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Abstract 
One of the important prerequisites for a model to be used in decision making is to perform 
uncertainty and sensitivity analyses on the outputs of the model. This study presents a 
comprehensive review of the uncertainty and sensitivity analyses associated with prediction 
of ground level pollutant concentrations using the USEPA’s AERMOD equations for point 
sources. This is done by first putting together an approximate set of equations that are used 
in the AERMOD model for the stable boundary layer (SBL) and convective boundary layer 
(CBL). Uncertainty and sensitivity analyses are then performed by incorporating the 
equations in Crystal Ball® software.  
Various parameters considered for these analyses include emission rate, stack exit velocity, 
stack exit temperature, wind speed, lateral dispersion parameter, vertical dispersion 
parameter, weighting coefficients for both updraft and downdraft, total horizontal 
distribution function, cloud cover, ambient temperature, and surface roughness length. The 
convective mixing height is also considered for the CBL cases because it was specified. The 
corresponding probability distribution functions, depending on the measured or practical 
values are assigned to perform uncertainty and sensitivity analyses in both CBL and SBL 
cases.  
The results for uncertainty in predicting ground level concentrations at different downwind 
distances in CBL varied between 67% and 75%, while it ranged between 40% and 47% in 
SBL. The sensitivity analysis showed that vertical dispersion parameter and total horizontal 
distribution function have contributed to 82% and 15% variance in predicting concentrations 
in CBL. In SBL, vertical dispersion parameter and total horizontal distribution function have 
contributed about 10% and 75% to variance in predicting concentrations respectively. Wind 
speed has a negative contribution to variance and the other parameters had a negligent or 
zero contribution to variance.  The study concludes that the calculations of vertical 
dispersion parameter for the CBL case and of horizontal distribution function for the SBL 
case should be improved to reduce the uncertainty in predicting ground level 
concentrations. 
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1. Introduction  
Development of a good model for decision making in any field of study needs to be 
associated with uncertainty and sensitivity analyses. Performing uncertainty and sensitivity 
analyses on the output of a model is one of the basic prerequisites for model validation. 
Uncertainty can be defined as a measure of the ‘goodness’ of a result. One can perform 
uncertainty analysis to quantify the uncertainty associated with response of uncertainties in 
model input. Sensitivity analysis helps determine the variation in model output due to 
change in one or more input parameters for the model. Sensitivity analysis enables the 
modeler to rank the input parameters by their contribution to variance of the output and 
allows the modeler to determine the level of accuracy required for an input parameter to 
make the models sufficiently useful and valid. If one considers an input value to be varying 
from a standard existing value, then the person will be in a position to say by how much 
more or less sensitivity will the output be on comparing with the case of a standard existing 
value. By identifying the uncertainty and sensitivity of each model, a modeler gains the 
capability of making better decisions when considering more than one model to obtain 
desired accurate results.  Hence, it is imperative for modelers to understand the importance 
of recording and understanding the uncertainty and sensitivity of each model developed 
that would assist industry and regulatory bodies in decision-making.  
A review of literature on the application of uncertainty and sensitivity analyses helped us 
gather some basic information on the applications of different methods in environmental 
area and their performance in computing uncertainty and sensitivity. The paper focuses on 
air quality modeling. 
Various stages at which uncertainty can be obtained are listed below.  

a) Estimation of uncertainties in the model inputs. 
b) Estimation of the uncertainty in the results obtained from the model. 
c) Characterizing the uncertainties by different model structure and model formulations. 
d) Characterizing the uncertainties in model predicted results from the uncertainties in 

evaluation data. 
Hanna (1988) stated the total uncertainty involved in modeling simulations to be considered 
as the sum of three components listed below. 

a) Uncertainty due to errors in the model.  
b) Uncertainty due to errors in the input data. 
c) Uncertainty due to the stochastic processes in the atmosphere (like turbulence). 

In order to estimate the uncertainty in predicting a variable using a model, the input 
parameters to which the model is more sensitive should be determined. This is referred to as 
sensitivity analysis, which indicates by how much the overall uncertainty in the model 
predictions is associated with the individual uncertainty of the inputs in the model 
[Vardoulakis et al. (2002)]. Sensitivity studies do not combine the uncertainty of the model 
inputs, to provide a realistic estimate of uncertainty of model output or results. Sensitivity 
analysis should be carried out for different variables of a model to decide where prominence 
should be placed in estimating the total uncertainty. Sensitivity analysis of dispersion 
parameters is useful, because, it promotes a deeper understanding of the phenomenon, and 
helps one in placing enough emphasis in accurate measurements of the variables. 
The analytical approach most frequently used for uncertainty analysis of simple equations is 
variance propagation [IAEA (1989), Martz and Waller (1982), Morgan and Henrion (1990)]. 
To overcome problems encountered with analytical variance propagation equations, 

 

numerical methods are useful in performing an uncertainty analysis. Various approaches for 
determining uncertainty obtained from the literature include the following. 

1) Differential uncertainty analysis [Cacuci (1981), and Worley (1987)] in which the partial 
derivatives of the model response with respect to the parameters are used to estimate 
uncertainty.  

2) Monte Carlo analysis of statistical simplifications of complex models [Downing et al. 
(1985), Mead and Pike (1975), Morton (1983), and Myers (1971), Kumar et al. (1999)]. 

3) Non-probabilistic methods [for example: fuzzy sets, fuzzy arithmetic, and possibility 
theory [Ferson and Kuhn (1992)]. 

4) First-order analysis employing Taylor expansions [Scavia et al. (1981)]. 
5) Bootstrap method [Romano et al. (2004)]. 
6) Probability theory [Zadeh (1978)]. 

The most commonly applied numerical technique is the Monte Carlo simulation 
(Rubinstein, 1981).  
There are many methods by which sensitivity analysis can be performed. Some of the 
methods are listed below. 

1) Simple regression (on the untransformed and transformed data) [Brenkert et al. (1988)] 
or visual analysis of output based on changes in input [(Kumar et al. (1987), Thomas 
et al. (1985), Kumar et al. (2008)]. 

2) Multiple and piecewise multiple regression (on transformed and untransformed data) 
[Downing et al. (1985)].  

3) Regression coefficients and partial regression coefficients [Bartell et al. (1986), Gardner 
et al. (1981)].  

4) Stepwise regression and correlation ratios (on untransformed and transformed data). 
5) Differential sensitivity analysis [Griewank and Corliss (1991), Worley (1987)].  
6) Evidence theory [Dempster (1967), Shafer (1976)]. 
7) Interval approaches (Hansen and Walster, 2002). 
8) ASTM method [(Kumar et al. (2002), Patel et al. (2003)]. 

Other studies that discuss the use of statistical regressions of the randomly selected values 
of uncertain parameters on the values produced for model predictions to determine the 
importance of parameters contributing to the overall uncertainty in the model result include 
IAEA (1989), Iman et al. (1981a, 1981b), Iman and Helton (1991), and Morgan and Henrion 
(1990). 
Romano et al. (2004) performed the uncertainty analysis using Monte Carlo, Bootstrap, and 
fuzzy methods to determine the uncertainty associated with air emissions from two electric 
power plants in Italy. Emissions monitored were sulfur dioxide (SO2), nitrogen oxides 
(NOX), carbon monoxide (CO), and particulate matter (PM). Daily average emission data 
from a coal plant having two boilers were collected in 1998, and hourly average emission 
data from a fuel oil plant having four boilers were collected in 2000. The study compared the 
uncertainty analysis results from the three methods and concluded that Monte Carlo 
method gave more accurate results when applied to the Gaussian distributions, while 
Bootstrap method produced better results in estimating uncertainty for irregular and 
asymmetrical distributions, and Fuzzy models are well suited for cases where there is 
limited data availability or the data are not known properly.  
Int Panis et al. (2004) studied the parametric uncertainty of aggregating marginal external 
costs for all motorized road transportation modes to the national level air pollution in 
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Belgium using the Monte Carlo technique. This study uses the impact pathway 
methodology that involves basically following a pollutant from its emission until it causes 
an impact or damage. The methodology involves details on the generation of emissions, 
atmospheric dispersion, exposure of humans and environment to pollutants, and impacts on 
public health, agriculture, and buildings. The study framework involves a combination of 
emission models, and air dispersion models at local and regional scales with dose-response 
functions and valuation rules. The propagation of errors was studied through complex 
calculations and the error estimates of every parameter used for the calculation were 
replaced by probability distribution. The above procedure is repeated many times (between 
1000 and 10,000 trails) so that a large number of combinations of different input parameters 
occur. For this analysis, all the calculations were performed using the Crystal Ball® software. 
Based on the sensitivity of the result, parameters that contributed more to the variations 
were determined and studied in detail to obtain a better estimate of the parameter. The 
study observed the fraction high-emitter diesel passenger cars, air conditioning, and the 
impacts of foreign trucks as the main factors contributing to uncertainty for 2010 estimate. 
Sax and Isakov (2003) have estimated the contribution of variability and uncertainty in the 
Gaussian air pollutant dispersion modeling systems from four model components: 
emissions, spatial and temporal allocation of emissions, model parameters, and meteorology 
using Monte Carlo simulations across ISCST3 and AERMOD. Variability and uncertainty in 
predicted hexavalent chromium concentrations generated from welding operations were 
studied. Results showed that a 95 percent confidence interval of predicted pollutant 
concentrations varied in magnitude at each receptor indicating that uncertainty played an 
important role at the receptors. AERMOD predicted a greater range of pollutant 
concentration as compared to ISCST3 for low-level sources in this study. The conclusion of 
the study was that input parameters need to be well characterized to reduce the uncertainty.  
Rodriguez et al. (2007) investigated the uncertainty and sensitivity of ozone and PM2.5 
aerosols to variations in selected input parameters using a Monte Carlo analysis. The input 
parameters were selected based on their potential in affecting the pollutant concentrations 
predicted by the model and changes in emissions due to distributed generation (DG) 
implementation in the South Coast Air Basin (SoCAB) of California. Numerical simulations 
were performed using CIT three-dimensional air quality model. The magnitudes of the 
largest impacts estimated in this study are greater and well beyond the contribution of 
emissions uncertainty to the estimated air quality model error. Emissions introduced by DG 
implementation produce a highly non-linear response in time and space on pollutant 
concentrations. Results also showed that concentrating DG emissions in space or time 
produced the largest air quality impacts in the SoCAB area. Thus, in addition to the total 
amount of possible distributed generation to be installed, regulators should also consider 
the type of DG installed (as well as their spatial distribution) to avoid undesirable air quality 
impacts. After performing the sensitivity analysis, it was observed from the study that the 
current model is good enough to predict the air quality impacts of DG emissions as long as 
the changes in ozone are greater than 5 ppb and changes in PM2.5 are greater than 13µg/m3. 
Hwang et al. (1998) analyzed and discussed the techniques for model sensitivity and 
uncertainty analyses, and analysis of the propagation of model uncertainty for the model 
used within the GIS environment. A two-dimensional air quality model based on the first 
order Taylor method was used in this study. The study observed brute force method, the 
most straightforward method for sensitivity to be providing approximate solutions with 

 

substantial human efforts. On the other hand, automatic differentiation required only one 
model run with minimum human effort to compute the solution where results are accurate 
to the precision of the machine. The study also observed that sampling methods provide 
only partial information with unknown accuracy  while first-order method combined with 
automatic differentiation provide a complete solution with known accuracy. These 
techniques can be used for any model that is first order differentiable.  
Rao (2005) has discussed various types of uncertainties in the atmospheric dispersion 
models and reviewed sensitivity and uncertainty analysis methods to characterize and/or 
reduce them. This study concluded the results based on the confidence intervals (CI). If 5% 
of CI for pollutant concentration is less than that of the regulatory standards, then remedial 
measures must be taken. If the CI is more than 95% of the regulatory standards, nothing 
needs to be done. If the 95% upper CI is above the standard and the 50th percentile is below, 
further study must be carried out on the important parameters which play a key role in 
calculation of the concentration value. If the 50th percentile is also above the standard, one 
can proceed with cost effective remedial measures for risk reduction even though more 
study needs to be carried out. The study concluded that the uncertainty analysis 
incorporated into the atmospheric dispersion models would be valuable in decision-making. 
Yegnan et al. (2002) demonstrated the need of incorporating uncertainty in dispersion 
models by applying uncertainty to two critical input parameters (wind speed and ambient 
temperature) in calculating the ground level concentrations. In this study, the Industrial 
Source Complex Short Term (ISCST) model, which is a Gaussian dispersion model, is used 
to predict the pollutant transport from a point source and the first-order and second-order 
Taylor series are used to calculate the ground level uncertainties. The results of ISCST model 
and uncertainty calculations are then validated with Monte Carlo simulations. There was a 
linear relationship between inputs and output. From the results, it was observed that the 
first-order Taylor series have been appropriate for ambient temperature and the second-
order series is appropriate for wind speed when compared to Monte Carlo method. 
Gottschalk et al. (2007) tested the uncertainty associated with simulation of NEE (net 
ecosystem exchange) by the PaSim (pasture simulation model) at four grassland sites. Monte 
Carlo runs were performed for the years 2002 and 2003, using Latin Hypercube sampling 
from probability density functions (PDF) for each input factor to know the effect of 
measurement uncertainties in the main input factors like climate, atmospheric CO2 
concentrations, soil characteristics, and management. This shows that output uncertainty 
not only depends on the input uncertainty, but also depends on the important factors and 
the uncertainty in model simulations. The study concluded that if a system is more 
environmentally confined, there will be higher uncertainties in the model results. 
In addition to the above mentioned studies, many studies have focused on assessing the 
uncertainty in air quality models [Freeman et al. (1986), Seigneur et al. (1992), Hanna et al. 
(1998, 2001), Bergin et al. (1999), Yang et al. (1997), Moore and Londergan (2001), Hanna and 
Davis (2002), Vardoulakis et al. (2002), Hakami et al. (2003), Jaarsveld et al. (1997), Smith et 
al. (2000), and Guensler and Leonard (1995)]. Derwent and Hov (1988), Gao et al. (1996), 
Phenix et al. (1998), Bergin et al. (1999), Grenfell et al. (1999), Hanna et al. (2001), and 
Vuilleumier et al. (2001) have used the Monte Carlo simulations to address uncertainty in 
regional-scale gas-phase mechanisms. Uncertainty in meteorology inputs was studied by 
Irwin et al. (1987), and Dabberdt and Miller (2000), while the uncertainty in emissions was 
observed by Frey and Rhodes (1996), Frey and Li (2002), and Frey and Zheng (2002). 
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Seigneur et al. (1992), Frey (1993), and Cullen and Frey (1999) have assessed the uncertainty 
for a health risk assessment.  
From the literature review, it was observed that uncertainty and sensitivity analyses have 
been carried out for various cases having different model parameters for varying emissions 
inventories, air pollutants, air quality modeling, and dispersion models. However, only one 
of these studies [Sax and Isakov (2003)] reported in the literature discussed such application 
of uncertainty and sensitivity analyses for predicting ground level concentrations using 
AERMOD equations. This study tries to fill this knowledge gap by performing uncertainty 
and sensitivity analyses of the results obtained at ground level from the AERMOD 
equations using urban area emission data with Crystal Ball® software.   

 
2. Methodology 
This section provides a detailed overview of the various steps adopted by the researchers 
when performing uncertainty and sensitivity analyses over predicted ground level pollutant 
concentrations from a point source in an urban area using the United States Environmental 
Protection Agency’s (U.S. EPA’s) AERMOD equations. The study focuses on determining 
the uncertainty in predicting ground level pollutant concentrations using the AERMOD 
equations.  

 
2.1 AERMOD Spreadsheet Development 
The researchers put together an approximate set of equations that are used in the AERMOD 
model for the stable boundary layer (SBL) and convective boundary layer (CBL).  Note that 
the AERMOD model treats atmospheric conditions either as stable or convective. The basic 
equations used for calculating concentrations in both CBL and SBL are programmed in a 
spreadsheet. The following is a list of assumptions used while deriving the parameters and 
choosing the concentration equations in both SBL and CBL. 

1) Only direct source equation is taken to calculate the pollutant concentration in CBL. 
However, there is only one equation for all conditions in the stable boundary layer.   

2) The fraction of plume mass concentration in CBL is taken as one. This assumes that 
the plume will not penetrate the convective boundary layer at any point during 
dispersion and plume is dispersing within the CBL. 

3) The value of convective mixing height is taken by assuming a value for each hour i.e., 
it is not computed using the equations given in the AERMOD manual. 

 
2.1.1 Stable Boundary Layer (SBL) and Convective Boundary Layer (CBL) Equations 
This section presents the AERMOD model equations that are incorporated in to the 
AERMOD spreadsheet for stable and convective boundary layer conditions.  

 
2.1.1a Concentration Calculations in the SBL and CBL* 
For stable boundary conditions, the AERMOD concentration expression (Cs in equation 1a) 
has the Gaussian form, and is similar to that used in many other steady-state plume models. 
The equation for Cs is given by, 

 

              
(1a) 

For the case of m = 1 (i.e. m= -1, 0, 1), the above equation changes to the form of equation 1b. 
  

                                             (1b)     
The equation for calculation of the pollutant concentration in the convective boundary layer 
is given by equation 2a. 

 

      (2a) 
for m = 1 (i.e. m= 0, 1) the above equations changes to the form of equation 2b. 

 

                                                                                                                                                                                                                                                                                                    
(2b) 

* The symbols are explained in the Nomenclature section at the end of the Chapter. 

 
2.1.1b Friction Velocity (u*) in SBL and CBL 
The computation of friction velocity (u*) under SBL conditions is given by equation 3.  
 

                            (3)  

 

where,          [Hanna and Chang (1993), Perry (1992)]                (4)

  

        [Garratt (1992)]                                                            (5) 
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Seigneur et al. (1992), Frey (1993), and Cullen and Frey (1999) have assessed the uncertainty 
for a health risk assessment.  
From the literature review, it was observed that uncertainty and sensitivity analyses have 
been carried out for various cases having different model parameters for varying emissions 
inventories, air pollutants, air quality modeling, and dispersion models. However, only one 
of these studies [Sax and Isakov (2003)] reported in the literature discussed such application 
of uncertainty and sensitivity analyses for predicting ground level concentrations using 
AERMOD equations. This study tries to fill this knowledge gap by performing uncertainty 
and sensitivity analyses of the results obtained at ground level from the AERMOD 
equations using urban area emission data with Crystal Ball® software.   

 
2. Methodology 
This section provides a detailed overview of the various steps adopted by the researchers 
when performing uncertainty and sensitivity analyses over predicted ground level pollutant 
concentrations from a point source in an urban area using the United States Environmental 
Protection Agency’s (U.S. EPA’s) AERMOD equations. The study focuses on determining 
the uncertainty in predicting ground level pollutant concentrations using the AERMOD 
equations.  

 
2.1 AERMOD Spreadsheet Development 
The researchers put together an approximate set of equations that are used in the AERMOD 
model for the stable boundary layer (SBL) and convective boundary layer (CBL).  Note that 
the AERMOD model treats atmospheric conditions either as stable or convective. The basic 
equations used for calculating concentrations in both CBL and SBL are programmed in a 
spreadsheet. The following is a list of assumptions used while deriving the parameters and 
choosing the concentration equations in both SBL and CBL. 

1) Only direct source equation is taken to calculate the pollutant concentration in CBL. 
However, there is only one equation for all conditions in the stable boundary layer.   

2) The fraction of plume mass concentration in CBL is taken as one. This assumes that 
the plume will not penetrate the convective boundary layer at any point during 
dispersion and plume is dispersing within the CBL. 

3) The value of convective mixing height is taken by assuming a value for each hour i.e., 
it is not computed using the equations given in the AERMOD manual. 

 
2.1.1 Stable Boundary Layer (SBL) and Convective Boundary Layer (CBL) Equations 
This section presents the AERMOD model equations that are incorporated in to the 
AERMOD spreadsheet for stable and convective boundary layer conditions.  

 
2.1.1a Concentration Calculations in the SBL and CBL* 
For stable boundary conditions, the AERMOD concentration expression (Cs in equation 1a) 
has the Gaussian form, and is similar to that used in many other steady-state plume models. 
The equation for Cs is given by, 

 

              
(1a) 

For the case of m = 1 (i.e. m= -1, 0, 1), the above equation changes to the form of equation 1b. 
  

                                             (1b)     
The equation for calculation of the pollutant concentration in the convective boundary layer 
is given by equation 2a. 

 

      (2a) 
for m = 1 (i.e. m= 0, 1) the above equations changes to the form of equation 2b. 

 

                                                                                                                                                                                                                                                                                                    
(2b) 

* The symbols are explained in the Nomenclature section at the end of the Chapter. 

 
2.1.1b Friction Velocity (u*) in SBL and CBL 
The computation of friction velocity (u*) under SBL conditions is given by equation 3.  
 

                            (3)  

 

where,          [Hanna and Chang (1993), Perry (1992)]                (4)

  

        [Garratt (1992)]                                                            (5) 
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Substituting equations 4 and 5 in equation 3, one gets the equation of friction velocity, u* for 
SBL conditions, as given by equation 6. 
 

 

                    (6)  

The computation of friction velocity u* under CBL conditions is given by equation 7. 
 

 
        (7) 

 
2.1.1c Effective Stack Height in SBL 
The effective stack height (hes) is given by equation 8. 
 

                     (8) 
 
where, Δhs is calculated by using equation 9. 
 

 
              (9)  

 
where, N’=0.7N,  
 

 
                (10) 

 (K m-1) is potential temperature gradient. 
 

 
              (11) 

 

 
                        (12) 

 
2.1.1d Height of the Reflecting Surface in SBL 
The height of reflecting surface in stable boundary layer is computed using equation 13. 
 

 
                  (13)  

 

where, 

 

                  (14)  

 

                  (15)  

 

 

                  (16) 

                                            [Venkatram et.al., 1984]                                                   
(17) 

  

 ln = 0.36.hes and ls = 0.27. ( ), zi = zim.  

 
2.1.1e Total Height of the Direct Source Plume in CBL 
The actual height of the direct source plume will be the combination of the release height, 
buoyancy, and convection. The equation for total height of the direct source plume is given 
by equation 18. 

 
          (18)  

 
                  (19)  

 
wj = aj.w* where, subscript j is equal to 1 for updrafts and 2 for the downdrafts.  
λj in equation 2 is given by λ1 and λ2 for updraft and downdraft respectively and they are 
calculated using equations 20 and 21 respectively. 
 

 
                                                           (20) 

 

 
                                     (21) 
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Substituting equations 4 and 5 in equation 3, one gets the equation of friction velocity, u* for 
SBL conditions, as given by equation 6. 
 

 

                    (6)  

The computation of friction velocity u* under CBL conditions is given by equation 7. 
 

 
        (7) 

 
2.1.1c Effective Stack Height in SBL 
The effective stack height (hes) is given by equation 8. 
 

                     (8) 
 
where, Δhs is calculated by using equation 9. 
 

 
              (9)  

 
where, N’=0.7N,  
 

 
                (10) 

 (K m-1) is potential temperature gradient. 
 

 
              (11) 

 

 
                        (12) 

 
2.1.1d Height of the Reflecting Surface in SBL 
The height of reflecting surface in stable boundary layer is computed using equation 13. 
 

 
                  (13)  

 

where, 

 

                  (14)  

 

                  (15)  

 

 

                  (16) 

                                            [Venkatram et.al., 1984]                                                   
(17) 

  

 ln = 0.36.hes and ls = 0.27. ( ), zi = zim.  

 
2.1.1e Total Height of the Direct Source Plume in CBL 
The actual height of the direct source plume will be the combination of the release height, 
buoyancy, and convection. The equation for total height of the direct source plume is given 
by equation 18. 

 
          (18)  

 
                  (19)  

 
wj = aj.w* where, subscript j is equal to 1 for updrafts and 2 for the downdrafts.  
λj in equation 2 is given by λ1 and λ2 for updraft and downdraft respectively and they are 
calculated using equations 20 and 21 respectively. 
 

 
                                                           (20) 

 

 
                                     (21) 
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                  (22)  

 
                              (23) 

 

  and β2=1+R2  

R is assumed to be 2 [Weil et al. 1997],  

where, the fraction of   is decided with the condition given below. 

 = 0.125; for Hp ≥ 0.1zi and   = 1.25.   for Hp < 0.1zi    

zi = MAX [zic, zim]. 

 
2.1.1f Monin-Obukhov length (L) and Sensible heat flux (H) for SBL and CBL 
Monin-Obukhov length (L) and Sensible heat flux (H) are calculated using equations 24 and 
25 respectively. 

 
               (24) 

                   (25) 
 

Product of u* and θ* can be taken as 0.05 m s-1 K [Hanna et al. (1986)]. 

 
2.1.1g Convective velocity scale (w*) for SBL and CBL 
The equation for convective velocity (w*) is computed using equation 26. 

 
                  (26)  

 
2.1.1h Lateral distribution function (Fy) 
This function is calculated because the chances of encountering the coherent plume after 
travelling some distance will be less. Taking the above into consideration, the lateral 
distribution function is calculated. This equation will be in a Gaussian form. 
 

 
                   (27) 

 

 

σy, the lateral dispersion parameter is calculated using equation 28 as given by Kuruvilla 
et.al. (2005). 

 
                  (28) 

 

 which is the lateral turbulence.   

 
2.1.1i Vertical dispersion parameter (σz) for SBL and CBL 
The equation for vertical dispersion parameter is given by equation 29. 
 

 

                   (29) 

 

 
           (30) 

Table 1 presents the list of parameters used by AERMOD spreadsheet in predicting pollutant 
concentrations and Table 2 presents the basic inputs required to calculate the parameters. 
 

Table 1. Different Parameters Used for Predicting Pollutant Concentration in AERMOD 
Spreadsheet. 

 
Source Data Meteorological 

Data Surface Parameters Other Data and 
Constants 

Height of stack 
(hs) 

Ambient 
temperature (Ta) 

Monin-Obukhov 
length (L) 

Downwind 
distance (x) 

Radius of stack 
(rs) 

Cloud cover (n) Surface heat flux (H) Acceleration due to 
gravity (g) 

Stack exit gas 
temperature (Ts) 

Surface roughness 
length (zo) 

Mechanical mixing 
height (zim) Specific heat (cp) 

Emission rate (Q) 

 

Convective mixing 
height (zic) 

Density of air (ρ) 

Stack exit gas 
velocity (ws) 

Wind speed (u) Time (t) 

 

Brunt-Vaisala 
frequency (N) 

Van Karman 
constant (k = 0.4) 

Temperature scale (θ*) 
multiple reflections 

(m) 
Vertical turbulence 

(σwt) 
βm = 5 

 
βt = 2 

β = 0.6 
R = 2 
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                  (22)  

 
                              (23) 

 

  and β2=1+R2  

R is assumed to be 2 [Weil et al. 1997],  

where, the fraction of   is decided with the condition given below. 

 = 0.125; for Hp ≥ 0.1zi and   = 1.25.   for Hp < 0.1zi    

zi = MAX [zic, zim]. 

 
2.1.1f Monin-Obukhov length (L) and Sensible heat flux (H) for SBL and CBL 
Monin-Obukhov length (L) and Sensible heat flux (H) are calculated using equations 24 and 
25 respectively. 

 
               (24) 

                   (25) 
 

Product of u* and θ* can be taken as 0.05 m s-1 K [Hanna et al. (1986)]. 

 
2.1.1g Convective velocity scale (w*) for SBL and CBL 
The equation for convective velocity (w*) is computed using equation 26. 

 
                  (26)  

 
2.1.1h Lateral distribution function (Fy) 
This function is calculated because the chances of encountering the coherent plume after 
travelling some distance will be less. Taking the above into consideration, the lateral 
distribution function is calculated. This equation will be in a Gaussian form. 
 

 
                   (27) 

 

 

σy, the lateral dispersion parameter is calculated using equation 28 as given by Kuruvilla 
et.al. (2005). 

 
                  (28) 

 

 which is the lateral turbulence.   

 
2.1.1i Vertical dispersion parameter (σz) for SBL and CBL 
The equation for vertical dispersion parameter is given by equation 29. 
 

 

                   (29) 

 

 
           (30) 

Table 1 presents the list of parameters used by AERMOD spreadsheet in predicting pollutant 
concentrations and Table 2 presents the basic inputs required to calculate the parameters. 
 

Table 1. Different Parameters Used for Predicting Pollutant Concentration in AERMOD 
Spreadsheet. 

 
Source Data Meteorological 

Data Surface Parameters Other Data and 
Constants 

Height of stack 
(hs) 

Ambient 
temperature (Ta) 

Monin-Obukhov 
length (L) 

Downwind 
distance (x) 

Radius of stack 
(rs) 

Cloud cover (n) Surface heat flux (H) Acceleration due to 
gravity (g) 

Stack exit gas 
temperature (Ts) 

Surface roughness 
length (zo) 

Mechanical mixing 
height (zim) Specific heat (cp) 

Emission rate (Q) 

 

Convective mixing 
height (zic) 

Density of air (ρ) 

Stack exit gas 
velocity (ws) 

Wind speed (u) Time (t) 

 

Brunt-Vaisala 
frequency (N) 

Van Karman 
constant (k = 0.4) 

Temperature scale (θ*) 
multiple reflections 

(m) 
Vertical turbulence 

(σwt) 
βm = 5 

 
βt = 2 

β = 0.6 
R = 2 
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Parameters Basic Inputs 

Plume buoyancy flux (Fb) Ta, Ts, Ws, rs 

Plume momentum flux (Fm) Ta, Ts, Ws, rs 

Surface friction velocity (u*) u, zref, zo 

Sensible heat flux (H) u, zref, zo, n 
Convective velocity scale (w*) u, zref, zo, n, zic, Tref 

Monin-Obukhov length (L) u, zref, zo, n, Tref, 
Temperature scale (θ*) N 
Lateral turbulence (σv) u, zref, zo, n, zic, Tref 

Total vertical turbulence (σwt) u, zref, zo, n, zic, Tref, zi 

Length scale (l) u, zref, zo, n, zic, Tref, zi, Ta, Ts, Ws, hs, rs 

Brunt-Vaisala frequency (N) Ta 

Mechanical mixing height u, zref, zo, t 

Convective mixing height u, zref, zo, n, Ta 

Potential temperature Ta 

Table 2. Basic Inputs Required to Calculate the Parameters. 
 
After programming all the above equations into EXCEL spreadsheet, they are then 
incorporated into Crystal ball® software to perform uncertainty and sensitivity analyses. 
Refer to Poosarala et al. (2009) for more information on the application and use of AERMOD 
spreadsheet. The output from this spreadsheet was compared with the actual runs made 
using the AERMOD model for a limited number of cases. The concentrations from both 
AERMOD model and AERMOD equations are calculated using source data (refer to Tables 
3, 4, and 5) and metrological data from scalar data for the three days (February 11, June 29, 
October 22 of 1992) for Flint, Michigan. The predicted concentration values from the 
AERMOD model are taken and divided into two groups as CBL and SBL based on the 
Monin-Obukhov length (L) i.e. if L > 0 then it is SBL and vice versa. These results are then 
compared with AERMOD spreadsheet predicted concentrations for each boundary layer 
condition. For this comparison, three different cases considering varying emission velocities 
and stack temperatures for 40 meter, 70 meter, and 100 meter stacks are used for analyzing 
both the convective and stable atmospheric conditions.  
The source data for the comparison of concentrations are taken in sets (represented by set 
numbers – 1, 2, and 3). In the first set of source group (1-1, 1-2, 1-3 in Tables 3-5), height of 
stack is kept constant, while exit velocity of the pollutant, stack temperature, and diameter 
of the stack are changed as shown in Tables 3, 4, and 5. For sets two and three, stack 
temperature and exit velocity are kept unchanged respectively. The study found results for 
comparison of predicted concentrations from AERMOD spreadsheet to vary in the range of 
87% - 107% when compared to predicted concentrations from AERMOD model. Hence, one 
can say that the approximate sets of equations used in AERMOD spreadsheet were able to 
reproduce the AERMOD results.  

 

 
Sets 

Height of 
Stack (m) 

Diameter of 
Stack (m) 

Stack Exit 
Temperature (oK) 

Stack Exit 
Velocity (ms-1) 

Emission 
Rate (gs-1) 

1-1 100 8 300 15 20 

1-2 100 8 346 10 20 

1-3 100 8 373 5 20 

2-3 100 8 373 15 15 

3-1 100 8 373 15 17.4 

Table 3. Source Data for Evaluation of AERMODSBL and AERMODCBL Test Cases for  100 
m Stack. 
 

 
Sets 

Height of 
Stack (m) 

Diameter of 
Stack (m) 

Stack Exit 
Temperature (oK) 

Stack Exit 
Velocity (ms-1) 

Emission 
Rate (gs-1) 

2-2 70 6 373 10 15 

3-2 70 6 346 15 17.4 

4-1 70 6 300 5 20 

Table 4. Source Data for Evaluation of AERMODSBL and AERMODCBL Test Cases for 70 m 
Stack 
 

 
Sets 

Height of 
Stack (m) 

Diameter of 
Stack (m) 

Stack Exit 
Temperature (oK) 

Stack Exit 
Velocity (ms-1) 

Emission 
Rate (gs-1) 

2-1 40 4 373 10 15 

3-3 40 4 346 15 17.4 

4-2 40 4 300 5 20 

Table 5. Source Data for Evaluation of AERMODSBL and AERMODCBL Test Cases for 40 m 
Stack 
 
Next, the above sets of equations are incorporated in the Crystal Ball® software for 
performing the uncertainty and sensitivity analyses. To perform these analyses in 
calculating the predicted concentrations using AERMOD equations, first the forecasting cell 
and assumption cells are to be defined. Pollutant concentration is designated to be the 
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Parameters Basic Inputs 

Plume buoyancy flux (Fb) Ta, Ts, Ws, rs 

Plume momentum flux (Fm) Ta, Ts, Ws, rs 

Surface friction velocity (u*) u, zref, zo 

Sensible heat flux (H) u, zref, zo, n 
Convective velocity scale (w*) u, zref, zo, n, zic, Tref 

Monin-Obukhov length (L) u, zref, zo, n, Tref, 
Temperature scale (θ*) N 
Lateral turbulence (σv) u, zref, zo, n, zic, Tref 

Total vertical turbulence (σwt) u, zref, zo, n, zic, Tref, zi 

Length scale (l) u, zref, zo, n, zic, Tref, zi, Ta, Ts, Ws, hs, rs 

Brunt-Vaisala frequency (N) Ta 

Mechanical mixing height u, zref, zo, t 

Convective mixing height u, zref, zo, n, Ta 

Potential temperature Ta 

Table 2. Basic Inputs Required to Calculate the Parameters. 
 
After programming all the above equations into EXCEL spreadsheet, they are then 
incorporated into Crystal ball® software to perform uncertainty and sensitivity analyses. 
Refer to Poosarala et al. (2009) for more information on the application and use of AERMOD 
spreadsheet. The output from this spreadsheet was compared with the actual runs made 
using the AERMOD model for a limited number of cases. The concentrations from both 
AERMOD model and AERMOD equations are calculated using source data (refer to Tables 
3, 4, and 5) and metrological data from scalar data for the three days (February 11, June 29, 
October 22 of 1992) for Flint, Michigan. The predicted concentration values from the 
AERMOD model are taken and divided into two groups as CBL and SBL based on the 
Monin-Obukhov length (L) i.e. if L > 0 then it is SBL and vice versa. These results are then 
compared with AERMOD spreadsheet predicted concentrations for each boundary layer 
condition. For this comparison, three different cases considering varying emission velocities 
and stack temperatures for 40 meter, 70 meter, and 100 meter stacks are used for analyzing 
both the convective and stable atmospheric conditions.  
The source data for the comparison of concentrations are taken in sets (represented by set 
numbers – 1, 2, and 3). In the first set of source group (1-1, 1-2, 1-3 in Tables 3-5), height of 
stack is kept constant, while exit velocity of the pollutant, stack temperature, and diameter 
of the stack are changed as shown in Tables 3, 4, and 5. For sets two and three, stack 
temperature and exit velocity are kept unchanged respectively. The study found results for 
comparison of predicted concentrations from AERMOD spreadsheet to vary in the range of 
87% - 107% when compared to predicted concentrations from AERMOD model. Hence, one 
can say that the approximate sets of equations used in AERMOD spreadsheet were able to 
reproduce the AERMOD results.  

 

 
Sets 

Height of 
Stack (m) 

Diameter of 
Stack (m) 

Stack Exit 
Temperature (oK) 

Stack Exit 
Velocity (ms-1) 

Emission 
Rate (gs-1) 

1-1 100 8 300 15 20 

1-2 100 8 346 10 20 

1-3 100 8 373 5 20 

2-3 100 8 373 15 15 

3-1 100 8 373 15 17.4 

Table 3. Source Data for Evaluation of AERMODSBL and AERMODCBL Test Cases for  100 
m Stack. 
 

 
Sets 

Height of 
Stack (m) 

Diameter of 
Stack (m) 

Stack Exit 
Temperature (oK) 

Stack Exit 
Velocity (ms-1) 

Emission 
Rate (gs-1) 

2-2 70 6 373 10 15 

3-2 70 6 346 15 17.4 

4-1 70 6 300 5 20 

Table 4. Source Data for Evaluation of AERMODSBL and AERMODCBL Test Cases for 70 m 
Stack 
 

 
Sets 

Height of 
Stack (m) 

Diameter of 
Stack (m) 

Stack Exit 
Temperature (oK) 

Stack Exit 
Velocity (ms-1) 

Emission 
Rate (gs-1) 

2-1 40 4 373 10 15 

3-3 40 4 346 15 17.4 

4-2 40 4 300 5 20 

Table 5. Source Data for Evaluation of AERMODSBL and AERMODCBL Test Cases for 40 m 
Stack 
 
Next, the above sets of equations are incorporated in the Crystal Ball® software for 
performing the uncertainty and sensitivity analyses. To perform these analyses in 
calculating the predicted concentrations using AERMOD equations, first the forecasting cell 
and assumption cells are to be defined. Pollutant concentration is designated to be the 
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forecasting cell, and parameters such as emission rate, stack exit velocity, stack temperature, 
wind speed, lateral dispersion parameter, vertical dispersion parameter, weighting coefficients 
for both updraft and downdraft, total horizontal distribution function, cloud cover, ambient 
temperature, and surface roughness length are defined as assumption cells. Their 
corresponding probability distribution functions, depending on the measured or practical 
values are assigned to get the uncertainty and sensitivity analyses of the forecasting cell in 
both convective and stable conditions (refer to Table 6). In addition to the above input values, 
convective mixing height is also taken as another assumption cell in CBL as the value of 
convective mixing height is directly taken, rather than calculating it using its integral form of 
equation. Convective mixing height governs the equation of total vertical turbulence, which is 
used for calculating the vertical dispersion parameter. An accepted error of ±10% of the value 
is applied for the parameters in both assumption and forecasting cells while performing 
uncertainty and sensitivity analyses in predicting ground level concentrations.   
For each set of data, the analyses are carried at different downwind distances. In the case of 
height of stacks being constant, uncertainty and sensitivity analyses were performed at three 
different downwind distances: distance near the maximum concentration value, next nearest 
distance point to the stack coordinates, and a farthest point. For the other cases where the 
range for parameters wind speed, Monin-Obukhov length, and ambient temperature are 
considered, the hour with the lowest and highest value from range are taken (refer to Table 
7) and the predicted concentrations from that hour are considered for uncertainty and 
sensitivity analysis. These values are applicable for the days considered. For CBL condition, 
separate case is considered by taking two values of surface roughness length (0.03 m for 
urban area with isolated obstructions and 1 m for urban area with large buildings). 
 

 
Parameter 

Probability Distribution 
Function 

 
Reference CBL SBL 

Lateral distribution (σy) Gaussian Gaussian Willis and Deardorff 
(1981), Briggs (1993) 

Vertical distribution (σz) bi-Gaussian Gaussian Willis and Deardorff 
(1981), Briggs (1993) 

Wind velocity (u) Weibull Weibull Sathyajith (2002) 

Total horizontal distribution 
function  (Fy) Gaussian Gaussian Lamb (1982) 

Weighting coefficients  for both 
updraft and downdraft (λ1 and λ2) 

bi-Gaussian NA Weil et al. (1997) 

Stack exit temperature (T) Gaussian Gaussian Gabriel (1994) 

Stack exit velocity (Ws) Gaussian Gaussian 
 

Emission rate (Q) Gaussian Gaussian Eugene et al. (2008) 
Table 6. Assumption Cells and Their Assigned Probability Distribution Functions. 

 

 
Parameter 

SBL CBL 

Lowest Highest Lowest Highest 

Wind speed (ms-1) 1.5 9.3 3.6 8.2 

Ambient temperature (oK) 262.5 294.9 267.5 302 

Monin-Obukhov length (m) 38.4 8888 -8888 -356 

Table 7. Summary of Parameters Considered for Uncertainty and Sensitivity Analyses. 

 
3. Results and discussion 
3.1 Uncertainty Analysis 
 

3.1.1a 100 m Stack 
The predicted concentrations from 100 m high stacks for the defined assumption cells have 
shown an uncertainty range of 55 to 80% for an error of ± 10% (i.e., uncertainty of the 
concentration equations to calculate ground level concentration within a range of 10% from 
the predicted value) for all the parameters in convective boundary layer (CBL) for surface 
roughness length (Zo) value of 0.03 meter. When Zo is 1 meter, the uncertainty ranged 
between 72 and 74%. In the case of stable boundary layer, the uncertainty ranged from 40 to 
45% for the defined assumption cells. Bhat (2008) performed uncertainty and sensitivity 
analyses for two Gaussian models used by Bower et al. (1979) and Chen et al. (1998) for 
modeling bioaerosol emissions from land applications of class B biosolids. He observed 
uncertainty ranges of 54 to 63% and 55 to 60% for Bowers et al. (1979) and Chen et al. (1998) 
models respectively, for a ground level source.  
Figures 1 through 6 present the uncertainty charts for both convective and stable 
atmospheric conditions at different downwind distances. It was observed that the 
atmospheric stability conditions influenced the uncertainty value. The uncertainty value 
decreased as the atmospheric stability condition changed from convective to stable.  
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forecasting cell, and parameters such as emission rate, stack exit velocity, stack temperature, 
wind speed, lateral dispersion parameter, vertical dispersion parameter, weighting coefficients 
for both updraft and downdraft, total horizontal distribution function, cloud cover, ambient 
temperature, and surface roughness length are defined as assumption cells. Their 
corresponding probability distribution functions, depending on the measured or practical 
values are assigned to get the uncertainty and sensitivity analyses of the forecasting cell in 
both convective and stable conditions (refer to Table 6). In addition to the above input values, 
convective mixing height is also taken as another assumption cell in CBL as the value of 
convective mixing height is directly taken, rather than calculating it using its integral form of 
equation. Convective mixing height governs the equation of total vertical turbulence, which is 
used for calculating the vertical dispersion parameter. An accepted error of ±10% of the value 
is applied for the parameters in both assumption and forecasting cells while performing 
uncertainty and sensitivity analyses in predicting ground level concentrations.   
For each set of data, the analyses are carried at different downwind distances. In the case of 
height of stacks being constant, uncertainty and sensitivity analyses were performed at three 
different downwind distances: distance near the maximum concentration value, next nearest 
distance point to the stack coordinates, and a farthest point. For the other cases where the 
range for parameters wind speed, Monin-Obukhov length, and ambient temperature are 
considered, the hour with the lowest and highest value from range are taken (refer to Table 
7) and the predicted concentrations from that hour are considered for uncertainty and 
sensitivity analysis. These values are applicable for the days considered. For CBL condition, 
separate case is considered by taking two values of surface roughness length (0.03 m for 
urban area with isolated obstructions and 1 m for urban area with large buildings). 
 

 
Parameter 

Probability Distribution 
Function 

 
Reference CBL SBL 

Lateral distribution (σy) Gaussian Gaussian Willis and Deardorff 
(1981), Briggs (1993) 

Vertical distribution (σz) bi-Gaussian Gaussian Willis and Deardorff 
(1981), Briggs (1993) 

Wind velocity (u) Weibull Weibull Sathyajith (2002) 

Total horizontal distribution 
function  (Fy) Gaussian Gaussian Lamb (1982) 

Weighting coefficients  for both 
updraft and downdraft (λ1 and λ2) 

bi-Gaussian NA Weil et al. (1997) 

Stack exit temperature (T) Gaussian Gaussian Gabriel (1994) 

Stack exit velocity (Ws) Gaussian Gaussian 
 

Emission rate (Q) Gaussian Gaussian Eugene et al. (2008) 
Table 6. Assumption Cells and Their Assigned Probability Distribution Functions. 

 

 
Parameter 

SBL CBL 

Lowest Highest Lowest Highest 

Wind speed (ms-1) 1.5 9.3 3.6 8.2 

Ambient temperature (oK) 262.5 294.9 267.5 302 

Monin-Obukhov length (m) 38.4 8888 -8888 -356 

Table 7. Summary of Parameters Considered for Uncertainty and Sensitivity Analyses. 

 
3. Results and discussion 
3.1 Uncertainty Analysis 
 

3.1.1a 100 m Stack 
The predicted concentrations from 100 m high stacks for the defined assumption cells have 
shown an uncertainty range of 55 to 80% for an error of ± 10% (i.e., uncertainty of the 
concentration equations to calculate ground level concentration within a range of 10% from 
the predicted value) for all the parameters in convective boundary layer (CBL) for surface 
roughness length (Zo) value of 0.03 meter. When Zo is 1 meter, the uncertainty ranged 
between 72 and 74%. In the case of stable boundary layer, the uncertainty ranged from 40 to 
45% for the defined assumption cells. Bhat (2008) performed uncertainty and sensitivity 
analyses for two Gaussian models used by Bower et al. (1979) and Chen et al. (1998) for 
modeling bioaerosol emissions from land applications of class B biosolids. He observed 
uncertainty ranges of 54 to 63% and 55 to 60% for Bowers et al. (1979) and Chen et al. (1998) 
models respectively, for a ground level source.  
Figures 1 through 6 present the uncertainty charts for both convective and stable 
atmospheric conditions at different downwind distances. It was observed that the 
atmospheric stability conditions influenced the uncertainty value. The uncertainty value 
decreased as the atmospheric stability condition changed from convective to stable.  
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Fig. 1. Uncertainty and Sensitivity Charts for 100 m Stack at 1000 m in CBL (Z0 = 1 m). 
 

   
Fig. 2. Uncertainty and Sensitivity Charts for 100 m Stack at 1000 m in CBL (Z0 = 0.03 m). 
 

   
Fig. 3. Uncertainty and Sensitivity Charts for 100 m stack at 10000 m in CBL (Z0 = 1 m). 

 

 

   
Fig. 4. Uncertainty and Sensitivity Charts for 100 m stack at 10000 m in CBL (Z0 = 0.03 m). 
 

   
Fig. 5. Uncertainty and Sensitivity Charts for 100 m stack at 1000 m in SBL. 
 

   
Fig. 6. Uncertainty and Sensitivity Charts for 100 m stack at 10000 m in SBL. 
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Fig. 1. Uncertainty and Sensitivity Charts for 100 m Stack at 1000 m in CBL (Z0 = 1 m). 
 

   
Fig. 2. Uncertainty and Sensitivity Charts for 100 m Stack at 1000 m in CBL (Z0 = 0.03 m). 
 

   
Fig. 3. Uncertainty and Sensitivity Charts for 100 m stack at 10000 m in CBL (Z0 = 1 m). 

 

 

   
Fig. 4. Uncertainty and Sensitivity Charts for 100 m stack at 10000 m in CBL (Z0 = 0.03 m). 
 

   
Fig. 5. Uncertainty and Sensitivity Charts for 100 m stack at 1000 m in SBL. 
 

   
Fig. 6. Uncertainty and Sensitivity Charts for 100 m stack at 10000 m in SBL. 
 

www.intechopen.com



Air Quality186

 

The uncertainty analysis was also carried out for a 70 m and 40 m stack and the results 
obtained are summarized below. 

 
3.1.1b 70 m Stack 
The predicted concentrations from a 70 m stack for the defined assumption cells have shown 
an uncertainty range of 72 to 77% for an error of ± 10% for all the parameters in CBL for Zo = 
0.03 m, and for the cases where Zo = 1 m, the uncertainty varied between 72 and 76%.i.e. 
there is only 23 to 28% certainty that the predicted concentration will lie within the range of 
10% from the actual concentration.  In the case of SBL, an uncertainty range of 41 to 48% was 
observed for the defined assumption cells concluding that the certainty of predicting 
concentration is almost 52 to 59%. 

 
3.1.1c 40 m Stack 
The predicted concentrations from the 40 m stack for the defined assumption cells have 
shown an uncertainty range of 70 to 77% and 70 to 76% for an error of ± 10% for all the 
parameters in CBL for Zo = 0.03 m and Zo = 1 m respectively. In other words, the prediction 
of concentration for 40 m stack is 27 to 30% times within the 10% range from observed 
concentration. In the case of SBL, an uncertainty range of 41 to 47% was observed for the 
defined assumptions cells.  
From the above results it is clear that the prediction of concentration is less uncertain in 
stable case as compared to the convective cases. The spreadsheet predict shows more 
certainty in predicting concentrations in SBL as compared to that in CBL. Uncertainty ranges 
for SBL and the case of CBL representing an urban area with large buildings were found to 
be similar irrespective of the stack height considered. However, the uncertainty ranges 
varied for the case of CBL representing an urban area with isolated buildings. The influence 
of surface roughness is found to be more pronounced for a tall stack of 100 m where a much 
wider range of uncertainty was observed as compared to 40 m and 70 m stack height cases. 
The uncertainty in concentration results is not influenced by surface roughness for 70 m and 
40 m stacks.    

 
3.1.2 Uncertainty Analysis Summary 
Table 8 provides a summary of the uncertainty ranges observed from the uncertainty charts 
for the cases with the lowest and highest value of the parameters from the range of values 
for the three days taken for analysis.  
 
 
 
 
 
 
 
 
 
 
 

 

  SBL CBL   

Parameter Low 
Value 

Uncertainty 
Range 

High 
Value 

Uncertainty 
Range 

Low 
Value 

Uncertainty 
Range for 
Zo = 1 m 

Uncertainty 
Range for 
Zo = 0.03 m 

High 
Value 

Uncertainty 
Range for 
Zo = 1 m 

Uncertainty 
Range for  

Zo = 0.03 m 

Wind 
Speed  
(ms-1) 

1.5 38% to 
40% 9.3 40% to 

77% 3.6 73% to 
76%  

73% to 
75% 8.2 71% to 

76% 
71% to 

76% 

Ambient 
Temperature 

(K) 
263  34% to 

37% 
294.9

  
39% to 

42% 267.5  72% to 
76% 

71% to 
76%   302 54% to 

63% 
53% to 
63%  

Monin-
Obukhov 
length (L) 

 38.4 38% to 
40% 8888  40% to 

77%  -8888 71% to 
75% 

71% to 
76% -356  67% to 

77% 
68% to 

73% 

Table 8. Summary of Uncertainty Ranges for Wind Speed, Ambient Temperature, and 
Monin-Obukhov Length from the Three Stack Heights Considered. 
 
One can observe the uncertainty ranges to be different for both CBL and SBL in Table 8. 
Considering the case of wind speed, the averaged uncertainty value and range are observed 
to be same for both the cases of wind speed being low and high irrespective of the surface 
roughness length values in CBL. However, in the case of SBL, lower uncertainty range and 
values are observed at low wind speed compared to high wind speed. On studying the case 
of ambient temperature in SBL, less uncertainty was observed at lower ambient 
temperatures as compared to higher ambient temperatures. In the case of a CBL, uncertainty 
was observed to be more at lower ambient temperatures as compared to the uncertainty 
observed at higher ambient temperatures irrespective of the surface roughness length 
considered. Looking into the case of Monin-Obukhov length for stable atmosphere 
conditions, one can observe less uncertainty and lower uncertainty range for lower value of 
Monin-Obukhov length as compared to higher value of Monin-Obukhov length. In the case 
of a CBL, lower values of Monin-Obukhov length produced higher uncertainty as compared 
to higher Monin-Obukhov length values irrespective of surface roughness length.  
Considering the case of low value of the parameters in SBL, one can observe similar 
uncertainty ranges for wind speed and Monin-Obukhov length that is higher than the 
uncertainty range observed in the case of ambient temperature. Similar trend can be 
observed in the case of parameters with high value in SBL from Table 8. In the case of a CBL, 
lower value for all the three parameters considered have shown similar uncertainty ranges 
irrespective of surface roughness length. However, the uncertainty ranges for the cases of 
higher value in CBL varied with each parameter. An ascending order of uncertainty range 
and value in order of ambient temperature, Monin-Obukhov length, and wind speed can be 
observed from Table 8 irrespective of surface roughness length values considered. One can 
also observe the uncertainty values and ranges to be similar at any given low or high value 
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The uncertainty analysis was also carried out for a 70 m and 40 m stack and the results 
obtained are summarized below. 

 
3.1.1b 70 m Stack 
The predicted concentrations from a 70 m stack for the defined assumption cells have shown 
an uncertainty range of 72 to 77% for an error of ± 10% for all the parameters in CBL for Zo = 
0.03 m, and for the cases where Zo = 1 m, the uncertainty varied between 72 and 76%.i.e. 
there is only 23 to 28% certainty that the predicted concentration will lie within the range of 
10% from the actual concentration.  In the case of SBL, an uncertainty range of 41 to 48% was 
observed for the defined assumption cells concluding that the certainty of predicting 
concentration is almost 52 to 59%. 

 
3.1.1c 40 m Stack 
The predicted concentrations from the 40 m stack for the defined assumption cells have 
shown an uncertainty range of 70 to 77% and 70 to 76% for an error of ± 10% for all the 
parameters in CBL for Zo = 0.03 m and Zo = 1 m respectively. In other words, the prediction 
of concentration for 40 m stack is 27 to 30% times within the 10% range from observed 
concentration. In the case of SBL, an uncertainty range of 41 to 47% was observed for the 
defined assumptions cells.  
From the above results it is clear that the prediction of concentration is less uncertain in 
stable case as compared to the convective cases. The spreadsheet predict shows more 
certainty in predicting concentrations in SBL as compared to that in CBL. Uncertainty ranges 
for SBL and the case of CBL representing an urban area with large buildings were found to 
be similar irrespective of the stack height considered. However, the uncertainty ranges 
varied for the case of CBL representing an urban area with isolated buildings. The influence 
of surface roughness is found to be more pronounced for a tall stack of 100 m where a much 
wider range of uncertainty was observed as compared to 40 m and 70 m stack height cases. 
The uncertainty in concentration results is not influenced by surface roughness for 70 m and 
40 m stacks.    

 
3.1.2 Uncertainty Analysis Summary 
Table 8 provides a summary of the uncertainty ranges observed from the uncertainty charts 
for the cases with the lowest and highest value of the parameters from the range of values 
for the three days taken for analysis.  
 
 
 
 
 
 
 
 
 
 
 

 

  SBL CBL   

Parameter Low 
Value 

Uncertainty 
Range 

High 
Value 

Uncertainty 
Range 

Low 
Value 

Uncertainty 
Range for 
Zo = 1 m 

Uncertainty 
Range for 
Zo = 0.03 m 

High 
Value 

Uncertainty 
Range for 
Zo = 1 m 

Uncertainty 
Range for  

Zo = 0.03 m 

Wind 
Speed  
(ms-1) 

1.5 38% to 
40% 9.3 40% to 

77% 3.6 73% to 
76%  

73% to 
75% 8.2 71% to 

76% 
71% to 

76% 

Ambient 
Temperature 

(K) 
263  34% to 

37% 
294.9

  
39% to 

42% 267.5  72% to 
76% 

71% to 
76%   302 54% to 

63% 
53% to 
63%  

Monin-
Obukhov 
length (L) 

 38.4 38% to 
40% 8888  40% to 

77%  -8888 71% to 
75% 

71% to 
76% -356  67% to 

77% 
68% to 

73% 

Table 8. Summary of Uncertainty Ranges for Wind Speed, Ambient Temperature, and 
Monin-Obukhov Length from the Three Stack Heights Considered. 
 
One can observe the uncertainty ranges to be different for both CBL and SBL in Table 8. 
Considering the case of wind speed, the averaged uncertainty value and range are observed 
to be same for both the cases of wind speed being low and high irrespective of the surface 
roughness length values in CBL. However, in the case of SBL, lower uncertainty range and 
values are observed at low wind speed compared to high wind speed. On studying the case 
of ambient temperature in SBL, less uncertainty was observed at lower ambient 
temperatures as compared to higher ambient temperatures. In the case of a CBL, uncertainty 
was observed to be more at lower ambient temperatures as compared to the uncertainty 
observed at higher ambient temperatures irrespective of the surface roughness length 
considered. Looking into the case of Monin-Obukhov length for stable atmosphere 
conditions, one can observe less uncertainty and lower uncertainty range for lower value of 
Monin-Obukhov length as compared to higher value of Monin-Obukhov length. In the case 
of a CBL, lower values of Monin-Obukhov length produced higher uncertainty as compared 
to higher Monin-Obukhov length values irrespective of surface roughness length.  
Considering the case of low value of the parameters in SBL, one can observe similar 
uncertainty ranges for wind speed and Monin-Obukhov length that is higher than the 
uncertainty range observed in the case of ambient temperature. Similar trend can be 
observed in the case of parameters with high value in SBL from Table 8. In the case of a CBL, 
lower value for all the three parameters considered have shown similar uncertainty ranges 
irrespective of surface roughness length. However, the uncertainty ranges for the cases of 
higher value in CBL varied with each parameter. An ascending order of uncertainty range 
and value in order of ambient temperature, Monin-Obukhov length, and wind speed can be 
observed from Table 8 irrespective of surface roughness length values considered. One can 
also observe the uncertainty values and ranges to be similar at any given low or high value 
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of wind speed, ambient temperature, and Monin-Obukhov length in CBL irrespective of the 
surface roughness length, 
Hence, it can be inferred that the output of the AERMOD model is sensitive to the changes 
in ambient temperature and Monin-Obukhov length for convective cases.  However, one 
needs to provide accurate wind speed, ambient temperature, and Monin-Obukhov length 
rather than estimating the parameters so that uncertainty in the result is decreased.  
 

Height of Stack (m) U (ms-1) L (m) Ta (oK) Uncertainty 

40 

3.1 
366.6 274.9 47% 

287.5 44% 

401.3 274.9 44% 
287.5 48% 

5.1 
1821.5 265.9 46% 

273.8 44% 

1838.3 265.9 70% 
273.8 72% 

70 

3.1 
366.6 274.9 46% 

287.5 42% 

401.3 274.9 48% 
287.5 43% 

5.1 
1821.5 265.9 50% 

273.8 50% 

1838.3 
265.9 70% 
273.8 74% 

100 

3.1 
366.6 274.9 34% 

287.5 39% 

401.3 274.9 38% 
287.5 42% 

5.1 
1821.5 265.9 54% 

273.8 51% 

1838.3 265.9 76% 
273.8 72% 

Table 9. Uncertainty Values for Different Heights of Stack at Point of Maximum Ground 
Level Concentration in Stable Boundary Layer (SBL). 
 
Table 10 presents the uncertainty obtained for different cases of parameters in a CBL. There 
are two uncertainty values for each combination of parameters considered that represent 
different surface roughness lengths considered. It can be observed from Table 10 that 
uncertainty ranges were found to be similar for both surface roughness length cases, and 
there is not much difference in the uncertainty value for any combination of the parameters 
considered. For 40 m and 100 m stacks, one can observe the uncertainty to decrease with an 
increase in wind speed regardless of increase or decrease in the values of other parameters 
for both surface roughness lengths considered. However, similar trend could not be 
observed in a 70 m stack and mixed results were observed. This concludes that stack height 
is also a factor that can be responsible for sensitivity of the concentration prediction. There is 

 

need to calculate the uncertainty in calculations due to stack height variation. It can also be 
seen from Table 10 that irrespective of the ambient temperature, uncertainty observed for a 
combination of lower values of wind speed and Monin-Obukhov length is more compared 
to uncertainty observed for a combination of higher values of wind speed and Monin-
Obukhov length. Hence, one can infer the uncertainty to be more at lower parameter values 
than higher parameter values for CBL conditions.  
 

Height of stack (m) U (ms-1) L (m) Ta (oK) 
Uncertainty 

Zo = 0.03 m Zo = 1 m 

40 

4.1 
-2423.7 267.5 73% 70% 

295.9 73% 75% 

-356 267.5 75% 72% 
295.9 73% 68% 

6.7 
-3345.8 268.1 68% 68% 

302 65% 60% 

-957.2 268.1 58% 63% 
302 54% 53% 

70 

4.1 
-2423.7 267.5 73% 73% 

295.9 70% 68% 

-356 267.5 70% 68% 
295.9 70% 69% 

6.7 
-3345.8 268.1 75% 72% 

302 68% 63% 

-957.2 268.1 72% 76% 
302 63% 75% 

100 

4.1 
-2423.7 267.5 76% 70% 

295.9 75% 74% 

-356 267.5 63% 62% 
295.9 54% 59% 

6.7 
-3345.8 268.1 68% 70% 

302 60% 70% 

-957.2 268.1 63% 58% 
302 53% 54% 

Table 10. Uncertainty Values for Different Heights of Stack at Point of Maximum Ground 
Level Concentration in Convective Boundary Layer (CBL). 
 
Irrespective of the stack heights considered, one can infer the uncertainty to be more at 
higher wind speed, Monin-Obukhov length, and ambient temperature for stable boundary 
conditions. An opposite trend is observed for CBL conditions, i.e., uncertainty was observed 
to be more at lower wind speed, Monin-Obukhov length, and ambient temperature.  One 
can observe 
 
 

www.intechopen.com



Estimation of uncertainty in predicting ground level concentrations from  
direct source releases in an urban area using the USEPA’s AERMOD model equations 189

 

of wind speed, ambient temperature, and Monin-Obukhov length in CBL irrespective of the 
surface roughness length, 
Hence, it can be inferred that the output of the AERMOD model is sensitive to the changes 
in ambient temperature and Monin-Obukhov length for convective cases.  However, one 
needs to provide accurate wind speed, ambient temperature, and Monin-Obukhov length 
rather than estimating the parameters so that uncertainty in the result is decreased.  
 

Height of Stack (m) U (ms-1) L (m) Ta (oK) Uncertainty 

40 

3.1 
366.6 274.9 47% 

287.5 44% 

401.3 274.9 44% 
287.5 48% 

5.1 
1821.5 265.9 46% 

273.8 44% 

1838.3 265.9 70% 
273.8 72% 

70 

3.1 
366.6 274.9 46% 

287.5 42% 

401.3 274.9 48% 
287.5 43% 

5.1 
1821.5 265.9 50% 

273.8 50% 

1838.3 
265.9 70% 
273.8 74% 

100 

3.1 
366.6 274.9 34% 

287.5 39% 

401.3 274.9 38% 
287.5 42% 

5.1 
1821.5 265.9 54% 

273.8 51% 

1838.3 265.9 76% 
273.8 72% 

Table 9. Uncertainty Values for Different Heights of Stack at Point of Maximum Ground 
Level Concentration in Stable Boundary Layer (SBL). 
 
Table 10 presents the uncertainty obtained for different cases of parameters in a CBL. There 
are two uncertainty values for each combination of parameters considered that represent 
different surface roughness lengths considered. It can be observed from Table 10 that 
uncertainty ranges were found to be similar for both surface roughness length cases, and 
there is not much difference in the uncertainty value for any combination of the parameters 
considered. For 40 m and 100 m stacks, one can observe the uncertainty to decrease with an 
increase in wind speed regardless of increase or decrease in the values of other parameters 
for both surface roughness lengths considered. However, similar trend could not be 
observed in a 70 m stack and mixed results were observed. This concludes that stack height 
is also a factor that can be responsible for sensitivity of the concentration prediction. There is 

 

need to calculate the uncertainty in calculations due to stack height variation. It can also be 
seen from Table 10 that irrespective of the ambient temperature, uncertainty observed for a 
combination of lower values of wind speed and Monin-Obukhov length is more compared 
to uncertainty observed for a combination of higher values of wind speed and Monin-
Obukhov length. Hence, one can infer the uncertainty to be more at lower parameter values 
than higher parameter values for CBL conditions.  
 

Height of stack (m) U (ms-1) L (m) Ta (oK) 
Uncertainty 

Zo = 0.03 m Zo = 1 m 

40 

4.1 
-2423.7 267.5 73% 70% 

295.9 73% 75% 

-356 267.5 75% 72% 
295.9 73% 68% 

6.7 
-3345.8 268.1 68% 68% 

302 65% 60% 

-957.2 268.1 58% 63% 
302 54% 53% 

70 

4.1 
-2423.7 267.5 73% 73% 

295.9 70% 68% 

-356 267.5 70% 68% 
295.9 70% 69% 

6.7 
-3345.8 268.1 75% 72% 

302 68% 63% 

-957.2 268.1 72% 76% 
302 63% 75% 

100 

4.1 
-2423.7 267.5 76% 70% 

295.9 75% 74% 

-356 267.5 63% 62% 
295.9 54% 59% 

6.7 
-3345.8 268.1 68% 70% 

302 60% 70% 

-957.2 268.1 63% 58% 
302 53% 54% 

Table 10. Uncertainty Values for Different Heights of Stack at Point of Maximum Ground 
Level Concentration in Convective Boundary Layer (CBL). 
 
Irrespective of the stack heights considered, one can infer the uncertainty to be more at 
higher wind speed, Monin-Obukhov length, and ambient temperature for stable boundary 
conditions. An opposite trend is observed for CBL conditions, i.e., uncertainty was observed 
to be more at lower wind speed, Monin-Obukhov length, and ambient temperature.  One 
can observe 
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3.2 Sensitivity Analysis 
Sensitivity analysis determines the response of the AERMOD model to change in the values 
of internal parameters. This helps us to determine how precisely and accurately the ground 
level concentration (a particular parameter) could be calculated. The analysis is done using 
the sensitivity charts that provide the percentage contribution to variance by the parameters 
considered to the output of the AERMOD model. The parameters that have been considered 
to perform sensitivity analysis are emission rate, stack exit velocity, stack temperature, wind 
speed, lateral dispersion parameter, vertical dispersion parameter, weighting coefficients for 
both updraft and downdraft, total horizontal distribution function, cloud cover, ambient 
temperature, and surface roughness length. The contributions to variance by various 
parameters considered at different downwind distances are tabulated in Table 11. The 
parameters that contributed to variance are vertical dispersion parameter, horizontal 
distribution (lateral dispersion parameter), emission rate, wind speed and weighting 
coefficients. It should be noted that all the parameters considered for the sensitivity analysis 
and that have zero contribution to the variance are not tabulated in Table 11. From the 
sensitivity charts shown in Figures 1 to 6, one can observe wind speed to be having a 
negative value for contribution to variance indicating that it is oppositely correlated, i.e., 
wind speed has an inverse effect on concentration. All other parameters had a positive 
contribution to variance. The sensitivity analysis charts for predicted concentrations show 
that vertical dispersion parameter and total horizontal distribution function have the 
maximum influence to variance. 
 

Condition Parameter 

Contribution to variance in 
CBL (%) Contribution to 

variance in SBL (%) Zo = 1 m Zo = 0.03 m 
1000 

m 
10000 

m 
1000 

m 
10000 

m 1000 m 10000 m 

100 meter stack 

σz 67.5 53.2 85.4 87.5 22.4 10.8 

Fy 25.9 45.1 11.5 10 64.5 76.1 

Q 2.1 0.3 0.8 0.6 4 4.5 

u -3 -1.1 -1.9 -1.3 -9 -8.6 

λ1 - 0.3 - - - - 

λ2 1.5 - 0.5 0.6 - - 

70 meter  stack 

σz 84.4 86.4 84.9 86.4 33.3 14.9 

Fy 12.1 10.5 11.7 10.4 53.9 68 

Q 1.2 1 1.3 1.3 5.6 7.6 

u -1.7 -1.6 -1.6 -1.4 -7.2 -9.5 

λ1 0.6 0.4 0.5 0.4 - - 

 

40 meter stack 

σz 82.1 85.9 81.9 85.7 28.4 15.9 

Fy 13.6 11.1 14.1 11.1 58.2 66.2 

Q 1.6 1.1 1.6 1.2 6.3 6.7 

u -2.1 -1.4 -2 -1.6 -7.1 -11.2 

λ1 - 0.5 - 0.5 - - 

λ2 0.6 - 0.4 - - - 

Low wind speed 

σz 85.9 89.2 86 89.2 0 0.1 

Fy 11.7 8.7 11.4 9.1 84.1 83.9 

Q 0.7 0.4 0.8 0.5 4.6 5.1 

u -1.1 -1.4 -1.3 -0.8 -11.3 -10.8 

λ1 0.5 0.3 0.5 0.3 - - 

High wind speed 

σz 84.3 89.4 83.3 89.4 5.2 4.7 

Fy 13.8 8.7 13.4 8.4 78.8 79.7 

Q 1 0.5 0.8 0.6 1.2 4.7 

u -0.4 -1.1 -2 -1.2 -2.5 -10.8 

λ1 0.4 0.3 0.5 0.3 - - 

Low ambient 
temperature 

σz 84.3 88.8 84.2 88.9 0.1 1.2 

Fy 12.4 8.9 12.6 8.9 84.2 82.9 

Q 0.8 0.6 0.8 0.7 5 4.9 

u -1.9 -1.3 -1.9 -1.2 -10.7 -11 

λ1 0.6 0.3 0.5 0.4 - - 

High ambient 
temperature 

σz 49.2 70.9 49.5 71.5 34.4 1.2 

Fy 41.6 23.5 40.4 23.2 55.7 83.1 

Q 2.3 1.4 2.7 1.5 3.2 4.9 

u -5.5 -3.3 -5.7 -3 -6.6 -10.9 

λ1 1.5 0.9 1.6 0.9 - - 
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3.2 Sensitivity Analysis 
Sensitivity analysis determines the response of the AERMOD model to change in the values 
of internal parameters. This helps us to determine how precisely and accurately the ground 
level concentration (a particular parameter) could be calculated. The analysis is done using 
the sensitivity charts that provide the percentage contribution to variance by the parameters 
considered to the output of the AERMOD model. The parameters that have been considered 
to perform sensitivity analysis are emission rate, stack exit velocity, stack temperature, wind 
speed, lateral dispersion parameter, vertical dispersion parameter, weighting coefficients for 
both updraft and downdraft, total horizontal distribution function, cloud cover, ambient 
temperature, and surface roughness length. The contributions to variance by various 
parameters considered at different downwind distances are tabulated in Table 11. The 
parameters that contributed to variance are vertical dispersion parameter, horizontal 
distribution (lateral dispersion parameter), emission rate, wind speed and weighting 
coefficients. It should be noted that all the parameters considered for the sensitivity analysis 
and that have zero contribution to the variance are not tabulated in Table 11. From the 
sensitivity charts shown in Figures 1 to 6, one can observe wind speed to be having a 
negative value for contribution to variance indicating that it is oppositely correlated, i.e., 
wind speed has an inverse effect on concentration. All other parameters had a positive 
contribution to variance. The sensitivity analysis charts for predicted concentrations show 
that vertical dispersion parameter and total horizontal distribution function have the 
maximum influence to variance. 
 

Condition Parameter 

Contribution to variance in 
CBL (%) Contribution to 

variance in SBL (%) Zo = 1 m Zo = 0.03 m 
1000 

m 
10000 

m 
1000 

m 
10000 

m 1000 m 10000 m 

100 meter stack 

σz 67.5 53.2 85.4 87.5 22.4 10.8 

Fy 25.9 45.1 11.5 10 64.5 76.1 

Q 2.1 0.3 0.8 0.6 4 4.5 

u -3 -1.1 -1.9 -1.3 -9 -8.6 

λ1 - 0.3 - - - - 

λ2 1.5 - 0.5 0.6 - - 

70 meter  stack 

σz 84.4 86.4 84.9 86.4 33.3 14.9 

Fy 12.1 10.5 11.7 10.4 53.9 68 

Q 1.2 1 1.3 1.3 5.6 7.6 

u -1.7 -1.6 -1.6 -1.4 -7.2 -9.5 

λ1 0.6 0.4 0.5 0.4 - - 

 

40 meter stack 

σz 82.1 85.9 81.9 85.7 28.4 15.9 

Fy 13.6 11.1 14.1 11.1 58.2 66.2 

Q 1.6 1.1 1.6 1.2 6.3 6.7 

u -2.1 -1.4 -2 -1.6 -7.1 -11.2 

λ1 - 0.5 - 0.5 - - 

λ2 0.6 - 0.4 - - - 

Low wind speed 

σz 85.9 89.2 86 89.2 0 0.1 

Fy 11.7 8.7 11.4 9.1 84.1 83.9 

Q 0.7 0.4 0.8 0.5 4.6 5.1 

u -1.1 -1.4 -1.3 -0.8 -11.3 -10.8 

λ1 0.5 0.3 0.5 0.3 - - 

High wind speed 

σz 84.3 89.4 83.3 89.4 5.2 4.7 

Fy 13.8 8.7 13.4 8.4 78.8 79.7 

Q 1 0.5 0.8 0.6 1.2 4.7 

u -0.4 -1.1 -2 -1.2 -2.5 -10.8 

λ1 0.4 0.3 0.5 0.3 - - 

Low ambient 
temperature 

σz 84.3 88.8 84.2 88.9 0.1 1.2 

Fy 12.4 8.9 12.6 8.9 84.2 82.9 

Q 0.8 0.6 0.8 0.7 5 4.9 

u -1.9 -1.3 -1.9 -1.2 -10.7 -11 

λ1 0.6 0.3 0.5 0.4 - - 

High ambient 
temperature 

σz 49.2 70.9 49.5 71.5 34.4 1.2 

Fy 41.6 23.5 40.4 23.2 55.7 83.1 

Q 2.3 1.4 2.7 1.5 3.2 4.9 

u -5.5 -3.3 -5.7 -3 -6.6 -10.9 

λ1 1.5 0.9 1.6 0.9 - - 
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Low Monin- 
Obukhov length 

σz 83.7 89.1 83.6 89.0 0 0.1 

Fy 13.1 8.9 13.2 8.7 84.1 83.9 

Q 0.9 0.4 0.9 0.5 4.6 5.1 

u -1.7 -1.2 -1.8 -1.3 -11.3 -10.8 

λ1 0.5 0.4 0.5 0.4 - - 

High Monin- 
Obukhov length 

σz 76.9 84.3 77.5 87.5 5.2 4.7 

Fy 18.8 9.4 18.1 9.7 78.8 79.7 

Q 1 0.6 1.0 0.7 1.2 4.7 

U -2.7 -5.3 -2.6 -1.5 -2.5 -10.8 

λ1 0.6 0.4 0.8 0.5 - - 

Table 11. Contribution to Variance by Parameters in Calculation of Concentration at 
Different Downwind Distances. 
 
The contributions to variance of parameters in both CBL and SBL for 1000 m and 10000 m 
downwind distance are tabulated in Table 11. In CBL, contribution to variance by vertical 
dispersion parameter is more than the contribution from horizontal distribution function 
which is a function of lateral dispersion parameter, indicating pollutant concentration to be 
more sensitive to vertical dispersion parameter than lateral dispersion parameter. However, 
it is the opposite in SBL, i.e., pollutant concentration is more sensitive to lateral dispersion 
parameter than vertical dispersion parameter. Wind speed parameter had a negative 
contribution to variance irrespective of the boundary layer conditions at both downwind 
distances. The contribution to variance by weighting coefficients is found to be negligible in 
all the conditions.    
For the condition considering stack heights from Table 11, the pollutant concentration 
sensitiveness increased with downwind distance for vertical dispersion parameter and wind 
speed, but decreased for the remaining parameters in CBL for both surface roughness 
lengths considered. In SBL, contribution to variance by vertical dispersion parameter 
reduced with increase in downwind distance and increased for all other parameters 
considered for analysis.  
For the condition considering low and high wind speeds from Table 11, in CBL, the 
pollutant concentration sensitiveness increased with downwind distance for vertical 
dispersion parameter. Pollutant concentration sensitiveness varied with surface roughness. 
For the case of Z0 being 1 m pollutant concentration sensitiveness decreased with increase in 
downwind distance and the opposite trend is observed for the case of Z0 being 0.03 m. For 
all other parameters pollutant concentration sensitiveness decreased with increase in 
downwind distance. In SBL, pollutant concentration sensitiveness decreased for vertical 
dispersion parameter as downwind distance increased and one can note that for lower wind 
speed, the contribution to variance by vertical dispersion parameter is zero at both 1000 m 
and 10000 m.  

 

For the condition of ambient temperature in CBL, the contribution of variance by vertical 
dispersion parameter and wind speed increased with downwind distance and decreased for 
all other parameters for both the surface roughness lengths considered. Similar pattern can 
be observed in SBL for the condition of lower ambient temperature with the exception that 
wind speed showed an opposite trend to that observed in CBL. However, for the case of 
higher ambient temperature, in SBL, the contribution to variance increases for horizontal 
distribution and emission rate, and decreases for vertical dispersion parameter and wind 
speed with increase in downwind distance. For both high and low values of ambient 
temperature, the contribution by wind speed was significant in SBL compared to CBL. Thus, 
one can state that the concentrations are more sensitive to higher temperatures and wind 
speed in SBL than in CBL.  
The sensitiveness in Monin-Obukhov length condition showed similar behavior to that of 
wind speed condition. It was observed that emission rate had more contribution to variance 
than vertical dispersion parameter in SBL for the cases having lower values of Monin-
Obukhov length, wind speed, and ambient temperature. The remaining parameters defined 
in the assumption cells have negligible contribution to variance when compared to vertical 
dispersion parameter and total horizontal distribution function.  

 
4. Conclusions 
The objective of the study was to perform uncertainty and sensitivity analyses in predicting 
the concentrations from the AERMOD equations. As it is difficult to perform uncertainty 
and sensitivity analyses using the original AERMOD model, an approximate set of 
AERMOD equations were programmed in Excel. The predicted concentrations from the 
AERMODCBL and AERMODSBL models were compared to the predicted concentrations 
from AERMOD model. The comparison has shown that the predicted concentration values 
from the spreadsheet ranged between 87% and 107%, as compared to the predicted 
concentration values from the AERMOD model. This showed that the predicted 
concentrations obtained by the modeled equations can be relied upon to perform 
uncertainty and sensitivity analyses for both atmospheric conditions.  
Uncertainty and sensitivity analysis has been performed for different cases taken into 
consideration by varying stack height, wind speed, Monin-Obukhov length, and ambient 
temperature for three days and source data as summarized in Tables 3, 4, and 5. The 
conclusions made from the study are listed below. 

1. A user-friendly tool [60], that can calculate downwind contaminant concentrations 
under different boundary layer conditions has been developed using the AERMOD 
equations.  

2. The uncertainty range varies between 67% and 75% for convective conditions  on 
averaging the uncertainty values from all the considered cases, while in stable 
conditions, it ranged from 40% to 47%.  This means the predictions are less certain 
in convective cases. 

3. The contribution to variance by vertical dispersion parameter (σz) is found to be 
82% under convective conditions i.e. the predicted concentrations are highly 
influenced by σz.. In the case of horizontal distribution (Fy), the contribution to 
variance was found to be 75% in the stable case. 
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Low Monin- 
Obukhov length 

σz 83.7 89.1 83.6 89.0 0 0.1 

Fy 13.1 8.9 13.2 8.7 84.1 83.9 

Q 0.9 0.4 0.9 0.5 4.6 5.1 

u -1.7 -1.2 -1.8 -1.3 -11.3 -10.8 

λ1 0.5 0.4 0.5 0.4 - - 

High Monin- 
Obukhov length 

σz 76.9 84.3 77.5 87.5 5.2 4.7 

Fy 18.8 9.4 18.1 9.7 78.8 79.7 

Q 1 0.6 1.0 0.7 1.2 4.7 

U -2.7 -5.3 -2.6 -1.5 -2.5 -10.8 

λ1 0.6 0.4 0.8 0.5 - - 

Table 11. Contribution to Variance by Parameters in Calculation of Concentration at 
Different Downwind Distances. 
 
The contributions to variance of parameters in both CBL and SBL for 1000 m and 10000 m 
downwind distance are tabulated in Table 11. In CBL, contribution to variance by vertical 
dispersion parameter is more than the contribution from horizontal distribution function 
which is a function of lateral dispersion parameter, indicating pollutant concentration to be 
more sensitive to vertical dispersion parameter than lateral dispersion parameter. However, 
it is the opposite in SBL, i.e., pollutant concentration is more sensitive to lateral dispersion 
parameter than vertical dispersion parameter. Wind speed parameter had a negative 
contribution to variance irrespective of the boundary layer conditions at both downwind 
distances. The contribution to variance by weighting coefficients is found to be negligible in 
all the conditions.    
For the condition considering stack heights from Table 11, the pollutant concentration 
sensitiveness increased with downwind distance for vertical dispersion parameter and wind 
speed, but decreased for the remaining parameters in CBL for both surface roughness 
lengths considered. In SBL, contribution to variance by vertical dispersion parameter 
reduced with increase in downwind distance and increased for all other parameters 
considered for analysis.  
For the condition considering low and high wind speeds from Table 11, in CBL, the 
pollutant concentration sensitiveness increased with downwind distance for vertical 
dispersion parameter. Pollutant concentration sensitiveness varied with surface roughness. 
For the case of Z0 being 1 m pollutant concentration sensitiveness decreased with increase in 
downwind distance and the opposite trend is observed for the case of Z0 being 0.03 m. For 
all other parameters pollutant concentration sensitiveness decreased with increase in 
downwind distance. In SBL, pollutant concentration sensitiveness decreased for vertical 
dispersion parameter as downwind distance increased and one can note that for lower wind 
speed, the contribution to variance by vertical dispersion parameter is zero at both 1000 m 
and 10000 m.  

 

For the condition of ambient temperature in CBL, the contribution of variance by vertical 
dispersion parameter and wind speed increased with downwind distance and decreased for 
all other parameters for both the surface roughness lengths considered. Similar pattern can 
be observed in SBL for the condition of lower ambient temperature with the exception that 
wind speed showed an opposite trend to that observed in CBL. However, for the case of 
higher ambient temperature, in SBL, the contribution to variance increases for horizontal 
distribution and emission rate, and decreases for vertical dispersion parameter and wind 
speed with increase in downwind distance. For both high and low values of ambient 
temperature, the contribution by wind speed was significant in SBL compared to CBL. Thus, 
one can state that the concentrations are more sensitive to higher temperatures and wind 
speed in SBL than in CBL.  
The sensitiveness in Monin-Obukhov length condition showed similar behavior to that of 
wind speed condition. It was observed that emission rate had more contribution to variance 
than vertical dispersion parameter in SBL for the cases having lower values of Monin-
Obukhov length, wind speed, and ambient temperature. The remaining parameters defined 
in the assumption cells have negligible contribution to variance when compared to vertical 
dispersion parameter and total horizontal distribution function.  

 
4. Conclusions 
The objective of the study was to perform uncertainty and sensitivity analyses in predicting 
the concentrations from the AERMOD equations. As it is difficult to perform uncertainty 
and sensitivity analyses using the original AERMOD model, an approximate set of 
AERMOD equations were programmed in Excel. The predicted concentrations from the 
AERMODCBL and AERMODSBL models were compared to the predicted concentrations 
from AERMOD model. The comparison has shown that the predicted concentration values 
from the spreadsheet ranged between 87% and 107%, as compared to the predicted 
concentration values from the AERMOD model. This showed that the predicted 
concentrations obtained by the modeled equations can be relied upon to perform 
uncertainty and sensitivity analyses for both atmospheric conditions.  
Uncertainty and sensitivity analysis has been performed for different cases taken into 
consideration by varying stack height, wind speed, Monin-Obukhov length, and ambient 
temperature for three days and source data as summarized in Tables 3, 4, and 5. The 
conclusions made from the study are listed below. 

1. A user-friendly tool [60], that can calculate downwind contaminant concentrations 
under different boundary layer conditions has been developed using the AERMOD 
equations.  

2. The uncertainty range varies between 67% and 75% for convective conditions  on 
averaging the uncertainty values from all the considered cases, while in stable 
conditions, it ranged from 40% to 47%.  This means the predictions are less certain 
in convective cases. 

3. The contribution to variance by vertical dispersion parameter (σz) is found to be 
82% under convective conditions i.e. the predicted concentrations are highly 
influenced by σz.. In the case of horizontal distribution (Fy), the contribution to 
variance was found to be 75% in the stable case. 
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4. In SBL, for low values of wind speed, Monin-Obukhov length, and ambient 
temperature, the contribution to variance by emission rate (Q) is considerably more 
than that of vertical dispersion parameter (σz).  

5. In CBL, concentration predictions are sensitive to vertical dispersion (σz) and 
horizontal distribution (Fy), i.e. σy regardless of stack height and surface roughness.  

6. In SBL, concentration predictions are sensitive to horizontal distribution (Fy), i.e. σy 
and vertical dispersion (σz) regardless of the stack heights.   

7. The predicted concentration equation is sensitive to vertical dispersion parameter 
(σz), horizontal distribution (Fy) (lateral dispersion parameter (σy)), and emission 
rate. Other parameters have negligible or no influence on sensitivity with the 
exception of wind speed that has a negative correlation. 
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4. In SBL, for low values of wind speed, Monin-Obukhov length, and ambient 
temperature, the contribution to variance by emission rate (Q) is considerably more 
than that of vertical dispersion parameter (σz).  

5. In CBL, concentration predictions are sensitive to vertical dispersion (σz) and 
horizontal distribution (Fy), i.e. σy regardless of stack height and surface roughness.  

6. In SBL, concentration predictions are sensitive to horizontal distribution (Fy), i.e. σy 
and vertical dispersion (σz) regardless of the stack heights.   

7. The predicted concentration equation is sensitive to vertical dispersion parameter 
(σz), horizontal distribution (Fy) (lateral dispersion parameter (σy)), and emission 
rate. Other parameters have negligible or no influence on sensitivity with the 
exception of wind speed that has a negative correlation. 
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Nomenclature 
Cd(x,y,z)        ground level concentration from the direct source (CBL) (g m-3) 
Cs(x,y,z)        ground level concentration (SBL) (g m-3) 
cp                   specific heat at constant pressure (= 1004 J g-1 K-1) 
CD                           neutral drag coefficient (cal g-1 oC-1) 
Fb                   plume buoyancy flux (m4 s3) 
Fy                   total horizontal/lateral distribution function (m-1) 
Fm                  plume momentum flux (m4s2) 
fp                    fraction of plume mass contained in CBL = (1 - penetration factor)              
                       (dimensionless)  
g                     acceleration due to gravity (9.81 m s-2) 
H                    sensible heat flux (W m-2) 
Hp                            plume centroid height (m) 
hs                    stack height corrected for stack tip downwash (m) 
hes                            plume rise for the stable source (m) 
∆hd                 plume rise for the direct source (m) 
∆hs                 plume rise for the stable source (m) 
k                    Von Karman constant k = 0.4 (dimensionless) 
l                     length used in determining the Lagrangian time scale (m) 
ln                    neutral length scale – a component of l (m) 
ls                     stable length scale – a component of l (m) 
L                    Monin-Obukhov length (m) 
m                   multiple reflections of plume (dimensionless)  
N                   Brunt-Vaisala frequency (s-1) 
n                    cloud cover (fractional) 
Q                   source emission rate (g s-1) 
R                   solar insolation (W m-2)  
rs                   stack radius (m) 
S                   skewness factor (dimensionless)  
T                   ambient temperature (oK) 
Tlzs                vertical lagrangian time scale for the SBL (sec) 
Tref                ambient temperature - at reference temperature height (oK) 
Ts                  stack gas temperature (oK) 
 t                   time (sec) 
∆T                difference between stack gas and ambient temperature (K) 
u                   wind speed (m s-1) 
uref                wind speed at reference height (m s-1) 
u*                  surface friction velocity (m s-1) 
wj                  mean vertical velocity for the updraft (j = 1) and the downdraft (j = 2)                   
                     distributions (m-s-1) 
ws                 stack exit gas velocity (m-s-1) 
w*                 convective velocity scale (m-s-1) 
x                   downwind distance to a receptor (m) 
y                   receptor location on the y axis 
z                   zr and zp in the horizontal and terrain following states 
zr                  height of the receptor above local source base (m) 
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zp                  receptor “flagpole” height - the height of a receptor above local terrain (m) 
zi                   mixing height (m): zi = MAX [zic; zim] in the CBL and zi = zim in the     
                      SBL 
zic                  convective mixing height (m) 
zie                  equilibrium height of stable boundary layer 
zieff                height of the reflecting surface in the SBL or in the stable layer above    
                      the CBL (m)   
zim                 mechanical mixing height (m) 
zo                   surface roughness length (m) 
                       (0.03 m for open flat terrain, grass, few obstacles;  1 m for more obstacles) 
zref                 reference height for wind (m) 
θ                    potential temperature (oK) 
θ*                   temperature scale (oK) 
λj                    weighting coefficient for the updraft (j = 1) and downdraft (j = 2)                                         
                       distributions  
ρ                     density of air (Kg m-3) 
σv                   lateral turbulence (m s-1) 
σwt                    total vertical turbulence (m s-1) 
σy                             total lateral dispersion parameter for the direct source (m) 
σz                             total vertical dispersion parameter for the direct source (m) 
σzas               ambient dispersion for the stable source (m) 
σzes               elevated portion of σzas (m) 
σzgs               surface portion of σzas (m) 
σzj                            total vertical dispersion for the updrafts and downdrafts  
                       (j=1, 2 respectively) 
σzs                            total dispersion for the stable source (m) 
τ                     time constant controlling the temporal interpolation of zim (sec) 
ψdj                  total height of the direct source plume (i.e. release height + buoyancy +                

       convection) (m)    
βm                   5 

              height of the direct source plume 
 

www.intechopen.com



Air Quality

Edited by Ashok Kumar

ISBN 978-953-307-131-2

Hard cover, 382 pages

Publisher Sciyo

Published online 18, August, 2010

Published in print edition August, 2010

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Air pollution is about five decades or so old field and continues to be a global concern. Therefore, the

governments around the world are involved in managing air quality in their countries for the welfare of their

citizens. The management of air pollution involves understanding air pollution sources, monitoring of

contaminants, modeling air quality, performing laboratory experiments, the use of satellite images for

quantifying air quality levels, indoor air pollution, and elimination of contaminants through control. Research

activities are being performed on every aspect of air pollution throughout the world, in order to respond to

public concerns. The book is grouped in five different sections. Some topics are more detailed than others.

The readers should be aware that multi-authored books have difficulty maintaining consistency. A reader will

find, however, that each chapter is intellectually stimulating. Our goal was to provide current information and

present a reasonable analysis of air quality data compiled by knowledgeable professionals in the field of air

pollution.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Vamsidhar V. Poosarala, Ashok Kumar and Akhil Kadiyala (2010). Estimation of Uncertainty in Predicting

Ground Level Concentrations from Direct Source Releases in an Urban Area Using the USEPA’s AERMOD

Model Equations, Air Quality, Ashok Kumar (Ed.), ISBN: 978-953-307-131-2, InTech, Available from:

http://www.intechopen.com/books/air-quality/estimation-of-uncertainty-in-predicting-ground-level-

concentrations-from-direct-source-releases-in-a



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


