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1. Introduction     

There exist different applications of the image processing, such as medical imaging, high 
definition television, virtual reality, remote sensing, ultrasound and radar imaging, etc. In 
these applications, it is necessary to restore an image (or frames of video sequence) and 
decrease a noise influence exploiting the filtering algorithms that form a part of a general 
image processing system. The images are corrupted by noise, in sensors employed or 
maybe, during signal transmission. Also, several kinds of noises are produced by natural 
phenomena (atmospheric, scattering, interference, etc.). Usually, real noises are described by 
different models, there exist impulsive, additive and multiplicative (speckle) ones. So, the 
image pre-processing efficient scheme should be one of important part in any vision 
application permitting to suppress a noise, saving the image performances, such as, edge 
and fine features preservation, and also the chromaticity properties for the multichannel 
(multispectral) images. This demands to have several efficient filtering schemes, which 
depend on noise type and priory information, in a pre-processing stage of image or video 
sequence processing system. The main objective of present chapter is to exhibit several 
justified approaches in restoration of the images and video sequences, which are usually 
affected by noise of different nature, which can be efficiently used in different applications 
of the multichannel (multispectral) images and sequences. Here, multispectral image is 
defined in such a way, where each a pixel is represented by a number of channels that carry 
out information about its spectral content. Multispectral images span the domain of images 
from conventional three-channel colour images to hyperspectral imagery with hundred of 
bands/channels used in remote sensing applications, medicine, spectrometry, etc. 
In literature, there exist a lot of algorithms that process two dimensional (2D) images 
(Franke et al., 2000); (Russo & Ramponi, 1996); (Schulte et al., 2006, 2007a, 2007b, 2007c); 
(Shaomin & Lucke, 1994); (Nie & Barner, 2006); (Morillas et al., 2005, 2006, 2008a, 2008b, 
2009); (Camarena et al., 2008, 2010); (Ma et al., 2007); (Amer & Schröder, 1996); (Xu, 2009). 
We compare the proposed 2D fuzzy framework with recently presented 2D-INR filter based 
on fuzzy logic (Schulte et al., 2007b), where a noise is detected preserving the fine features 
and edges in an image. Also, other promising classes of 2D processing algorithms are 
employed as comparative ones: 2D-AMNF, 2D-AMNF2 (Adaptive Multichannel 
Filters)(Plataniotis & Androutsos et al., 1997); (Plataniotis & Venetsanopoulos, 2000); 2D-

7

www.intechopen.com



Modelling, Simulation and Identiication130

 

AMNIF (Adaptive Multichannel Filter using Influence Functions) (Ponomaryov et al., 2005); 
(Plataniotis & Venetsanopoulos, 2000); 2D-GVDF (Generalized Vector Directional Filter) 
(Trahanias & Venetsanopoulos, 1996); 2D-CWVDF (Centered Weighted Vector Directional 
Filters) (Lukac et al., 2004); and finally, 2D-VMF_FAS (Vector Median Filter Fast Adaptive 
Similarity) (Smolka et al., 2003). These techniques have demonstrated the better results 
among a lot of others known in literature. The principal drawback of all 2D processing 
algorithms is that they use only one frame of a video sequence and principally cannot use 
temporal correlation that exists between neighbouring frames to distinguish and decrease 
noise or motion in an image. This does not permit to suppress a noise efficiently, as well as 
to preserve the fine image features and restore the image chromaticity properties. Temporal 
information should be taken into consideration in the processing of the neighbouring frames 
together but straight averaging in temporal area the corresponding pixels to smooth a noise 
may introduce “ghosting” artifacts in the presence of camera and object motion. Such 
artifacts can be removed by motion compensation where a number of algorithms have been 
proposed with different computational complexity (Balster et al., 2006); (Jovanov et al., 
2009); (Kravchenko et al., 2009); (Mélange et al., 2008); (Zlokolica et al., 2005).  Thus, a 
desirable video noise filter should distinguish noisy and motional pixels as well as collect 
enough similar pixels adaptively from temporal to spatial directions. 
In this chapter, the fuzzy set theory and fuzzy logic that offer us a powerful tool for 
representing and processing human knowledge and intuition, incorporating them into the 
design are employed, which cannot be done using classical mathematical modelling. The 
fuzzy metric is considered more effective in comparison with classical measures, moreover, 
due to the non-stationarity of images and serious problems in distinguishing between noise, 
motions, and fine features and edges, fuzzy modelling is considered quite appropriate in 
video sequence filtering. Here, classical binary decisions are replaced by a gradual 
transition, which is more appropriate when dealing with complex systems. 
Unfortunately, a methodology, which gathers the advantages of each one of powerful  
techniques (order vector statistics and fuzzy set theory) usually employed in processing of 
images or video sequences, providing the better suppression noise capability, fine features 
preservation, as well as chromaticity characteristics, is not developed sufficiently. In present 
chapter, promising scheme is designed unifying the directional gradients and pixel angular 
divergence measure together with the robust vector order statistics processing techniques 
described previously (Ponomaryov, 2007); (Ponomaryov et al., 2010). The employing the 
designed fuzzy rules with fuzzy measure of a motion in a form of the membership degree in 
a 3D sliding-window gives the opportunity to preserve well the fine image features and 
restore the chromaticity properties. General operations of novel approach consist of the 
selection made in fuzzy means for any spectral band of an image: if there exist the edges and 
fine features, or noise, or may be some movement in the central pixel into sliding processing 
window. So, the framework does it possible to distinguish these characteristics inherent in 
multispectral images (or frames) using fuzzy rules designed in this chapter. They are 
applied to fuzzy-directional values to resolve the hypothesis: if a central pixel component is 
a corrupted one or not. In case of a corrupted pixel happened, some procedures in 
substitution of a central component with one of its neighbours are realized according to 
justified in fuzzy matter selection. 
 

 

We also realize the adaptation of several 2D algorithms in filtering of 3D video data: 3D-MF, 
3D-VGVDF (Trahanias & Venetsanopoulos, 1996), 3D-VVMF and 3D-VVDKNNVMF 
(Ponomaryov, 2007). Additionally, we have implemented the 3D-VKNNF, 3D-VATM 
(Zlokolica et al., 2006), and 3D-VAVDATM filters (Ponomaryov, 2007). Other fuzzy Logic 
techniques 3D algorithms (Saeidi et al., 2006), and (Zlokolica et al., 2006) are analyzed 
during modelling and in the simulation experiments. The first framework that is used to 
smooth Gaussian noise is the designed FDARTF_G (Fuzzy Directional Adaptive Recursive 
Temporal Filter for Gaussian Noise) that preserves the fine features, edges and chromaticity 
properties, and the second one, 3D-FCF (Fuzzy Temporal Spatial Colour Filter) operates in 
similar way as FDARTF_G only with some modifications for impulsive noise decreasing. To 
justify the effectiveness of introduced 3D techniques, the comparison with the better 
filtering frameworks that exist in video sequence processing were used (Zlokolica et al., 
2006); (Ponomaryov et al., 2009); (Schulte et al., 2006b); (Schulte et al., 2006a); (Mélange et al., 
2008). Reference filters: “Fuzzy Motion Recursive Spatio-Temporal Filter” (FMRSTF) 
(Zlokolica et al., 2006); an adaptation of FMRSTF employing only angles instead of 
gradients, named as “Fuzzy Vectorial Motion Recursive Spatio-Temporal Filter” 
(FVMRSTF); “Video Generalized Vectorial Directional Processing” (VGVDF) (Trahanias et 
al., 1996), “Video Median M-type K-Nearest Neighbour” (VVDKNNVMF) described in 
(Ponomaryov, 2007) were used as comparative in suppression of Gaussian noise, and 
algorithms 3D-MF, 3D-VGVDF, 3D-VVMF, 3D-VVDKNNVMF, 3D-VKNNF, 3D-VATM, 3D-
VAVDATM filters were used as comparative ones to evaluate 3D-FCF rendering during the 
simulations and modelling experiments. Numerical simulations have shown the better 
performance of original framework that outperforms existed methods in suppression of a 
noise of different nature increasing performances of a colour image and/or video data. The 
objective criteria used in modelling and simulation experiments of the different filtering 
algorithms are the Peak Signal-to-Noise Ratio (PSNR), Mean Absolute Error (MAE) and 
Normalized Colour Difference (NCD), (Plataniotis & Venetsanopoulos, 2000); (Ponomaryov, 
2007). Additionally, the subjective visual criterion in form of error of reconstructed 
multichannel image is used. 
Several designed promising algorithms as well as better existed ones were implemented on 
the DSP platform realizing analysis of the sequences or images in a real time environment 
(Mullanix et al., 2003); (Gallegos-Funes et al., 2009); (Kravchenko et al., 2009). 
The current chapter is organized as follows: Sec. 2 presents the model of noise usually 
employed in image processing applications and defines the objective criteria: PSNR, MAE 
and NCD. Sec. 3 exposes some promising recent schemes for simultaneous processing of 
different kinds of 2D-3D images and video sequences corrupted by noises (Gaussian and 
impulsive). Sec. 4 explains the original 2D-3D procedures to suppress additive and 
impulsive noises using two neighbouring frames for the motion, fine detail and edges, and 
noise detection in multichannel images and video sequences. Here, the numerous 
experimental results of modelling and simulations in form of the objective and subjective 
measures are presented, justifying the effectiveness of several proposed and existing 
approaches, and also the implementation of the better promising algorithms on the DSP 
platform realizing analysis of the sequences or images in a real time environment is 
discussed. A brief conclusion is drawn in Sec. 5. 
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divergence measure together with the robust vector order statistics processing techniques 
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designed fuzzy rules with fuzzy measure of a motion in a form of the membership degree in 
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a corrupted one or not. In case of a corrupted pixel happened, some procedures in 
substitution of a central component with one of its neighbours are realized according to 
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2007). Additionally, the subjective visual criterion in form of error of reconstructed 
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Several designed promising algorithms as well as better existed ones were implemented on 
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The current chapter is organized as follows: Sec. 2 presents the model of noise usually 
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2. Noise and Performance Criteria 

Real-world still images and video sequences are affected by random fluctuations in 
intensity, colour, texture, object boundary, or shape, and also by blurring blocking, and 
colour distortions. There are a lot of complex reasons for these fluctuations and distortions, 
often due to factors, such as non-uniform lighting, random fluctuations in object surface 
orientation and texture, sensor limitations, etc. The processing of such images or frames in 
video sequences can be treated as a problem of statistical inference, which requires the 
definition of a statistical model corresponding to the image and noise pixels employing the 
random field models. Combined with various frameworks for statistical inference, such as 
maximum likelihood (ML) and Bayesian estimation, random field models are used in image 
restoration, enhancement, classification, segmentation, compression and synthesis. The 
general model of image-noise representation consists of the random field definition that 
represents the multidimensional signal and the random process, together with the joint 
density that models the corruption mechanism (Bovik, 2000). 
Images are relatively broadband signals where the visual information may be at mid-to-high 
spatial frequencies, and significant image details: edges, lines, and textures typically contain 
higher frequencies. The classical but no efficient approach in noise suppression influence is 
the linear filtering algorithms where for a given filter type, different quality of smoothing 
can be received by adjusting the bandwidth of a linear filter. 

 
2.1 Additive Noise 
Optimal methods of linear filtering theory is useful when the corruption could be 
represented as a Gaussian process and the criterion of accuracy is the mean square error 
(MSE), but this assumption is not correct in most applications, for example in digital 
systems. Gaussian noise is a part of almost any signal where an additive Gaussian noise 
generally assumes zero-mean Gaussian distribution and is usually introduced during video 
acquisition. The additive model is most appropriate when the noise in this model is 
independent of an image. There are many applications of the additive model: thermal noise, 
photographic noise, and quantization noise, etc. 

 
2.2 Impulsive Noise in Image 
It is assumed that the noise process is impulsive noise if as a result many of the signal values 
do not change at all or change slightly and some signal values change dramatically, in other 
words, the change is clearly visible (Astola & Kuosmanen, 1997). In practice, the same 
number of bits is used to represent the noisy and the noise-free signal, usually 8 bits or 256 
levels 0, 1,..., 255. The realistic impulsive noise is modelled as bit errors in the signal values 
during transmitting the images or video sequences over noisy digital links. It is easy to 
calculate for a binary symmetric channel with a given crossover probability that the 
contribution to the MSE from the most significant bit is approximately 3 times that of all the 
other bits. Impulses are also referred to as outliers. 
Several types of impulsive models usually can be used. Some of them need the detail a 
priori information about the degradation process in each a channel for multichannel (or 
colour) multidimensional image. In our opinion, the complex models that need several 
parameters, which should be determined a priori or during the processing stage, have low 
tolerance, and so, such a model can produce confusion during the interpretation of filtering 

 

results (Ponomaryov at el, 2005); (Ponomaryov, 2007); (Kravchenko et al., 2009). Below, we 
use the simple and in the same time the most severe model of impulsive noise from point of 
view of image degradation. This model needs only prior information about the probability p 
of random spikes appearance, which are independent in each a channel. Additionally, the 
amplitude of impulsive noise is modelled as uniformly distributed random value within the 
interval of given values (0-255) for each a channel in the case of colour images. 

 
2.3 Mathematical Solutions Applied in Image-Noise Models 
We use the simplest model for additive Gaussian noise degradation 
 

      0, , ,x i j x i j n i j   ,  (1) 
 
where  0 ,x i j  is original image (or sequence frame),  ,x i j  is degraded image, and 

 ,n i j  is Gaussian additive noise. Also, such a model for noise influence in the case of 
impulse noise degradation is employed (Ponomaryov, 2007); (Kravchenko et al., 2009): 
 

 
    0, ,ix i j n x i j

,     0
0

random values with probability 
,

,  another casei

Ρ
n x i j

x i j


 


, (2) 

 
where  0 ,x i j  is original image (or sequence frame),  ,x i j  is degraded image, and 

  0 ,in x i j  the above presented function.  

In the case of multiplicative noise degradation, the model (2) can be represented in the form 
(Kravchenko et al., 2009): 
 

 
      0, , ,speckle i mx i j n i j x i j 

,  (3) 
 

where  ,mn i j  denote multiplicative (speckle) noise. 
The eqs. (1-3) represent the basic models in degradations by noise. For multichannel images 
it is necessary to apply eq. (2) for each a channel. 
In the case of multidimensional image representation, the model (2)-(3) is changed, and for 
3D discrete image can be rewritten as follows: 
 

 
      0, , , , , ,speckle i mx i j k n x i j k i j k 

,  (4) 
 

where  0 ( , , )in x i j k  is the functional     
i

0
0

noise  n  with probability 
, ,

, , ,  otherwisei

p
n x i j k

x i j k


 


, and 

 , ,specklex i j k  is a noisy observation (i.e., the recorded image) of the 3-D function  0 , ,x i j k  

www.intechopen.com



Order Statistics - Fuzzy Approach in Processing of Multichannel Images and Video Sequences 133
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where  ,mn i j  denote multiplicative (speckle) noise. 
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(i.e., the noise-free image that has to be recovered),  , ,m i j k  is the corrupting 
multiplicative (speckle) noise component. 

 
2.4 Objective and Subjective Criteria 
To model and evaluate different filters and compare their performances, several criteria are 
used, such as: the peak signal-to-noise ratio (PSNR) for the evaluation of noise suppression; 
the mean absolute error (MAE) for quantification of edges and fine feature preservation and 
the normalized colour difference (NCD) (Plataniotis & Venetsanopoulos, 2000): 
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multichannel) error; *L , *u , and *v  are the difference in the *L , *u , and *v  
components, respectively, between the two colour vectors that present the filtered image 
and uncorrupted original one for each a pixel (i,j) of an image; and 
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original image pixel vector in the * * *L u v  space. It has been proved that the NCD objective 
measure expresses well the colour distortion (Plataniotis & Venetsanopoulos, 2000).  

 
3. Some Efficient Frameworks in Video Sequences Processing 

Let present several promising approaches that are used in video sequence filtering. 

 

3.1 Motion-Compensated 3-D LLMMSE Filter 
In this approach (Yin et. al., 2007), an image-noise model is supposed to be a sum of an 
image and the signal-independent, additive, spatio–temporal invariant white noise. Uniform 
temporal filtering area is adaptively grown according to the motion estimation status of the 
adjacent candidate frames. So, the frames with higher temporal correlation are motion-
compensated to the current one. The pixel aggregation algorithm is used to include the 
homogeneous adjacent pixels and exclude the outlier (noisy) pixels. An adaptive weighted 
local mean and variance improve the filtering performance. When a pixel within the 
filtering support deviates from the current pixel beyond a defined threshold in terms of 
intensity, its weight is decreased to deemphasize its contribution to the local mean and 
variance estimation. 
The spatio–temporal LLMMSE estimate of the pixel at the spatial position i, j of the k-th 
frame is given by adaptive Wiener filtering algorithm 
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where ( , , )x i j k is the mean estimate of the current pixel in the local spatio–temporal area, 
which is a cuboid window centered about the current pixel. In the same area, the variance 
estimate of ( , , )x i j k  can be computed, and also local estimate of dispersion can be found 

0

2 2 2ˆ ˆ ˆmax x nx
      . The robust block-matching motion estimator is employed here, 

where all candidate motion vectors are checked to select the right motion vector within an 
adaptively uniform area with enough spatial gradients. With the motion field obtained, the 
adjacent frames are compensated with respect to the current frame selecting the data used in 
filtering stage. The 8 per 8 blocks are used for motion estimation, finally presenting the 
results in the form of the dark blocks that mark the temporal stationary data in the current 
data, which form the temporal filtering samples; on the other hand, the white blocks 
represent the regions containing temporal non stationarity on the data. In general, the more 
adjacent frames a filter are used, the higher denoising capability it can achieve. However, 
the more temporal blurring can be due to increasing imperfection of motion compensation. 
In general, the candidate frames having higher temporal correlations with respect to the 
current frame are selected to grow the temporal data to be filtered. 

 
3.2 Inter-frame Model of Wavelet Coefficients 
In this approach (Yin et. al., 2007), an image-noise model is supposed to be a sum of image 
(Mahbubur Rahman et. al., 2007). In order to take into account the correlation between the 
wavelet (WL) coefficients of any two neighbouring frames, a joint statistical model in form 
bivariate Gaussian distribution for the video wavelet coefficients can be used. The joint 
density function takes into account one of the essential variabilities of the video WL 
coefficients of the neighbouring frames (the motion). So, the video WL coefficients are zero-
mean conditionally independent bivariate Gaussian random variables with slow-varying 
variance and covariance. This model is a base for developing a bivariate maximum a 
posteriori (MAP) estimator for spatial filtering of a noisy video. 

www.intechopen.com



Order Statistics - Fuzzy Approach in Processing of Multichannel Images and Video Sequences 135
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Let present several promising approaches that are used in video sequence filtering. 
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In this approach (Yin et. al., 2007), an image-noise model is supposed to be a sum of an 
image and the signal-independent, additive, spatio–temporal invariant white noise. Uniform 
temporal filtering area is adaptively grown according to the motion estimation status of the 
adjacent candidate frames. So, the frames with higher temporal correlation are motion-
compensated to the current one. The pixel aggregation algorithm is used to include the 
homogeneous adjacent pixels and exclude the outlier (noisy) pixels. An adaptive weighted 
local mean and variance improve the filtering performance. When a pixel within the 
filtering support deviates from the current pixel beyond a defined threshold in terms of 
intensity, its weight is decreased to deemphasize its contribution to the local mean and 
variance estimation. 
The spatio–temporal LLMMSE estimate of the pixel at the spatial position i, j of the k-th 
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where ( , , )x i j k is the mean estimate of the current pixel in the local spatio–temporal area, 
which is a cuboid window centered about the current pixel. In the same area, the variance 
estimate of ( , , )x i j k  can be computed, and also local estimate of dispersion can be found 
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where all candidate motion vectors are checked to select the right motion vector within an 
adaptively uniform area with enough spatial gradients. With the motion field obtained, the 
adjacent frames are compensated with respect to the current frame selecting the data used in 
filtering stage. The 8 per 8 blocks are used for motion estimation, finally presenting the 
results in the form of the dark blocks that mark the temporal stationary data in the current 
data, which form the temporal filtering samples; on the other hand, the white blocks 
represent the regions containing temporal non stationarity on the data. In general, the more 
adjacent frames a filter are used, the higher denoising capability it can achieve. However, 
the more temporal blurring can be due to increasing imperfection of motion compensation. 
In general, the candidate frames having higher temporal correlations with respect to the 
current frame are selected to grow the temporal data to be filtered. 

 
3.2 Inter-frame Model of Wavelet Coefficients 
In this approach (Yin et. al., 2007), an image-noise model is supposed to be a sum of image 
(Mahbubur Rahman et. al., 2007). In order to take into account the correlation between the 
wavelet (WL) coefficients of any two neighbouring frames, a joint statistical model in form 
bivariate Gaussian distribution for the video wavelet coefficients can be used. The joint 
density function takes into account one of the essential variabilities of the video WL 
coefficients of the neighbouring frames (the motion). So, the video WL coefficients are zero-
mean conditionally independent bivariate Gaussian random variables with slow-varying 
variance and covariance. This model is a base for developing a bivariate maximum a 
posteriori (MAP) estimator for spatial filtering of a noisy video. 
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Let define fj(k) as the WL coefficients for a given sub-band of the j-th frame, where, for 
simplicity k is used to represent two-dimensional spatial indexes. The WL coefficients of the 
previous neighbouring frames are denoted as fi(k). Because the correlation coefficient 
represents the linear relationship between the two random processes, so, for a given sub-
band video WL coefficients, the amount of motion that exists between any two frames can 
be indirectly measured by correlation coefficient. So, it is preferable to use the sub-band 
dependent correlation parameter r as an index of the motion. The higher the value of r is, the 
lower the amount of motion between the sub-bands of the two neighbouring frames will be, 
and vice versa.  
To define the joint density function WL coefficients for the current frame and any of the 
previous frames, the motion index is used. The bivariate Gaussian density function with a 
strong dependency between two random processes is elliptic, so, the coefficients of any two 
frames with very little motion can be modelled using this density function. For a relatively 
large motion, this coefficient can be assumed to be zero. 
The joint PDF (Probability Density Function) of WL coefficients for the current frame and 
any of the previous frames is written as: 
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If the pixels of the video frames are corrupted by additive white Gaussian noise and the 
variance is unknown, it may be estimated by applying the median absolute deviation 
method in the highest sub-band of noisy WL coefficient. Noisy WL is presented as a sum of 
coefficients of a frame and noise. 
First, let develop a bivariate MAP estimator to estimate the image WL coefficients of the 
current frame denoted as xi(k), applying the correlation information of the j-th previous 
frame into account. The variances and covariances are estimated from the bivariate 
maximum likelihood (ML) estimator. In the second step, the estimated coefficients xi(k) are 
passed through a recursive temporal averaging filter for additional noise reduction. At the 
last step, the denoised coefficients, denoted as ˆ ( )ix k , are inverse transformed to obtain the 
denoised video frame. The bivariate MAP estimator for WL coefficients is defined in the 
current frame from the noisy versions of the current frame and the i-th previous frame and 
can be written using eq. (8) and Gaussian PDF for noisy observation: 
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Therefore, the statistical model for the near frame video WL coefficients is considered as 
locally independent and identically distributed (i.i.d.) bivariate Gaussian distribution with 
conditional mean, variance, and covariance that are calculated locally for each index k. 

 
3.3 Wavelet-Domain and Motion-Compensated Video Denoising  
This video denoising approach (Jovanov et al., 2009) exploits the idea of the motion 
estimation resources from the video coding module for video denoising. A novel motion 
field filtering step refines the accuracy of the motion estimates to a degree that is required 
for video denoising. Additionally, a novel robust temporal filtering against errors in the 
estimated motion field is proposed. Here, it is assumed that the video sequences are 
contaminated with the additive white Gaussian noise, with zero mean and known variance. 
The denoising approach is based on spatio-temporal filtering that combines WL spatial 
filtering, which is preceded by pixel-domain temporal filtering. 
The basic idea in temporal algorithm is to compare the MAD between the corresponding 
blocks with the average MAD, and decide if motion is present or not. The proposed motion 
filtering method is particularly effective in suppressing spurious background motion 
vectors. The threshold THR for motion detection in the k-th frame in this filtering step is 
used to decide whether motion exists in each block. If the MAD<THR, both motion vector 
components are set to zero. Otherwise, the motion vector keeps its original value. 
The idea of Motion Compensated Temporal Filter is to control switching between weaker 
and stronger temporal smoothing based on a motion detection variable. At positions where 
no motion was detected, a standard recursive temporal filter is applied. At moving positions 
the filtering is realized, but this time along the estimated motion trajectory, using different 
filter coefficients. This covers the situation when the estimated motion is not perfect 
permitting a different degree of temporal smoothing for moving and for non-moving areas. 
The proposed motion compensated filter is written as 
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where   and   are the fixed parameters in recursive filter in static and moving areas. The 

values ,1 k
i j  and ,1 k

i j  are data driven factors for these parameters. The factor ,1 k
i j  

increases the influence of current frame pixel value ,
k
i jd  in the case when prediction error   

is large. The influence of 1
,

k
i p j qd 
   on the filtering result is in this case simultaneously 

suppressed through ,1 k
i j  (which is close to zero). Otherwise, when the prediction error   

is small, the factor ,1 k
i j  is close to 1, enforcing smoothing along the estimated motion 

trajectory. 
At the second stage of framework, the temporal filter is combined with a wavelet domain 
spatial filter using a fuzzy-logic version of the spatially adaptive Probability Shrink that is 
applied to each wavelet coefficient a shrinkage factor, which is a function of two 
measurements: the coefficient magnitude and a local spatial activity indicator that indicates 
the fine feature changes.  
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Let define fj(k) as the WL coefficients for a given sub-band of the j-th frame, where, for 
simplicity k is used to represent two-dimensional spatial indexes. The WL coefficients of the 
previous neighbouring frames are denoted as fi(k). Because the correlation coefficient 
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If the pixels of the video frames are corrupted by additive white Gaussian noise and the 
variance is unknown, it may be estimated by applying the median absolute deviation 
method in the highest sub-band of noisy WL coefficient. Noisy WL is presented as a sum of 
coefficients of a frame and noise. 
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current frame from the noisy versions of the current frame and the i-th previous frame and 
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Therefore, the statistical model for the near frame video WL coefficients is considered as 
locally independent and identically distributed (i.i.d.) bivariate Gaussian distribution with 
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This video denoising approach (Jovanov et al., 2009) exploits the idea of the motion 
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used to decide whether motion exists in each block. If the MAD<THR, both motion vector 
components are set to zero. Otherwise, the motion vector keeps its original value. 
The idea of Motion Compensated Temporal Filter is to control switching between weaker 
and stronger temporal smoothing based on a motion detection variable. At positions where 
no motion was detected, a standard recursive temporal filter is applied. At moving positions 
the filtering is realized, but this time along the estimated motion trajectory, using different 
filter coefficients. This covers the situation when the estimated motion is not perfect 
permitting a different degree of temporal smoothing for moving and for non-moving areas. 
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i j  is close to 1, enforcing smoothing along the estimated motion 

trajectory. 
At the second stage of framework, the temporal filter is combined with a wavelet domain 
spatial filter using a fuzzy-logic version of the spatially adaptive Probability Shrink that is 
applied to each wavelet coefficient a shrinkage factor, which is a function of two 
measurements: the coefficient magnitude and a local spatial activity indicator that indicates 
the fine feature changes.  
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3.4 Video denoising by fuzzy motion and detail adaptive averaging-FMDAF  
A fuzzy-rule-based algorithm for the denoising of video sequences (Melange et al., 2008)  
corrupted with additive Gaussian noise constitutes a fuzzy-logic-based improvement of a 
recent detail and motion adaptive multiple class averaging filter (MCA) (Zlokolica et al., 
2003). Last framework to avoid the spatio-temporal blur, only takes into account 
neighbouring pixels from the current frame in case of detected motion. So, to preserve the 
details, the filtering should be less strong when large spatial activity is detected in a current 
window. The filtering window used in the framework is a 3 3 2   sliding window, 
consisting of pixel windows in the current and previous frames. The output of the proposed 
filter for the central pixel in the window is determined as a weighted adaptive average of 
the pixel values in the 3 3 2   window: 
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The absolute greyscale difference (gradient) between the two spatial-temporal pixel 
positions is computed as , ,( , , , ) ( ) ( )t tr t r t x r x r      ; the function indicating the local 

detail amount is presented by 
1/2

2

, ,( , ) ( ) ( )t t
r

r t x r x r  


      
 ; and the motion indicator 

, , 1( , ) t tm r t x x     is measured as the absolute difference between the average grey 

values in the windows for the current and previous frames. In the MCA filter, the pixels are 
classified into four discrete index classes, depending on the ( , , , )r t r t   value. When details 
are detected in a region, higher weights area assigned to pixels that are similar to the pixel 
being filtered (pixels from the lower index classes, which have smallest ( , , , )r t r t   values), 
preserving these details. In homogeneous regions, the difference in weight compared to 
pixels from the higher index classes will be smaller, and strong filtering is to be performed. 
Exponential model for averaging function ( , , , )Q r t r t  , which depends on the amount of 
detail, motion, and class index inversely proportional, has been used. 
Fuzzy motion and detail adaptive video filter, FMDAF employs the idea of MCA framework 
and the values ( , , , )r t r t  , ( , )r t  and ( , )m r t . The model of exponential functions is 
changed by fuzzy logic framework with linguistic variables, introducing one fuzzy set Large 
Difference for the values ( , , , )r t r t  . If a difference ( , , , )r t r t   has a membership degree 
one in the fuzzy set Large Difference, then this means that this difference is large for sure. A 
membership degree equal to zero exposes the certainty that the difference is not large. 
A linguistic variable “Large” that has been proposed for the difference ( , , , )r t r t  , is also 
introduced for the motion value ( , )m r t  and for the detail value ( , )r t  defining the fuzzy 
sets Large Motion and Large Detail. A linguistic variable “Reliable” to indicate whether a given 
neighbourhood pixel is reliable to be used in the filtering of the central window pixel, and is 
represented by the fuzzy set “Reliable Neighbourhood Pixel”. Finally, the weight ( , , , )Q r t r t   
for the pixel at position ( , )r t   is now defined as the degree, to which it is reliable to be used 

 

in the filtering of the central window pixel, i.e., its membership degree in the fuzzy set 
“Reliable Neighbourhood Pixel”. The presented fuzzy rule 1 or 2 are depended on whether 
current t t   or previous 1t t    frames positions. 
Fuzzy rule 1. Assigning the membership degree in the fuzzy set “Reliable Neighbourhood 
Pixel” of the pixel at spatial position r   in the current frame ( )t t   of the window with 
central pixel position (r, t): 
IF [the detail value ( , )r t  is large AND the difference ( , , , )r t r t   is not large] OR [the 
detail value ( , )r t  is not large)] THEN the pixel at position ( , )r t   is a Reliable 
Neighbourhood Pixel for the filtering of the central window pixel. 
Fuzzy rule 2. Assigning the membership degree in the fuzzy set “Reliable Neighbourhood 
Pixel” of the pixel at spatial position r   in the previous frame ( 1)t t    of the window 
with central pixel position (r, t): IF { [the detail value ( , )r t  is large AND the difference 

( , , , )r t r t  is not large] OR [the detail value ( , )r t  is not large] } AND the motion value 
( , )m r t  is not large THEN the pixel at position ( , )r t   is a Reliable Neighbourhood Pixel for the 

filtering of the central window pixel. 
Finally the described framework FMDAF adapts better to motion than the RMCA method as 
results reported in paper (Melange et al., 2008) indicates. 

 
4. Fuzzy-Angular Deviation Frameworks in Denoising of Video Sequences 

4.1. Additive Noise Suppression 
4.1.1. 2D Spatial Noise Filtering 
The filtering procedure includes the Histogram Calculation, Noise Estimation, and Spatial 
Algorithm Operations. A mean value x  ( ( , , )Red Green Blue   in a colour image) is 
found in a sliding 3x3 processing window; later, the angle between two vectors deviation is 
computed agree to (Ponomaryov et al., 2007), mean value (  , ,R G BX x x x ), and central 

pixel  , ,cR cG cBY x x x ) is calculated. Finally, the probabilities: pj, the mean value  , the 

variance 2
 , and standard deviation (SD) ' 2

     should be calculated. Two processing 

windows: large 5x5, and into it, small 3x3 one, are employed in this scheme. 
Let denote as ( , )i i cA x x   the angle deviation xi in respect to xc, where 

0,1,...,8, ,i i c c central pixel   . The Spatial Algorithm is employed realizing the 
following IF-THEN rule for filtering the first frame only: 

1 3 4 6 1 0 2 5 7 1( ) ( )IF AND AND AND OR AND AND AND            THEN Mean 
Weighted Filtering ELSE Spatial Filtering Algorithm. The “AND” operation is defined as 
“Logical AND”, the “OR” operation is “Logical OR”. The Mean Weighted Filtering Algorithm 
is realized using angle deviations as weight criteria (Ponomaryov et al., 2007). 
If the spatial algorithm is selected, the processing is realized in each a colour plane using 
locally adapted SD   around of mean value 5 5x   found in sliding 5x5 processing 

window, adjusting it as follows: If      then      otherwise     . 
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3.4 Video denoising by fuzzy motion and detail adaptive averaging-FMDAF  
A fuzzy-rule-based algorithm for the denoising of video sequences (Melange et al., 2008)  
corrupted with additive Gaussian noise constitutes a fuzzy-logic-based improvement of a 
recent detail and motion adaptive multiple class averaging filter (MCA) (Zlokolica et al., 
2003). Last framework to avoid the spatio-temporal blur, only takes into account 
neighbouring pixels from the current frame in case of detected motion. So, to preserve the 
details, the filtering should be less strong when large spatial activity is detected in a current 
window. The filtering window used in the framework is a 3 3 2   sliding window, 
consisting of pixel windows in the current and previous frames. The output of the proposed 
filter for the central pixel in the window is determined as a weighted adaptive average of 
the pixel values in the 3 3 2   window: 
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The absolute greyscale difference (gradient) between the two spatial-temporal pixel 
positions is computed as , ,( , , , ) ( ) ( )t tr t r t x r x r      ; the function indicating the local 

detail amount is presented by 
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 ; and the motion indicator 

, , 1( , ) t tm r t x x     is measured as the absolute difference between the average grey 

values in the windows for the current and previous frames. In the MCA filter, the pixels are 
classified into four discrete index classes, depending on the ( , , , )r t r t   value. When details 
are detected in a region, higher weights area assigned to pixels that are similar to the pixel 
being filtered (pixels from the lower index classes, which have smallest ( , , , )r t r t   values), 
preserving these details. In homogeneous regions, the difference in weight compared to 
pixels from the higher index classes will be smaller, and strong filtering is to be performed. 
Exponential model for averaging function ( , , , )Q r t r t  , which depends on the amount of 
detail, motion, and class index inversely proportional, has been used. 
Fuzzy motion and detail adaptive video filter, FMDAF employs the idea of MCA framework 
and the values ( , , , )r t r t  , ( , )r t  and ( , )m r t . The model of exponential functions is 
changed by fuzzy logic framework with linguistic variables, introducing one fuzzy set Large 
Difference for the values ( , , , )r t r t  . If a difference ( , , , )r t r t   has a membership degree 
one in the fuzzy set Large Difference, then this means that this difference is large for sure. A 
membership degree equal to zero exposes the certainty that the difference is not large. 
A linguistic variable “Large” that has been proposed for the difference ( , , , )r t r t  , is also 
introduced for the motion value ( , )m r t  and for the detail value ( , )r t  defining the fuzzy 
sets Large Motion and Large Detail. A linguistic variable “Reliable” to indicate whether a given 
neighbourhood pixel is reliable to be used in the filtering of the central window pixel, and is 
represented by the fuzzy set “Reliable Neighbourhood Pixel”. Finally, the weight ( , , , )Q r t r t   
for the pixel at position ( , )r t   is now defined as the degree, to which it is reliable to be used 

 

in the filtering of the central window pixel, i.e., its membership degree in the fuzzy set 
“Reliable Neighbourhood Pixel”. The presented fuzzy rule 1 or 2 are depended on whether 
current t t   or previous 1t t    frames positions. 
Fuzzy rule 1. Assigning the membership degree in the fuzzy set “Reliable Neighbourhood 
Pixel” of the pixel at spatial position r   in the current frame ( )t t   of the window with 
central pixel position (r, t): 
IF [the detail value ( , )r t  is large AND the difference ( , , , )r t r t   is not large] OR [the 
detail value ( , )r t  is not large)] THEN the pixel at position ( , )r t   is a Reliable 
Neighbourhood Pixel for the filtering of the central window pixel. 
Fuzzy rule 2. Assigning the membership degree in the fuzzy set “Reliable Neighbourhood 
Pixel” of the pixel at spatial position r   in the previous frame ( 1)t t    of the window 
with central pixel position (r, t): IF { [the detail value ( , )r t  is large AND the difference 

( , , , )r t r t  is not large] OR [the detail value ( , )r t  is not large] } AND the motion value 
( , )m r t  is not large THEN the pixel at position ( , )r t   is a Reliable Neighbourhood Pixel for the 

filtering of the central window pixel. 
Finally the described framework FMDAF adapts better to motion than the RMCA method as 
results reported in paper (Melange et al., 2008) indicates. 

 
4. Fuzzy-Angular Deviation Frameworks in Denoising of Video Sequences 

4.1. Additive Noise Suppression 
4.1.1. 2D Spatial Noise Filtering 
The filtering procedure includes the Histogram Calculation, Noise Estimation, and Spatial 
Algorithm Operations. A mean value x  ( ( , , )Red Green Blue   in a colour image) is 
found in a sliding 3x3 processing window; later, the angle between two vectors deviation is 
computed agree to (Ponomaryov et al., 2007), mean value (  , ,R G BX x x x ), and central 

pixel  , ,cR cG cBY x x x ) is calculated. Finally, the probabilities: pj, the mean value  , the 

variance 2
 , and standard deviation (SD) ' 2

     should be calculated. Two processing 

windows: large 5x5, and into it, small 3x3 one, are employed in this scheme. 
Let denote as ( , )i i cA x x   the angle deviation xi in respect to xc, where 

0,1,...,8, ,i i c c central pixel   . The Spatial Algorithm is employed realizing the 
following IF-THEN rule for filtering the first frame only: 

1 3 4 6 1 0 2 5 7 1( ) ( )IF AND AND AND OR AND AND AND            THEN Mean 
Weighted Filtering ELSE Spatial Filtering Algorithm. The “AND” operation is defined as 
“Logical AND”, the “OR” operation is “Logical OR”. The Mean Weighted Filtering Algorithm 
is realized using angle deviations as weight criteria (Ponomaryov et al., 2007). 
If the spatial algorithm is selected, the processing is realized in each a colour plane using 
locally adapted SD   around of mean value 5 5x   found in sliding 5x5 processing 

window, adjusting it as follows: If      then      otherwise     . 
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Let introduce for a central pixel ( , )cx x i j  of a current sample the following neighbours in 
eight cardinal directions: N, E, S, W, NW, NE, SE, SW (Schulte et al., 2007b), and also 
similarity measures for each a given plane ( ( , , )Red Green Blue  ): 
 

        , , , ,k l i j i k j l i j       
,  , 1,0,1k l  . (13) 

 
These gradients are called “main gradient values”, and the point (i, j) is “the centre of the 
gradient values”. Two “derived gradient values” are proposed, permitting to avoid blur in 
presence of the edges (Schulte et al., 2007b). Finally, these three gradient values are 
connected into one value called “fuzzy vectorial-gradient value” under IF-THEN rule: IF 

, 2T T       , THEN it is calculated the angle deviation in each   direction from 
eight mentioned for main and derived vectorial values involved. 
Let define the membership function to obtain “Fuzzy Main and Derived Vectorial-Gradient 
Values”: 
 

max{ , },
0,BIG

x y if T
otherwise
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, 

 2 / [1 exp( )]     ,M =Main value, 1D =Derived1, 2D = Derived2,  (14) 
 
and   is the angle deviation between vector pixels  [255, 255, x ] and [255, 255, x ] for 
each a colour channel. Finally, the process to obtain “Fuzzy Vectorial-Gradient Values” is 
defined as the Fuzzy Rule 1_2D_G: 
Fuzzy Rule 1_2D_G: Fuzzy Vectorial-Gradient value is defined as   , in such a way  

IF ( M  is BIG AND 1D  is BIG) OR ( M  is BIG AND 2D  is BIG) THEN    is 
true. 
Final step in filtering a noise is realized employing a Weighted Mean procedure with found 
weights:  
 

 
outy x   

 

   outy x   
 
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,      . (15) 

 
4.1.2. 3D Spatio-Temporal Noise Filtering 
The “Temporal Algorithm” is designed realizing the motion detection in past and present 
frames of a video sequence for better preservation of the image characteristics. 
The angle deviations and gradient values related to a central pixel in the present frame 
respect to its neighbours from past frame are found according to the first expression in the 
following equation: 
 

 

 1 1 1 1( , ), ,t t t t
i i c i i cD x x x x     

 
 2 1 2 1( , ), ,t t t t
i i i i i iD x x x x     

 

   
 3 3( , ),t t t t
i i c i i cD x x x x    

  (16) 
 
where 1,2,...,8i  , t

cx is a central pixel channel in the present frame, and t-1 and t mark the 
past and present frames, respectively. The angle and gradient values in both frames are 
calculated according to second equation in (16). Finally, the same parameters for the present 
frame are only employed, eliminating operations in past frame as in the third expression in 
eq. (16). 
The Gaussian membership functions in the fuzzy sets SMALL and BIG for gradients and 
angular deviations are defined as:  
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where 1 2 1 20.2, 0.9, 60, 140       , and 2 0.1   for   and 2 1000   for  ,  
and the numerical values of parameters are chosen according to the optimum values of the 
PSNR and MAE criteria. 
The designed fuzzy rules (see Fig.1) are used to detect the movement presence and/or noise 
analyzing pixel by pixel, and to form a sample of pixels with similar structures for the 
subsequent filtration. The fuzzy rules were designed to detect changes in magnitude and 
angle deviations between central and neighbouring pixels in t and t-1 frames. Procedure for 
fuzzy rules is as follows: 
Fuzzy Rule 2_3D_G: Definition of the Fuzzy Vectorial-Gradient value iSBB : IF 1  is 

SMALL AND 2  is BIG AND 3  is BIG AND 1  is SMALL AND 2  is BIG AND 3  is 
BIG THEN SBB is true (Fig. 1 b)). 
Fuzzy Rule 3_3D_G: Definition of the fuzzy Vectorial-Gradient value iSSS : IF 1  is 

SMALL AND 2  is SMALL AND 3  is SMALL AND 1  is SMALL AND 2  is SMALL 
AND 3  is SMALL THEN SSS is true (Fig. 1 c)). 
Fuzzy Rule 4_3D_G: Definition of the fuzzy Vectorial-Gradient value iBBB : IF 1  is BIG 

AND 2  is BIG AND 3  is BIG AND 1  is BIG AND 2  is BIG AND 3  is BIG THEN 
BBB is true (Fig. 1 d)). 
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Let introduce for a central pixel ( , )cx x i j  of a current sample the following neighbours in 
eight cardinal directions: N, E, S, W, NW, NE, SE, SW (Schulte et al., 2007b), and also 
similarity measures for each a given plane ( ( , , )Red Green Blue  ): 
 

        , , , ,k l i j i k j l i j       
,  , 1,0,1k l  . (13) 

 
These gradients are called “main gradient values”, and the point (i, j) is “the centre of the 
gradient values”. Two “derived gradient values” are proposed, permitting to avoid blur in 
presence of the edges (Schulte et al., 2007b). Finally, these three gradient values are 
connected into one value called “fuzzy vectorial-gradient value” under IF-THEN rule: IF 

, 2T T       , THEN it is calculated the angle deviation in each   direction from 
eight mentioned for main and derived vectorial values involved. 
Let define the membership function to obtain “Fuzzy Main and Derived Vectorial-Gradient 
Values”: 
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 2 / [1 exp( )]     ,M =Main value, 1D =Derived1, 2D = Derived2,  (14) 
 
and   is the angle deviation between vector pixels  [255, 255, x ] and [255, 255, x ] for 
each a colour channel. Finally, the process to obtain “Fuzzy Vectorial-Gradient Values” is 
defined as the Fuzzy Rule 1_2D_G: 
Fuzzy Rule 1_2D_G: Fuzzy Vectorial-Gradient value is defined as   , in such a way  

IF ( M  is BIG AND 1D  is BIG) OR ( M  is BIG AND 2D  is BIG) THEN    is 
true. 
Final step in filtering a noise is realized employing a Weighted Mean procedure with found 
weights:  
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4.1.2. 3D Spatio-Temporal Noise Filtering 
The “Temporal Algorithm” is designed realizing the motion detection in past and present 
frames of a video sequence for better preservation of the image characteristics. 
The angle deviations and gradient values related to a central pixel in the present frame 
respect to its neighbours from past frame are found according to the first expression in the 
following equation: 
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  (16) 
 
where 1,2,...,8i  , t

cx is a central pixel channel in the present frame, and t-1 and t mark the 
past and present frames, respectively. The angle and gradient values in both frames are 
calculated according to second equation in (16). Finally, the same parameters for the present 
frame are only employed, eliminating operations in past frame as in the third expression in 
eq. (16). 
The Gaussian membership functions in the fuzzy sets SMALL and BIG for gradients and 
angular deviations are defined as:  
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where 1 2 1 20.2, 0.9, 60, 140       , and 2 0.1   for   and 2 1000   for  ,  
and the numerical values of parameters are chosen according to the optimum values of the 
PSNR and MAE criteria. 
The designed fuzzy rules (see Fig.1) are used to detect the movement presence and/or noise 
analyzing pixel by pixel, and to form a sample of pixels with similar structures for the 
subsequent filtration. The fuzzy rules were designed to detect changes in magnitude and 
angle deviations between central and neighbouring pixels in t and t-1 frames. Procedure for 
fuzzy rules is as follows: 
Fuzzy Rule 2_3D_G: Definition of the Fuzzy Vectorial-Gradient value iSBB : IF 1  is 

SMALL AND 2  is BIG AND 3  is BIG AND 1  is SMALL AND 2  is BIG AND 3  is 
BIG THEN SBB is true (Fig. 1 b)). 
Fuzzy Rule 3_3D_G: Definition of the fuzzy Vectorial-Gradient value iSSS : IF 1  is 

SMALL AND 2  is SMALL AND 3  is SMALL AND 1  is SMALL AND 2  is SMALL 
AND 3  is SMALL THEN SSS is true (Fig. 1 c)). 
Fuzzy Rule 4_3D_G: Definition of the fuzzy Vectorial-Gradient value iBBB : IF 1  is BIG 

AND 2  is BIG AND 3  is BIG AND 1  is BIG AND 2  is BIG AND 3  is BIG THEN 
BBB is true (Fig. 1 d)). 
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Fig. 1. Fuzzy Rules 2-5 in determination of the motion confidence in neighbouring frames. a) 
past and present Frames; b) Fuzzy Rule 2, SBB; c) Fuzzy Rule 3, SSS; d) Fuzzy Rule 4, BBB; e) 
Fuzzy Rule 5, BBS. 
 
Fuzzy Rule 5_3D_G: Definition of the fuzzy Vectorial-Gradient value  iBBS :  IF 1  is BIG 

AND 2  is BIG AND 3  is SMALL AND 1  is BIG AND 2  is BIG AND 3  is SMALL 
THEN BBS is true (Fig. 1 e)). 
For the reconstruction of edges and fine details in the image, we use the following 
processing procedure: a) calculate the SD (購嫗嫗) in the double 3×3×2 window of the 
neighbouring images, and b) compare the current SD with previous using the following 
rule: IF {( RED  0.4  RED  )AND( GREEN  0.4 

GREEN  )AND( BLUE  0.4  BLUE  )}, THEN 
fuzzy rules 2, 3, 4, and 5; OTHERWISE, weighted mean filter. The latter filter is applied 
using 17 pixels from the 3×3×2 window. Using this procedure, it is possible to select the 
areas containing fine details and contours and subsequently filter the pixels from this area 
according to the fuzzy logic algorithms. The SD values are updated using the following 
sensitivity parameter : ( / 5) (1 )total         , ( ) / 3total RED GREEN BLUE        . 
This parameter is chosen as follows:   = 0.125 for the weighted mean filter and the fuzzy 
rule SSS,  = 0.875 for SSB and BBS, and   = 0.875 in the case of BBB if the motion–noise 
confidence value is (motion_noise)=1;   = 0.125 if (motion_noise)= 0, and   = 0.5 in other 
cases or if the fuzzy rule is not applied. 
If number of pixels with fuzzy value SBB, or SSS, or BBS, or BBB is the biggest one against 
those that present other IF-THEN conditions, it should be employed the next filtering 
algorithm only for such the pixels that satisfy the established IF condition : 
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or, if the number of pixels with iBBB  value is the biggest one. Here the filtering results

1(1 ) t t
out c cy x x       . In eq. (18), # pixels  are the number of pixels that satisfy to 

mentioned IF-THEN condition; 1t
ix
 , t

ix  represent each a pixel in the past and present 
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t‐1 t
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small

Fuzzy Rule 2 Fuzzy Rule 4 

Fuzzy Rule 3 Fuzzy Rule 5 

b) SBB 

c) SSS 
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e) BBS 

 

frames that satisfy to mentioned IF-THEN condition; outy  is the output in spatial temporal 
filtering. If there is no majority in pixels for any Fuzzy Rule, only the mean of central pixels 
from present and past frames are used. 
During numerous simulations, different video colour sequences Miss America (MA), Flowers 
(F) and Chair (C) in RGB colour space (24 bits) and QCIF format (176x144 pixels in a frame) 
are used to qualify effectiveness of the proposed approach in suppression of a noise and 
compare it with known techniques. Mentioned video sequences present different texture 
characteristics; permitting a better understanding of the robustness of the proposed and 
existed filtering schemes. Video sequences were contaminated by Gaussian noise of 
different intensity from 0.0 to 0.05 in their SDs. The filtered frames were evaluated according 
to PSNR, MAE, NCD objective criteria, and also in subjective matter. 
The proposed Fuzzy Directional Adaptive Recursive Temporal Filtering for Gaussian noise 
named as FDARTF_G was compared with another similar one, the FMRSTF, and with the 
FVMRSTF (Fuzzy Vectorial Motion Recursive Spatial-Temporal Filtering Using Angles) that 
is the modification of FMRSTF, which combines the gradients and angles in processing. 
Other two reference filters were: VGVDF_G, adapted to process three frames, and the 
VVDKNNVMF filter presenting good efficiency in comparison with other filtering 
procedures. The data presented in Table 1 show that the proposed algorithm effectively 
suppresses the low-intensity additive noise and is the best according to the majority of 
filtration criteria for the video sequences Flowers and Miss America. Fig. 2 presents filtering 
results for sequence Miss America through 100 frames, where the better noise suppression in 
form of PSNR measure can be observed for novel filtering scheme. 
 

Table 1. Simulation results for proposed framework and comparative filters. 

 
4.2. Impulsive Noise Suppression 
4.2.1. 2D Noise Filtering 
Similar as in additive noise suppression idea is realized in framework used in impulsive 
noise suppression. It is based on the fuzzy-set theory and directional characteristics of an 
image, angular deviations of the image pixels in neighbouring multichannel video frames 
when the final filtered image frames are formed. At the first stage the spatial filtration of the 
initial frame of a sequence is performed. The following time stage realizes the combined 
processing of current neighbouring frames of the sequence. This processing uses the fuzzy 
set theory, which makes it possible to improve noise suppression. At the final stage, the 

Criteria 

Flowers Frame 20, Gaussian noise 
SD = 0.005 

Miss America Frame 20, Gaussian noise 
SD = 0.005 

FMRST
F 

FVMRS
TF 

FDART
F_G 

VVDKN
NVMF VGVDF FMRST

F 
FVMRS

TF 
FDART

F_G 
VVDKN
NVMF VGVDF 

PSNR 26,192 26,01 27,31 25,36 25,46 29,93 29,91 32,51 29,80 30,66 
MAE 9,638 9,83 8,50 8,78 8,96 5,82 5,83 4,46 6,18 5,55 

NCD 0,016 0,017 0,015 0,015 0,017 0,02 0,02 0,016 0,021 0,02 

 SD = 0.01 SD = 0.01 
PSNR 24,36 24,34 25,72 24,63 24,72 27,686 27,68 30,06 27.61 28.66 
MAE 11,93 11,97 10,44 9,92 10,15 7,48 7,5 6,07 8.14 7.21 
NCD 0,0206 0,0208 0,0187 0,0169 0,0193 0,026 0,026 0,021 0,028 0,026 
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from present and past frames are used. 
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are used to qualify effectiveness of the proposed approach in suppression of a noise and 
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characteristics; permitting a better understanding of the robustness of the proposed and 
existed filtering schemes. Video sequences were contaminated by Gaussian noise of 
different intensity from 0.0 to 0.05 in their SDs. The filtered frames were evaluated according 
to PSNR, MAE, NCD objective criteria, and also in subjective matter. 
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named as FDARTF_G was compared with another similar one, the FMRSTF, and with the 
FVMRSTF (Fuzzy Vectorial Motion Recursive Spatial-Temporal Filtering Using Angles) that 
is the modification of FMRSTF, which combines the gradients and angles in processing. 
Other two reference filters were: VGVDF_G, adapted to process three frames, and the 
VVDKNNVMF filter presenting good efficiency in comparison with other filtering 
procedures. The data presented in Table 1 show that the proposed algorithm effectively 
suppresses the low-intensity additive noise and is the best according to the majority of 
filtration criteria for the video sequences Flowers and Miss America. Fig. 2 presents filtering 
results for sequence Miss America through 100 frames, where the better noise suppression in 
form of PSNR measure can be observed for novel filtering scheme. 
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spatial filtration mechanism in each current frame is employed again. Let consider gradients 
and angular deviations of pixels in order to estimate the similarity between pixels within 
sliding processing window in verification if the central pixel is distorted by noise or free of 
noise. For each of directions  , , , , , , ,N E S W NW NE SE SW   with respect to the central 

pixel cx
 , we introduce the gradient ( , ) ( , ) ( , ) ( , )k l Cx i j x i j x i k j l        where 

( , ) (0,0)i j   within the processing window, with the index   determining the image 

components (red (R), green (G), and blue (B)),  ( , ) 1,0,1k l   . We also introduce the basic 
gradient and four related gradients calculated with respect to the former one, the index 
values being  ( , ) 2, 1,0,1, 2k l     for each direction   (see Fig. 3). Fig. 3 shows pixels in 
processing procedure for SE direction for the basic and four related components. 
 

 
Fig. 2. PSNR criterion values for proposed and reference filters for 100 frames of colour 
video sequence Miss America contaminated by Gaussian noise with SD=0.015. 

 

 
 
 
 
 
 
 
 
 
Fig. 3. Basic and related directions for gradients and angle variance values. 
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and 2 2 2 2( , , )R G Bx x x x  for each a colour component along the direction   (for the SE 
direction, in this case) agree to procedure given in (Ponomaryov et al., 2007). Also, let define 
the basic gradients  (1,1) ( , ) SE bx i j    , ( )SE b
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2(2,0) ( )( 1, 1) SE rF x i j F    , 

3(0,0) ( )( 1, 1) SE rF x i j F    , 

  4(0,0) ( )( 1, 1) SE rF x i j F   
, (19) 

 
where the operator F determines gradient   or angular deviation  . Analogously, we find 
the gradients and the angular deviations for the basic value and four related values of other 
directions  . 
We now introduce two fuzzy sets SMALL (S) and BIG (B). Then, we use the Gaussian 
membership functions for both gradients and angular deviations in these sets:  
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Here, σ12=1000, med1=60 and med2=10 for the fuzzy gradients ( F  

   ) in the BIG and 
SMALL fuzzy sets, σ22=0.8, med3=0.615 and med4=0.1 for the fuzzy angular deviations 

 F  
   in the BIG and SMALL fuzzy sets. The novel fuzzy rules developed are based 

on both gradients and angular deviations. They are applied to determine whether the 
central pixel is a noise, or a no-noise pixel, or a local movement.  
The 2D fuzzy rule 1_2D determines the value of the fuzzy gradient-angular measure 

F F 
  : 

IF (

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1( )r
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   is BIG, where  AND A B A B  , 

 1 min ,A B A B  . 
Combining eight fuzzy gradient-angular measures for each of the directions, we introduce 
the noise factor r . 

The 2D fuzzy rule 2_2D: IF 
F F
N N
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S S
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E E
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Depending on whether a pixel is the noisy or is noise-free, we use the following filtration 
algorithm: 
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We now introduce two fuzzy sets SMALL (S) and BIG (B). Then, we use the Gaussian 
membership functions for both gradients and angular deviations in these sets:  
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F

F F
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F
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

 





        , (20a) 
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1,
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F

F F

F med
F
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


 





        . (20b) 
 
Here, σ12=1000, med1=60 and med2=10 for the fuzzy gradients ( F  

   ) in the BIG and 
SMALL fuzzy sets, σ22=0.8, med3=0.615 and med4=0.1 for the fuzzy angular deviations 

 F  
   in the BIG and SMALL fuzzy sets. The novel fuzzy rules developed are based 

on both gradients and angular deviations. They are applied to determine whether the 
central pixel is a noise, or a no-noise pixel, or a local movement.  
The 2D fuzzy rule 1_2D determines the value of the fuzzy gradient-angular measure 

F F 
  : 

IF (

  is B

1( )r

  is S

2( )r

  is S

3( )r

  is B

4( )r

  is B) 1  (


  is B

1( )r

  is S

2( )r

  is S

3( )r

  is B

4( )r

  is B), THEN 

F F 
   is BIG, where  AND A B A B  , 

 1 min ,A B A B  . 
Combining eight fuzzy gradient-angular measures for each of the directions, we introduce 
the noise factor r . 

The 2D fuzzy rule 2_2D: IF 
F F
N N
   is B

F F
S S
   is B

F F
E E
   is B

F F
W W
   is B

F F
SW SW
   is B

F F
NE NE
   is B

F F
NW NW
   is B

F F
SE SE
   is B THEN r  is BIG, where 

 max ,A B A B  .  
 
Depending on whether a pixel is the noisy or is noise-free, we use the following filtration 
algorithm: 
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 0.3, , output CIF r fuzzy logic algorithm otherwise y x     (21) 
 
Fuzzy pixel weights for the algorithm are given in the form  F F 

     1 F F 
   , 

which determines the value of the membership function for the fuzzy set NO BIG (noise 

free). At the same time, the weights for the central pixel are chosen as 1F
c M r    . The 

spatial filtration algorithm based on the fuzzy logic includes the following operations: 
 

1) Calculation of fuzzy weights on the basis of the ordering of pixels in the 3×3 

window:   ,, , , ,SW NEi jx x x x   
    , where the ordering statistics 

 1 (2) (9)x x x  
        are determined from the inequality 

        1 2 9F F F F F F     
                     . 

2) Determination of the quantities  F Fsum  
        for j= 9, 8,…, 1, by 

decreasing j from 9 until 0sum  ,   0 1 2,F F M r  
 

       

3M  . In this case, the pixel ordering number j satisfying this condition 

determines the j-th pixel chosen as a result of the filtration ( )j
outputx y 

  . 
3) If j ≤ 2, then the fuzzy weights are calculated with the allowance for the threshold 

      1 2

1 0 2F F F F   
                 for the parameter 

    j jtsum  
       , with j = 9, 8, …, 1 decreasing until 1

tsum   . The 

ordering number j satisfying this condition determines the j-th pixel chosen as a 
result of the filtration ( )j

outputx y 
  . 

 
4.2.2. 3D Impulsive Noise Filtering 
The three-dimensional (3D) algorithm (3D-FCF) realized at the second time stage in 
processing video sequences is determined by filtration of neighbouring frames. This makes 
it possible to estimate the degree of movement and the noise level in the central pixel as a 
result of the application of the 5×5×2 sliding window that contains two neighbouring 
frames. We calculate difference values for both the gradients and the angular deviations 
between the (t – 1)-th and the t-th frames.  
Using the algorithm developed in the Section 4.2.1., we can derive the 3D methodology; 
detailed development of this algorithm is described in (Ponomaryov et al., 2009). 
 
Using the pixels in both frames of the sequence we can compute the motion estimation and 
noise level present in the central pixel. In this way it is possible to filtering the noisy pixel or 
not filtering it because of no noise and no movement present in the central sample. 
Membership values are computed in same way; defining fuzzy sets SMALL (S) and BIG (B). 
This means that we deal again with the no-movement situation or no-noise situation in the 

 

pixel sample that is subjected to processing. Gaussian functions are also used for the 
membership function. Again, they determine the fuzzy gradient-angular difference values. 
The fuzzy rules developed by this filter, are based on the difference values of both gradients 
and angular deviations. These rules are applied with the goal to determine whether the 
central pixel is a noise or it is no-noise. Otherwise, we deal with local movement. 
There are four fuzzy rules designed to determine if the central pixel is in movement, is noisy 
or lacks both. The first 3D fuzzy rule designed determines the value of the first fuzzy 
gradient-angular difference; it characterizes the confidence level for a movement-noise event 
as applied to the central pixel when the values of fuzzy gradients and angular differences 
along direction   are analyzed. The second 3D fuzzy rule characterizes the confidence level 
with respect to the no movement-no noise event as applied to the central pixel along direction 
 . In this case, the regions are classified as homogeneous ones, edges, and fine feature 
regions. The third 3D fuzzy rule allows us to estimate the existence and the level of 
movement or noise in the central pixel on the basis of fuzzy gradient-angular values for all 
directions. Finally the fourth 3D fuzzy rule determines the time stage of the video sequence 
filtration, in which the j-th pixel should be chosen as the final result. This is true if the pixel 
satisfies the conditions that provide the reconstruction of fine details and contours when 
fuzzy ordering statistics are used. In this case, the pixel nearest to the central one among all 
neighbouring pixels in the t-th and (t–1)-th frames of the video sequence is chosen. 
The temporal stage of the filtration consists in selecting two pixels agree to 3D fuzzy rules 
designed. These two pixels are averaged to provide the filtering temporal result. 
The characteristics of the 3D-FCF filter proposed and algorithms well known in the 
literature were studied with the use of standard criteria. We compared the PSNR expressed 
in decibels, the MAE, and the NCD. The video sequences Miss America (MA) and Flowers (F) 
in the QCIF format (176×144 pixels) were employed. The video sequences were distorted by 
impulsive noise of a different intensity and processed by various filters. The distortions in 
each image channel were independent of each other. Table 2 shows the test results for 
different standard filters. The table content confirms that the 3D-FCF algorithm developed 
by us is the best for estimates made by the MAE criterion averaged over 100 frames of the F 
sequence within a wide noise intensity range. Thereby the problem of the efficient 
reconstruction of the edges and fine image features is successfully solved. At the same time, 
the values of the PSNR criterion show the superiority of the new algorithm compared to the 
others for intermediate intensity noise. In accordance with both the PSNR and MAE criteria, 
the new framework is the best in the case of the MA video sequence filtration for noise of 
low and intermediate intensities less than 20%. Table 3 shows the values of the NCD 
criterion for MA and F video sequences, which characterizes the chromatic properties of the 
filters. Here, the new 3D-FCF algorithm again demonstrates the best quality within a wide 
range of noise intensity. The efficient filtration of the F sequence that contains a texture 
varying from frame to frame, as well as noticeable variations of colours, confirms the 
robustness of the method proposed. Subjective perception by human viewer can be 
observed in Fig. 4 showing better performance of the designed 3D framework in comparison 
with known methods in MA frame, where novel algorithm preserves better the edges, fine 
features, and chromaticity properties against other filters. 
Real-Time analysis was realized on the DSP (TMS320DM642, Texas Instruments) and is 
based on Reference Framework defined as RF5 (Mullanix & Magdic et al., 2003, Gallegos-
Funes, et al., 2009). Table 4 presents the processing times in some 2D and 3D algorithms, 
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 0.3, , output CIF r fuzzy logic algorithm otherwise y x     (21) 
 
Fuzzy pixel weights for the algorithm are given in the form  F F 

     1 F F 
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which determines the value of the membership function for the fuzzy set NO BIG (noise 

free). At the same time, the weights for the central pixel are chosen as 1F
c M r    . The 

spatial filtration algorithm based on the fuzzy logic includes the following operations: 
 

1) Calculation of fuzzy weights on the basis of the ordering of pixels in the 3×3 
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3) If j ≤ 2, then the fuzzy weights are calculated with the allowance for the threshold 
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ordering number j satisfying this condition determines the j-th pixel chosen as a 
result of the filtration ( )j

outputx y 
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4.2.2. 3D Impulsive Noise Filtering 
The three-dimensional (3D) algorithm (3D-FCF) realized at the second time stage in 
processing video sequences is determined by filtration of neighbouring frames. This makes 
it possible to estimate the degree of movement and the noise level in the central pixel as a 
result of the application of the 5×5×2 sliding window that contains two neighbouring 
frames. We calculate difference values for both the gradients and the angular deviations 
between the (t – 1)-th and the t-th frames.  
Using the algorithm developed in the Section 4.2.1., we can derive the 3D methodology; 
detailed development of this algorithm is described in (Ponomaryov et al., 2009). 
 
Using the pixels in both frames of the sequence we can compute the motion estimation and 
noise level present in the central pixel. In this way it is possible to filtering the noisy pixel or 
not filtering it because of no noise and no movement present in the central sample. 
Membership values are computed in same way; defining fuzzy sets SMALL (S) and BIG (B). 
This means that we deal again with the no-movement situation or no-noise situation in the 

 

pixel sample that is subjected to processing. Gaussian functions are also used for the 
membership function. Again, they determine the fuzzy gradient-angular difference values. 
The fuzzy rules developed by this filter, are based on the difference values of both gradients 
and angular deviations. These rules are applied with the goal to determine whether the 
central pixel is a noise or it is no-noise. Otherwise, we deal with local movement. 
There are four fuzzy rules designed to determine if the central pixel is in movement, is noisy 
or lacks both. The first 3D fuzzy rule designed determines the value of the first fuzzy 
gradient-angular difference; it characterizes the confidence level for a movement-noise event 
as applied to the central pixel when the values of fuzzy gradients and angular differences 
along direction   are analyzed. The second 3D fuzzy rule characterizes the confidence level 
with respect to the no movement-no noise event as applied to the central pixel along direction 
 . In this case, the regions are classified as homogeneous ones, edges, and fine feature 
regions. The third 3D fuzzy rule allows us to estimate the existence and the level of 
movement or noise in the central pixel on the basis of fuzzy gradient-angular values for all 
directions. Finally the fourth 3D fuzzy rule determines the time stage of the video sequence 
filtration, in which the j-th pixel should be chosen as the final result. This is true if the pixel 
satisfies the conditions that provide the reconstruction of fine details and contours when 
fuzzy ordering statistics are used. In this case, the pixel nearest to the central one among all 
neighbouring pixels in the t-th and (t–1)-th frames of the video sequence is chosen. 
The temporal stage of the filtration consists in selecting two pixels agree to 3D fuzzy rules 
designed. These two pixels are averaged to provide the filtering temporal result. 
The characteristics of the 3D-FCF filter proposed and algorithms well known in the 
literature were studied with the use of standard criteria. We compared the PSNR expressed 
in decibels, the MAE, and the NCD. The video sequences Miss America (MA) and Flowers (F) 
in the QCIF format (176×144 pixels) were employed. The video sequences were distorted by 
impulsive noise of a different intensity and processed by various filters. The distortions in 
each image channel were independent of each other. Table 2 shows the test results for 
different standard filters. The table content confirms that the 3D-FCF algorithm developed 
by us is the best for estimates made by the MAE criterion averaged over 100 frames of the F 
sequence within a wide noise intensity range. Thereby the problem of the efficient 
reconstruction of the edges and fine image features is successfully solved. At the same time, 
the values of the PSNR criterion show the superiority of the new algorithm compared to the 
others for intermediate intensity noise. In accordance with both the PSNR and MAE criteria, 
the new framework is the best in the case of the MA video sequence filtration for noise of 
low and intermediate intensities less than 20%. Table 3 shows the values of the NCD 
criterion for MA and F video sequences, which characterizes the chromatic properties of the 
filters. Here, the new 3D-FCF algorithm again demonstrates the best quality within a wide 
range of noise intensity. The efficient filtration of the F sequence that contains a texture 
varying from frame to frame, as well as noticeable variations of colours, confirms the 
robustness of the method proposed. Subjective perception by human viewer can be 
observed in Fig. 4 showing better performance of the designed 3D framework in comparison 
with known methods in MA frame, where novel algorithm preserves better the edges, fine 
features, and chromaticity properties against other filters. 
Real-Time analysis was realized on the DSP (TMS320DM642, Texas Instruments) and is 
based on Reference Framework defined as RF5 (Mullanix & Magdic et al., 2003, Gallegos-
Funes, et al., 2009). Table 4 presents the processing times in some 2D and 3D algorithms, 
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which have been implemented on DSP, demonstrating reliability of the proposed approach 
against better algorithms found in literature. 
 

Filter 
(%) 

noise 

3D-FCF 3D-MF 3D-VVMF  
3D-

VVDKNNV
MF 

3D-VGVDF 3D-
VAVDATM 3D-VKNNF  

MAE PSN
R MAE PSN

R MAE PSN
R MAE PSN

R MAE PSN
R MAE PSN

R MAE PSN
R 

F 
5 2,13 29,52 6,65 26,83 6,64 26,78 7,45 25,77 7,44 25,56 5,45 27,25 3,98 31,30 

15 3,38 27,76 7,19 26,22 7,14 26,20 8,20 25,11 7,72 25,29 6,28 26,57 6,79 26,63 
30 6,08 25,04 8,59 24,77 8,50 24,69 10,03 23,17 9,74 23,24 8,13 24,99 14,62 20,86 

MA 
5 0,37 39,59 2,51 35,12 2,54 34,86 3,11 33,48 2,91 33,76 1,11 36,97 1,91 37,22 

15 1,18 34,33 2,70 34,37 2,71 34,18 3,43 32,38 2,85 33,71 1,71 35,38 3,84 30,09 
30 3,58 28,26 3,35 31,95 3,31 31,82 4,39 28,48 3,28 31,61 2,85 32,33 10,11 23,17 

Table 2. Averaged values of criteria MAE and PNSR for video sequences F and MA. 
 
Filter 
(%) 

Noise 

3D-FCF 3D-MF 3D-VVMF 3D-VVDKNNVMF 3D-VGVDF 3D-VAVDATM 3D-VATM 

F MA F MA F MA F MA F MA F MA F MA 
5 0,006 0,002 0,015 0,009 0,015 0,009 0,017 0,011 0,016 0,011 0,012 0,004 0,015 0,009 

15 0,009 0,005 0,016 0,010 0,016 0,010 0,018 0,012 0,017 0,010 0,014 0,006 0,016 0,010 
30 0,012 0,016 0,018 0,012 0,018 0,012 0,020 0,015 0,020 0,012 0,017 0,010 0,018 0,012 

Table 3. Averaged values of NCD for video sequence F and MA.  
 

 
Fig. 4. a) Zoomed image region of 10th Miss America frame contaminated by impulsive noise 
of 15% intensity, b) Designed 3D-FCF, c) 3D-MF; d) 3D-VVMF, e) 3D-VGVDF, f) 3D-
VAVDATM; g) 3D-VATM; h) 3D-VKNNF.  

Filters Processing time in seconds 
 Maximum Average Total 

3D-FCF 7.533 7.440 148.806 
3D-VVMF 0.075 0.075 1.496 

3D-VGVDF 28.52 25.6 512.02 
3D-VAVDATM 25.551 24.867 497.356 

     

a)   b)   c)   d) 

     

e)   f)   g)   h) 

 

3D-VKNNF 0.103 0.102 2.04 
2D-FCF 1.243 1.241 24.822 

VMF_FAS 2.093 2.055 41.116 
2D-GVDF 5.887 5.869 117.382 

2D-CWVDF 5.806 2.909 58.18 
Table 4. Time processing for 20 frames of video sequence “Miss America” on DSP. 

 
5. Conclusions 

Several promising frameworks in suppression of noise of different nature in video 
sequences are presented in this chapter. It has been designed novel approach that employs 
the 3D fuzzy-vector order statistics frameworks based on the fuzzy-set theory and the 
directional angular information available as a result of processing multichannel still images 
and neighbouring frames in the video sequences contaminated by additive or impulsive 
noise. The designed fuzzy rules characterize the presence of motion and noise in processing 
area of the pixels in two neighbouring frames. Novel approach has appeared to demonstrate 
the essential improvement of the processing quality compared to all known filters. The 
method developed was successful in the suppression of a noise, as well as in the 
reconstruction of edges and fine details of the images. The excellent performance of the new 
filtering scheme has been tested during numerous simulations in terms commonly used 
objective criteria PSNR, MAE, NCD, and MRCE, as well as the subjective visual perception 
presented in form of the visual analysis by human visual system of filtered video sequences. 
The approach also turned out to be extremely efficient in the reproduction of chromatic 
characteristics of frame in video sequences. Real-Time analysis of several promising 2D and 
3D algorithms was realized on the DSP presenting available processing performance. 
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which have been implemented on DSP, demonstrating reliability of the proposed approach 
against better algorithms found in literature. 
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Fig. 4. a) Zoomed image region of 10th Miss America frame contaminated by impulsive noise 
of 15% intensity, b) Designed 3D-FCF, c) 3D-MF; d) 3D-VVMF, e) 3D-VGVDF, f) 3D-
VAVDATM; g) 3D-VATM; h) 3D-VKNNF.  
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3D-VGVDF 28.52 25.6 512.02 
3D-VAVDATM 25.551 24.867 497.356 

     

a)   b)   c)   d) 

     

e)   f)   g)   h) 

 

3D-VKNNF 0.103 0.102 2.04 
2D-FCF 1.243 1.241 24.822 

VMF_FAS 2.093 2.055 41.116 
2D-GVDF 5.887 5.869 117.382 

2D-CWVDF 5.806 2.909 58.18 
Table 4. Time processing for 20 frames of video sequence “Miss America” on DSP. 

 
5. Conclusions 

Several promising frameworks in suppression of noise of different nature in video 
sequences are presented in this chapter. It has been designed novel approach that employs 
the 3D fuzzy-vector order statistics frameworks based on the fuzzy-set theory and the 
directional angular information available as a result of processing multichannel still images 
and neighbouring frames in the video sequences contaminated by additive or impulsive 
noise. The designed fuzzy rules characterize the presence of motion and noise in processing 
area of the pixels in two neighbouring frames. Novel approach has appeared to demonstrate 
the essential improvement of the processing quality compared to all known filters. The 
method developed was successful in the suppression of a noise, as well as in the 
reconstruction of edges and fine details of the images. The excellent performance of the new 
filtering scheme has been tested during numerous simulations in terms commonly used 
objective criteria PSNR, MAE, NCD, and MRCE, as well as the subjective visual perception 
presented in form of the visual analysis by human visual system of filtered video sequences. 
The approach also turned out to be extremely efficient in the reproduction of chromatic 
characteristics of frame in video sequences. Real-Time analysis of several promising 2D and 
3D algorithms was realized on the DSP presenting available processing performance. 
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