorbents towards heavy metals 

3.2 Metal speciation in aerobic granular sludge and adsorption mechanism 

Several mechanisms have been proposed for the uptake of heavy metals by biomass, 

including ion exchange, complexation, and precipitation. Table 2 summarizes the 

contribution of different mechanisms in some biosorption processes. Among them, ion 

exchange seems to be dominant except in the study by Yao et al. (2009), where complexation 

is mainly responsible for the heavy metal uptake. 

Heavy metal sorption is associated with the simultaneous release of light metal ions (Ca2+, 

Mg2+, K+, and Na+) in the ion exchange process. Light metal cations, especially Ca2+, are 

found to enhance sludge granulation, and thus are always added in the granulation process 

(Jiang et al., 2003; Mahoney et al., 1987). One of the possible promotion mechanisms is the 

formation of EPS-Ca2+-EPS bridge or cell-Ca2+-cell linkage (Liu et al., 2002). Sites initially 

occupied by these light cations are substituted by metals in the adsorption process. 

Heavy melts biosorption by complexation is accomplished by binding of metals to EPS. EPS 

is a mixture of macromolecular polyelectrolytes including polysaccharides, proteins, and 

nucleic acids. EPS is an essential component for the aerobic granulation and the subsequent 

three-dimensional matrix maintenance (Sheng & Yu, 2006). In addition, the abundant 

functional groups, such as carboxylate, hydroxyl, amide, and amine groups, create 

complexation sites for metal binding. EPS produced by Paenibacillus jamilae had a maximum 

complexation capacity of 230 mg Pb/g EPS (Morillo et al., 2006). Loosely bound EPS (LB-
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EPS) and tightly bound EPS (TB-EPS) were extracted from aerobic granules and used as 

biosorbents to remove Zn2+ and Co2+ (Sun et al., 2009). Results show that LB-EPS was more 

efficient in heavy metals uptake than TB-EPS. The adsorption capacities of LB-EPS and TB-

EPS for Zn2+ were 6.9 and 1.1 mg/mg EPS respectively and those for Co2+ were 5.5 and 1.5 

mg/mg EPS. Xu & Liu (2008) studied the metal-EPS complexation in aerobic granules by 

fourier transform infrared (FTIR) spectroscopy. Table 3 summarizes the main functional 

groups on aerobic granules and the FTIR spectroscopy changes after metal adsorption. The 

main functional groups involved in the metal binding were alcoholic, carboxylate, amine 

and ether groups. Realizing the important role of functional groups, Sun et al. (2010) used 

polyethylenimine to enhance amine groups on aerobic granules. This surface modification 

successfully increased the Cr (VI) uptake capacity of granules by 274%. 

 

Adsorption mechanisms 

Adsorbent Metal Ion 
exchange 

(%) 

Complexation 
(%) 

Precipitation 
(%) 

Reference 

Aerobic 
granules 

Cd (II) 
Cu (II) 
Ni (II) 

75.51 
71.31 
82.43 

19.36 
16.19 
14.20 

5.13 
12.50 
3.37 

Xu & Liu, 
2008 

Anaerobic 
granules 

Pb (II) 
Cu (II) 
Cd (II) 
Ni (II) 

51 
77 
82 
98 

20 
18 
15 
0 

29 
0 
0 
0 

Hawari & 
Mulligan, 

2006b 

Aerobic 
granules 

Cr (III) 11.2 60.3 18.7 
Yao et al., 

2009 
Aerobic 
granules 

Cu (II) ~70 Unknown Unknown 
Gai et al., 

2008 

Table 2. Contribution of different mechanisms to heavy metals biosorption 

Except ion change and complexation, heavy metals can also be removed from aqueous 
solutions by chemical precipitation. New crystals as CdCO3 and Cu2(OH)3Cl were detected 
in aerobic granules by X-ray diffraction analysis (XRD) after exposure to Cd2+ and Cu2+ (Xu 
& Liu, 2008). As compared with ion exchange and complexation, the distribution of 
precipitation was minor (Table 2). 

4. Effects of heavy metals on the aerobic granular sludge system 

Heavy metals occurring at low concentrations are essential for many physiological and 
biochemical processes of microorganisms. Metals are often involved in the enzyme system. Co 
works as a cofactor in vitamin B12 and methyltransferase which play key roles in 
methylotrophic methanogenic pathway (Beveridge & Doyle, 1989). Ni is essential for methyl-
CoM-reductase and uerase while Fe and Cu are of vital importance for NO-reductase, nitrite 
reductase, and ammoniummonooxygenase (Ensign et al., 1993; Ferguson, 1994; Hausinger, 
1994). While acting as essential trace elements for microbial metabolism, metals at high 
concentrations introduce inhibition and toxicity to living organisms. Sandrin & Maier (2003) 
presented three inhibition patterns of heavy metals (Fig. 2). In the first pattern (Fig. 2A), the 
inhibition of heavy metals is proportional to their concentrations. In pattern B, low 
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concentrations metals simulate microbial activity while inhibition begins to show up at high 
metal concentrations. This phenomenon is usually found in the mixed consortia system. The 
simulation at low metal concentrations can be attributed to the differential toxicity effects. 
Metals may select for a metal-resistant, functional population while inhibiting a metal-
sensitive, non-functional population. Differential toxicity effects reduce competition for 
resource needed by the metal-sensitive, non-functional population, thus resulting in apparent 
simulation. In pattern C, metals exhibit inhibition at low concentrations. However, inhibition, 
after a maximum level, becomes milder under higher metal concentrations. This may be the 
results of microbial community evolution for high metal-resistant microorganisms or more 
efficient detoxification mechanism induced at high metal concentrations. 
 

Wave number (cm-1) 

Vibration type Functional type 
Granules 

Cd2+ 
loaded 

granules 

Cu2+ 
loaded 

granules 

Ni2+ 
loaded 

granules 

Overlapping of 
stretching vibration 

of OH and NH 

OH into 
polymeric 

compounds and 
amine 

3407 3414 
3346, 
3335 

3402 

Asymmetric 
stretching vibration 

of CH2 
 2928 2927 2928 2928 

Stretching vibration 
of C=O 

Carboxylic acids
 

1725 
Intensity 
decrease 

1725 
Intensity 
decrease 

Stretching vibration 
of C=O and C–N 

(amide I) 

Protein 
(peptidic bond) 

1648 1648 1648 1648 

Stretching vibration 
of C–N and 
deformation 

vibration of N–H 
(amide II) 

Protein 
(peptidic bond) 

 
----- 1520 1535 1520 

C-H bending  1488 1488 1468 1488 
Bending of C–O–H alcoholic group ---- 1384 1385 1385 

Deformation 
vibration of C=O 

Carboxylic acids 1261 1245 1240 1244 

Bending vibration of 
C–O 

Polysaccharides 1082 1082 ------- 1082 

Stretching vibration 
of OH 

Polysaccharides 1056 1056 1056 1056 

“Fingerprint” zone 

Phosphate/ 
sulphur 

functional 
groups 

<1000 <1000 <1000 <1000 

Table 3. Functional groups on aerobic granules and wave number changes in FTIR 
spectroscopy after heavy metals adsorption (Adapted from Xu & Liu (2008)) 
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Fig. 2. Inhibition patterns of heavy metals (from Sandrin & Maier (2003)) 

4.1 Wastewater treatment performance in the presence of heavy metals 

Wang et al. (2010) investigated the toxicity of Cu (II) and Ni (II) on aerobic granular sludge 
in SBRs. The reactors were operated with 5 mg/L Cu (II) or Ni (II) for 26 days and then the 
metals concentration was increased to 15 mg/L. Results show that biomass growth in the 
reactor was inhibited by 5 mg/L of Cu (II), while Ni (II) stimulated biomass yield even 
under the concentration of 15 mg/L. Influences of heavy metals on the SBRs treatment 
performance were shown in Fig. 3. Chemical oxygen demand (COD) and NH4+-N removal 
were slightly inhibited by 5 mg/L of Cu (II) in the first ten days. However, prolonged metal 
addition and increased metal concentration decreased COD degradation efficiency to 
60%~80%. SBRs exhibited poor nitrification efficiency (~20%) when the concentration of Cu 
(II) was increased to 15 mg/L. Ni (II) had milder toxicity on aerobic granules activities when 
compared with Cu (II). Even at the concentration of 15 mg/L, Ni (II) caused slight reduction 
in COD and NH4+-N removal efficiency. 
Evident NO2--N accumulation was observed in the first ten days of Cu (II) addition. 
Howver, COD degradation at this time was comparable with the metal-free control, 
indicating the sensitivity of nitrifying bacteria. The higher sensitivity of nitrifiers to heavy 
metals than heterotrophs are widely reported. Fluorescent in situ hybridization (FISH) 
analysis of Principi et al. (2006) revealed dramatic decrease in the abundance of β-
proteobacteria under metal addition, which comprised ammonia-oxidizing bacteria. 
Stasinakis et al. (2003) also demonstrated nitrifying bacteria the most sensitive parts in the 
microbial community. Heavy metal can influence phosphorus removal through affecting 
alkaline phosphatase activity (APA). Zn2+ and Cu2+ at the concentration of 5.0 mM had an 
obvious inhibitive effect on the APA while Mn2+, Co2+, Pb2+ and Cr6+ ions stimulated the 
APA (Xie et al., 2010). 
Among the metals investigated, Cu (II) always induces higher toxicity while Pb (II) 
processes the least toxicity (Lin & Chen, 1997; Li & Fang, 2007). Metals exert their toxicity on 
microorganisms through one or more mechanisms. Metal cations may substitute for 
physiologically essential cations within an enzyme (e.g., Cd2+ may substitute for Zn2+ or 
Ca2+; Ni2+ substitutes for Fe2+; Zn2+ substitutes for Mg2+ ), thus inhibiting the function of the 
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enzyme (Nies, 1999). Metal oxyanions may take place of essential nonmetal oxyanions who 
are structurally similar with them. For example, arsenate may be used in place of phosphate. 
Besides the inactivation or damage of enzymes, Cu (II) also cause cytoplasmic membrane 
disruption. As a redox-active metal, Cu (II) can catalyze the production of free hydroxyl 
radicals and promote membrane lipid peroxidation (Howlett & Avery, 1997; Hu et al., 2003). 
 

 

Fig. 3. Influence of heavy metals on wastewater treatment in aerobic granular sludge 
system: (a) and (b) COD concentration and removal efficiency; (c) and (d) NH4+-N 
concentration and removal efficiency; (e) NO2--N concentration and (f) NO3--N 
concentration (from Wang et al. (2010)) 

4.2 Metal resistance of granular sludge 

Many researchers studied the effects of heavy metals on activated sludge system (Ong et al., 
2004; Ong et al., 2005b; Santos et al., 2005; Sirianuntapiboon & Ungkaprasatch, 2007; Tsai et 
al., 2006). However, results from these studies are difficult to be compared due to the 
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various metal bioavailability caused by different operation modes, substrate compositions, 
seed sludge sources and concentrations. The total organic carbon (TOC) removal efficiency 
of activated sludge process decreased from 98% to 88% in the presence of Ni (II) while the 
same Ni (II) loading rate exerted slight influence on aerobic granules system (Ong et al., 
2004; Wang et al., 2010). Table 4 gives the metal/VSS ratios causing 50% inhibition of 
microbial activity of anaerobic granules and flocculent sludge. Results show that granules 
always had higher toxicity-resistance than flocculent sludge. 
 

Specific 
methanogenic 

activity a 
 Acetate degradation b  Methane production b 

Metal 

UASB 
granules

Floccule
nt sludge

 
Intact 

granules 
Disintegrate
d granules 

 
Intact 

granules 
Disintegrate
d granules 

Cd >400 14.3  660 610  630 480 

Cr 310 27.4  770 660  510 380 

Cu 180 23.3  580 520  360 260 

Ni 120 745  450 300  240 180 

Zn 105 29.8  250 210  170 120 

a Adapted from Lin 1993 
b Adapted from Bae et al., 2000 

Table 4. Metal/VSS ratios (mg/g VSS) causing 50% inhibition of sludge activity 

Higher toxicity-resistance of granules is the benifit given by their unique physical, chemical, 
and biological properties, i.e., their compact sturcture, EPS, and dynamic microbial 
community. The spatial architecture of granules creates diffusion resistance. Taking 
dissolved oxygen (DO) as an example, it can only permeate 125 μm beblow the surface of a 
1.50 mm phenol-fed granule (Chiu et al., 2007). Through diffusion resistance, granular 
sludge reduce the heavy metals concentrations within the granules. 
 

 

Fig. 4. EPS staining of a phenol-degrading granule. Green: proteins; red: nucleic acids; blue: 
polysaccharides; yellow: proteins + nucleic acid; purple: nucleic acids+polysaccarides; A-
protein + nucleic acid layer, B-Polysaccharide layer, C-nucleic acid layer, D-protein + cells. 
(from Adav et al., 2007) 
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EPS acts as protective barrier in metal-resistance of aerobic granules. EPS, on one hand, 

reduces free metal concentrations by complexation, on the other hand, prevents toxicants 

from reaching microbes within the granules by diffusion limitation. Fig. 4 shows the EPS 

distribution in a phenol-degrading granule (Adav et al., 2007). The granule consists of a 

proteins and nucleic acids rich outer surface, followed by a polysaccharide layer. The inner 

core was filled with proteins and cells. This EPS matrix protected microorganisms from 

exposure to high concentrations of metals. Moreover, research also found that 

microorganisms could regulate EPS synthesis and modify EPS components (Sheng et al., 

2005; Wang et al., 2010). They would secrete more EPS in the presence of heavy metals, 

especially more proteins. In the study of Sheng et al. (2005), the EPS content increased by 

5.5, 2.5, and 4.0 times than the control when exposed to 30 mg/L Cu (II), 40 mg/L Cr(VI), 

and 5 mg/L Cd(II). 

Diffusion limitation develops important physic-chemical gradients (e.g., pH, Eh and oxygen) 

in aerobic granules. These various physic-chemical environments enable diverse microbial 

community. Heterotrophic and autotrophic bacteria, aerobe and anaerobe coexist in aerobic 

granules. Microorganisms can alternate their metabolic pathways or redistribute themselves 

to acclimate to meal toxicity. Viret et al. (2006) studied the influence of Zn (II) and Ni (II) on 

oxygen consumption of benthic microbial communities. The oxygen consumption at the 

surface was found to decrease by 60%-90% after Zn (II) and Ni (II) spiking. However, the 

oxygen consumption zone was stretched, implying the migration of aerobe into inner space 

to avoid metal toxicity or/and the metabolism switch of facultative aerobic microorganisms 

to aerobic respiration which is more efficient than the original fermentation. Wang et al. 

(2010) applied Biolog tests to analyze the substrate utilization patterns of aerobic granules 

before and after long-term metal addition. Principal component analysis of the Biolog tests 

and the hierarchical cluster analysis showed different groups based on metal treatment, 

indicating changes in microbial community structure induced by Cu and Ni (Fig. 5). 
 

 

Fig. 5. Effects of heavy metals on the microbial community investigated by (a) principal 
component analysis and (b) hierarchical cluster analysis of Biolog tests. (from Wang et al. 
(2010)). 
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5. Conclusion 

The interaction of heavy metals and aerobic granular sludge occurs on the surface and the 
inner space of sludge. These physical or biochemical processes are mainly based on sludge 
and are also influenced by environmental conditions and metal characteristics. Many 
studies have been conducted to uncover metals bioremediation by aerobic granular sludge 
and the effects of metals on sludge. These results are helpful for understanding the metal 
transformation and performance of aerobic granular sludge process. 
In bioremediation of heavy metals by aerobic granular sludge, adsorption accounts for most 
metal uptake. The high biomass retention, compact and porous structure, and excellent 
settling ability of aerobic granules enable them good performance in the biosorption of 
heavy metals. Aerobic granules show high adsorption capacities when compared with other 
biosorbents and some commercial adsorbents. Heavy metals can be adsorbed to aerobic 
granules by replacing the sites of light metal ions (such as Ca2+, Mg2+, K+, and Na+) which 
already exist in the high content EPS, or binding to the functional groups on EPS and cell 
wall. Chemical precipitation on the metal–sludge interface also contributes to metal sorption 
to granules. Further experiments and characterizations of aerobic granule are needed to 
interpret space distribution of adsorbed metals and the adsorption mechanisms. Besides, 
good stability and unique structure of aerobic granules provide opportunity to enhance 
desired surface functional groups by chemical modification, which leads an important field 
in biosorption. Aerobic granules possess superior settling ability, so the removal of heavy 
metals in a continuous reactor similar as UASB or SBR maybe more hopeful. 
Effects of heavy metals on the alive microbe are complicated, especially in the aerobic 
granular sludge reactor. The inhibition of heavy metal on aerobic granules depends on the 
metal species and concentrations. Organic pollutants degradation and nitrification are both 
negatively affected by the prolonged addition of high concentration heavy metals. However, 
higher toxicity-resistance than flocculent sludge has been proved in aerobic granules. This 
could be attributed to the unique compact structure and diverse microcosm. Diffusion 
resistance developed by the layer structure functions as barrier and buffer. The responses to 
heavy metal exposure are also of interest. Microbes in aerobic granules can regulate EPS 
synthesis and alternate their metabolic pathways to acclimate to meal toxicity. High 
concentration heavy metals should weaken the stability of whole microorganisms in the 
aerobic granules. Microbial test is a useful method for exploring sensitivity of different 
microorganisms to metals. Better understanding of metal biotransformation and responses 
of aerobic granules is essential for optimizing the aerobic granule reactor treating or 
exposed to heavy metals. 
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