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1. Introduction 

The characteristic of software processes, unlike manufacturing ones, is that they have a very 
high human-centered component and are primarily based on cognitive activities. As so, each 
time a software process is executed, inputs and outputs may vary, as well as the process 
performances. This phenomena is better identified in literature with the terminology of 
“Process Diversity” (IEEE, 2000). Given the characteristics of a software process, its intrinsic 
diversity implies the difficulty to predict, monitor and improve it, unlike what happens in 
other contexts. In spite of the previous observations, Software Process Improvement (SPI) is a 
very important activity that cannot be neglected. To face these problems, the software 
engineering community stresses the use of measurement based approaches such as QIP/GQM 
(Basili et al., 1994) and time series analysis: the first approach is usually used to determine 
what improvement is needed; the time series analysis is adopted to monitor process 
performances. As so, it supports decision making in terms of when the process should be 
improved, and provides a manner to verify the effectiveness of the improvement itself.  
A technique for time series analysis, well-established in literature, which has given 
insightful results in the manufacturing contexts, although not yet in software process ones is 
known as Statistical Process Control (SPC) (Shewhart, 1980; Shewhart, 1986). The technique 
was originally developed by Shewhart in the 1920s and then used in many other contexts. 
The basic idea it relies on consists in the use of so called “control charts” together with their 
indicators, called run tests, to: establish operational limits for acceptable process variation; 
monitor and evaluate process performances evolution in time. In general, process 
performance variations are mainly due to two types of causes classified as follows:  

 Common cause variations: the result of normal interactions of people, machines, 
environment, techniques used and so on.  

 Assignable cause variations: arise from events that are not part of the process and 
make it unstable.  

In this sense, the statistically based approach, SPC, helps determine if a process is stable or 
not by discriminating between common cause variation and assignable cause variation. We 
can classify a process as “stable” or “under control” if only common causes occur. More 
precisely, in SPC data points representing measures of process performances are collected. 
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These values are then compared to the values of central tendency, upper and lower limit of 
admissible performance variations.  
While SPC is a well established technique in manufacturing contexts, there are only few 
works in literature (Card, 1994; Florac et al., 2000; Weller, 2000(a); Weller, 2000(b); Florence, 
2001; Sargut & Demirors, 2006; Weller, & Card. 2008; Raczynski & Curtis, 2008) that present 
successful outcomes of SPC adoption to software. In each case, not only are there few cases 
of successful applications but they don’t clearly illustrate the meaning of control charts and 
related indicators in the context of software process application.  
Given the above considerations, the aim of this work is to generalize and put together the 
experiences collected by the authors in previous studies on the use of Statistical Process 
Control in the software context (Baldassarre et al, 2004; Baldassarre et al, 2005; Caivano 2005; 
Boffoli, 2006; Baldassarre et al, 2008; Baldassarre et al, 2009) and present the resulting 
stepwise approach that: starting from stability tests, known in literature, selects the most 
suitable ones for software processes (tests set), reinterprets them from a software process 
perspective (tests interpretation) and suggest a recalculation strategy for tuning the SPC 
control limits. 
The paper is organized as follows: section 2 briefly presents SPC concepts and its 
peculiarities; section 3 discusses the main differences and lacks of SPC for software and 
presents the approach proposed by the authors; finally, in section 4 conclusions are drawn. 

 
2. Statistical Process Control: Pills 

Statistical Process Control (SPC) (Shewhart, 1980; Shewhart, 1986) is a technique for time 
series analysis. It was developed by Shewhart in the 1920s and then used in many contexts. 
It uses several “control charts” together with their indicators to establish operational limits 
for acceptable process variation. By using few data points, it is able to dynamically 
determine an upper and lower control limit of acceptable process performance variability. 
Such peculiarity makes SPC a suitable instrument to detect process performance variations. 
Process performance variations are mainly due to: common cause variations (the result of 
normal interactions of people, machines, environment, techniques used and so on); 
assignable cause variations (arise from events that are not part of the process and make it 
unstable). A process can be described by measurable characteristics that vary in time due to 
common or assignable cause variations. If the variation in process performances is only due 
to common causes, the process is said to be stable and its behavior is predictable within a 
certain error range; otherwise an assignable cause (external to the process) is assumed to be 
present and the process is considered unstable. A control chart usually adopts an indicator 
of the process performances central tendency (CL), an upper control limit (UCL = 
CL+3sigma) and a lower control limit (LCL = CL-3sigma). Process performances are tracked 
overtime on a control chart, and if one or more of the values fall outside these limits, or 
exhibit a “non random” behavior, an assignable cause is assumed to be present.  

 

 
Fig. 1. Example of SPC charts (X charts) 
 
“Sigma” is calculated by using a set of factors tabulated by statisticians (for more details 
refer to (Wheeler & Chambers, 1992)) and it is based on statistical reasoning, simulations 
carried out and upon the heuristic experience that: “it works”. A good theoretical model for 
a control chart is the normal distribution shown in figure 2 where: the percentage values 
reported express the percentage of observations that fall in the corresponding area;  is the 
theoretical mean;  is the theoretical standard deviation. In the [-3, +3] interval, fall 
99.73% (i.e. 2.14 + 13.59 + 34.13 + 34.13 + 13.59 + 2.14) of the total observations. Thus only 
the 0,27 % of the observations is admissible to fall outside the [-3, +3] interval. 

 
Fig. 2. Normal distribution, the bell curve 
 
If we consider sigma in place of , the meaning and rational behind a control chart results 
clear. For completeness it is necessary to say that the normal distribution is only a good 
theoretical model but, simulations carried out have shown that independently from the data 
distribution, the following rules of thumb work: 

 Rule1: from 60% to 75% of the observations fall in the [CL-sigma, CL+1sigma] 
 Rule2: from 90% to 98% of the observations fall in the [CL-2sigma, CL+2sigma] 
 Rule3: from 99% to 100% of the observations fall in the [CL-3sigma, CL+3sigma] 
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The control limits carried out using SPC are based on a process observation and they are 
expression of it. They are not the result of expert judgment and, furthermore, they can be 
clearly obtained.  
In general, control charts are used as follows: samples are taken from the process, statistics 
(for example, average and range) are calculated and plotted on charts, and the results are 
interpreted with respect to process limits or, as they are known in SPC terminology, control 
limits. Control limits are the limits within which the process operates under normal 
conditions. They tell us how far we can expect sample values to stray from the average 
given the inherent variability of the process or, to use the SPC terms, the magnitude of 
common-cause variation. Data points beyond the control limits or other unusual patterns 
indicate a special-cause variation. 

 
3. SPC for Software 

Software processes and manufacturing ones present deep differences that the use of SPC in 
software cannot exempt from considering. Moreover, according to the discussions in (Jalote, 
2002(a); Eickelmann & Anant, 2003) we can consider three main differences between 
manufacturing and software processes that have to be kept in mind in order to assure a 
more appropriate use of SPC in software context in terms of control charts, run test 
indicators, anomalies interpretation and control limits calculation. 
 
Measurement of Software Processes. In manufacturing, the observed and actual number of 
defects is not significantly different. In software development, these two numbers routinely 
vary significantly. Possible causes for extreme variation in software measurement include 
the following:  

 People are the software production process.  
 Software measurement might introduce more variation than the process itself.  
 Size metrics do not count discrete and identical units. 

Such extreme variations in software processes need different indicators for the anomalies 
detection and more specific interpretations.  
 
Product Control and Product Rework. The primary focus of using SPC control charts in 
manufacturing is to bring the process back in control by removing assignable causes and 
minimize as much as possible the future production losses. In the manufacturing process 
when an anomaly occurs the products usually do not conform to the expected standards 
and therefore, must be discarded. On the other hand, in the software process the product 
can be “reworked”. For example, when using control charts for an inspection process, if a 
point falls outside the control limits, besides the process improvement actions like 
improving the checklist, inevitably, product improvement actions like re-reviews, 
scheduling extra testing also occurs. With software processes, besides improving the 
process, an important objective of using control charts is to also control the product. In 
(Gardiner & Montgomery, 1987), which is perhaps the first paper on the use of SPC in 
software, Gardiner and Montgomery suggest "rework" as one of the three actions that 
management should carry out if a point falls outside the control limits. The use described in 
(Ebenau, 1994) clearly shows this aspect of product control. The survey of high maturity 
organizations also indicates that project managers also use control charts for project-level 

 

control (Jalote, 2002(b)). Due to this product-control, project managers are more likely to 
want test indicators and interpretations that highlight potential warning signals, rather than 
risk to miss such signals, even if it means more false alarms.  
 
Shutdown and Startup is “Cheaper”. The cost parameters that affect the selection of control 
limits are likely to be quite different in software processes. For example, if a manufacturing 
process has to be stopped (perhaps because a point falls outside the control limits), the cost 
of doing so can be quite high. In software, on the other hand, the cost of stopping a process 
is minimal as elaborate "shutdown" and "startup" activities are not needed. Similarly, the 
cost of evaluating a point that falls outside the control limits is likely to be very different in 
software processes as compared to manufacturing ones. For these reasons the control limits 
could be recalculated more often than in manufacturing processes. 
Due to these differences, it is reasonable to assume that, to get the best results, control 
charts, the use of the indicators and their interpretation, as well as the tuning of process 
limits, will need to be adapted to take into account the characteristics of software processes. 
 

Finally, in spite of the rather simple concepts underlying statistical process control, it is 
rarely straightforward to implement (Card, 1994). The main lacks for software processes are 
listed below: 
 
Focus on individual or small events. The indicators generally used in SPC highlight 
assignable causes related to the individual events. However the high variability of a 
software process and its predominant human factor make such indicators ineffective 
because they usually discover occasional variations due to passing phenomena that should 
be managed as false positives (false alarms). 
Therefore the SPC indicators, in software processes, should detect the assignable variations 
and then also interpret them if occasional variations (as false positives) or occurred changes 
in the process (in the manufacturing processes the passing phenomena are very rare). For 
such reasons the control charts should be constructed with a view toward detecting process 
trends rather than identifying individual nonconforming events (Figure 3). 
 

 
Fig. 3. SPC variations tree 
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Fig. 3. SPC variations tree 
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Failure to investigate and act. Statistical process control only signals that a problem may 
exist. If you don’t follow through with a detailed investigation, like an audit, and follow-up 
corrective action, there is no benefit in using it. In these sense a larger set of anomalies 
indicators and a more precise anomalies interpretation is necessary. 
 
Incorrect computation of control limits. Several formulas exist for computing control limits 
and analyzing distributions in different situations. But although they are straightforward, 
without proper background, it is easy to make mistakes. Such mistakes might concern: 

 the correct calculation of control limits 
 the appropriate timing for the recalculation of control limits (“tuning” activities) 

 
In order to mitigate such differences and face these issues, in the past the authors have 
proposed and experimented an SPC framework for software processes (Baldassarre et al., 
2007). Such framework, based on the software process peculiarities, proposes the most 
appropriate control charts, a set of indicators (run-test set) and related interpretations (run-
test interpretation) in order to effectively monitor process variability. When such indicators 
are used, SPC is able to discover software process variations and discriminate between 
them. For these reasons such indicators: 

 are able to detect process trends rather than identify individual nonconforming 
events (i.e. occasional variations that in software processes would be considered like 
the false alarms) 

 enable to discover assignable variations and address some quality information about 
“what happens” in the process. Thereby such framework supports the manager 
during the causes-investigation activities. 

Furthermore, our framework faces problems related to incorrect computation of control 
limits and proposes “when” and “how” to recalculate the SPC control limits (the “tuning” 
activities) that supports manager in: 

 Choosing the control charts and measurement object to use in SPC analysis 
 Selecting the appropriate data-points, building the Reference Set and calculating 

the control limits needed for monitoring process variations 
 Monitoring the process variations and detecting run-tests failures 
 Evaluating the assignable events occurred and then undertaking the appropriate 

actions (for example recalculating the control limits) 
Figure 4 summarizes the steps for applying the framework: first, process characterization is 
carried out, i.e. a process characteristic to monitor is observed over time, and related data 
points are collected; the appropriate control chart is selected and upper and lower control 
limits are calculated (Step 1); secondly anomaly detection occurs, i.e. each new data point 
observed is plotted on the chart, keeping control limits and central line the same; the set of 
run tests (RT1…RT8) is executed and anomalies are detected each time a test fails (Step 2); at 
this point, causes investigation is carried out, i.e. the cause of the anomaly pointed out is 
investigated in order to provide an interpretation (Step 3). Finally, according to the process 
changes occurred and identified in the previous step, appropriate tuning actions are applied 
to tune the sensibility of the monitoring activity and adapt it to the new process 
performances (Step 4).  
 

 

 
Fig. 4. SPC based Process Monitoring guidelines 

 
3.1 Process Characterization  
A reference set must be determined in order to characterize a process, i.e. a set of 
observations that represent the process performances and do not suffer from exceptional 
causes. In short, the reference set provides a reference point to compare the future 
performances with. After determining the reference set, each following observation must be 
traced on the control chart obtained and then the set of tests included in the test set must be 
carried out in order to identify if eventual exceptional causes come up. More precisely, the 
following two steps are executed: 

• Identify the measurement object 
• Identify the reference set 

 
Identify the measurement object. The process to evaluate is identified along with the 
measurement characteristics that describe the performances of interest. The most 
appropriate control charts for the phenomena being observed are selected. There are charts 
for variables data (measurement data such as length, width, thickness, and moisture 
content) and charts for attributes data (“counts” data such as number of defective units in a 
sample). 
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Fig. 5. Decision Tree for Control Chart Selection 
 
In software processes, where data points are not so frequent, generally, each data point is 
individually plotted and evaluated. Hence, charts that work on single observation points 
(like the XmR or the U charts) are more suitable for software (Gadiner & Montgomery, 1987; 
Weller, 2000(a); Zultner, 1999) and are the most commonly used charts, as reported in the 
survey (Radice, 2000). On the other hand, in manufacturing, the Xbar-R charts, which 
employ a sampling based technique, is most commonly used. Consequently, modeling and 
analysis for selecting control limits optimal performance has also focused on Xbar-R charts. 
 
Identify the Reference Set. Identifying the “reference set” is a mandatory activity for 
correctly monitoring and evaluating the evolution of process performances in time. It 
consists in a set of observations of the measurement characteristics of interest. The set 
expresses the “normal” process behaviour, i.e. the process performances supposing that the 
variations are determined only by common causes. As so, first, process performances in time 
must be measured and, CL and control limits must be calculated. The observations collected 
are then traced on the control charts and the tests included in the test set are carried out. If 
no anomalies are detected, the process can be considered stable during the observation 
period. The observations collected along with the CL and control limits values become the 
reference set. If one of the tests points out anomalies, then the process is not stable. As so, it 
must be further investigated. The exceptional causes, if present, need to be eliminated from 
the process and, the CL and control limits must be recalculated. This is repeated until a 
period of observed data points indicate a stable process, i.e. until a new reference set can be 
determined.   
 
In an X chart: each point represents a single value of the measurable process characteristic 
under observation; CLX is calculated as the average of the all available values; UCLX and 
LCLX are set at 3sigmaX around the CLX; sigmaX is the estimated standard deviation of the 
observed sample of values calculated by using a set of factors tabulated by statisticians (for 
more details refer to (Wheeler & Chambers, 1992; Park, 2007)). In a mR chart: each point 
represents a moving range (i.e. the absolute difference between a successive pair of 
observations); CLmR, is the average of the moving ranges; UCLmR = CLmR+3sigmamR and 
LCLmR=0; sigmamR is the estimated standard deviation of the moving ranges sample. 
For example, given a set of 15 observations X = {213.875, 243.600, 237.176, 230.700, 209.826, 
226.375, 167.765, 242.333, 233.250, 183.400, 201.882, 182.133, 235.000, 216.800, 134.545}, the 
following values are determined:  
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298.64 

LCLX = X  - 2,660 * mR = 122.52 
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UCLmR = 3,268*mR =108,2 

LCLmR = 0 

 Fig. 6. Example of Individual and moving ranges charts 
(XmR charts) 

 
3.2 Anomalies Detection 
In software processes, one should look for systematic patterns of points instead of single 
point exceptions, because such patterns emphasize that the process performance has shifted 
or is shifting. This surely leads to more insightful remarks and observations. There is a set of 
tests for such patterns referred to as “run rules” or “run tests” (see (AT&T, 1956; Nelson, 
1984; Nelson, Grant & Leavenworth, 1980; Shirland, 1993)) that aren’t well known (or used) 
in the software engineering community. 
  

Run-Test Description 
RT1: Three Sigma 1 point beyond a control limit (±3sigma) 
RT2: Two Sigma 2 out of 3 points in a row beyond (±2sigma) 
RT3: One Sigma 4 out of 5 points in a row beyond (±1sigma) 
RT4: Run above/below
CL 7 consecutive points above or below the centreline 

RT5: 
Mixing/Overcontrol  

8 points in a row on both sides of the centreline avoiding 
±1sigma area 

RT6: Stratification 15 points in a row within ±1sigma area 
RT7: Oscillatory Trend 14 alternating up and down points in a row 
RT8: Linear Trend 6 points in a row steadily increasing or decreasing 

Table 1. Run-Test Set Details 
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Fig. 5. Decision Tree for Control Chart Selection 
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represents a moving range (i.e. the absolute difference between a successive pair of 
observations); CLmR, is the average of the moving ranges; UCLmR = CLmR+3sigmamR and 
LCLmR=0; sigmamR is the estimated standard deviation of the moving ranges sample. 
For example, given a set of 15 observations X = {213.875, 243.600, 237.176, 230.700, 209.826, 
226.375, 167.765, 242.333, 233.250, 183.400, 201.882, 182.133, 235.000, 216.800, 134.545}, the 
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3.2 Anomalies Detection 
In software processes, one should look for systematic patterns of points instead of single 
point exceptions, because such patterns emphasize that the process performance has shifted 
or is shifting. This surely leads to more insightful remarks and observations. There is a set of 
tests for such patterns referred to as “run rules” or “run tests” (see (AT&T, 1956; Nelson, 
1984; Nelson, Grant & Leavenworth, 1980; Shirland, 1993)) that aren’t well known (or used) 
in the software engineering community. 
  

Run-Test Description 
RT1: Three Sigma 1 point beyond a control limit (±3sigma) 
RT2: Two Sigma 2 out of 3 points in a row beyond (±2sigma) 
RT3: One Sigma 4 out of 5 points in a row beyond (±1sigma) 
RT4: Run above/below
CL 7 consecutive points above or below the centreline 

RT5: 
Mixing/Overcontrol  

8 points in a row on both sides of the centreline avoiding 
±1sigma area 

RT6: Stratification 15 points in a row within ±1sigma area 
RT7: Oscillatory Trend 14 alternating up and down points in a row 
RT8: Linear Trend 6 points in a row steadily increasing or decreasing 

Table 1. Run-Test Set Details 
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As sigma, the run rules are based on "statistical" reasoning. For example, the probability of any 
observation in an X control chart falling above the CL is at a glance equal to 0.51. Thus, the 
probability that two consecutive observations will fall above the CL is equal to 0.5 times 0.5 = 
0.25. Accordingly, the probability that 9 consecutive observations (or a run of 9 points) will fall 
on the same side of the CL is equal to 0.5^9 =0.00195. Note that this is approximately the 
probability with which an observation can be expected to fall outside the 3-times sigma limits. 
Therefore, one could look for 9 consecutive observations on the same side of the CL as another 
indication of an out-of-control condition. Duncan (Duncan, 1986) provides details concerning 
the "statistical" interpretation of the other tests presented in this paragraph. 
In order to simplify the test execution, the chart area is conventionally divided in three 
zones: Zone A is defined as the area between 2 and 3 times sigma above and below the 
center line; Zone B is defined as the area between 1 and 2 times sigma, and Zone C is 
defined as the area between the center line and 1 times sigma. For the execution of the zone 
based tests, the distribution of the values in the charts need to be assumed as symmetrical 
around the mean. This is not the case for mR charts and thus, in general, all the zone based 
tests are not applicable to R chart (see Figure 7 for applicability). Although this is a shared 
opinion, someone (Wheeler & Chambers, 1992) states that these tests help process 
monitoring. Furthermore, according to (Jalote, 2000(a)), managers are more likely to want 
warning signals to be pointed out, rather than missing them, even if it means risking for 
false alarms. 
The presented framework points out which SPC tests may be applied to which control 
charts. It presents, interprets and organizes tests in order to manage software processes. 
Although in the software engineering community only “a point falling outside control 
limits” test is usually used for testing process stability, we are of the opinion that the SPC 
based software process monitoring should be based on the following tests that we have 
rearranged in three conceptual classes according to the type of information they provide 
(Figure 6). When one or more of these tests is positive, it is reasonable to believe that the 
process may no longer be under control, i.e. an assignable cause is assumed to be present. 
For completeness and clearness it is the case to point out that the first 4 tests among those 
that follow are also referred to as “detection rules” and are the most (and often the only 
ones) used tests (Wheeler & Chambers, 1992; Florac et al., 1997) within the software 
engineering community. 

                                                                 
1 provided (1) that the process is in control (i.e., that the centre line value is equal to the population 

mean), (2) that consecutive sample means are independent, and (3) that the distribution of means 
follows the normal distribution. 

 

 
Fig. 7. Run-tests set 

 
3.2.1 Sigma Tests 
These tests point out the possible presence of an assignable cause. The three sigma test can 
be applied to both, X and R charts. The One and Two sigma tests are Zone Tests and thus 
they should not be applied to R the chart due to its lack of symmetry around the mean.  

1. Three Sigma Test (Extreme Points Test): The existence of a single point beyond a 
control limit signals the presence of an out-of -control condition, i.e. the presence of 
an assignable cause.  

2. Two Sigma Test: This test watches for two out of three points in a row in Zone A or 
beyond. The existence of two of any three successive points that fall on the same 
side of, and more than two sigma units away from, the central line, signals the 
presence of an out-of -control condition. This test provides an "early warning" of a 
process shift. 

3. One Sigma Test: This test watches for four out of five subgroups in a row in Zone B 
or beyond. The existence of four of any five successive points that fall on the same 
side of, and more than one sigma unit away from, the central line, signals the 
presence of an out-of-control condition. Like the previous test, this test may be 
considered to be an "early warning indicator" of a potential shift in process 
performance. 

The three sigma test is the most (and often the “only” one) used test in software engineering 
literature.  

 
3.2.2 Limit Tests  
All the tests included in this class use chart Zones and thus they are applicable to the X 
charts only. 

1. Run above or below the Centerline Test: This test watches for 7, 8 or 9 consecutive 
observations above or below the centerline. The presence of such a run indicates 
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Therefore, one could look for 9 consecutive observations on the same side of the CL as another 
indication of an out-of-control condition. Duncan (Duncan, 1986) provides details concerning 
the "statistical" interpretation of the other tests presented in this paragraph. 
In order to simplify the test execution, the chart area is conventionally divided in three 
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center line; Zone B is defined as the area between 1 and 2 times sigma, and Zone C is 
defined as the area between the center line and 1 times sigma. For the execution of the zone 
based tests, the distribution of the values in the charts need to be assumed as symmetrical 
around the mean. This is not the case for mR charts and thus, in general, all the zone based 
tests are not applicable to R chart (see Figure 7 for applicability). Although this is a shared 
opinion, someone (Wheeler & Chambers, 1992) states that these tests help process 
monitoring. Furthermore, according to (Jalote, 2000(a)), managers are more likely to want 
warning signals to be pointed out, rather than missing them, even if it means risking for 
false alarms. 
The presented framework points out which SPC tests may be applied to which control 
charts. It presents, interprets and organizes tests in order to manage software processes. 
Although in the software engineering community only “a point falling outside control 
limits” test is usually used for testing process stability, we are of the opinion that the SPC 
based software process monitoring should be based on the following tests that we have 
rearranged in three conceptual classes according to the type of information they provide 
(Figure 6). When one or more of these tests is positive, it is reasonable to believe that the 
process may no longer be under control, i.e. an assignable cause is assumed to be present. 
For completeness and clearness it is the case to point out that the first 4 tests among those 
that follow are also referred to as “detection rules” and are the most (and often the only 
ones) used tests (Wheeler & Chambers, 1992; Florac et al., 1997) within the software 
engineering community. 
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3.2.1 Sigma Tests 
These tests point out the possible presence of an assignable cause. The three sigma test can 
be applied to both, X and R charts. The One and Two sigma tests are Zone Tests and thus 
they should not be applied to R the chart due to its lack of symmetry around the mean.  

1. Three Sigma Test (Extreme Points Test): The existence of a single point beyond a 
control limit signals the presence of an out-of -control condition, i.e. the presence of 
an assignable cause.  

2. Two Sigma Test: This test watches for two out of three points in a row in Zone A or 
beyond. The existence of two of any three successive points that fall on the same 
side of, and more than two sigma units away from, the central line, signals the 
presence of an out-of -control condition. This test provides an "early warning" of a 
process shift. 

3. One Sigma Test: This test watches for four out of five subgroups in a row in Zone B 
or beyond. The existence of four of any five successive points that fall on the same 
side of, and more than one sigma unit away from, the central line, signals the 
presence of an out-of-control condition. Like the previous test, this test may be 
considered to be an "early warning indicator" of a potential shift in process 
performance. 

The three sigma test is the most (and often the “only” one) used test in software engineering 
literature.  

 
3.2.2 Limit Tests  
All the tests included in this class use chart Zones and thus they are applicable to the X 
charts only. 

1. Run above or below the Centerline Test: This test watches for 7, 8 or 9 consecutive 
observations above or below the centerline. The presence of such a run indicates 
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that the evidence is strong and that the process mean or variability has shifted from 
the centerline.  

2. Mixing/Overcontrol Test: Also called the Avoidance of Zone C Test. This test 
watches for eight subgroups in a row on both sides of the centerline avoiding Zone 
C. The rule is: Eight successive points on either side of the centerline avoiding Zone 
C, signals an out-of-control condition.  

3. Stratification Test: Also known as the Reduced Variability Test. This test watches 
for fifteen subgroups in a row in Zone C, above and below the centerline. When 15 
successive points on the X chart fall in Zone C, to either side of the centerline, an 
out-of control condition is signaled. 

 
3.2.3 Trend Tests 
This class of tests point out a trend resulting in a process performance shift. Neither the 
chart centerline nor the zones come into play for these tests and thus they may be applied to 
both X and R charts.  

1. Oscillatory Trend Test: it watches for fourteen alternating up or down observations 
in a row. When 14 successive points oscillate up and down, a systematic trend in 
the process is signaled.  

2. Linear Trend Test: it watches for six observations in a row steadily increasing or 
decreasing. It fails when there is a systematic increasing or decreasing trend in the 
process. 

 
3.3 Causes Investigation  
SPC is only able to detect whether the process performance is “out of control” and if an 
anomaly exists. It doesn’t support the manager during the causes investigation and the 
selection of the appropriate corrective actions. This solution extends the SPC-theory by 
providing a specific interpretation (Table 2) of the anomaly for each run test failure (section 
3.2) from the software process point of view, and suggesting possible causes that make the 
process “Out of Control” (Baldassarre, 2004). More precisely, the authors have arranged and 
interpreted the selected SPC indicators (Table 1) in logical classes: sigma (RT1, RT2, RT3), 
limit (RT4, RT5, RT6) and trend (RT7, RT8), for details refer to (Baldassarre, 2004). 

 
3.3.1 Sigma Tests 
They provide an “early” alarm indicator that must stimulate searching for possible 
assignable causes and, if the case, identify and eliminate them. One and Two sigma tests 
point out a potential anomalous “trend” that “may” undertake assignable causes. In general, 
due to the high variance in software processes especially when we manage individual rather 
than sample data, the faults highlighted by these tests could be numerous but less 
meaningful than in manufacturing contexts. For example, in a manufacturing process a 
party of poor quality raw material may be a potential assignable cause that must be 
investigated and removed. In a software process, a possible assignable cause may be an 
excessive computer crash due to a malfunctioning peripheral but also to a headache of the 
developer. Different considerations could be made if the point on the chart represents a 
group of observations, such as the productivity of a development team. In this case the 

 

peaks accountable to a single developer’s behavior are smoothened. Therefore, the point on 
the charts may express a general behavior determined by an assignable cause. 
Similar considerations can be made on the use of Three sigma test, based on a single 
observation that falls outside limits, rather than One or Two sigma tests, that refer to a 
sequence of observations and thus to a “potential behavioral trend”.  

 
3.3.2 Limit Tests 
This class of tests point out an occurred shift in process performances. They highlight the 
need to recalculate the control limits when the actual ones are inadequate, because they are 
too tiny or larger than required. In software process monitoring and improvement we 
represent a measurable characteristic that expresses human related activity outcomes (time 
spent, productivity, defect found during inspection etc.) on a control chart. Thus while a 
single point falling outside control limits can be interpreted as the result of a random cause, 
a “sequence” of points means that something has changed within the process.  
The Run above or below the Centerline Test watches for 8 points on one side of the central line. 
If this pattern is detected, then there is strong evidence that the software process 
performance has changed in better or worse. The longer the sequence is, the stronger the 
evidence is.  
A failure of the Mixing/Overcontrol Test could mean more than one process being plotted on 
a single chart (mixing) or perhaps over control (hyper-adjustment) of the process. In 
software process this test failure highlights that the process is becoming less predictable 
than in the past. Typically this occurs immediately after an induced improvement, and 
continues until the improvement is fully acquired by the developers or organization. 
A failure of the Stratification Test can arise from a change (decrease) in process variability 
that has not been properly accounted for in the X chart control limits. From the software 
process point of view this is a typical behavior of process when a maturity effect is 
identified. Introduction of a new technology in a software process is usually followed by, an 
unstable period until developers become more confidant and performance variability 
decreases. Substantially, although in SPC theory this test highlights the presence of an 
assignable cause, in software process the interpretation of this test may be positive: the 
process is becoming more stable and predictable than in the past.  

 
3.3.3 Trend Tests 
While the previous tests class points out the presence of an occurred shift, this one highlights 
an ongoing or just occurred phenomena that represents an ongoing shift that needs to be 
investigated. Typically, a failure in this test class can be the result of both spontaneous or 
induced process improvement initiatives. The tests will be briefly commented.  
When the Oscillatory Trend Test is positive, two systematically alternating causes are 
producing different results. For example, we may monitor the productivity of two 
alternating developer teams, or monitor the quality for two different (alternating) shifts. As 
a consequence the measurable characteristic observed must be investigated in a more 
straightforward way in order to isolate the two causes. Probably, when this test fails we are 
observing the wrong characteristic or the right one measured in a wrong way.  
The Linear Trend Test fails when there is a systematic increasing or decreasing trend in the 
process. This behavior is common and frequent in software processes. It is the result of an 
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that the evidence is strong and that the process mean or variability has shifted from 
the centerline.  

2. Mixing/Overcontrol Test: Also called the Avoidance of Zone C Test. This test 
watches for eight subgroups in a row on both sides of the centerline avoiding Zone 
C. The rule is: Eight successive points on either side of the centerline avoiding Zone 
C, signals an out-of-control condition.  

3. Stratification Test: Also known as the Reduced Variability Test. This test watches 
for fifteen subgroups in a row in Zone C, above and below the centerline. When 15 
successive points on the X chart fall in Zone C, to either side of the centerline, an 
out-of control condition is signaled. 

 
3.2.3 Trend Tests 
This class of tests point out a trend resulting in a process performance shift. Neither the 
chart centerline nor the zones come into play for these tests and thus they may be applied to 
both X and R charts.  

1. Oscillatory Trend Test: it watches for fourteen alternating up or down observations 
in a row. When 14 successive points oscillate up and down, a systematic trend in 
the process is signaled.  

2. Linear Trend Test: it watches for six observations in a row steadily increasing or 
decreasing. It fails when there is a systematic increasing or decreasing trend in the 
process. 

 
3.3 Causes Investigation  
SPC is only able to detect whether the process performance is “out of control” and if an 
anomaly exists. It doesn’t support the manager during the causes investigation and the 
selection of the appropriate corrective actions. This solution extends the SPC-theory by 
providing a specific interpretation (Table 2) of the anomaly for each run test failure (section 
3.2) from the software process point of view, and suggesting possible causes that make the 
process “Out of Control” (Baldassarre, 2004). More precisely, the authors have arranged and 
interpreted the selected SPC indicators (Table 1) in logical classes: sigma (RT1, RT2, RT3), 
limit (RT4, RT5, RT6) and trend (RT7, RT8), for details refer to (Baldassarre, 2004). 

 
3.3.1 Sigma Tests 
They provide an “early” alarm indicator that must stimulate searching for possible 
assignable causes and, if the case, identify and eliminate them. One and Two sigma tests 
point out a potential anomalous “trend” that “may” undertake assignable causes. In general, 
due to the high variance in software processes especially when we manage individual rather 
than sample data, the faults highlighted by these tests could be numerous but less 
meaningful than in manufacturing contexts. For example, in a manufacturing process a 
party of poor quality raw material may be a potential assignable cause that must be 
investigated and removed. In a software process, a possible assignable cause may be an 
excessive computer crash due to a malfunctioning peripheral but also to a headache of the 
developer. Different considerations could be made if the point on the chart represents a 
group of observations, such as the productivity of a development team. In this case the 

 

peaks accountable to a single developer’s behavior are smoothened. Therefore, the point on 
the charts may express a general behavior determined by an assignable cause. 
Similar considerations can be made on the use of Three sigma test, based on a single 
observation that falls outside limits, rather than One or Two sigma tests, that refer to a 
sequence of observations and thus to a “potential behavioral trend”.  

 
3.3.2 Limit Tests 
This class of tests point out an occurred shift in process performances. They highlight the 
need to recalculate the control limits when the actual ones are inadequate, because they are 
too tiny or larger than required. In software process monitoring and improvement we 
represent a measurable characteristic that expresses human related activity outcomes (time 
spent, productivity, defect found during inspection etc.) on a control chart. Thus while a 
single point falling outside control limits can be interpreted as the result of a random cause, 
a “sequence” of points means that something has changed within the process.  
The Run above or below the Centerline Test watches for 8 points on one side of the central line. 
If this pattern is detected, then there is strong evidence that the software process 
performance has changed in better or worse. The longer the sequence is, the stronger the 
evidence is.  
A failure of the Mixing/Overcontrol Test could mean more than one process being plotted on 
a single chart (mixing) or perhaps over control (hyper-adjustment) of the process. In 
software process this test failure highlights that the process is becoming less predictable 
than in the past. Typically this occurs immediately after an induced improvement, and 
continues until the improvement is fully acquired by the developers or organization. 
A failure of the Stratification Test can arise from a change (decrease) in process variability 
that has not been properly accounted for in the X chart control limits. From the software 
process point of view this is a typical behavior of process when a maturity effect is 
identified. Introduction of a new technology in a software process is usually followed by, an 
unstable period until developers become more confidant and performance variability 
decreases. Substantially, although in SPC theory this test highlights the presence of an 
assignable cause, in software process the interpretation of this test may be positive: the 
process is becoming more stable and predictable than in the past.  

 
3.3.3 Trend Tests 
While the previous tests class points out the presence of an occurred shift, this one highlights 
an ongoing or just occurred phenomena that represents an ongoing shift that needs to be 
investigated. Typically, a failure in this test class can be the result of both spontaneous or 
induced process improvement initiatives. The tests will be briefly commented.  
When the Oscillatory Trend Test is positive, two systematically alternating causes are 
producing different results. For example, we may monitor the productivity of two 
alternating developer teams, or monitor the quality for two different (alternating) shifts. As 
a consequence the measurable characteristic observed must be investigated in a more 
straightforward way in order to isolate the two causes. Probably, when this test fails we are 
observing the wrong characteristic or the right one measured in a wrong way.  
The Linear Trend Test fails when there is a systematic increasing or decreasing trend in the 
process. This behavior is common and frequent in software processes. It is the result of an 
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induced process improvement, such as the introduction of a new technology, or a 
spontaneous one, such as the maturation effect. This test, give insightful remarks when it 
fails on R chart and it is interpreted jointly between X and R charts. For example:   

 If R chart shows a decreasing trend as in Figure 8(d), a possible interpretation is that 
the process is going asymptotically towards a new stability point: better as in Figure 
8(b) or worse than actual Figure 8(a). If this is the case, this test failure should be 
followed by a limit test failure (typically test 4) on X chart. Another situation is 
represented in Figure 8(c) i.e. a process is going towards a more stable situation 
around the central line, after a strong period of destabilization.  

 If R chart shows an increasing trend, as in Figure 9(d), then the process is becoming 
unstable, its performance are changing in a turbulent manner and it is far from 
reaching a new point of stability (see as in Figure 9(a, b, c). Typically this test failure 
occurs together with test 5 failure on X chart. 

d)

a)
R chart

X chart X chart X chart

b) c)

 
Fig. 8. Decreasing linear trend test interpretation 

d)

a)
R chart

X chart X chart X chart

b) c)

 
Fig. 9. Increasing linear trend test interpretation 

 

As so, according to the interpretations given, we are able to define the following function: 
φ: {Run-Test Failures}  {Process Changes} 
“detected anomalies”          “what happens” 

 

SPC Theory Process Changes 
Run-Test 
Failure Process Performance Type What Happens 

None In Control None Nothing 
RT1 Out of Control Occasional Early Alarm 
RT2 Out of Control Occasional Early Alarm 
RT3 Out of Control Occasional Early Alarm 
RT4 Out of Control Occurred New Mean 
RT5 Out of Control Occurred Increased Variability 

RT6 Out of Control Occurred Decreased 
Variability 

RT7 Out of Control Occurred New Sources of 
Variability 

RT8 Out of Control Ongoing Ongoing 
Phenomena 

Table 2. Run-Test Interpretation Details. 

 

For each run-test failure, φ is able to relate the “detected anomalies” to “what happens” 
within the process and suggest their cause.  

 
3.4 Tuning Sensibility 
SPC control limits need to be recalibrated according to relevant process performance 
changes. The sensibility of the monitoring activity has to be tuned continuously. The risk of 
not tuning sensibility is to miss anomalies as the result of using larger limits than necessary 
or having several false alarms. 

 The monitoring activity based on SPC is carried out with control limits as baselines 
within which the process can vary randomly. Process is monitored according to 
specific characteristics (known as measurement objects) selected by the manager. 

 Even when control limits are well estimated they can become obsolete due to 
process performance changes. 

 Control limits are too tight, too wide, or the central line is no longer representative 
of the average process performances. 

 Measurement object is no longer representative, the measures used may no longer 
express process variability. 

In both cases it is necessary to: 
1. identify when a relevant process performance change occurs; 
2. tune the control model (i.e. recalibrate control limits) according to performance 

changes.  
Point (1) follows from the experience acquired during empirical validation of the SPC 
approach in a previous study (Baldassarre et al., 2004). Following to this experience we have 
generalized a set of relations between “what happens” in the process and what the best 
actions to undertake are (Table 3). 
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None Nothing No Action 

Occasional Early Alarm No Action 
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Occurred Increased Variability Identify new control limits (new reference set) 
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Table 3. Relationship between Process Changes and the necessary SPC Tuning Actions. 
 
According to such relations and to “Process Changes” described through the “run-test 
interpretation” we have defined the following function: 
 

ψ: {Process Changes}  {Tuning Actions} 
“what happens”        “what to do” 
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b) c)

 
Fig. 9. Increasing linear trend test interpretation 
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Ψ is defined so that it assigns the appropriate tuning actions needed to update the SPC 
settings preserving the sensibility of monitoring. 
Thus ψ can be defined as follows: 

 if the process change is “Occasional”, the process performance:  
o should be the same as in the past if assignable causes have been detected 

and removed or, if this is not the case, further observations are needed to 
exhibit the new process performance; 

o is probably changing due to the fact that assignable causes were made part 
of the process. In this case further observations have to be collected. 

In both cases the control limits and the measurement objects remain the same. 
 if the process change is “Occurred”:  

o if process mean or variability are changed then the control limits should 
always be recalculated in order to determine a new reference set that 
expresses the new process performance. The candidate points to be included 
in the reference set are those responsible for the test failure. 

o if there is a new source of variability then the different sources must be 
identified, separated and tracked on different charts. 

 if the process change is “Ongoing” additional observations are needed to 
determine reliable limits for the process because the actual observations express a 
change in actions and thus, they are not suitable for a reference set. 
In this case “no action” is advisable. 

Point (2) derives from composing functions φ and ψ, in ρ = ψoφ: 
ρ: {Run-Test Failures}  {Tuning Actions} 
“detected anomalies” “what to do” 

 
ρ for each statistical “signal” suggests the suitable action to undertake to preserve 
monitoring sensibility (Table 4). 
Section 2, therefore, outlines a quick and effective solution that takes into account the issue 
of process monitoring, allows to identify anomalies, suggests the most appropriate tuning 
actions and preserves the monitoring model in use. 
 

Run-Test Failure Tuning Actions 
None No Action 
RT1 No Action 
RT2 No Action 
RT3 No Action 
RT4 Identify a new control limits 
RT5 Identify a new control limits 
RT6 Identify a new control limits 
RT7 Identify a new measurement object 
RT8 No Action 

Table 4. Relationship between the Signals and the SPC Tuning Actions 
 

 

Let us now apply these concepts to the explanatory figures 10 and 11. We can see that RT1, 
RT2, and RT3 are classified as “occasional” process changes. They detect an early alarm, and 
according to ψ do not require any tuning action. On the other hand, RT4 and RT5 are 
classified as “occurred” process changes because the process mean has changed (RT4) and 
the process variability, considering the limits in use, has also increased (RT5) as can clearly 
be seen in figure 10. Indeed, the observed data points, from 16 on, no longer fall within the 
fixed limits. Consequently, in accordance to ψ and to the guidelines in table 4, new control 
limits must be calculated. Figure 11 shows the result of the tuning action, i.e. the new control 
limits calculated from data points 16-30.  

 
Fig. 10. RT4 and RT5 suggesting a shift in 
process performances 

Fig. 11. new control limits calculated from 
data points 16-30 

 
4. Discussion and final remarks 

The presented framework, starting from the analysis of the Statistical Process Control as 
commonly used in the manufacturing contexts, and based on the issues that characterize 
software production, presents a set of evolutions and improvements that allow to:  
 

 take into account the trends of observations rather than exclusively considering, 
single data points, even if anomalous. Indeed, in software and in human intensive 
processes, the behavioural trends are more significant than the single observations. 
Furthermore, in software, a single event such as an observation that falls outside 
the limits is not as critical as an observation in the manufacturing context. Indeed, 
in the latter case, an observation out of the limits is most likely an indicator that 
leads to discarding part of the production and stopping the production chain to 
avoid further relevant economical losses. Fortunately, in software it is possible to 
“rework” rather than discard the work already produced. The framework 
presented in this paper on one hand implies Run Tests that focus on a long-
sequence of events (Limit and Trend tests) and, on the other, reinterprets the Run 
Tests based on a short-sequence (Sigma Test) reorganizing them in meaning and 
effect.  

 make up for the lacks of SPC in the investigation phase of the anomalies and in 
identifying appropriate interventions to make the monitored process stable again. 
In this sense, it foresees a function  φ that, based on the anomalies detected by the 
Run-Tests, determines what happens in the process, i.e. identifies the changes 
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commonly used in the manufacturing contexts, and based on the issues that characterize 
software production, presents a set of evolutions and improvements that allow to:  
 

 take into account the trends of observations rather than exclusively considering, 
single data points, even if anomalous. Indeed, in software and in human intensive 
processes, the behavioural trends are more significant than the single observations. 
Furthermore, in software, a single event such as an observation that falls outside 
the limits is not as critical as an observation in the manufacturing context. Indeed, 
in the latter case, an observation out of the limits is most likely an indicator that 
leads to discarding part of the production and stopping the production chain to 
avoid further relevant economical losses. Fortunately, in software it is possible to 
“rework” rather than discard the work already produced. The framework 
presented in this paper on one hand implies Run Tests that focus on a long-
sequence of events (Limit and Trend tests) and, on the other, reinterprets the Run 
Tests based on a short-sequence (Sigma Test) reorganizing them in meaning and 
effect.  

 make up for the lacks of SPC in the investigation phase of the anomalies and in 
identifying appropriate interventions to make the monitored process stable again. 
In this sense, it foresees a function  φ that, based on the anomalies detected by the 
Run-Tests, determines what happens in the process, i.e. identifies the changes 
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occurred or taking place. As so, focused and specific actions can be identified and 
carried out in order to regain a stable process.  

 adapt the sensibility of monitoring actions with respect to the actual performances 
of the monitored process. This characteristic is particularly important in pursuing 
the effectiveness of monitoring. The current literature does not present useful 
guidelines for determining when the control limits should be recalculated, in that 
they are no longer representative of the process performances. Consequently an 
incorrect use of SPC occurs, based on inadequate control limits which lead to 
ineffective monitoring and control actions: too wide limits do not allow to 
promptly raise significant variations, while too narrow ones determine numerous 
false alarms. The proposed framework foresees the ψ function that associates 
Tuning Actions, expression of “what to do”, to Process Changes, the expression of 
“what happens”. This assures a dynamic and continuous calibration of monitoring 
based on the actual observed process performances. 

The framework represents an alternative to other software process monitoring techniques, 
which can generally be considered as based on expert judgment, use measures collected in 
time, and subject to subjective evaluations. In this sense, it is interesting to point out that the 
framework: 

 makes it possible to characterize process performances, even without having any 
previous knowledge, by determining a reference set through a deterministic 
procedure. Note that lack of previous knowledge usually occurs for innovative 
processes, or for processes that are used in different contexts with different 
maturity levels, or refer to various application domains (technical rather than 
business). Moreover, in our framework, control limits are not an expert-based 
estimation, but an actual expression of the process itself.  

 provides a conceptual manner for defining process anomalies and, at the same 
time, an operational means for identifying them. Without such instruments 
(conceptual and operational) the interpretation of a trend rather than a single 
observation would completely rely on the project manager, who may not 
necessarily have the previous knowledge needed and thus, may neglect important 
events or focus on irrelevant ones resulting in ineffective monitoring.  

 represents an objective rather than subjective tool, a clear reference point, follows 
rom explicit reasoning and based on a solid theoretic model (SPC). 

 
Nevertheless, software process monitoring still represents an open issue. As discussed in 
(Baldassarre et al., 2007), there are many aspects related to software process measurement 
such as the difficulty of collecting metrics, their reliability and the selection of monitored 
process characteristics (Sargut & Demirors, 2006); the violation of assumptions underlying 
SPC (Raczynski & Curtis, 2008); predominance of human factors in software processes that 
can impact on the SPC-theory and monitoring effectiveness [17]. All these aspects leave 
much space for subjective management decisions that can influence the success/failure of 
monitoring activities. Given these limitations, this framework is not intended as the solution 
to monitoring problems, nor as a silver bullet for applying SPC to software processes.  
Rather, it should be considered as a perspective on how SPC can contribute to practically 
solve some monitoring issues according to the authors’ experience from the trench in real 
industrial software projects. It can be seen as a contribution for guiding practitioners 

 

towards a more disciplined use of SPC starting from understanding how it can really 
address software process monitoring. In this way operational, practical issues and pitfalls of 
SPC can be faced more systematically. 
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