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1. Introduction  

The images and video sequences obtained from optical, radar, medical sensors, in digital 
photographs, high definition television, electron microscopy, etc. are formed in the 
electronic devices, which use different sensors, like x-ray systems, remote sensing cameras, 
radars, radiometers, US sensors, CCD, etc. (Bovik et al.; 2000, Chaudhuri, 2001;  Chaudhuri 
& Manjunath 2005).  So, the images and frames in the video sequences depend on spatial 
resolution that is defined as a number of pixels per square area in the camera (sensor). The 
temporal resolution is determined by the frame rate and the exposure time, which limits the 
maximum speed that can be observed correctly in video. Because of the physical limitations 
and high cost needed to improve the precision and stability of the imaging system by 
manufacturing techniques, many applications of image and video sequence data (Farsiu et 
al., 2004), such as those mentioned above, demand to develop additional methods and 
algorithms that should restore the resolution degraded in a sensor permitting better 
observations of the fine details, edges, and restoration of the colour properties. Super-
resolution (SR) is defined as a reconstruction of a high-resolution (HR) image or frame in the 
video sequence from one or multiple low-resolution (LR) images/videos, which is relatively 
inexpensive to implement. Such methods are effective in the enhancement of the resolution 
by transcending the limitations of the sensors through digital image processing algorithms. 
Thus, SR restoration technology is a hot research topic in computer vision applications (Park 
et al., 2003, Zhang et al., 2010). 
This chapter is devoted to analysis of the various ways and methods to get SR in the images 
or video sequences (Protter et al., 2009; Park et al., 2003).  So, it is assumed that the images or 
frames are treated as LR ones, where the promising methods of super resolution to the 
entire image or area of interest should be employed recovering the data lost during 
acquisition stage. Finally, reconstructed data present more information for better visual 
understanding of selected areas, permitting a deeper analysis for various purposes 
(Baboulaz et al., 2009) 
There are exist a lot of the algorithms in the SR (Franzen et al., 2001; Chaudhuri et al., 2001), 
among them, the nearest neighbour methods that employ the interpolation procedure with 
the closest pixels to approximating point; bi-linear interpolation (Hou et al., 1978)  that 
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applies the mean averaging filter for neighbouring pixels in each a central pixel, and in this 
way obtaining the lost pixels; the bi-cubic algorithm that uses the cubic polynomial function 
for additional pixels; the methods based on spline technique (Lehmann et al., 1999; Phu et 
al., 2004) that deform the edges and wave them. Simple interpolation-based methods, such 
as bilinear or bicubic interpolation, etc. tend to produce HR images with jagged edges, these 
are a common artifacts for many SR algorithms. All these methods only apply the spatial 
pixels information. Other algorithms are known in literature, among them, warping, which 
is based on re-sampled operation on base on rectangular point spread function, and 
methods based on fuzzy logic theory (Tolpekin et al., 2008). Another group of methods is 
based on the Fourier transform with band limited function interpolation. Here, the 
restoration is realized by extension of the zeros, applying Discrete Fourier transform (DFT) 
(Crouse et al., 1998; Maeland et al., 1998; Landi et al., 2006) of size N for original sequence, 
filling up it with the zeros from N + 1 to 2N, and finally, calculating 2N points in the inverse 
DFT, that permits improving the detail and edge preservation in SR image. In similar way, 
this idea can be used employing the Discrete Cosine Transform (DCT) to find the lost pixels 
in an image or video frame, reconstructing SR image via inverse transform as in DFT 
method. The Wavelet based techniques have been introduced but mainly in specific 
applications (Crouse et al., 1998; Maeland et al., 1998; Landi et al., 2006, Reichenbach et al., 
2003.; Chan et al., 2003; Lertrattanapanich et al., 2002; Ng et al., 2004). 
The proposed here techniques take into account the spatial and spectral Wavelet pixel 
information permitting to reconstruct different video (Katsaggelos et al., 2007; 
Chaudhuri&Manjunath, 2005; Qin Feng-qing et al.; 2009, C. Wang et al, 2006) composition 
and texture nature, and, as it is observed from realized simulations, present good 
performance in terms of objective and subjective criteria (Chan et al., 2003; 
Lertrattanapanich et al., 2002; Ng et al., 2004).  
Here, we describe in details the novel SR method applying the Wavelets based on atomic 
functions (WAF) (Gulyaev et al., 2007). Novel Wavelet families (Fup, Up, Gk, n,  ) that are 
employed in SR restoration present the better performance in the compression of different 
types of the images and video sequences due to its special approximation properties 
explaining in this chapter. Recently, WAFs have already demonstrated their successful 
performance in the diverse fields, such as windowing in radar processing, compression and 
recognition of medical images, speech reconstruction, image processing, etc. (Juarez et al.; 
2008, Kravchenko et al.; 2008, Kravchenko et al., 2009). So, it is also expected better 
estimation of lost information and possible improvement during reconstruction in the SR 
procedure. Additionally, the most common Wavelet families, such as Daubechies, Symlets, 
Biorthogonal and Coiflets are tested also.  
The idea applied in Wavelet based techniques is justified by such a proposition: If Wavelet 
transform is efficiently used in the compression and decompression of the images without 
significant lost of information, then it is supposed that the reconstruction of HR image or 
frame in a video sequence can be realized sufficiently well using the inverse Wavelet 
transform, so treating the initial LR image as a before compressed one. In such a way, the 
reconstruction of SR data is realized by extension of an image (frame) size up to 4 times in 
comparison with the original LR image.  
Due to movement of an object or a scene during the video acquisition process, the frames 
are different from each other, so, utilizing the spatial sub pixel movement information 
between the frames, a spatial HR video sequence can be reconstructed from a LR video 

  

 

(Shen Huanfeng et al.; 2007, Callico et al., 2008). Principally, this permits to restore the high 
frequencies behind the diffraction limit of a sensor. For neighbouring frames in the video 
sequences, which can be significantly different because of motion, the similar pixels are 
tested with the purpose to find the movement estimate (Jain et al., 1981).  Such motion 
estimation is used to obtain the better estimates of the missing values. The apparent motion 
vectors are calculated between two neighbouring frames obtaining additional pixels. The 
precision of the registration stage is an important for the reconstructed image quality, 
because sometimes it is better to interpolate a LR image using classical algorithms than to 
reconstruct a HR image/frame from a set of images applying incorrect motion parameters. 
In the chapter, the proposed methods are also investigated under criterion of real time 
implementation, where additionally to restoration quality, the time values needed to 
reconstruct is considered, so, only fast method in motion estimation and SR are employed 
here, like “block matching” that commonly is used (Gomeztagle et al., 2009). 
To compare the robustness of the analyzed methods different test images and video 
sequences are studied, These image data present various physical characteristics, such as 
fine details, edges, texture, contrasts, smooth and rough background, etc. Test video 
sequences: "Toy", "Plant", "Walter", "Stephan" and "Flowers" have been investigated in 
greyscale and colour formats. 
To get objective performance of reconstruction, the criteria: Pick Signal to Noise Ratio 
(PSNR), Mean Absolute Error (MAE), and Normalized Colour Difference (NCD) are 
employed (Bovik, 2000; Kravchenko et al.; 2009; Farsiu et al., 2006; Akgun et al., 2005; Wood 
et al., 2008).  
Finally, the possibility of the real time processing is discussed implementing several 
promising frameworks on the Texas instruments Digital Signal Processing (TMS320C642, 
2004).  

 
2. Performance Criteria  

There exist different objective measures that are used in evaluation of image restoration 
qualities. Here, to characterize different known and proposed SR algorithms, and compare 
their performances, several criteria are employed: the Peak Signal-to-Noise Ratio (PSNR) for 
the characterization of noise suppression and artifacts limitations, Mean Absolute Error 
(MAE) for quantization of edges and fine detail preservation, and the Normalized Color 
Difference (NCD) for the estimation of the color perceptual error (Bovik, 2000; Kravchenko 
et al., 2009) The PSNR is defined as:  
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applies the mean averaging filter for neighbouring pixels in each a central pixel, and in this 
way obtaining the lost pixels; the bi-cubic algorithm that uses the cubic polynomial function 
for additional pixels; the methods based on spline technique (Lehmann et al., 1999; Phu et 
al., 2004) that deform the edges and wave them. Simple interpolation-based methods, such 
as bilinear or bicubic interpolation, etc. tend to produce HR images with jagged edges, these 
are a common artifacts for many SR algorithms. All these methods only apply the spatial 
pixels information. Other algorithms are known in literature, among them, warping, which 
is based on re-sampled operation on base on rectangular point spread function, and 
methods based on fuzzy logic theory (Tolpekin et al., 2008). Another group of methods is 
based on the Fourier transform with band limited function interpolation. Here, the 
restoration is realized by extension of the zeros, applying Discrete Fourier transform (DFT) 
(Crouse et al., 1998; Maeland et al., 1998; Landi et al., 2006) of size N for original sequence, 
filling up it with the zeros from N + 1 to 2N, and finally, calculating 2N points in the inverse 
DFT, that permits improving the detail and edge preservation in SR image. In similar way, 
this idea can be used employing the Discrete Cosine Transform (DCT) to find the lost pixels 
in an image or video frame, reconstructing SR image via inverse transform as in DFT 
method. The Wavelet based techniques have been introduced but mainly in specific 
applications (Crouse et al., 1998; Maeland et al., 1998; Landi et al., 2006, Reichenbach et al., 
2003.; Chan et al., 2003; Lertrattanapanich et al., 2002; Ng et al., 2004). 
The proposed here techniques take into account the spatial and spectral Wavelet pixel 
information permitting to reconstruct different video (Katsaggelos et al., 2007; 
Chaudhuri&Manjunath, 2005; Qin Feng-qing et al.; 2009, C. Wang et al, 2006) composition 
and texture nature, and, as it is observed from realized simulations, present good 
performance in terms of objective and subjective criteria (Chan et al., 2003; 
Lertrattanapanich et al., 2002; Ng et al., 2004).  
Here, we describe in details the novel SR method applying the Wavelets based on atomic 
functions (WAF) (Gulyaev et al., 2007). Novel Wavelet families (Fup, Up, Gk, n,  ) that are 
employed in SR restoration present the better performance in the compression of different 
types of the images and video sequences due to its special approximation properties 
explaining in this chapter. Recently, WAFs have already demonstrated their successful 
performance in the diverse fields, such as windowing in radar processing, compression and 
recognition of medical images, speech reconstruction, image processing, etc. (Juarez et al.; 
2008, Kravchenko et al.; 2008, Kravchenko et al., 2009). So, it is also expected better 
estimation of lost information and possible improvement during reconstruction in the SR 
procedure. Additionally, the most common Wavelet families, such as Daubechies, Symlets, 
Biorthogonal and Coiflets are tested also.  
The idea applied in Wavelet based techniques is justified by such a proposition: If Wavelet 
transform is efficiently used in the compression and decompression of the images without 
significant lost of information, then it is supposed that the reconstruction of HR image or 
frame in a video sequence can be realized sufficiently well using the inverse Wavelet 
transform, so treating the initial LR image as a before compressed one. In such a way, the 
reconstruction of SR data is realized by extension of an image (frame) size up to 4 times in 
comparison with the original LR image.  
Due to movement of an object or a scene during the video acquisition process, the frames 
are different from each other, so, utilizing the spatial sub pixel movement information 
between the frames, a spatial HR video sequence can be reconstructed from a LR video 
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Every measure, PSNR and MAE to get the objective criteria value employ the reference 

image HR ),( yxf and other one ),(ˆ yxf  obtained from SR algorithm. 

NCD criterion should be calculated in the *** vuL  space (Katsaggelos et al., 2007; 
Kravchenko et al., 2009)) and is a measure of color errors: 
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*u , and *v  are the differences in the *L , *u , and *v  components, respectively, 
between the two color vectors that present the SR reconstructed image and original HR 
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L2 norm or magnitude of the original HR image pixel vector in the *** vuL  space. It has 
been proved that the NCD objective measure expresses well the color distortion 
(Kravchenko et al., 2009).  
Since it is difficult to define the error criteria for an accurate quantization of SR image 
reconstruction, a subjective measure of the image distortion in form of subjective visual 
perception is used in this paper. It is presented by error image - the absolute difference 
between the original HR image and reconstructed SR one. So, subjective visual comparison 
of the images provides information about the spatial distortion and artifacts introduced by 
an algorithm employed, and present the performance of the analyzed technique when the 
SR image or SR frame of the video sequence are observed by the human visual system. 
The motion estimation is one of the fundamental problems in the treatment of the digital 
video sequences (Wüst Zibetti et al. 2007; Callico et al., 2008; Kravchenko et al., 2009). The 
objective of motion estimation consists of calculating the field of motion vectors to describe 
the apparent movement between two images of the sequence. It is important to deal with 
apparent movement, because the dynamic changes (motions) of the images are the 
projection on 2D plane at discrete moments of time from 3D spatial-temporal scenes. This 
supposes a loss of information that does necessary to distinguish between the real 
movement that projects on the plane and the movement pretends that, well, to keep 
redundant information with the goal to improve the estimate. In this specific application, 
the estimations of the movements between the frames should be found, and the technique 
“block matching” is usually used (Callico et al., 2008). Because this technique is too 
expensive in computation charge, we apply the motion estimation only in areas where two 
images have differences. A set of pixels in a window of sizes 9 x 9 pixels in a first frame, that 
should be slipped into the next frame is used in order to find the minimum of the difference 

  

 

according to criterion:      
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Rx tt xdxfxfdE ,
ˆ)( . In such a way, it is possible 

to obtain the redundant information from two blocks. So, we can use the information in the 
same zone of a scene that is found in two frames, in order to increase the sample size 
permitting the correct estimation of the lost pixels. The mentioned above algorithm in 
motion estimation permits to form the lost pixels in the SR reconstruction, and it is simple 
and sufficiently fast. There exist a lot of other algorithms with better performance but their 
computational charges are sufficiently bigger, this does not provide their real time 
implementation.  
 
3. Wavelet Atomic Functions and their Properties  
3.1 Atomic Functions 
Let present novel family of the Wavelets, the WAF, firstly introducing basic atomic 
functions (up, fupn, gk, upn, n, n) used as mother functions in their Wavelets construction. 
The idea of AF was consisted of finding a function where the maximum and minimum of 
their derivatives should be similar to maximum of initial function. The result of such a 
mathematical problem is in infinitely differentiable solution of the differential equations 
with a shifted argument (Kravchenko et al., 2008, 2009; Gulyaev et al., 2007): 
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constant coefficients. It has been shown that AFs take intermediate “place” between splines 
and classical polynomials.  Similarly to B-splines AFs are compactly supported and similarly 
to polynomials they are universal from the point of view of their approximation properties. 
AFs are useful in numerical analysis, in the cases when an approximated function is smooth 
enough and the use of polynomials is inconvenient due to the fact that they are not 
compactly supported.  
The simplest and most important AF is generated by infinite-to-one convolutions of 
rectangular impulses. To investigate such a convolution we use the Fourier transform. 
Applying standard Fourier transform, the rectangular impulse is represented as: 
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The function up(x) is represented by Fourier transform for the infinite convolution of 
rectangular impulses with variable length of duration 2n-1 similar to eq. (1) 
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L2 norm or magnitude of the original HR image pixel vector in the *** vuL  space. It has 
been proved that the NCD objective measure expresses well the color distortion 
(Kravchenko et al., 2009).  
Since it is difficult to define the error criteria for an accurate quantization of SR image 
reconstruction, a subjective measure of the image distortion in form of subjective visual 
perception is used in this paper. It is presented by error image - the absolute difference 
between the original HR image and reconstructed SR one. So, subjective visual comparison 
of the images provides information about the spatial distortion and artifacts introduced by 
an algorithm employed, and present the performance of the analyzed technique when the 
SR image or SR frame of the video sequence are observed by the human visual system. 
The motion estimation is one of the fundamental problems in the treatment of the digital 
video sequences (Wüst Zibetti et al. 2007; Callico et al., 2008; Kravchenko et al., 2009). The 
objective of motion estimation consists of calculating the field of motion vectors to describe 
the apparent movement between two images of the sequence. It is important to deal with 
apparent movement, because the dynamic changes (motions) of the images are the 
projection on 2D plane at discrete moments of time from 3D spatial-temporal scenes. This 
supposes a loss of information that does necessary to distinguish between the real 
movement that projects on the plane and the movement pretends that, well, to keep 
redundant information with the goal to improve the estimate. In this specific application, 
the estimations of the movements between the frames should be found, and the technique 
“block matching” is usually used (Callico et al., 2008). Because this technique is too 
expensive in computation charge, we apply the motion estimation only in areas where two 
images have differences. A set of pixels in a window of sizes 9 x 9 pixels in a first frame, that 
should be slipped into the next frame is used in order to find the minimum of the difference 
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The Atomic Functions )(xfupN  is defined by the convolution of compactly supported 
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Next AF  xn , which is used here, is defined as a compactly supported solution of the 
equation: 
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Using transforms analogous to those made in (Kravchenko et al., 2009), we obtain the 
following integral representation for AF  xn :  
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Another AF )(xgk  employed in this work is defined in (Kravchenko et al., 2009), as the 
compactly supported solution of differential equation in form of the Fourier transforms: 
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Next AF )(xm  considers the differential equation:  
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Finally, the AF )(xupm  used below is the generalization of presented above AF )(xup , 
and can be characterized by their Fourier transform (Kravchenko et al., 2009):  
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Let explain the construction procedure for WAFs and their properties (Gulyev et al., 2007). 
Each a WAF with unit norm has such a structure: 
 

 
)(

)()exp(
)(

xh
xhxj

x
p

p
p







  . (13) 

 

The function )(xh p  in eq. (13) is determined as:  
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where )(~   is the spectrum of chosen atomic function )(x  from presented above in eqs. 
(5), (7), (9) - (12).  

 
3.2 Wavelet Key Properties 
Inverse Discrete Wavelet Transform (IDWT) is applied in reconstruction of SR image. The 
DWT and IDWT are usually implemented employing the filter bank techniques in the 
scheme with only two filters for rows. The Wavelet decomposition algorithm applies two 
analysis filters )(~ zH  (lowpass) and )(~ zG  (highpass), and the reconstruction algorithm 
uses the complementary synthesis filters H(z) (lowpass) and G(z) (highpass). The highpass 
operators are obtained by simple shift and modulation presented as )(~ zG   = z H(-z)  and  
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Inverse Discrete Wavelet Transform (IDWT) is applied in reconstruction of SR image. The 
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scheme with only two filters for rows. The Wavelet decomposition algorithm applies two 
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i and k are the translation and scale indices. 
Frequency response allows appreciating the behavior of the synthesis filters (in SR problem) in 
a graphic way to appreciate the differences of the different Wavelet families used. 
Approximation order implies that the scaling function )(x  reproduces all polynomials of 
degree lesser or equal to n = L – 1. The stability of the wavelet representation and its 
underlying multi-resolution bases are depended on translations the scaling functions and 
how wavelets form Riesz bases (Meyer, 1990). To analyze this the Cross-correlation function 
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basis. There is a perfect norm equivalence (Parseval's relation), if and only if A = B = 1, so, in 
this case the basis is orthonormal. 
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The biorthogonal projector will be essentially as good as the optimal one (orthogonal 
projector onto the same space) provides that cos θ is close to one. 
 

 
Fig. 1. Frequency responses: Wavelet 9/7 (solid line), Daubechies 8 (dotted line), and Symlet 
8 (dashed line). 
 

 
Fig. 2. Frequency responses: WAFs up(t) (solid line), fup2(t) (dotted line), and eup(t) (dashed 
line). 
 
Figure 1 and 2 expose the frequency responses for some classical Wavelets and WAFs, 
accordingly, showing that Daubechies and Symlet filters are more selective that the Wavelet 
9/7 filters.  
It has been observed that the WAF filters have an respond function answer in more selective 
frequency that the better classical, potentially permitting the best approximation quality in 
the SR problem. 
Finally, Table 1 presents the key properties of the different Wavelets used in SR of the 
images (Kravchenko et al., 2008). So, the approximation property of estimation is 
characterized by relative error )1(2 r , where r is correlation coefficient that is equal 
to projection cosine in this case, the calculations have shown that WAF based on eup(x) can 
potentially produce relative variance error of 0,00464 (6.8% in RMS value), Wavelet Db8 
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gives the value of 0,02242 (of about 15% in RMS value), and Wavelet 9/7 presents the value of 
0,03234 (more than 18% in RMS value). The existence of the limits Riesz bounds 
demonstrates that the coefficients of the analysis and synthesis filters are lineally 
independent. The found projection cosine shows that the WAFs are near to the ideal value, 
this implies that they are better semi-orthogonal and the “most independent”. These 
properties permit to expect that the families of WAFs have sufficiently better acting in 
approximation problems such as SR one than the traditional families. 
 

Type

Dec. Rec. Dec. Rec. Dec. Rec. Dec. Rec. Dec. Rec. Dec. Rec.

Approxima- 
tion Order

Projection 
cosine

0.926 0.943 0.833 0.849 0.880 0.896 0.792 0.806 0.713 0.726 0.641 0.653

1.065 1.084 1.267 1.290 1.273 1.295 1.514 1.542 1.802 1.834 2.145 2.183

0.98879 0.98781 0.99176

Wavelet 9/7 Daubechies 8 Symlet 8 WAF up(t)

4 4 4

Key properties for different Wavelet filters

Riesz      
Bounds

WAF fup 2 (t)

0.99472

WAF eup(t)

0.997690.98387

4 44

 
Table 1. Summary of key properties of different Wavelet families. 
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Resolution enhancement via probabilistic deconvolution of multiple degraded images 
(Sroubek et al. 2006). This approach consists of employing a stochastic fusion method that 
performs multichannel blind deconvolution (MBD) and SR simultaneously. LR image zk is 
modeled by unknown blurring the ideal image u, and shifting the result by an unknown 
vector contaminated by Gaussian noise. This model is a very realistic description of remote 
sensing observation process where many LR satellite sensors (channels) are employed, and 
can be rewritten as:  
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and the following prior distribution for  g is used: 
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The optimal MBD solution is defined as a maximum a posteriori (MAP) estimate. It does not 
require any knowledge of the blurring functions and the input channels might be mutually 
shifted by an unknown vector. Allowing only translational between-channel the MAP 
estimation is given as: 
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The genetic algorithms are applied adopting an approach of alternating minimizations over 
u and g. The proposed AM-MAP algorithm alternates between two steps: 
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Here, a decimation operator matrix D is introduced to model a LR acquisition of digital 
sensors by performing convolution with a 2X 2 uniform mask returns every second pixel 
and down-sampling of images. In the discrete case, the acquisition model becomes 

nDGuZ  . The steps in the AM-MAP algorithm are the same, except the G, U and   
are replaced with DG, DU and  D, respectively. An iterative fusion algorithm was 
developed recovering a HR image from misaligned and blurred input channels. The fusion 
problem is formulated as the MAP estimation with the prior probabilities derived from the 
variational integral and from the mutual relation of co-prime channels. The simulation 
results of an approach expose that framework can form high-quality fused images. 
Recovering SR and blind deconvolution, the method can restore the images as it shown in 
Fig.3 The data source for simulation (playing the role of the ideal image) was the 300300 
SPOT HRV image covering the north-western part of Prague (Czech capital). LR 
acquisitions are formed blurring image by randomly generated 66 motion masks, 
corrupted by AWGN of SNR = 50 dB and resolution decimated by factor of two to obtain 
images of size 150150. Six such images were generated and used as input channels´ data.  
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a)      b) 

Fig. 3. a) Standard MBD fusion, followed by linear interpolation; (b) fusion using AM-MAP 
with the SR. 
 
The result of fusion using the blind deconvolution approach in (Flusser, 2003) and applying 
linear interpolation afterward is depicted in Fig. 3(a). The current algorithm with the SR 
extension performs better and gives a more accurate representation of the original image, as 
illustrated in Fig. 3(b).  
SR Reconstruction Algorithm for Surveillance Images (Zhang et al., 2010) is presented as 
an edge-preserving maximum a posteriori (MAP) estimation based SR algorithm using a 
Weighted Directional Markov image prior model for a region of interest (ROI) from several 
LR surveillance images. In many surveillance video applications, it is of interest to recognize 
an object that is selected as a ROI where edges of the object are often very important. 
Standard Gaussian Markov Random Field regularization (GMRF) in the MAP-based SR 
cannot effectively preserve sharp edges in the estimated images. Different techniques have 
been proposed such as Huber-Markov regularization and bilateral-TV regularization, 
Weighted Directional Markov image prior model, which utilizes the weights for different 
directional smoothness measures of the edge pixels (Chan et al., 2003, Lertrattanapanich et 
al., 2002). Typically, the imaging process involves warping, followed by blurring and down-
sampling to generate LR images from the HR image. So, the LR image can be represented 

as nzMDBy kk  , where  Mk is warp matrix, B is camera blur matrix, D is down-

sampling matrix, and n  is noise, k= 1,2,....P, with P being the number of LR images. It is 
assumed that the motion of the ROI during the sequence is a globally translational motion 
and the motions of all points can often be modelled by a parametric model. 
In most situations, the problem of SR is an ill-posed inverse one because the information 
contained in the observed LR images is not sufficient to solve the HR image, so the ill-posed 
problem should be stabilized to be well-posed. The MAP method, which can easily include 
image prior or regularization, is an efficient framework to describe the SR problem. 
The maximization of this posterior probability distribution is equivalent to such a problem:   
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where the first term is the data fidelity term, and )(z  is the regularization term. 
Here, the CG optimization utilizes conjugate direction instead of local gradient to search for 
the minima permitting faster convergence when compared to the steepest descent method. 
The gradient of presented above function is denoted as   
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where the right term of the gradient  nẑ  is the derivative of the regularization term 
with respect to z and can be approximated from the estimated HR image. While the left term 
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k yzDBMDBMyzAA  ˆˆ  can be computed using basic image 

operations such as warp, blur and sampling instead of sparse matrices multiplications. The 
matrices Mk, B, D model the principal image formation process: the image warping, blurring 
and down-sampling, respectively. The implementation of their transpose matrices is also 

very simple TD  is implemented by up-sampling the image without interpolation, i.e., by 

zero padding. For a convolution blur, TB  is the convolution with the flipped kernel of the 

imaging blur kernel  j) (i,b ; If k M is implemented by backward warping, then T
KM  

should be the forward warping of the inverse motion. Thus, the gradient of the cost function 
with the Weighted Markov Random Field (WMRF) regularization is computed in an 
efficient manner and the CG optimization technique is used without explicit construction of 
these large matrices.  
The simulation results presented in following figures show the effectiveness of the current 
proposal (Fig. 4). The image was reconstructed using MRF and WMRF regularizations, and 
this scenario can be thought of as a SR reconstruction problem with a resolution 
enhancement factor of one. For the quadratic function chosen as the function of the smooth 
measure, the reconstruction result of GMRF regularization is shown in Figure 4(a) and 
Figure 4(b), and GMRF regularization achieves the smallest MSE error of 18.79 ion 
comparison with other investigated techniques. 
 

      
a)        b)  

Fig. 4. Simulation results of deblurring using different regularizations. (a) HMRF 
regularization. (b) HWMRF regularization. 
 

Filters GMRF GWMRF HMRF HWMRF 
First experiment 18.79 14.61 12.91 9.73 
Second experiment 77.54 72.02 71.85 62.51 

Table 2. MSE error of super- resolution reconstruction using different regularizations. 
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Representation of HR Images from Low Sampled Fourier Data (LandiI et al., 2006). B-
spline functions are proposed to use for the parametric representation of HR images from 
low sampled data in the Fourier domain. To solve the ill-conditioned linear system arising 
from the method an efficient regularization method is proposed demonstrating this in 
applications to dynamic Magnetic Resonance images (MRI) that acquires a time series of 
images of the same slice of a body where the data are low sampled in the Fourier space to 
fasten the acquisition. The image representation problem from limited Fourier data is 
classically addressed as an interpolation problem through zero padding in the Fourier 
domain but this born in substantially degraded HR images truncation artifacts, including 
ringing and blurring artifacts. In current method, the desired HR image is represented 
through a B-spline parametric model where the coefficients are determined. In practical 
applications, the band-limited interpolator based on sinc functions is not suitable for the 
interpolation of space-limited images. Therefore, several sinc-approximating functions: the 
ideal, windowed and truncated sinc interpolation, linear, quadratic, cubic and cubic B-spline 
interpolation as well as Lagrange and Gaussian methods are discussed in literature and 
compared the qualitative and quantitative error determinations, computational complexity 
evaluations, and run time measurements. The cubic B-spline interpolation has very good 
Fourier properties, small interpolation error and moderate computational cost. It is 
supposed with a regularization method it can be achieved a further advantage of B-splines 
over the other sinc-approximating basis functions. In image processing, when using a low-
pass filter to perform image denoising, the original noisy image is firstly Fourier 
transformed and then the high frequency content of its spectrum is ignored. Since noise is 
mainly distributed over the high frequencies, all frequencies outside a circle of a prescribed 
radius are set to zero, and then the image is reconstructed by a 2DIFT.  
   

  
a) Keyhole method, zoom. b)B-spline Keyhole method with 

regularization, zoom. 
Fig.5. Zoomed parts of the reconstruted images. 
 
Current method can also be used for HR of a single image, i.e in the process of obtaining a 
HR image given a LR one. In this simple version of the SR problem, the missing high 
frequency details have to be estimated in order to obtain an image with more pixels. The 
current B-spline model-based method called B-spline Zero-Padding (BZP) method uses B-
spline basis functions to represent HR images from LR data collected in the Fourier space: 
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The Keyhole-like methods were tested on real data in the Mouse test problem (see data sets 
in the site: http://mri.ifp.uiuc.edu/V/). Data consist of six data sets from a Mouse breast 

  

 

with a big tumour: a baseline reference data set DB(kx, ky ) and an active reference data set 
DA(kx, ky) of 256 × 256 samples, and four low-sampled data sets Dt(kx, ky) of 32 × 256 samples, 
one for each dynamic section, acquired by a MR spin-echo technique after injecting a 
contrast agent. Figs. 5(a) and 5(b) show a zoom images by increasing the resolution of a 
factor 4 where it is evident that the BZP method preserves the quality of the image while the 
ZP method degrades the image, by introducing the artefacts indicated by the arrows. 
Noniterative Interpolation-Based SR Minimizing Aliasing in the Reconstructed Image 
(Sanchez-Beato et al., 2008). A sampling theory framework is proposed with a pre-filtering 
step to allow deal with more general data models and also a specific method for SR that uses 
Delaunay triangulation and B-splines to build the SR image. It has been confirmed the 
interpolation problem solving in the case of the de-blurring with the translational motion, 
and with the rotations and shifts where the PSF is rotationally symmetric. The algorithm 
raises the following: first build a continuous function using Delaunay triangulation and then 
it should be projected it on the space of polynomial B splines of degree. A cubic B-spline was 
used, which has a good tradeoff between computational complexity and close behavior to 
the sampling system of sinc functions. 
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needed to calculate the  jia ,  coefficients.  

To find the  jic , coefficients, the impulse response of the B-spline digital filter of order 
seven is needed. This B-spline has Z-transform 
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which can be implemented as two recursive filters, one causal and another one anti-causal. 

The denominator of  zS 7  has six real roots, three of them inside the unit circle and the 
other three outside. Separating the denominator of (23) in its causal and anti-causal parts 
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, permitting to 

implement the IIR filter in such a form: 
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Initially, the first equation is run to find the  nd  coefficients and then final output of the 
filter is obtained in the second equation. For images, this filter is applied once in the 
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Representation of HR Images from Low Sampled Fourier Data (LandiI et al., 2006). B-
spline functions are proposed to use for the parametric representation of HR images from 
low sampled data in the Fourier domain. To solve the ill-conditioned linear system arising 
from the method an efficient regularization method is proposed demonstrating this in 
applications to dynamic Magnetic Resonance images (MRI) that acquires a time series of 
images of the same slice of a body where the data are low sampled in the Fourier space to 
fasten the acquisition. The image representation problem from limited Fourier data is 
classically addressed as an interpolation problem through zero padding in the Fourier 
domain but this born in substantially degraded HR images truncation artifacts, including 
ringing and blurring artifacts. In current method, the desired HR image is represented 
through a B-spline parametric model where the coefficients are determined. In practical 
applications, the band-limited interpolator based on sinc functions is not suitable for the 
interpolation of space-limited images. Therefore, several sinc-approximating functions: the 
ideal, windowed and truncated sinc interpolation, linear, quadratic, cubic and cubic B-spline 
interpolation as well as Lagrange and Gaussian methods are discussed in literature and 
compared the qualitative and quantitative error determinations, computational complexity 
evaluations, and run time measurements. The cubic B-spline interpolation has very good 
Fourier properties, small interpolation error and moderate computational cost. It is 
supposed with a regularization method it can be achieved a further advantage of B-splines 
over the other sinc-approximating basis functions. In image processing, when using a low-
pass filter to perform image denoising, the original noisy image is firstly Fourier 
transformed and then the high frequency content of its spectrum is ignored. Since noise is 
mainly distributed over the high frequencies, all frequencies outside a circle of a prescribed 
radius are set to zero, and then the image is reconstructed by a 2DIFT.  
   

  
a) Keyhole method, zoom. b)B-spline Keyhole method with 

regularization, zoom. 
Fig.5. Zoomed parts of the reconstruted images. 
 
Current method can also be used for HR of a single image, i.e in the process of obtaining a 
HR image given a LR one. In this simple version of the SR problem, the missing high 
frequency details have to be estimated in order to obtain an image with more pixels. The 
current B-spline model-based method called B-spline Zero-Padding (BZP) method uses B-
spline basis functions to represent HR images from LR data collected in the Fourier space: 
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The Keyhole-like methods were tested on real data in the Mouse test problem (see data sets 
in the site: http://mri.ifp.uiuc.edu/V/). Data consist of six data sets from a Mouse breast 

  

 

with a big tumour: a baseline reference data set DB(kx, ky ) and an active reference data set 
DA(kx, ky) of 256 × 256 samples, and four low-sampled data sets Dt(kx, ky) of 32 × 256 samples, 
one for each dynamic section, acquired by a MR spin-echo technique after injecting a 
contrast agent. Figs. 5(a) and 5(b) show a zoom images by increasing the resolution of a 
factor 4 where it is evident that the BZP method preserves the quality of the image while the 
ZP method degrades the image, by introducing the artefacts indicated by the arrows. 
Noniterative Interpolation-Based SR Minimizing Aliasing in the Reconstructed Image 
(Sanchez-Beato et al., 2008). A sampling theory framework is proposed with a pre-filtering 
step to allow deal with more general data models and also a specific method for SR that uses 
Delaunay triangulation and B-splines to build the SR image. It has been confirmed the 
interpolation problem solving in the case of the de-blurring with the translational motion, 
and with the rotations and shifts where the PSF is rotationally symmetric. The algorithm 
raises the following: first build a continuous function using Delaunay triangulation and then 
it should be projected it on the space of polynomial B splines of degree. A cubic B-spline was 
used, which has a good tradeoff between computational complexity and close behavior to 
the sampling system of sinc functions. 
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needed to calculate the  jia ,  coefficients.  

To find the  jic , coefficients, the impulse response of the B-spline digital filter of order 
seven is needed. This B-spline has Z-transform 
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which can be implemented as two recursive filters, one causal and another one anti-causal. 

The denominator of  zS 7  has six real roots, three of them inside the unit circle and the 
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Initially, the first equation is run to find the  nd  coefficients and then final output of the 
filter is obtained in the second equation. For images, this filter is applied once in the 
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direction x and once in the y direction. The proposed method is non-iterative, scalable and 
can prevent the presence of aliasing artifacts when the HR image is under-sampled 
suppressing the high frequency noise. Also, the Delaunay triangulation provides a very 
strong protection against a possible ill-conditioning of the problem. There is no parameter 
involved in the reconstruction that is an advantage because, in MAP methods, the gradient 
descent step and different parameters for the regularization prior are needed. The method is 
highly parallelizable, once the triangulation is done, each defined triangle independently of 
the others can be processed.  
 

 
a b 

Fig. 6. Super-resolved images for experiment one with SR factor 2: (a) lmage with Tikhonov 
regularization, PSNR = 18:80dB, (b) Current method, PSNR = 19:04 dB. 
 
The Fig.6 presents the visual results, where one can see that described method achieves the 
best PSNR among all tested algorithms. The borders of the lines that converge to the centre 
of the image present aliasing artefacts in all other methods but in current. 
Estimation of the Parameters in Regularized Simultaneous SR (Zibetti et al., 2010). A 
method for automatic determination of the regularization parameters for the class of 
simultaneous SR algorithms is based on the joint maximum a posteriori (JMAP) estimation 
technique. This classical technique JMAP has the drawback: it can be unstable and may 
generate multiple local minima.  
It assumes that the frame in the temporal instant k can be represented by the frame in the 
temporal instant j, with the motion compensated, plus a new information ek,j , which cannot 
be obtained from the frame in the instant j. The motion model is defined as fk = Mk,j fj + ek,j   
where fk and fj are vectors that represent the frames in the temporal instants k and j, 
respectively. The matrix Mk,j , of size M × M, represents the motion transformation, or 
warping. 
The simultaneous algorithms estimate the entire sequence of HR frames in a single process. 
This approach allows the inclusion of the motion matrix in the prior term, improving the 
quality of the estimated image sequence presenting solution as minimum of cost function:  
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parameters RM  ,  should be known or estimated, this leads to different HR resolution 

algorithms. 
Joint maximum a posterior (JMAP) estimation is given as a point of posterior density 
function: 
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where   is data hyperparameter, and MR  ,  are the hyperparameter of the image 

prior density. Using Gaussian approximations of acquisition noise, and densities 
),/( fgp , ),/( MRfp  , it easy to find the classical JMAP estimate, according to 

algorithm  
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Unfortunately, the cost function in is non-convex and estimation is unstable. Here, to 
stabilize the JMAP estimation an improved solution by modelling the JMAP hyper 
parameters with a Gamma prior distribution is proposed. In the JMAP method, the density 
of the data or the prior density of the images is connected with the density of its respective 
hyperparameter. For example, consider only the use of the smoothness prior,  Rfp  , 

which  enforces the HR images to be smooth. The associated hyperparameter R , defines 
“how smooth” is the resulting image. However, when an uniform density is assigned it is 
implicitly assumed that an over smooth image, like a constant intensity value image, when  

,0R  is as likely to occur as a noisy image, like the one produced by a completely un-

regularized estimation, when ,R . The other extreme choice for  Rp   is a Dirac 

delta function, i.e., an impulse in a fixed value for R . Among several candidates, the 
Gamma density has practical and theoretical advantages over the alternatives. The Gamma 

densities for the hyperparameters are given by  

  














b

aa

e
a
b 

1 , and 

 
   

   




 


 id

hch
m

c
R

MR

MRi

e
hc
d

p



11

,
, where a, c and h are the scale factors, b, d and i are 

the shape factors, and (x)   is the gamma function.  
Using Gamma density functions in JMAP, the estimate it can be found as the solution:  
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where parameters MR  ,  depend on Gamma densities presented above. 
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direction x and once in the y direction. The proposed method is non-iterative, scalable and 
can prevent the presence of aliasing artifacts when the HR image is under-sampled 
suppressing the high frequency noise. Also, the Delaunay triangulation provides a very 
strong protection against a possible ill-conditioning of the problem. There is no parameter 
involved in the reconstruction that is an advantage because, in MAP methods, the gradient 
descent step and different parameters for the regularization prior are needed. The method is 
highly parallelizable, once the triangulation is done, each defined triangle independently of 
the others can be processed.  
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Fig. 6. Super-resolved images for experiment one with SR factor 2: (a) lmage with Tikhonov 
regularization, PSNR = 18:80dB, (b) Current method, PSNR = 19:04 dB. 
 
The Fig.6 presents the visual results, where one can see that described method achieves the 
best PSNR among all tested algorithms. The borders of the lines that converge to the centre 
of the image present aliasing artefacts in all other methods but in current. 
Estimation of the Parameters in Regularized Simultaneous SR (Zibetti et al., 2010). A 
method for automatic determination of the regularization parameters for the class of 
simultaneous SR algorithms is based on the joint maximum a posteriori (JMAP) estimation 
technique. This classical technique JMAP has the drawback: it can be unstable and may 
generate multiple local minima.  
It assumes that the frame in the temporal instant k can be represented by the frame in the 
temporal instant j, with the motion compensated, plus a new information ek,j , which cannot 
be obtained from the frame in the instant j. The motion model is defined as fk = Mk,j fj + ek,j   
where fk and fj are vectors that represent the frames in the temporal instants k and j, 
respectively. The matrix Mk,j , of size M × M, represents the motion transformation, or 
warping. 
The simultaneous algorithms estimate the entire sequence of HR frames in a single process. 
This approach allows the inclusion of the motion matrix in the prior term, improving the 
quality of the estimated image sequence presenting solution as minimum of cost function:  
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parameters RM  ,  should be known or estimated, this leads to different HR resolution 

algorithms. 
Joint maximum a posterior (JMAP) estimation is given as a point of posterior density 
function: 
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where   is data hyperparameter, and MR  ,  are the hyperparameter of the image 

prior density. Using Gaussian approximations of acquisition noise, and densities 
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Unfortunately, the cost function in is non-convex and estimation is unstable. Here, to 
stabilize the JMAP estimation an improved solution by modelling the JMAP hyper 
parameters with a Gamma prior distribution is proposed. In the JMAP method, the density 
of the data or the prior density of the images is connected with the density of its respective 
hyperparameter. For example, consider only the use of the smoothness prior,  Rfp  , 

which  enforces the HR images to be smooth. The associated hyperparameter R , defines 
“how smooth” is the resulting image. However, when an uniform density is assigned it is 
implicitly assumed that an over smooth image, like a constant intensity value image, when  

,0R  is as likely to occur as a noisy image, like the one produced by a completely un-

regularized estimation, when ,R . The other extreme choice for  Rp   is a Dirac 
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the shape factors, and (x)   is the gamma function.  
Using Gamma density functions in JMAP, the estimate it can be found as the solution:  
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Initial Conditions 
 

n := 0; f0 := initial HR image guess 

R
0  initial image smoothness parameter λR; 

M
0  initial motion similarity parameter λM; 

gDb T  calculate data 
initiate iterations 
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Table 3. First implementation CG + parameter updating. 
 
The first solution of the problem is presented in Table 3. The second approach (Table 4) has 
shown to be much faster than the first one.  
 

Initial 
Conditions 
 

0n  n := 0; 0f  HR image guess; R
0 image smoothness parameter λR; 
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0 motion similarity parameter λM; 
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Table 4. Second Implementation: NL-CG (image and parameter updated together) Present 
the algorithm in adequate form.  
 

  

 

The well known Flowers sequence was studied in simulation experiments where the motion 
was estimated using the optical flow method, and in this case, linear interpolated versions of 
the LR images were employed. The estimated motion vectors are not completely reliable 
therefore, occlusions and motion errors occur in several places in the sequence.  
 

 
a)     b)  

Fig. 7. Visual results comparing classical JMAP and the Gamma_JMAP method in two 
different repetitions. (a) JMAP(SNR=18.6dB; b) Gamma_JMAP (SNR=19.3dB). 
 
In simulations, different methods in SR were probed: JMAP - The classical JMAP approach. 
The L-MD - The method in based in the L-Curve, designed for multiple parameters in 
general inverse problems. The G_JMAP-1 - Described method with the procedure, as shown 
in Table 3. The G_JMAP-2 - Described method with direct minimization, as shown in Table 
4. Fig. 7 exposes simulation results with the tested methods. It has been noticed the 
instability of the JMAP and of the L-MD methods. 

 
5. DSP Implementation  

Different promising algorithms of SR realized from LR images or frames from videos have 
been implemented in real time mode. The heart of the EVM DM642 is a Digital Media 
Processor, which is based in line of C64xx Digital Signal Processors (DSPs) manufactured by 
Texas Instruments. DM642 is characterized by a big set of integrated peripherals inside a 
chip, it includes three video ports interfaces, a I2C bus controller, a multichannel serial 
audio port, a 64-bit EMIF, a 10/100 Ethernet Controller MAC, and a PCI interface. 
Characteristics card includes: A TMS320DM642 DSP at 720 MHz, 32 Mb in SDRAM, 4 Mb in 
Linear Memory Flash, 2 video decoders, 1 video coder, FPGA implementation to screen 
display, double UART with RS-232 drivers, an stereo codec, Ethernet card, 32 Kb EEPROM 
I2C, 8 programmable LEDs, several input-output video formats, etc. (TMS320DM642, 2004, 
Enry Shen, 2005). Communication of Code Composer Studio with EVM is achieved using an 
external emulator via JTAG connectors. Figure 8 exposes the EVM DM642 block diagram 
architecture. To get the processing time values, note that the TMS320DM642 DSP has a clock 
of 720 MHz, realizing 1.39 instructions per cycle, obtaining 570 millions instructions/sec. It 
is important to clarify that it can get up maximum 2,147,483,648 instructions per second. 
Using Simulink module of Matlab a project is created, where the DSP model (in this case 
DM342EVM) and its respective Task Bios are selected; later, this bios configuration can be 
changed on Code Composer Studio. Inside of the function, there are three modules: video 
capture, subsystem realizing SR reconstruction on base of Wavelet frameworks, and video 
display. Next, a CCS project is formed in Simulink. The Matlab sends call to CCS, and send 

www.intechopen.com



Super-Resolution Procedures in Image and Video  
Sequences based on Wavelet Atomic Functions 119

 

Initial Conditions 
 

n := 0; f0 := initial HR image guess 

R
0  initial image smoothness parameter λR; 

M
0  initial motion similarity parameter λM; 

gDb T  calculate data 
initiate iterations 
 MMRRDDA TM

n
TR

n
T

n  
 

MTM calculate 
matrix 

 
nf  solve via  bfACG n   new HR image 

 
n

D
n Dfgr  ,     n

R
n Rfr   

calculate data error 
and  image 
smoothness 

 
n

M
n Mfr 

 
calculate motion 
difference 

 2/21
D
n

D
n

R
n rrR 

, 2/21
M
n

D
n

M
n rrM 

 new λR and λM 
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Table 4. Second Implementation: NL-CG (image and parameter updated together) Present 
the algorithm in adequate form.  
 

  

 

The well known Flowers sequence was studied in simulation experiments where the motion 
was estimated using the optical flow method, and in this case, linear interpolated versions of 
the LR images were employed. The estimated motion vectors are not completely reliable 
therefore, occlusions and motion errors occur in several places in the sequence.  
 

 
a)     b)  

Fig. 7. Visual results comparing classical JMAP and the Gamma_JMAP method in two 
different repetitions. (a) JMAP(SNR=18.6dB; b) Gamma_JMAP (SNR=19.3dB). 
 
In simulations, different methods in SR were probed: JMAP - The classical JMAP approach. 
The L-MD - The method in based in the L-Curve, designed for multiple parameters in 
general inverse problems. The G_JMAP-1 - Described method with the procedure, as shown 
in Table 3. The G_JMAP-2 - Described method with direct minimization, as shown in Table 
4. Fig. 7 exposes simulation results with the tested methods. It has been noticed the 
instability of the JMAP and of the L-MD methods. 

 
5. DSP Implementation  

Different promising algorithms of SR realized from LR images or frames from videos have 
been implemented in real time mode. The heart of the EVM DM642 is a Digital Media 
Processor, which is based in line of C64xx Digital Signal Processors (DSPs) manufactured by 
Texas Instruments. DM642 is characterized by a big set of integrated peripherals inside a 
chip, it includes three video ports interfaces, a I2C bus controller, a multichannel serial 
audio port, a 64-bit EMIF, a 10/100 Ethernet Controller MAC, and a PCI interface. 
Characteristics card includes: A TMS320DM642 DSP at 720 MHz, 32 Mb in SDRAM, 4 Mb in 
Linear Memory Flash, 2 video decoders, 1 video coder, FPGA implementation to screen 
display, double UART with RS-232 drivers, an stereo codec, Ethernet card, 32 Kb EEPROM 
I2C, 8 programmable LEDs, several input-output video formats, etc. (TMS320DM642, 2004, 
Enry Shen, 2005). Communication of Code Composer Studio with EVM is achieved using an 
external emulator via JTAG connectors. Figure 8 exposes the EVM DM642 block diagram 
architecture. To get the processing time values, note that the TMS320DM642 DSP has a clock 
of 720 MHz, realizing 1.39 instructions per cycle, obtaining 570 millions instructions/sec. It 
is important to clarify that it can get up maximum 2,147,483,648 instructions per second. 
Using Simulink module of Matlab a project is created, where the DSP model (in this case 
DM342EVM) and its respective Task Bios are selected; later, this bios configuration can be 
changed on Code Composer Studio. Inside of the function, there are three modules: video 
capture, subsystem realizing SR reconstruction on base of Wavelet frameworks, and video 
display. Next, a CCS project is formed in Simulink. The Matlab sends call to CCS, and send 
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the project on C. To realize the video sequence processing on DSP, first, it should be 
changed the MatLab program into “C” code for Code Composer Studio via Simulink. Once 
the project Composer Code Studio has been created, the necessary changes are arranged 
with purpose to obtain the processing time values. The results of time execution of the 
designed and reference frameworks are exposed in the next section.   
 

 
Fig. 8. Block diagram of the EVM DM642. 

 
6. Simulation Results 

Numerous statistical simulations, which have been realized, are consisted of the tests of the 
SR procedures in several video sequences that are widely used in the experiments: Toy 
(256x256 pixels, 8 bits), Stephan and Flowers (352 x 240 pixels, 8 bits). Additionally, the 
Flowers sequence has been reconstructed in gray scale and color formats. The first video 
sequence, contain an image with toys moving with defined borders, and plain background. 
The second one shows a tennis player, there are a lot fine details at objects like the racket, 
faces of the audience, etc., they are moving in several directions, moreover, the edges of the 
letters in the stands are exposing a visual reference. The third sequence exposes a tree with 
edges and field of numerous flowers that contain a lot of fine details. This sequence is used 
in gray and color formats. In all cases, the initial LR images are obtained reducing the 
original image HR size in four times, applying the summing and averaging the values of 
every four pixels. The reconstruction SR process should restore the initial sizes, applying 
different SR techniques. Finally, the original HR and reconstructed SR images are compared. 
The objective qualities of SR for the proposed and reference algorithms are applied 
according to criteria: PSNR, MAE, and color NCD measure. We also use the subjective visual 
comparison in form of error image to compare the capabilities of noise suppression and the 
artifacts´ limitations, also, the detail´s preservation of the different algorithms. There were 
realized numerous simulation experiments using different methods of SR reconstruction, 
but for each video sequence we only present below the better selected results that put in 
following tables (from 5 to 8) and figures (from 9 to 12). So, the reconstructed results in the 
SR problem for different test images using following techniques: Bi-cubic, Nearest neighbor, 
Warp, DCT, FFT, Sinc, Fuzzy-ELA, Recursive logic, and Wavelets based on classical families 
Biorthogonal, Daubechies, Symlets, Coiflets, and finally, the framework proposed show the 
best values in criteria PSNR and MAE for different WAF: n, fupn, n, gn, and upn. Finally, the 

  

 

values of needed processing time for SR procedures implemented in hardware are exposed 
for better algorithms.  
In the SR frame of the video sequence Toy, one can observe the simulation results in Table 5 
and Fig.9  comparing the original HR and LR images that the better performance in terms of 
objective criteria PSNR and MAE, as well as in subjective perception are presented 
employing SR reconstruction on the base of WAF fup1 and DCT algorithm. It is clearly 
observed in the images (see Fig.9) better subjective perception for WAF fup1 in comparison 
with DCT technique.  
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  Algorithm MAE PSNR Algorithm MAE PSNR 
1 

fup3 
12.36 34.76 

DCT 
12.09 34.90 

2 12.67 34.65 12.45 34.59 
3 12.78 34.56 12.43 34.61 
1 

fup1 
11.38 34.91 

Daubechies 
13.20 34.50 

2 11.35 34.90 13.44 34.37 
3 11.51 34.90 13.55 34.34 

Table. 5. Objective criteria values for video sequence Toy. 
 

    
a) Original HR. b) Input LR. c) WAF fup1. d) DCT. 

Fig. 9. Visual perception results for the video sequence Toy. 
 
Video sequence Stephan has several features, one of which is that there are several 
movements in it as above mentioned. The simulation results expose the best reconstruction 
in SR process in the case of WFA usage. This is confirmed as in objective criteria for fine 
details (see Table 6, MAE), as in subjective perception analyzing SR reconstructed images 
and corresponding error images (Fig.10).  
In the video sequence Flowers (see Table 7 and Fig.11), there is clear the difference between 
LR image and HR one, because of numerous fine features presented in the flowers. Also, 
there are the well-defined borders of the house. Better results among all analyzed 
algorithms in terms of the objective criteria are presented by DCT algorithm and when the 
WAF 6 is employed, but observing the SR images and their error images it can viewing that 
mentioned WAF exposes in some areas slightly better visual subjective performance.   
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  Algorithm MAE PSNR Algorithm MAE PSNR 
100 

5 

5.10 80.10 

biorthogonal 

6.59 80.43 
200 3.01 82.29 3.98 83.44 
300 2.61 83.05 4.81 82.23 
100 

3 

5.90 79.44 

Coiflets 

51.73 72.38 
200 3.18 82.01 23.68 73.47 
300 2.88 82.48 29.90 72.77 

Table. 6. Objective criteria values for video sequence Stephan. 
 

 
 

  

a) Original HR. b) Input LR. c) WAF 5. d) Biorthogonal. 
Fig. 10. Visual perception results for the video sequence Stephan. 
 
The main difference of the color video sequence Flowers (Fig.12) in comparison with their 
gray variant (Fig.11) is additional color information that permits to see more precisely the 
fine details for flowers in different colors. For example, analyzing SR image restored 
employing the WAF 5 or 3, one can see better visual performance in comparison with any 
another SR restoration algorithm. For example, SR procedure based on Biorthogonal 
Wavelet presents blurry frames with the pixels having a sideways movement type, 
moreover, the values in the error images are greater for the SR algorithm in case 
Biorthogonal than when the SR based on the WAF 5 and 3 are employed. 
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  Algorithm MAE PSNR Algorithm MAE PSNR 
10 

5 

11.40 76.88 

DCT 

9.57 78.27 
15 9.11 78.18 8.65 78.55 
20 9.97 77.31 8.05 78.66 
10 

6 

9.97 77.31 

Coiflets 

63.08 72.53 
15 9.11 78.18 54.22 72.60 
20 11.40 76.88 59.97 72.51 

Table. 7. Objective criteria values for video sequence Flowers (gray). 
 

  

 

    
a) Original HR. b) Input LR. c) WAF 5. d) DCT. 

Fig. 11. Visual perception results for the video sequence Flowers. 
 

N
o.

 o
f F

ra
m

e   Algorithm MAE PSNR NCD Algorithm MAE PSNR NCD 
10 

Biorthogonal 

11.00 79.17 0.09 

3 

11.08 76.74 0.197 
15 10.24 79.43 0.09 12.12 76.24 0.205 
20 9.88 79.49 0.08 10.52 76.73 0.182 

Table. 8. Objective criteria values for video sequence Flowers (colour). 
 
Finally, the results of real time implementation are presented for the SR algorithms on DSP. 
Table 9 exposes the values of processing time for different better SR algorithms tested here. 
The first and second columns mark the class and type of algorithm, in the third and fourth 
columns, the results obtained in Matlab implementation are presented; the fifth and sixth 
columns show the DSP processing time values, and, finally the seventh and eighth columns 
view the processing results on DSP serial processing.  
 

 
 

   

a) Original HR. b) Input LR. c) WAF 3. d) WAF 3. 
Error image. 

Biorth. Error 
image. 

Fig. 12. Visual results for the Flowers (colour) sequence. 
 
One can observe that dividing the WAF configuration process into two parts, the serial 
processing on DSP reduces the processing time values, presenting the better processing 
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performance, resulting in 25.43 frames per second for WAF technique. This can be 
considered as practically on line real-time processing. 
 

Processing Time Values, sec Processing Time Values, sec 
Time in  
seconds  Matlab  DSP  Serial Processing on 

DSP 

Type Algorithm Time/ 
frame 

Frame/
sec  

Time/ 
frame Frames/s Time/frame 

Frames/
s  

O
th

er
s 

Bicubic 0.03 33.33 0.07074 14.1363 0.03338  29.958 
Nearest 
neighbour 0.03 33.33 0.07074 14.1363 0.03358 29.780 

Bilineal 0.03 33.33 0.07074 14.1363 0.03338 29-958 

DCT 0.084 11.90 0.20028 4.9930 0.03343 29.913 

W
av

el
et

s Biorth. 0.075 13.33 0.17685 5.6545 0.02989 33.456 

Coiflets 0.075 13.33 0.17685 5.6545 0.02989 33.456 

Daubechies 0.075 13.33 0.17685 5.6545 0.02989 33.456 

Symlets 0.075 13.33 0.17685 5.6545 0.02989 33.456 

W
A

F 

 xi , 4,2i  0.04 25.00 0.09432 10.6022 0.03932 25.432 
8;4,1, ifupi  0.04 25.00 0.09432 10.6022 0.03932 25.432 

6,2, ig i  0.04 25.00 0.09432 10.6022 0.03932 25.432 
6,2, ii

 0.04 25.00 0.09432 10.6022 0.03932 25.432 
8,7,4,2, iupi  0.04 25.00 0.09432 10.6022 0.03932 25.432 

Table 9. Values of processing time in hardware implementation. 

 
7. Conclusion 

It has realized a review of several promising SR methods. Some of them are usually focused 
on solving the issue of super resolution only for some specific type of image, or images that 
are used in specific applications, others, need to have additional prior information about the 
image, perform some sort of convergence of information, or realize some training, this, 
before processing the information and get the SR image. The proposed method can be 
applied to any kind of image or video sequence frame without any a priory information, 
permitting to realize the SR process over the region of interest of an image, a sequence of 
images and video, it is not depended on the type of application where it was obtained, and 
it much less interfere with results from the final purpose image. Additionally, numerous 
simulation and real time implementation results have shown that the proposed framework 
based on the WAFs is effective in performing the image registration and super-resolution 
for different real-life video sequences, demonstrating better robust performance in the 
frames with different nature and texture characteristics, such as edges, fine details, and 
different types of movements. Real time implementation of the proposed framework on 

  

 

MatLab and DSP platforms has confirmed the processing velocity of about 25 frames/sec for 
all investigated video sequences.   
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different types of movements. Real time implementation of the proposed framework on 

  

 

MatLab and DSP platforms has confirmed the processing velocity of about 25 frames/sec for 
all investigated video sequences.   
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