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1. Introduction 

The advancements in pattern recognition has accelerated recently due to the many emerging 
applications which are not only challenging, but also computationally more demanding, 
such evident in Optical Character Recognition (OCR), Document Classification, Computer 
Vision, Data Mining, Shape Recognition, and Biometric Authentication, for instance. The 
area of OCR is becoming an integral part of document scanners, and is used in many 
applications such as postal processing, script recognition, banking, security (i.e. passport 
authentication) and language identification. The research in this area has been ongoing for 
over half a century and the outcomes have been astounding with successful recognition 
rates for printed characters exceeding 99%, with significant improvements in performance 
for handwritten cursive character recognition where recognition rates have exceeded the 
90% mark. Nowadays, many organizations are depending on OCR systems to eliminate the 
human interactions for better performance and efficiency.  
The field of pattern recognition is a multidisciplinary field which forms the foundation of 
other fields, as for instance, Image Processing, Machine Vision, and Artificial Intelligence. 
Therefore, OCR cannot be applied without the help of Image Processing and/or Artificial 
Intelligence. Any OCR system goes through numerous phases including: data acquisition, 
preprocessing, feature extraction, classification and post-processing where the most crucial 
aspect is the preprocessing which is necessary to modify the data either to correct 
deficiencies in the data acquisition process due to limitations of the capturing device sensor, 
or to prepare the data for subsequent activities later in the description or classification stage. 
Data preprocessing describes any type of processing performed on raw data to prepare it for 
another processing procedure. Hence, preprocessing is the preliminary step which 
transforms the data into a format that will be more easily and effectively processed. 
Therefore, the main task in preprocessing the captured data is to decrease the variation that 
causes a reduction in the recognition rate and increases the complexities, as for example, 
preprocessing of the input raw stroke of characters is crucial for the success of efficient 
character recognition systems. Thus, preprocessing is an essential stage prior to feature 
extraction since it controls the suitability of the results for the successive stages. The stages 
in a pattern recognition system are in a pipeline fashion meaning that each stage depends on 
the success of the previous stage in order to produce optimal/valid results. However, it is 
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Character Recognition2

evident that the most appropriate feature vectors for the classification stage will only be 
produced with the facilitation from the preprocessing stage. The main objective of the 
preprocessing stage is to normalize and remove variations that would otherwise complicate 
the classification and reduce the recognition rate. 

 
2. Factors affecting character recognition quality 

There are a number of factors that affect the accuracy of text recognized through OCR. These 
factors include: scanner quality, scan resolution, type of printed documents (laser printer or 
photocopied), paper quality, fonts used in the text, linguistic complexities, and dictionary 
used. “Foxing” and “text show through” found in old paper documents, watermarks and non-
uniform illumination are examples of problems that affect the accuracy of OCR compared to 
a clean text on a white background. For example, Fig.1 (a) shows a grey-level document 
image with poor illumination and Fig.1 (b) shows a mixed content document image with 
complex background. Other factors include features of printing such as uniformity, text 
alignment and arrangement on the page, graphics and picture content (Tanner, 2004).  
 

  
(a) (b) 

Fig. 1. Examples of document images with non-uniform/complex backgrounds 

 
3. Importance of preprocessing in character recognition 

The importance of the preprocessing stage of a character recognition system lies in its ability 
to remedy some of the problems that may occur due to some of the factors presented in 
section 2 above. Thus, the use of preprocessing techniques may enhance a document image 
preparing it for the next stage in a character recognition system. In order to achieve higher 
recognition rates, it is essential to have an effective preprocessing stage, therefore; using 
effective preprocessing algorithms makes the OCR system more robust mainly through 
accurate image enhancement, noise removal, image thresholding, skew 
detection/correction, page segmentation, character segmentation, character normalization 
and morphological techniques.  

 
4. Preprocessing techniques 

Preprocessing techniques are needed on colour, grey-level or binary document images 
containing text and/or graphics. In character recognition systems most of the applications 
use grey or binary images since processing colour images is computationally high. Such 
images may also contain non-uniform background and/or watermarks making it difficult to 

extract the document text from the image without performing some kind of preprocessing, 
therefore; the desired result from preprocessing is a binary image containing text only. Thus, 
to achieve this, several steps are needed, first, some image enhancement techniques to 
remove noise or correct the contrast in the image, second, thresholding to remove the 
background containing any scenes, watermarks and/or noise, third, page segmentation to 
separate graphics from text, fourth, character segmentation to separate characters from each 
other and, finally, morphological processing to enhance the characters in cases where 
thresholding and/or other preprocessing techniques eroded parts of the characters or added 
pixels to them. The above techniques present few of those which may be used in character 
recognition systems and in some applications; few or some of these techniques or others 
may be used at different stages of the OCR system. The rest of the chapter will present some 
of the techniques used during the preprocessing stage of a character recognition system.  

 
4.1 Image enhancement techniques 
Image enhancement improves the quality of images for human perception by removing 
noise, reducing blurring, increasing contrast and providing more detail. This section will 
provide some of the techniques used in image enhancement.  

 
4.1.1 Spatial image filtering operations 
In image processing, filters are mainly used to suppress either the high frequencies in the 
image, i.e. smoothing the image, or the low frequencies, i.e. enhancing or detecting edges in 
the image. Image restoration and enhancement techniques are described in both the spatial 
domain and frequency domain, i.e. Fourier transforms. However, Fourier transforms require 
substantial computations, and in some cases are not worth the effort. Multiplication in the 
frequency domain corresponds to convolution in the time and the spatial domain. Using a 
small convolution mask, such as 3x3, and convolving this mask over an image is much 
easier and faster than performing Fourier transforms and multiplication; therefore, only 
spatial filtering techniques will be presented in this chapter. 
Images captured often may be influenced by noise; however, the resulting images may not 
provide desired images for analysis. In addition, in images with acceptable quality, certain 
regions may need to be emphasized or highlighted. Spatial processing is classified into point 
processing and mask processing. Point processing involves the transformation of individual 
pixels independently of other pixels in the image. These simple operations are typically 
used to correct for defects in image acquisition hardware, for example to compensate for 
under/over exposed images. On the other hand, in mask processing, the pixel with its 
neighbourhood of pixels in a square or circle mask are involved in generating the pixel at (x, 
y) coordinates in the enhanced image.  
 
4.1.1.1 Point processing 
Point processing modifies the values of the pixels in the original image to create the values 
of the corresponding pixels in the enhanced image this is expressed in equation (1). 
 

O(x,y) = T[I(x,y)] (1) 
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O(x,y) = T[I(x,y)] (1) 
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Where, I(x, y) is the original (input) image, O(x, y) is the enhanced image and T describes the 
transformation between the two images. Some of the point processing techniques include: 
contrast stretching, global thresholding, histogram equalisation, log transformations and 
power law transformations. Some mask processing techniques include averaging filters, 
sharpening filters, local thresholding… etc.  

 
4.1.1.1.1 Contrast stretching 
The level of contrast in an image may vary due to poor illumination or improper setting in 
the acquisition sensor device. Therefore, there is a need to manipulate the contrast of an 
image in order to compensate for difficulties in image acquisition. The idea is to modify the 
dynamic range of the grey-levels in the image. A technique that could work in this case is 
called linear mapping, equation (2), to stretch the pixel values of a low-contrast image or 
high-contrast image by extending the dynamic range across the whole image spectrum from 
0 – (L-1).  
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where O1 corresponds to 0 and O2 corresponds to the number of desired levels which is (L-1 
= 255). I1 and I2 provide the minimum and maximum values of the input grey-level range. 
The simplest form of processing is to adjust the brightness of an image by adding a bias 
value, b, to all the pixel values of an image; where b > 0 would increase the brightness of an 
image and b < 0 would darken the image. Also, a gain factor, a, may be used instead of a 
bias, where the product of a with the input pixel values modify the brightness of the output 
image. Values of 0 < a < 1 will produce a darker image and values of a > 1 will produce a 
brighter image. Combining both bias and gain produces equation (3). 
 

O (x, y) = a * I (x, y) + b (3) 

In this case, we need to specify both the gain and bias values, but in practicality it may be 
difficult to do so; therefore, the solution would be to map the input image range (I1, I2) to the 
output image range (O1, O2 ) where O1 corresponds to 0 and O2 corresponds to the number 
of desired levels, hence linear mapping defined in equation (2). 

 
4.1.1.1.2 Global image thresholding 
Image thresholding is the process of separating the information (objects) of an image from 
its background, hence, thresholding is usually applied to grey-level or colour document 
scanned images. Thresholding can be categorised into two main categories: global and local. 
Global thresholding methods choose one threshold value for the entire document image, 
which is often based on the estimation of the background level from the intensity histogram 
of the image; hence, it is considered a point processing operation. On the other hand, local 
adaptive thresholding uses different values for each pixel according to the local area 
information. There are hundreds of thresholding algorithms which have been published in 
the literature and presenting all methods would need several books, therefore, the purpose 
here is to present some of the well-known methods. 

Global thresholding methods are used to automatically reduce a grey-level image to a 
binary image. The images applied to such methods are assumed to have two classes of 
pixels (foreground and background). The purpose of a global thresholding method is to 
automatically specify a threshold value, T, where the pixel values below it are considered 
foreground and the values above are background. A simple method would be to choose the 
mean or median value of all the pixels in the input image, the mean or median will work 
well as the threshold, however, this will generally not be the case especially if the pixels are 
not uniformly distributed in an image. A more sophisticated approach might be to create a 
histogram of the image pixel intensities and use the valley point (minimum) as the 
threshold. The histogram approach assumes that there is some average value for the 
background and object pixels, but that the actual pixel values have some variation around 
these average values. However, this may be computationally expensive, and image 
histograms may not have clearly defined valley points, often making the selection of an 
accurate threshold difficult. One method that is relatively simple and does not require much 
specific knowledge of the image is the iterative method (Gonzalez, et al., 2004) which is 
explained below. 
The iterative procedure is 

Step 1: Select an initial threshold value (T), randomly or according to any other method 
desired such as the mean or median value of the pixels in the image. 
Step 2: Segment the image, using T, into object and background pixels. R1 (background 
region) consists of pixels with intensity values ≥ T and R2  (objects region) consists of 
pixels with intensity < T. 
Step 3: Calculate the average of each region, μ1 and μ2 for regions R1 and R2, respectively. 
Step 4: Compute the new threshold value T as given in equation (4). 

 
T=1/2(μ1 + μ2) (4) 

Step 5: Repeat the steps from 2 – 4 using the new T until the new threshold matches the 
one before it.  

In the literature, many thresholding methods have been published, for example, Sahoo et al. 
compared the performance of more than 20 global thresholding algorithms using uniformly 
or shape measures. The comparison showed that Otsu class separability method gave best 
performance (Sahoo et al., 1988; Otsu, 1979). On the other hand, in an evaluation for change 
detection by Rosin & Ioannidis concluded that the Otsu algorithm performed very poorly 
compared to other global methods (Rosin & Ioannidis, 2003, Otsu, 1979). The OCR goal-
directed evaluation study by Trier and Jain examined four global techniques showing that 
the Otsu method outperformed the other methods investigated in the study (Trier & Jain, 
1995). In addition, Fischer compared 15 global methods and confirmed that the Otsu method 
is preferred in document image processing (Fischer, 2000). The Otsu method is one of the 
widely used techniques used to convert a grey-level image into a binary image then 
calculates the optimum threshold separating those two classes so that their combined spread 
(intra-class variance) is minimal.  
The Otsu method searches for the threshold that minimises the intra-class variance, defined 
in equation (5) as a weighted sum of variances of the two classes (Otsu, 1979). 
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Where, I(x, y) is the original (input) image, O(x, y) is the enhanced image and T describes the 
transformation between the two images. Some of the point processing techniques include: 
contrast stretching, global thresholding, histogram equalisation, log transformations and 
power law transformations. Some mask processing techniques include averaging filters, 
sharpening filters, local thresholding… etc.  

 
4.1.1.1.1 Contrast stretching 
The level of contrast in an image may vary due to poor illumination or improper setting in 
the acquisition sensor device. Therefore, there is a need to manipulate the contrast of an 
image in order to compensate for difficulties in image acquisition. The idea is to modify the 
dynamic range of the grey-levels in the image. A technique that could work in this case is 
called linear mapping, equation (2), to stretch the pixel values of a low-contrast image or 
high-contrast image by extending the dynamic range across the whole image spectrum from 
0 – (L-1).  
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weights ωi are the probabilities of the two classes separated by a threshold t and 2
i  is the 

variance of these classes. Otsu shows that minimising the intra-class variance is the same as 
maximising inter-class variance, equation (6): 
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this is expressed in terms of class probabilities ωi and class means μi which in turn can be 
updated iteratively.  

The algorithm steps are:  
 Compute the histogram and probabilities of each intensity level 
 Initialize ωi(0) and μi(0)  
 Step through all threshold values t = 1 …. to maximum intensity. 

- Update ωi(0) and μi(0)       

 - Compute the maximum )(2 tb , which corresponds to the desired threshold.  

 
4.1.1.1.3 Histogram processing  
Histogram processing is used in image enhancement and can be useful in image 
compression and segmentation processing. A histogram simply plots the frequency at which 
each grey-level occurs from 0 (black) to 255 (white). Scanned or captured images may have a 
limited range of colours, or are lacking contrast (details). Enhancing the image by histogram 
processing can allow for improved detail, but can also aid other machine vision operations, 
such as segmentation. Thus, histogram processing should be the initial step in 
preprocessing. Histogram equalisation and histogram specification (matching) are two 
methods widely used to modify the histogram of an image to produce a much better image.  

 
4.1.1.1.3.1 Histogram equalisation  
Histogram equalisation is considered a global technique. It stretches the histogram across 
the entire spectrum of pixels (0 – 255). It increases the contrast of images for the finality of 
human inspection and can be applied to normalize illumination variations in image 
understanding problems. This process is quite simple and for each brightness level j in the 
original image, the new pixel level value (k) is calculated as given in equation (7). 
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where the sum counts the number of pixels in the image (by integrating the histogram) with 
brightness equal to or less than j, and T is the total number of pixels (Russ, 2007). In 
addition, histogram equalisation is one of the operations that can be applied to obtain new 
images based on histogram specification or modification.  

 

4.1.1.1.3.2 Histogram specification (Matching) 
Histogram matching is a method in image processing of colour adjustment of two images 
using their image histograms. 

 
Fig. 2. Cumulative distributive functions for reference and adjusted images. 
 
Histogram modification is the matching of the cumulative function f2 of the image to be 
adjusted to the Cumulative Distribution Function (CDF) of the reference image f1. 
Histogram modification is done by first computing the histograms of both images then the 
CDFs of both the reference (f1) and to be adjusted (f2) images are calculated. This output of 
the histogram matching is obtained by matching the closest CDF f2 to the reference image 
CDF f1. Then for each grey-level g1 the grey-level g2 is calculated for which f1 (g1) = f2 (g2) as 
shown in Fig. 2, and this is the result of histogram matching function M(g1) = g2 (Horn & 
Woodham, 1979). 

 
4.1.1.1.4 Log transformations 
The general form of the log transformation is equation (8). 
 

s = c log (1 + r) (8) 

where c is a constant and it is assumed that r ≥ 0. This transformation maps a narrow range 
of low grey-level values in the input image into a wider range of output levels and vice 
versa (Gonzalez et al., 2004).  

 
4.1.1.1.5 Power law transformation 
Power-law transformations have the general form shown in equation (9). 
 

 )(  rcs  (9) 

where c and γ are positive constants and  is an offset which is usually ignored since it is 
due to display calibration. Therefore;   rcs  , where values of 0 < γ < 1 map a narrow 
range of dark input values into a wider range of output values, with the opposite being true 
for values of γ greater than 1. This shows that the power-law transformations are much more 
versatile in such application than the log transformation. However, the log function has the 
important characteristic that it compresses the dynamic range of images with large 
variations in pixel values. Due to the variety of devices used for image capture, printing, 
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weights ωi are the probabilities of the two classes separated by a threshold t and 2
i  is the 

variance of these classes. Otsu shows that minimising the intra-class variance is the same as 
maximising inter-class variance, equation (6): 
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compression and segmentation processing. A histogram simply plots the frequency at which 
each grey-level occurs from 0 (black) to 255 (white). Scanned or captured images may have a 
limited range of colours, or are lacking contrast (details). Enhancing the image by histogram 
processing can allow for improved detail, but can also aid other machine vision operations, 
such as segmentation. Thus, histogram processing should be the initial step in 
preprocessing. Histogram equalisation and histogram specification (matching) are two 
methods widely used to modify the histogram of an image to produce a much better image.  

 
4.1.1.1.3.1 Histogram equalisation  
Histogram equalisation is considered a global technique. It stretches the histogram across 
the entire spectrum of pixels (0 – 255). It increases the contrast of images for the finality of 
human inspection and can be applied to normalize illumination variations in image 
understanding problems. This process is quite simple and for each brightness level j in the 
original image, the new pixel level value (k) is calculated as given in equation (7). 
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  (7) 

where the sum counts the number of pixels in the image (by integrating the histogram) with 
brightness equal to or less than j, and T is the total number of pixels (Russ, 2007). In 
addition, histogram equalisation is one of the operations that can be applied to obtain new 
images based on histogram specification or modification.  

 

4.1.1.1.3.2 Histogram specification (Matching) 
Histogram matching is a method in image processing of colour adjustment of two images 
using their image histograms. 

 
Fig. 2. Cumulative distributive functions for reference and adjusted images. 
 
Histogram modification is the matching of the cumulative function f2 of the image to be 
adjusted to the Cumulative Distribution Function (CDF) of the reference image f1. 
Histogram modification is done by first computing the histograms of both images then the 
CDFs of both the reference (f1) and to be adjusted (f2) images are calculated. This output of 
the histogram matching is obtained by matching the closest CDF f2 to the reference image 
CDF f1. Then for each grey-level g1 the grey-level g2 is calculated for which f1 (g1) = f2 (g2) as 
shown in Fig. 2, and this is the result of histogram matching function M(g1) = g2 (Horn & 
Woodham, 1979). 

 
4.1.1.1.4 Log transformations 
The general form of the log transformation is equation (8). 
 

s = c log (1 + r) (8) 

where c is a constant and it is assumed that r ≥ 0. This transformation maps a narrow range 
of low grey-level values in the input image into a wider range of output levels and vice 
versa (Gonzalez et al., 2004).  

 
4.1.1.1.5 Power law transformation 
Power-law transformations have the general form shown in equation (9). 
 

 )(  rcs  (9) 

where c and γ are positive constants and  is an offset which is usually ignored since it is 
due to display calibration. Therefore;   rcs  , where values of 0 < γ < 1 map a narrow 
range of dark input values into a wider range of output values, with the opposite being true 
for values of γ greater than 1. This shows that the power-law transformations are much more 
versatile in such application than the log transformation. However, the log function has the 
important characteristic that it compresses the dynamic range of images with large 
variations in pixel values. Due to the variety of devices used for image capture, printing, 
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and display respond according to the power law exponent, gamma, (γ), this factor needs to 
be corrected, thus power-law response phenomena or gamma correction which is given by 

/1rcs   (Gonzalez et al., 2004). 

 
4.1.1.2 Mask processing 
In mask processing, a pixel value is computed from the pixel value in the original image and 
the values of pixels in its vicinity. It is a more costly operation than simple point processing, 
but more powerful. The application of a mask to an input image produces an output image 
of the same size as the input. 

 
4.1.1.2.1 Smoothing (Low-pass) filters 
Average or mean filter is a simple, intuitive and easy to implement method of smoothing 
images, i.e. reducing the amount of intensity variation between one pixel and the next. It is 
often used to reduce noise in images. In general, the mean filter acts as a low-pass frequency 
filter and, therefore, reduces the spatial intensity derivatives present in the image. The idea 
of mean filtering is simply to replace each pixel value in an image with the mean (`average') 
value of its neighbours, including itself. This has the effect of eliminating pixel values which 
are unrepresentative of their surroundings. Mean filtering is usually thought of as a 
convolution filter. Like other convolutions it is based around a kernel, which represents the 
shape and size of the neighbourhood to be sampled when calculating the mean. Often a 3×3 
square kernel/mask is used, as shown in Fig. 3, although larger masks can be used (e.g. 5×5, 
7x7, 9x9 ...) for more severe smoothing. Note that, a small kernel can be applied more than 
once in order to produce a similar, but not identical, effect as a single pass with a larger 
kernel. Also, the elements of the mask must be positive and hence the size of the mask 
determines the degree of smoothing. Therefore, the larger the window size used a blurring 
effect is produced causing small objects to merge with the background of the image (Nixon 
& Aguado, 2008). 
 

 1 1 1 
1/9 x 1 1 1 

 1 1 1 

Average filter 

 1 2 1 
1/16  x 2 4 2 

 1 2 1 

Average Weighted filter 
Fig. 3. 3×3 averaging kernels used in average filter.  
 
The center coefficient of the mask is very important and other pixels are inversely weighted 
as a function of their distance from the center of the mask. The basic strategy behind 
weighting the center point the highest and then reducing the value of the coefficients as a 
function of increasing distance from the origin is simply an attempt to reduce blurring in the 
smoothing process.  

 

4.1.1.2.2 Sharpening (High-pass) filter 
A sharpening filter is used to emphasize the fine details of an image (i.e., provides the 
opposite effect of smoothing). The points of high contrast can be detected by computing 
intensity differences in local image regions. The weights of the mask are both positive and 
negative. When the mask is over an area of constant or slowly varying grey-level, the result 
of convolution will be close to zero. When grey-level is varying rapidly within the 
neighbourhood, the result of convolution will be a large number. Typically, such points 
form the border between different objects or scene parts (i.e. edge). An example of a 
sharpening filter is the Laplacian filter which is defined in equation (10) below.  
 

),(4)]1,()1,(),1(),1([2 yxfyxfyxfyxfyxff   (10) 
 
This implementation can be applied at all points (x,y) in an image by convolving the image 
with the following spatial mask Fig. 4(a) with an alternative definition of the digital second 
derivatives which takes into account the diagonal elements and can be implemented by the 
mask in Fig. 4(b). 
 

0 1 0 1 1 1 

1 -4 1 1 -8 1 

0 1 0 1 1 1 
      (a)                                           (b) 

Fig. 4. 3x3 Laplacian filter masks 
 
The Laplacian filter is a derivative operator which sharpens the image, but drives constant 
areas to zero; therefore, adding the original image back restores the grey-level tonality, 
equation (11).  
 

)],([),(),( 2 yxfcyxfyxg   (11) 
 
Where, f(x,y) is the input image, g(x,y) is the output image and c is 1 if the centre coefficient 
of the mask is positive, or -1 if it is negative (Gonzales and Woods, 2002).  

 
4.1.1.2.3 Median filter 
A commonly used non-linear operator is the median, a special type of low-pass filter. The 
median filter takes an area of an image (3x3, 5x5, 7x7, etc.), sorts out all the pixel values in that 
area, and replaces the center pixel with the median value. The median filter does not require 
convolution. (If the neighbourhood under consideration contains an even number of pixels, 
the average of the two middle pixel values is used.) Fig. 5 illustrates an example of how the 
median filter is calculated. The median filter is effective for removing impulse noise such as 
“salt and pepper noise” which is random occurrences of black and white pixels.  
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and display respond according to the power law exponent, gamma, (γ), this factor needs to 
be corrected, thus power-law response phenomena or gamma correction which is given by 

/1rcs   (Gonzalez et al., 2004). 

 
4.1.1.2 Mask processing 
In mask processing, a pixel value is computed from the pixel value in the original image and 
the values of pixels in its vicinity. It is a more costly operation than simple point processing, 
but more powerful. The application of a mask to an input image produces an output image 
of the same size as the input. 

 
4.1.1.2.1 Smoothing (Low-pass) filters 
Average or mean filter is a simple, intuitive and easy to implement method of smoothing 
images, i.e. reducing the amount of intensity variation between one pixel and the next. It is 
often used to reduce noise in images. In general, the mean filter acts as a low-pass frequency 
filter and, therefore, reduces the spatial intensity derivatives present in the image. The idea 
of mean filtering is simply to replace each pixel value in an image with the mean (`average') 
value of its neighbours, including itself. This has the effect of eliminating pixel values which 
are unrepresentative of their surroundings. Mean filtering is usually thought of as a 
convolution filter. Like other convolutions it is based around a kernel, which represents the 
shape and size of the neighbourhood to be sampled when calculating the mean. Often a 3×3 
square kernel/mask is used, as shown in Fig. 3, although larger masks can be used (e.g. 5×5, 
7x7, 9x9 ...) for more severe smoothing. Note that, a small kernel can be applied more than 
once in order to produce a similar, but not identical, effect as a single pass with a larger 
kernel. Also, the elements of the mask must be positive and hence the size of the mask 
determines the degree of smoothing. Therefore, the larger the window size used a blurring 
effect is produced causing small objects to merge with the background of the image (Nixon 
& Aguado, 2008). 
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Average Weighted filter 
Fig. 3. 3×3 averaging kernels used in average filter.  
 
The center coefficient of the mask is very important and other pixels are inversely weighted 
as a function of their distance from the center of the mask. The basic strategy behind 
weighting the center point the highest and then reducing the value of the coefficients as a 
function of increasing distance from the origin is simply an attempt to reduce blurring in the 
smoothing process.  

 

4.1.1.2.2 Sharpening (High-pass) filter 
A sharpening filter is used to emphasize the fine details of an image (i.e., provides the 
opposite effect of smoothing). The points of high contrast can be detected by computing 
intensity differences in local image regions. The weights of the mask are both positive and 
negative. When the mask is over an area of constant or slowly varying grey-level, the result 
of convolution will be close to zero. When grey-level is varying rapidly within the 
neighbourhood, the result of convolution will be a large number. Typically, such points 
form the border between different objects or scene parts (i.e. edge). An example of a 
sharpening filter is the Laplacian filter which is defined in equation (10) below.  
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This implementation can be applied at all points (x,y) in an image by convolving the image 
with the following spatial mask Fig. 4(a) with an alternative definition of the digital second 
derivatives which takes into account the diagonal elements and can be implemented by the 
mask in Fig. 4(b). 
 

0 1 0 1 1 1 

1 -4 1 1 -8 1 

0 1 0 1 1 1 
      (a)                                           (b) 

Fig. 4. 3x3 Laplacian filter masks 
 
The Laplacian filter is a derivative operator which sharpens the image, but drives constant 
areas to zero; therefore, adding the original image back restores the grey-level tonality, 
equation (11).  
 

)],([),(),( 2 yxfcyxfyxg   (11) 
 
Where, f(x,y) is the input image, g(x,y) is the output image and c is 1 if the centre coefficient 
of the mask is positive, or -1 if it is negative (Gonzales and Woods, 2002).  

 
4.1.1.2.3 Median filter 
A commonly used non-linear operator is the median, a special type of low-pass filter. The 
median filter takes an area of an image (3x3, 5x5, 7x7, etc.), sorts out all the pixel values in that 
area, and replaces the center pixel with the median value. The median filter does not require 
convolution. (If the neighbourhood under consideration contains an even number of pixels, 
the average of the two middle pixel values is used.) Fig. 5 illustrates an example of how the 
median filter is calculated. The median filter is effective for removing impulse noise such as 
“salt and pepper noise” which is random occurrences of black and white pixels.  
 

www.intechopen.com



Character Recognition10

123 127 150 120 100 

119 115 134 121 120 

111 120 122 125 180 

111 119 145 100 200 

110 120 120 130 150 
 

121 

 

(a)                                                   (b) 
Fig. 5. (a) Input image (b) Filtered image using median filter showing only the centre pixel.  
 
The sorted pixel values of the shaded area are: (100, 115, 119, 120, 121, 122, 125, 134 and 145), 
providing a median value of 121 in the output image.  

 
4.1.1.2.4 Maximum filter 
The maximum filter is defined as the maximum of all pixels within a local region of an 
image. The maximum filter is typically applied to an image to remove negative outlier noise. 
For the example in Fig. 5 the center pixel will take the maximum value 145.  

 
4.1.1.2.5 Minimum filter  
The minimum filter enhances dark values in the image; therefore, the darkest pixel then 
becomes the new pixel value at the centre of the window. For the example in Fig. 5 the 
centre pixel will be replaced by the minimum value of 100.  

 
4.1.1.2.6 Range filter 
The range filter is defined as the difference between the maximum and minimum pixel 
values within the neighbourhood of a pixel. For the example in Fig. 5 the centre pixel will be 
replaced by 45.  

 
4.1.1.2 Local thresholding 
Local thresholding techniques are used with document images having non-uniform 
background illumination or complex backgrounds, such as watermarks found in security 
documents if the global thresholding methods fail to separate the foreground from the 
background. This is due to the fact that the histogram of such images provides more than 
two peaks making it difficult for a global thresholding technique to separate the objects from 
the background, thus; local thresholding methods are the solution. The local thresholding 
techniques developed in the literature are mainly for specific applications and most of the 
time they do not perform well in different applications. The results could be over 
thresholding or under thresholding depending on the contrast and illumination. From the 
literature, several surveys have compared different thresholding techniques. The work of 
Trier and Jain evaluated the performance of 11 well-established locally adaptive binarisation 
methods (Trier & Jain, 1995). These techniques were compared using a criterion based on 
the ability of an OCR module to recognize handwritten numerals from hydrographical 
images. In this evaluation, the Niblack’s method, (Niblack, 1986), appears to be the best. 
This observation was applied for a specific application on certain hydro-graphic images 
using an OCR system. However, as concluded by the authors, if different sets of images 
used with different feature extraction methods and classifiers, then this observation may not 

be accurate and another method could outperform the Niblack’s method (Trier & Jain, 1995). 
The Niblack’s method calculates the threshold by shifting a window across the image, and 
use local mean, μ, and standard deviation, σ, for each center pixel in the window. The 
threshold value for a pixel within fixed neighbourhood is a linear function of the mean and 
standard deviation of the neighbourhood pixels, with a constant gradient of T(x, y), which is 
highly tunable, to separate objects well. Then the threshold is equation (12). 
 

T(x, y) = μ (x, y) + k σ (x, y) (12) 
The size of the neighbourhood should be small enough to serve local details, but at the same 
time large enough to suppress noise. The value of k is used to adjust how much of the total 
print object boundary is taken as a part of the given object. There have been several methods 
which introduced modifications to the Niblack’s method, such as the work of Zhang and 
Tan who proposed an improved version of the Niblack’s algorithm (Zhang and Tan, 2001). 
In addition, too many other thresholding methods based on different properties of the 
image were also developed. For example, the local thresholding method developed by 
Alginahi, uses the MLP-NN to classify pixels as background or foreground using statistical 
texture features to characterize the set of neighbourhood values of pixels related to its 
moments and measures of properties such as smoothness, uniformity and variability 
(Alginahi, 2004, 2008). In this work, five features were extracted from a window size 3x3 
these are the centre pixel value of the window, mean, standard variation, skewness and 
entropy. These features were extracted from each pixel and its neighbourhood in the image 
and then passed into a MLP-NN to classify pixels into background (white) and foreground 
(black). The MLP-NN thresholding method proved to provide excellent results in 
thresholding documents with bad illumination, containing complex background and/or 
non-uniform background, such as those found in security documents. The MLP-NN 
thresholding method is a non-application specific and can work with any application 
provided that sufficient training is carried out.  

 
4.2 Noise removal  
The advancements in technology produced image acquisition devices with better 
improvements. While modern technology has made it possible to reduce the noise levels 
associated with various electro-optical devices to almost negligible levels, there are still 
some noise sources which cannot be eliminated. Images acquired through modern sensors 
may be contaminated by a variety of noise sources. By noise we refer to stochastic variations 
as opposed to deterministic distortions, such as shading or lack of focus. There are different 
types of noise that are related to the electronic capturing devices or the light source used 
such types of noise are photon, thermal, On-Chip electronic and quantisation. Most of the 
noise may be eliminated by the capturing sensors or the CCD cameras.  
Document analysis systems benefit from the reduction of noise in the preprocessing stage 
this can provide a substantial improvement in the reliability and robustness of the feature 
extraction and recognition stages of the OCR system. A common manifestation of noise in 
binary images takes the form of isolated pixels, salt-and-pepper noise or speckle noise, thus; 
the processing of removing this type of noise is called filling, where each isolated pixel salt-
and-pepper “island” is filled in by the surrounding “sea” (O’Gorman, et al., 2008). In grey-
level images or median filters and low-pass filters such as average or Gaussian blur filters 
proved to eliminate isolated pixel noise. Gaussian blur and average filters are a better choice 
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(a)                                                   (b) 
Fig. 5. (a) Input image (b) Filtered image using median filter showing only the centre pixel.  
 
The sorted pixel values of the shaded area are: (100, 115, 119, 120, 121, 122, 125, 134 and 145), 
providing a median value of 121 in the output image.  

 
4.1.1.2.4 Maximum filter 
The maximum filter is defined as the maximum of all pixels within a local region of an 
image. The maximum filter is typically applied to an image to remove negative outlier noise. 
For the example in Fig. 5 the center pixel will take the maximum value 145.  

 
4.1.1.2.5 Minimum filter  
The minimum filter enhances dark values in the image; therefore, the darkest pixel then 
becomes the new pixel value at the centre of the window. For the example in Fig. 5 the 
centre pixel will be replaced by the minimum value of 100.  

 
4.1.1.2.6 Range filter 
The range filter is defined as the difference between the maximum and minimum pixel 
values within the neighbourhood of a pixel. For the example in Fig. 5 the centre pixel will be 
replaced by 45.  

 
4.1.1.2 Local thresholding 
Local thresholding techniques are used with document images having non-uniform 
background illumination or complex backgrounds, such as watermarks found in security 
documents if the global thresholding methods fail to separate the foreground from the 
background. This is due to the fact that the histogram of such images provides more than 
two peaks making it difficult for a global thresholding technique to separate the objects from 
the background, thus; local thresholding methods are the solution. The local thresholding 
techniques developed in the literature are mainly for specific applications and most of the 
time they do not perform well in different applications. The results could be over 
thresholding or under thresholding depending on the contrast and illumination. From the 
literature, several surveys have compared different thresholding techniques. The work of 
Trier and Jain evaluated the performance of 11 well-established locally adaptive binarisation 
methods (Trier & Jain, 1995). These techniques were compared using a criterion based on 
the ability of an OCR module to recognize handwritten numerals from hydrographical 
images. In this evaluation, the Niblack’s method, (Niblack, 1986), appears to be the best. 
This observation was applied for a specific application on certain hydro-graphic images 
using an OCR system. However, as concluded by the authors, if different sets of images 
used with different feature extraction methods and classifiers, then this observation may not 

be accurate and another method could outperform the Niblack’s method (Trier & Jain, 1995). 
The Niblack’s method calculates the threshold by shifting a window across the image, and 
use local mean, μ, and standard deviation, σ, for each center pixel in the window. The 
threshold value for a pixel within fixed neighbourhood is a linear function of the mean and 
standard deviation of the neighbourhood pixels, with a constant gradient of T(x, y), which is 
highly tunable, to separate objects well. Then the threshold is equation (12). 
 

T(x, y) = μ (x, y) + k σ (x, y) (12) 
The size of the neighbourhood should be small enough to serve local details, but at the same 
time large enough to suppress noise. The value of k is used to adjust how much of the total 
print object boundary is taken as a part of the given object. There have been several methods 
which introduced modifications to the Niblack’s method, such as the work of Zhang and 
Tan who proposed an improved version of the Niblack’s algorithm (Zhang and Tan, 2001). 
In addition, too many other thresholding methods based on different properties of the 
image were also developed. For example, the local thresholding method developed by 
Alginahi, uses the MLP-NN to classify pixels as background or foreground using statistical 
texture features to characterize the set of neighbourhood values of pixels related to its 
moments and measures of properties such as smoothness, uniformity and variability 
(Alginahi, 2004, 2008). In this work, five features were extracted from a window size 3x3 
these are the centre pixel value of the window, mean, standard variation, skewness and 
entropy. These features were extracted from each pixel and its neighbourhood in the image 
and then passed into a MLP-NN to classify pixels into background (white) and foreground 
(black). The MLP-NN thresholding method proved to provide excellent results in 
thresholding documents with bad illumination, containing complex background and/or 
non-uniform background, such as those found in security documents. The MLP-NN 
thresholding method is a non-application specific and can work with any application 
provided that sufficient training is carried out.  

 
4.2 Noise removal  
The advancements in technology produced image acquisition devices with better 
improvements. While modern technology has made it possible to reduce the noise levels 
associated with various electro-optical devices to almost negligible levels, there are still 
some noise sources which cannot be eliminated. Images acquired through modern sensors 
may be contaminated by a variety of noise sources. By noise we refer to stochastic variations 
as opposed to deterministic distortions, such as shading or lack of focus. There are different 
types of noise that are related to the electronic capturing devices or the light source used 
such types of noise are photon, thermal, On-Chip electronic and quantisation. Most of the 
noise may be eliminated by the capturing sensors or the CCD cameras.  
Document analysis systems benefit from the reduction of noise in the preprocessing stage 
this can provide a substantial improvement in the reliability and robustness of the feature 
extraction and recognition stages of the OCR system. A common manifestation of noise in 
binary images takes the form of isolated pixels, salt-and-pepper noise or speckle noise, thus; 
the processing of removing this type of noise is called filling, where each isolated pixel salt-
and-pepper “island” is filled in by the surrounding “sea” (O’Gorman, et al., 2008). In grey-
level images or median filters and low-pass filters such as average or Gaussian blur filters 
proved to eliminate isolated pixel noise. Gaussian blur and average filters are a better choice 
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to provide smooth texture to the image. On the other hand, periodic noise which manifests 
itself as impulse-like bursts which often are visible in the Fourier spectrum can be filtered 
using notch filtering. The transfer function of a Butterworth notch filter of order n, ),( vuH , 
is given by equation (13). 
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where (μ0, υ0) and by symmetry (-μ0, -υ0) are the locations of the notches and D is their 
radius, equations 14 - 15. The filter is specified with respect to the centre of the frequency 
rectangle. (Gonzalez et al., 2004).  

 
4.3 Skew detection/correction 
Due to the possibility of rotation of the input image and the sensitivity of many document 
image analysis methods to rotation of the image, document skew should be corrected. Skew 
detection techniques can be roughly classified into the following groups: analysis of 
projection profile, Hough transform, connected components, clustering, and Correlation 
between lines techniques. The survey by Hull and Taylor, investigated twenty-five different 
methods for document image skew detection. The methods include approaches based on 
Hough Transform analysis, projection profile, feature point distribution and orientation-
sensitive feature analysis. The survey concluded that most of the techniques reported a 
range of up to 0.1 degrees accuracy, evidencing a strong need for further work in this area to 
help show the strengths and weaknesses of individual algorithms (Hull & Taylor, 1998). In 
addition, there are new techniques emerging for specific applications such as the method of 
Al-Shatnawi and Omar which is based on the center of gravity for dealing with Arabic 
document images (Al-Shatnawi & Omar, 2009). Therefore, the choice of using a skew 
detection/correction technique depends on the application and the type of images used.  

 
4.4 Page segmentation 
After image enhancement, noise removal and/or skew detection/correction, the next step in 
mixed content images or composite images is to perform page segmentation in order to 
separate text from halftone images, lines, and graphs. The result of interest should be an 
image with only text; therefore, document/page segmentation. Document segmentation can 
be classified into three broad categories: top-down, bottom-up and hybrid techniques. The 
top-down methods recursively segment large regions in a document into smaller sub-

regions. The segmentation stops when some criterion is met and the ranges obtained at that 
stage constitute the final segmentation results. On the other hand, the bottom-up methods 
start by grouping pixels of interest and merging them into larger blocks or connected 
components, such as characters which are then clustered into words, lines or blocks of text. 
The hybrid methods are the combination of both top-down and bottom-up strategies.  
The Run-Length Smearing Algorithm (RLSA) is one of the most widely used top-down 
algorithms. It is used on binary images (setting 1 for white pixels and 0 for black pixels), by 
linking together the neighbouring black pixels that are within a certain threshold. This 
method is applied row-by-row and column-by-column, then both results are combined in a 
logical OR operation and finally a smoothing threshold is used to produce the final 
segmentation result. From the RLSA results, black blocks of text lines and images are 
produced. Finally a statistical classifier is used to classify these blocks (Wahl et al., 1982).  
An example of bottom-up algorithm is the recursive X-Y method, which is also known as 
the projection profile cuts, it assumes documents are presented in a form of a tree of nested 
rectangular blocks (Nagy & Stoddard, 1986). Although the recursive X-Y cuts could 
decompose a document image into a set of rectangular blocks no details were given on how 
to define cuts. On the other hand, an example of a hybrid method is the segmentation 
approach of Kruatrachue and Suthaphan which consists of two steps, a top down block 
extraction method followed by a bottom-up multi-column block detection and segmentation 
method (Kruatrachue & Suthaphan, 2001). The segmentation is based on blocks of columns 
extracted by a modified edge following algorithm, which uses a window of 32 x 32 pixel so 
that a paragraph can be extracted instead of a character. 
The above are only a few examples and hundreds of methods developed for document 
layout segmentation. To ensure the performance of most of these algorithms, a skew 
detection and correction algorithm is required in the preprocessing stage. In literature, the 
surveys in (Mao et al., 2003) and (Tang et al., 1996) provide detailed explanation on 
document analysis and layout representation algorithms. Most of the techniques explained 
are time consuming and are not effective for processing documents with high geometrical 
complexity. Specifically, the top-down approach can process only simple documents, which 
have specific format or contain some a priori information about the document. It fails to 
process the documents that have complicated geometric structures. The research in this area 
concentrates on binary images and grey images with uniform backgrounds. The images 
used were mainly scanned from technical journals and magazines that usually have specific 
formats. Document segmentation on grey-level images with complex or non-uniform 
backgrounds have not been widely investigated due to the complications in thresholding 
these images. Therefore, techniques are mainly geared to specific applications with specific 
formats and they tend to fail when specific parameters do not match. Alginahi, et al. used a 
local MLP-NN threshold to threshold images with uniform background and applied the 
RLSA with modified parameters to segment a mixed content document image into text, 
lines, halftone images and graphics (Alginahi et al., 2005,2008).  

 
4.5 Character segmentation  
Character segmentation is considered one of the main steps in preprocessing especially in 
cursive scripts such as Arabic, Urdu and other scripts where characters are connected 
together. Therefore, there are many techniques developed for character segmentation and 
most of them are script specific and may not work with other scripts. Even in printed 
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to provide smooth texture to the image. On the other hand, periodic noise which manifests 
itself as impulse-like bursts which often are visible in the Fourier spectrum can be filtered 
using notch filtering. The transfer function of a Butterworth notch filter of order n, ),( vuH , 
is given by equation (13). 
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where (μ0, υ0) and by symmetry (-μ0, -υ0) are the locations of the notches and D is their 
radius, equations 14 - 15. The filter is specified with respect to the centre of the frequency 
rectangle. (Gonzalez et al., 2004).  
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4.4 Page segmentation 
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start by grouping pixels of interest and merging them into larger blocks or connected 
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The hybrid methods are the combination of both top-down and bottom-up strategies.  
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to define cuts. On the other hand, an example of a hybrid method is the segmentation 
approach of Kruatrachue and Suthaphan which consists of two steps, a top down block 
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surveys in (Mao et al., 2003) and (Tang et al., 1996) provide detailed explanation on 
document analysis and layout representation algorithms. Most of the techniques explained 
are time consuming and are not effective for processing documents with high geometrical 
complexity. Specifically, the top-down approach can process only simple documents, which 
have specific format or contain some a priori information about the document. It fails to 
process the documents that have complicated geometric structures. The research in this area 
concentrates on binary images and grey images with uniform backgrounds. The images 
used were mainly scanned from technical journals and magazines that usually have specific 
formats. Document segmentation on grey-level images with complex or non-uniform 
backgrounds have not been widely investigated due to the complications in thresholding 
these images. Therefore, techniques are mainly geared to specific applications with specific 
formats and they tend to fail when specific parameters do not match. Alginahi, et al. used a 
local MLP-NN threshold to threshold images with uniform background and applied the 
RLSA with modified parameters to segment a mixed content document image into text, 
lines, halftone images and graphics (Alginahi et al., 2005,2008).  

 
4.5 Character segmentation  
Character segmentation is considered one of the main steps in preprocessing especially in 
cursive scripts such as Arabic, Urdu and other scripts where characters are connected 
together. Therefore, there are many techniques developed for character segmentation and 
most of them are script specific and may not work with other scripts. Even in printed 
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handwritten documents, character segmentation is required due to touching of characters 
when written by hand. For example, printed Latin characters are easy to segment using 
horizontal and vertical histogram profiles; however, smaller fonts and those containing 
serifs may introduce touching which will need further processing to solve the touching 
problem. 

 
4.6 Image size normalization 
The result from the character segmentation stage provides isolated characters which are 
ready to be passed into the feature extraction stage; therefore, the isolated characters are 
normalized into a specific size, decided empirically or experimentally depending on the 
application and the feature extraction or classification techniques used, then features are 
extracted from all characters with the same size in order to provide data uniformity.  

 
4.7 Morphological processing  
Segmentation results may cause some pixels to be removed producing holes to some parts 
of the images; this could be seen from characters having some holes in them where some of 
the pixels were removed during thresholding. Larger holes can cause characters to break 
into two or more parts/objects. On the other hand, the opposite can also be true, as 
segmentation can join separate objects making it more difficult to separate characters; these 
solid objects resemble blobs and are hard to interpret. The solution to these problems is 
Morphological Filtering. Useful techniques include erosion and dilation, opening and 
closing, outlining, and thinning and skeletonisation. These techniques work on binary 
images only. (Phillips, 2000) 

 
4.7.1 Erosion and dilation 
Dilation and Erosion are morphological operations which increase or decrease objects in 
size and can be very useful during the preprocessing stage. Erosion makes an object 
smaller by removing or eroding away the pixels on its edges; however, dilation makes an 
object larger by adding pixels around its edges. There are two general techniques for 
erosion and dilation these are:  the threshold and masking techniques. The threshold 
technique looks at the neighbours of a pixel and changes its state if the number of differing 
neighbour pixels exceeds a threshold. Basically, if the number of zero pixels in the 
neighbourhood of a pixel exceeds a threshold parameter then the pixel is set to zero. Fig. 6 
shows the result of eroding the rectangle using a threshold value of three (Russ, 2007).  
 

 
Fig. 6. The result of eroding a rectangle using a threshold of 3. 

The dilation process does the opposite of erosion. It counts the value of pixels next to a zero 
pixel, if the count exceeds the threshold parameter, then the zero pixel is set to the value of 
the pixel. The dilation in Fig. 7 uses a threshold value of two. 
 

 
Fig. 7. The result of dilating (a) is given in (b) using a threshold of 2.  
 
The masking technique uses an nxn (3x3, 5x5, etc.) array of 1s and 0s on top of an input 
image and erodes or dilates the input. Using masks, the direction of erosion or dilation can 
be controlled. Square masks are more widely used such sizes are 3x3, 5x5, 7x7… etc. with 
other sizes could be used (Myler & Weeks, 1993, Phillips, 2000). Masks of sizes 3x3 in 
different directions are shown below: 
 

vertical mask  horizontal mask   horizontal and vertical masks 
0  1  0         0  0  0             0  1  0     1  1  1 
0  1  0         1  1  1             1  1  1     1  1  1 
0  1  0         0  0  0             0  1  0     1  1  1 

 
Fig 8. below shows the result of dilation using the horizontal mask.   
 

 
Fig. 8. The result of dilating (a) using the horizontal mask is shown in (b) 
 
Mask erosion is the opposite of dilation. It applies an nxn mask on the image so that the 
center of the array is on top of a zero. If any of the 1s coefficients in the mask overlap a white 
pixel (255) in the image then it is set to zero. Vertical mask erosion removes the top and 
bottom rows from an object, horizontal mask removes the left and right columns and the 
horizontal and vertical masks remove pixels from all edges.  
To conclude, dilation causes objects to grow in size as it will exchange every pixel value 
with the maximum value within an nxn window size around the pixel. The process may be 
repeated to create larger effects. However, erosion works the same way except that it will 
cause objects to decrease because each pixel value is exchanged with the minimum value 
within an nxn window size around the pixel (Phillips, 2000). 
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handwritten documents, character segmentation is required due to touching of characters 
when written by hand. For example, printed Latin characters are easy to segment using 
horizontal and vertical histogram profiles; however, smaller fonts and those containing 
serifs may introduce touching which will need further processing to solve the touching 
problem. 

 
4.6 Image size normalization 
The result from the character segmentation stage provides isolated characters which are 
ready to be passed into the feature extraction stage; therefore, the isolated characters are 
normalized into a specific size, decided empirically or experimentally depending on the 
application and the feature extraction or classification techniques used, then features are 
extracted from all characters with the same size in order to provide data uniformity.  

 
4.7 Morphological processing  
Segmentation results may cause some pixels to be removed producing holes to some parts 
of the images; this could be seen from characters having some holes in them where some of 
the pixels were removed during thresholding. Larger holes can cause characters to break 
into two or more parts/objects. On the other hand, the opposite can also be true, as 
segmentation can join separate objects making it more difficult to separate characters; these 
solid objects resemble blobs and are hard to interpret. The solution to these problems is 
Morphological Filtering. Useful techniques include erosion and dilation, opening and 
closing, outlining, and thinning and skeletonisation. These techniques work on binary 
images only. (Phillips, 2000) 

 
4.7.1 Erosion and dilation 
Dilation and Erosion are morphological operations which increase or decrease objects in 
size and can be very useful during the preprocessing stage. Erosion makes an object 
smaller by removing or eroding away the pixels on its edges; however, dilation makes an 
object larger by adding pixels around its edges. There are two general techniques for 
erosion and dilation these are:  the threshold and masking techniques. The threshold 
technique looks at the neighbours of a pixel and changes its state if the number of differing 
neighbour pixels exceeds a threshold. Basically, if the number of zero pixels in the 
neighbourhood of a pixel exceeds a threshold parameter then the pixel is set to zero. Fig. 6 
shows the result of eroding the rectangle using a threshold value of three (Russ, 2007).  
 

 
Fig. 6. The result of eroding a rectangle using a threshold of 3. 

The dilation process does the opposite of erosion. It counts the value of pixels next to a zero 
pixel, if the count exceeds the threshold parameter, then the zero pixel is set to the value of 
the pixel. The dilation in Fig. 7 uses a threshold value of two. 
 

 
Fig. 7. The result of dilating (a) is given in (b) using a threshold of 2.  
 
The masking technique uses an nxn (3x3, 5x5, etc.) array of 1s and 0s on top of an input 
image and erodes or dilates the input. Using masks, the direction of erosion or dilation can 
be controlled. Square masks are more widely used such sizes are 3x3, 5x5, 7x7… etc. with 
other sizes could be used (Myler & Weeks, 1993, Phillips, 2000). Masks of sizes 3x3 in 
different directions are shown below: 
 

vertical mask  horizontal mask   horizontal and vertical masks 
0  1  0         0  0  0             0  1  0     1  1  1 
0  1  0         1  1  1             1  1  1     1  1  1 
0  1  0         0  0  0             0  1  0     1  1  1 

 
Fig 8. below shows the result of dilation using the horizontal mask.   
 

 
Fig. 8. The result of dilating (a) using the horizontal mask is shown in (b) 
 
Mask erosion is the opposite of dilation. It applies an nxn mask on the image so that the 
center of the array is on top of a zero. If any of the 1s coefficients in the mask overlap a white 
pixel (255) in the image then it is set to zero. Vertical mask erosion removes the top and 
bottom rows from an object, horizontal mask removes the left and right columns and the 
horizontal and vertical masks remove pixels from all edges.  
To conclude, dilation causes objects to grow in size as it will exchange every pixel value 
with the maximum value within an nxn window size around the pixel. The process may be 
repeated to create larger effects. However, erosion works the same way except that it will 
cause objects to decrease because each pixel value is exchanged with the minimum value 
within an nxn window size around the pixel (Phillips, 2000). 
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4.7.2 Opening and closing 
Opening and closing are morphological operators that are derived from the fundamental 
operations of erosion and dilation, and are normally applied to binary images. The basic 
effect of an opening is somewhat like erosion in that it tends to remove some of the 
foreground pixels from the edges of regions of foreground pixels. However, it is less 
destructive than erosion in general. Closing is similar in some ways to dilation in that it 
tends to enlarge the boundaries of foreground regions in an image, but it is less destructive 
of the original boundary shape.  
Opening spaces objects that are too close together, detaches objects that are touching and 
should not be, and enlarges holes inside objects. Fig. 9 shows two objects joined by a thread; 
opening was used to remove this thread and separate the two objects, thus, by eroding the 
object twice the thread is erased. In this case, dilation would enlarge the two objects back to 
their original size, but does not re-create the thread (Phillips, 2000). 

 

 
Fig. 9. The result of opening two objects joined by a thread 
 
Opening can also enlarge a desired hole in an object; it involves one or more erosions 
followed by a dilation process. Closing joins broken objects and fills in unwanted holes in 
objects, Fig. 10 shows two objects that should be joined to make a line and Fig. 11 shows 
how closing fills a hole in an object. 

 
Fig. 10. The result of closing unwanted holes in objects to form a line. 
 

 
Fig. 11. The result of closing unwanted holes in objects. 

The opening and closing operators work well, but sometimes produce undesired results 
where closing may merge objects which should not be merged and opening may enlarge 
holes and cause an object to break. The answer is special opening and closing that avoid 
such problems, for further information the reader is referred to (Phillips, 2000; Russ, 2007; 
Gonzalez et al., 2004).  

 
4.7.3 Outlining  
Outlining is a type of edge detection; it only works for binary images, but produces better 
results than regular edge detectors. Outlining binary images is quick and easy with erosion 
and dilation. To outline the interior of an object, erode the object and subtract the eroded 
image from the original, for example Fig. 12. To outline the exterior of an object, dilate the 
object and subtract the original image from the dilated image, for example Fig. 13. Exterior 
outlining is easiest to understand where dilating an object makes it one layer of pixels larger 
and subtracting the input from this dilated larger object yields the outline.  
 

 
Fig. 12. The result of showing the interior outline of an image. 
 

 
Fig. 13. The result of showing the exterior outline of an image. 

 
4.7.4 Thinning and skeletonisation 
Skeletonisation is a process for reducing foreground regions in a binary image to a skeletal 
remnant that largely preserves the extent and connectivity of the original region while 
removing most of the original foreground pixels. It is clear to imagine that the skeleton is as 
the loci of centres of bi-tangent circles that fit entirely within the foreground region being 
considered, this can be illustrated using the rectangular shape in Fig. 14. 
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4.7.2 Opening and closing 
Opening and closing are morphological operators that are derived from the fundamental 
operations of erosion and dilation, and are normally applied to binary images. The basic 
effect of an opening is somewhat like erosion in that it tends to remove some of the 
foreground pixels from the edges of regions of foreground pixels. However, it is less 
destructive than erosion in general. Closing is similar in some ways to dilation in that it 
tends to enlarge the boundaries of foreground regions in an image, but it is less destructive 
of the original boundary shape.  
Opening spaces objects that are too close together, detaches objects that are touching and 
should not be, and enlarges holes inside objects. Fig. 9 shows two objects joined by a thread; 
opening was used to remove this thread and separate the two objects, thus, by eroding the 
object twice the thread is erased. In this case, dilation would enlarge the two objects back to 
their original size, but does not re-create the thread (Phillips, 2000). 

 

 
Fig. 9. The result of opening two objects joined by a thread 
 
Opening can also enlarge a desired hole in an object; it involves one or more erosions 
followed by a dilation process. Closing joins broken objects and fills in unwanted holes in 
objects, Fig. 10 shows two objects that should be joined to make a line and Fig. 11 shows 
how closing fills a hole in an object. 

 
Fig. 10. The result of closing unwanted holes in objects to form a line. 
 

 
Fig. 11. The result of closing unwanted holes in objects. 

The opening and closing operators work well, but sometimes produce undesired results 
where closing may merge objects which should not be merged and opening may enlarge 
holes and cause an object to break. The answer is special opening and closing that avoid 
such problems, for further information the reader is referred to (Phillips, 2000; Russ, 2007; 
Gonzalez et al., 2004).  

 
4.7.3 Outlining  
Outlining is a type of edge detection; it only works for binary images, but produces better 
results than regular edge detectors. Outlining binary images is quick and easy with erosion 
and dilation. To outline the interior of an object, erode the object and subtract the eroded 
image from the original, for example Fig. 12. To outline the exterior of an object, dilate the 
object and subtract the original image from the dilated image, for example Fig. 13. Exterior 
outlining is easiest to understand where dilating an object makes it one layer of pixels larger 
and subtracting the input from this dilated larger object yields the outline.  
 

 
Fig. 12. The result of showing the interior outline of an image. 
 

 
Fig. 13. The result of showing the exterior outline of an image. 

 
4.7.4 Thinning and skeletonisation 
Skeletonisation is a process for reducing foreground regions in a binary image to a skeletal 
remnant that largely preserves the extent and connectivity of the original region while 
removing most of the original foreground pixels. It is clear to imagine that the skeleton is as 
the loci of centres of bi-tangent circles that fit entirely within the foreground region being 
considered, this can be illustrated using the rectangular shape in Fig. 14. 
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Fig. 14. Illustration of the concept of skeletonisation 
 
There are two basic techniques for producing the skeleton of an object: basic thinning and 
medial axis transforms. Thinning is a morphological operation that is used to remove 
selected foreground pixels from binary images, somewhat like erosion or opening. Thinning 
is a data reduction process that erodes an object until it is one-pixel wide, producing a 
skeleton of the object making it easier to recognize objects such as characters. Fig. 15 shows 
how thinning the character E produces the skinny shape of the character. Thinning is 
normally only applied to binary images, and produces another binary image as output. 
Thinning erodes an object over and over again (without breaking it) until it is one-pixel 
wide. On the other hand, the medial axis transform finds the points in an object that form 
lines down its center (Davies, 2005).  
 

 
Fig. 15. (a) Original Image (b) Medial Axis Transform (c) Outline (d) Thinning 
 
The medial axis transform is similar to measuring the Euclidean distance of any pixel in an 
object to the edge of the object, hence, it consists of all points in an object that are minimally 
distant to more than one edge of the object (Russ, 2007). 

 
5. Conclusion 

In this chapter, preprocessing techniques used in document images as an initial step in 
character recognition systems were presented. Future research aims at new applications 
such as online character recognition used in mobile devices, extraction of text from video 
images, extraction of information from security documents and processing of historical 
documents. The objective of such research is to guarantee the accuracy and security of 
information extraction in real time applications. Even though many methods and techniques 
have been developed for preprocessing there are still problems that are not solved 
completely and more investigations need to be carried out in order to provide solutions. 
Most of preprocessing techniques are application-specific and not all preprocessing 
techniques have to be applied to all applications. Each application may require different 
preprocessing techniques depending on the different factors that may affect the quality of its 
images, such as those introduced during the image acquisition stage. Image 

manipulation/enhancement techniques do not need to be performed on an entire image 
since not all parts of an image is affected by noise or contrast variations; therefore, 
enhancement of a portion of the original image maybe more useful in many situations. This 
is obvious when an image contains different objects which may differ in their brightness or 
darkness from the other parts of the image; thereby, when portions of an image can be 
selected, either manually or automatically according to their brightness such processing can 
be used to bring out local detail. In conclusion preprocessing is considered a crucial stage in 
most automatic document image analysis systems and without it the success of such 
systems is not guaranteed.  
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Fig. 14. Illustration of the concept of skeletonisation 
 
There are two basic techniques for producing the skeleton of an object: basic thinning and 
medial axis transforms. Thinning is a morphological operation that is used to remove 
selected foreground pixels from binary images, somewhat like erosion or opening. Thinning 
is a data reduction process that erodes an object until it is one-pixel wide, producing a 
skeleton of the object making it easier to recognize objects such as characters. Fig. 15 shows 
how thinning the character E produces the skinny shape of the character. Thinning is 
normally only applied to binary images, and produces another binary image as output. 
Thinning erodes an object over and over again (without breaking it) until it is one-pixel 
wide. On the other hand, the medial axis transform finds the points in an object that form 
lines down its center (Davies, 2005).  
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The medial axis transform is similar to measuring the Euclidean distance of any pixel in an 
object to the edge of the object, hence, it consists of all points in an object that are minimally 
distant to more than one edge of the object (Russ, 2007). 
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character recognition systems were presented. Future research aims at new applications 
such as online character recognition used in mobile devices, extraction of text from video 
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documents. The objective of such research is to guarantee the accuracy and security of 
information extraction in real time applications. Even though many methods and techniques 
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Most of preprocessing techniques are application-specific and not all preprocessing 
techniques have to be applied to all applications. Each application may require different 
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manipulation/enhancement techniques do not need to be performed on an entire image 
since not all parts of an image is affected by noise or contrast variations; therefore, 
enhancement of a portion of the original image maybe more useful in many situations. This 
is obvious when an image contains different objects which may differ in their brightness or 
darkness from the other parts of the image; thereby, when portions of an image can be 
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