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1. Introduction 
 

Dynamic models play an important role in parallel manipulators simulation and control. 
Mainly in the later case, the efficiency of the involved computations is of paramount 
importance, because manipulator real-time control is usually necessary (Zhao & Gao, 2009). 
The dynamic model of a parallel manipulator operating in free space can be represented in 
Cartesian coordinates by a system of nonlinear differential equations, which may be written 
in matrix form as 

       fxGxxxVxxI   ,  (1) 

 
 xI being the inertia matrix,  xxV ,  the Coriolis and centripetal terms matrix,  xG  a vector 

of gravitational generalized forces, x the generalized position of the moving platform (or 
end-effector) and  f  the controlled generalized force applied on the end-effector. Thus, 
 

   τxJf  T  (2) 

 
where  is the generalized force developed by the actuators and J(x) is the inverse 
kinematics jacobian matrix (Merlet, 2006). 
Dynamic modelling of parallel manipulators presents an inherent complexity, mainly due to 
system closed-loop structure and kinematic constraints. Several approaches have been 
applied to the dynamic analysis of parallel manipulators, the Newton-Euler and the 
Lagrange methods being the most popular ones (Do & Yang, 1988; Reboulet & Berthomieu, 
1991; Ji, 1994; Dasgupta & Mruthyunjaya, 1998; Khalil & Ibrahim, 2007; Riebe & Ulbrich, 
2003; Guo & Li, 2006; Nguyen & Pooran, 1989; Lebret et al., 1993; Di Gregório & Parenti-
Castelli, 2004; Caccavale et al., 2003; Dasgupta & Choudhury, 1999). These methods use 
classical mechanics principles, as is the case for all the approaches found in the literature, 
namely the ones based on the principle of virtual work (Staicu et al., 2007; Tsai, 2000; Wang 
& Gosselin, 1998), screw theory (Gallardo et al., 2003), recursive matrix method (Staicu & 
Zhang, 2008), Hamilton’s principle (Miller, 2004), and Kane’s equation (Liu et al., 2000). 
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Thus, all approaches are equivalent, leading to equivalent dynamic equations. Nevertheless, 
these equations can present different levels of complexity and associated computational 
loads (Zhao & Gao, 2009). Minimizing the number of operations involved in the 
computation of the manipulator dynamic model has been the main goal of recent proposed 
techniques (Zhao & Gao, 2009; Staicu & Zhang, 2008; Abdellatif & Heimann, 2009; Wang et 
al., 2007; Sokolov & Xirouchakis, 2007; Bhattacharya et al., 1997; Carricato & Gosselin, 2009; 
Lopes, 2009). 
This book chapter presents the generalized momentum concept to model the dynamics of a 
Stewart platform manipulator having a non-stationary base platform. This is important, for 
example, in macro/micro robotic applications, where a small manipulator is attached in 
series to a big one. The later performs large amplitude movements, while the former is only 
responsible for the small motions. The book chapter is organized as follows. Section 2 
presents a brief description of the parallel manipulator under study. In section 3 a complete 
dynamic model is developed. The generalized momentum approach is used and the motion 
of the manipulator base platform is considered. Conclusions are drawn in section 4. 

 
2. Manipulator Kinematic Structure 
 

A Stewart platform manipulator is being considered. It comprises a (usually) fixed platform 
(the base) and a moving platform (the payload platform), linked together by six 
independent, identical, open kinematic chains (Raghavan, 1993). In this book chapter a 
particular design will be considered as shown in Figure 1 (Fichter, 1986). In this case, each 
chain (leg) comprises a cylinder and a piston (or spindle) that are connected together by a 
prismatic joint, li. The upper end of each leg is connected to the moving platform by a 
spherical joint whereas the lower end is connected to the fixed base by a universal joint. 
Points Bi and Pi are the connecting points to the base and moving platforms, respectively 
(Figure 2). They are located at the vertices of two semi-regular hexagons inscribed in 
circumferences of radius rB and rP. The separation angles between points B1 and B6, B2 and 
B3, and B4 and B5 are denoted by 2B. In a similar way, the separation angles between points 
P1 and P2, P3 and P4, and P5 and P6 are denoted by 2P (Figure 2). 
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Fig. 1. Stewart platform kinematic structure 
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Fig. 2. Position of the connecting points to the base and payload platforms 
 
For kinematic modelling purposes, two frames, {P} and {B}, are attached to the moving and 
base platforms, respectively. Its origins are the platforms centres of mass. The generalized 
position of frame {P} relative to frame {B} may be represented by the vector:  
 

    
TT

EoP

BT

BposP

BT
PPPPPPEBP

B zyx ][][
|

xxx    (3) 

 

where    TPPPBposP

B zyxx  is the position of the origin of frame {P} relative to frame {B}, 

and    TPPPEoP

B x  defines an Euler angles system representing orientation of frame 

{P} relative to {B}. The used Euler angles system corresponds to the basic rotations 
(Vukobratovic & Kircanski, 1986): P about zP; P about the rotated axis yP’; and P about the 
rotated axis xP’’. The rotation matrix is given by: 
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R  (4) 

 
S() and C() correspond to the sine and cosine functions, respectively. 
The manipulator position and velocity kinematic models are well known, being obtainable 
from the geometrical analysis of the kinematics chains. The velocity kinematics is 
represented by the Euler angles jacobian matrix, JE, or the kinematic jacobian, JC (Merlet, 
2006). These jacobians relate the velocities of the active joints (the actuators) to the 
generalized velocity of the moving platform: 
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Fig. 1. Stewart platform kinematic structure 
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Fig. 2. Position of the connecting points to the base and payload platforms 
 
For kinematic modelling purposes, two frames, {P} and {B}, are attached to the moving and 
base platforms, respectively. Its origins are the platforms centres of mass. The generalized 
position of frame {P} relative to frame {B} may be represented by the vector:  
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B zyxx  is the position of the origin of frame {P} relative to frame {B}, 
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B x  defines an Euler angles system representing orientation of frame 

{P} relative to {B}. The used Euler angles system corresponds to the basic rotations 
(Vukobratovic & Kircanski, 1986): P about zP; P about the rotated axis yP’; and P about the 
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S() and C() correspond to the sine and cosine functions, respectively. 
The manipulator position and velocity kinematic models are well known, being obtainable 
from the geometrical analysis of the kinematics chains. The velocity kinematics is 
represented by the Euler angles jacobian matrix, JE, or the kinematic jacobian, JC (Merlet, 
2006). These jacobians relate the velocities of the active joints (the actuators) to the 
generalized velocity of the moving platform: 
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  Tlll 621
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and (Vukobratovic & Kircanski, 1986) 
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Vectors   BP

B

BposP

B vx   and 
BP

Bω represent the linear and angular velocity of the moving 

platform relative to {B}, and   EoP

B x represents the Euler angles time derivative. 

 
3. Complete Dynamic Modelling Using the Generalized Momentum Approach 
 

It is well known the generalized momentum of a rigid body, qc, may be computed from the 
following general expression: 

 ccc uIq   (10) 

 
Vector uc represents the generalized velocity (linear and angular) of the body and Ic is its 
inertia matrix. Vectors qc and uc and inertia matrix Ic must be expressed in the same frame of 
reference. 
Equation  (10) may also be written as 
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where Qc is the linear momentum vector due to rigid body translation and Hc is the angular 
momentum vector due to body rotation. Ic(tra) is the translational inertia matrix and Ic(rot) is 
the rotational inertia matrix. vc and ωc are the body linear and angular velocities. 
The inertial component of the generalized force (force and moment) acting on the body can 
be obtained from the time derivative of equation  (10): 

 

   cccccinec uIuIqf    (12) 

 
with force and moment expressed in the same frame and    TT

inec
T

inecinec )()( MFf  . 
Equivalently, force and moment vectors are: 
 

 ctracctraccinec vIvIQF  )()()(
  (13) 

 crotccrotccinec ωIωIHM  )()()(
  (14) 

 
3.1 Payload Platform Modelling 
Considering the Stewart platform manipulator base motion, i.e., the motion of frame {B} 
relative to a fixed world frame {W}{xW, yW, zW}, the position of the payload platform, {P}, 
relative to {W} and expressed in {W}, may be given by 
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where 

WB

W p  is the position of frame {B}, and 
WP

Bp  represents the position of frame {P} 

relative to {B} and expressed in {W}. 
The linear velocity of the payload platform, {P}, relative to {W} and expressed in {W}, may 
be obtained taking the time derivative of the previous equation, that is, 
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where 

WB

W v  is the linear velocity of frame {B}, 
WP

B v  is the linear velocity of frame {P} as 

seen by an observer fixed in {B}, 
WB

W ω  represents the angular velocity of frame {B} relative 

to {W}, and   WposP

B

WP

B xp   represents the position of {P} relative to {B} and expressed in {W}. 

In the following analysis, knowledge of the generalized position of frame {B} relative to {W}, 
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  WposB

W x represents the position vector expressed in frame {W}, and   EoB

W x represents the 

orientation expressed in an Euler angles system. Knowledge of its first and second time 
derivatives shall also be supposed i.e., 

EWB

W

|
x  and 
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W

|
x , respectively. Therefore, the 

orientation matrix, B
W R , of frame {B} relative to {W} can be easily computed, and the 

jacobian, JG, relating the angular velocity of the base frame relative to {W}, 
WB

W ω , to the first 

time derivative of the Euler angles,   EoB

W x , is given by 

   EoB

W
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where Qc is the linear momentum vector due to rigid body translation and Hc is the angular 
momentum vector due to body rotation. Ic(tra) is the translational inertia matrix and Ic(rot) is 
the rotational inertia matrix. vc and ωc are the body linear and angular velocities. 
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Considering equation (16), in frame {B}, the following equation can be written: 
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Therefore, the total linear momentum of {P} expressed in frame {B} will be 
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mP being the payload platform mass. 
Taking the time derivative of the previous equation results in 
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The inertial part of the total force applied in {P}, due to the payload platform translation, 
expressed in frame {B} will be 
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where    BfixineP

PF  represents the inertial part of the force, considering the base platform is not 

moving, and    BmanineP

PF  represents the inertial part of the force which results from the base 

motion. 

 

On the other hand, the angular momentum of the moving platform, about its centre of mass 
and expressed in frame {B} will be 
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BrotP )(
I  represents the rotational inertia matrix of the moving platform, expressed in the base 

frame, {B}. This inertia matrix is given by: 
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 (29) 

 
where 

ProtP )(
I  is a constant matrix representing the rotational inertia matrix of the moving 

platform, expressed in frame {P}. Considering that 
xxPI , 

yyPI  and 
zzPI are the moments of 

inertia of the moving platform expressed in its own frame, this matrix may be written as: 
 

 ])diag([
)( zzPyyPxxPProtP

IIII  (30) 

 
Taking the time derivative of equation (28) results in 
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The inertial part of the total moment applied in {P}, due to the payload platform rotation, 
expressed in frame {B} will be 
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   BfixineP

PM  represents the inertial part of the moment, considering the base platform is not 

moving, and    BmanineP

PM  represents the inertial part of the moment which results from the 

base motion. 
The total inertial component of the generalized force applied to {P} and expressed in {B} will 
be 
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Considering equation (16), in frame {B}, the following equation can be written: 
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and expressed in frame {B} will be 
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PM  represents the inertial part of the moment, considering the base platform is not 

moving, and    BmanineP

PM  represents the inertial part of the moment which results from the 

base motion. 
The total inertial component of the generalized force applied to {P} and expressed in {B} will 
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         
TT

BtotineP

PT

BtotineP

P

BtotineP
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The inertial components of the forces in the manipulator actuators (actuating forces) will be 
 

       BfixineP

PT
CfixineP fJτ    (37) 

       BmanineP

PT
CmanineP fJτ    (38) 

 
On the other hand, regarding the gravitational part of the generalized force, if the base 
platform orientation changes, then the force applied to {P} and expressed in {B} results in 
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PT
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where, 
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and   WgraP

P f  is the gravitational generalized force applied to {P} and expressed in {W}. This 

force can be computed using a simplified model that considers both a non-moving base 
platform, frame {B} parallel to {W}, and gz ˆB , i.e., 
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PPP zgmP   representing the mobile platform potential energy. 

The gravitational component of the actuating forces due to the moving platform,  graPτ , is 
given by equation (42), which can be added to equations (37) and (38). 
 

     BgraP

PT
CgraP fJτ    (42) 

 
3.2 Cylinder Modelling 
Position of the cylinder i, relative to {W} and expressed in {W}, may be computed using the 
following equation: 
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The linear velocity of the cylinder, relative to {W} and expressed in {W}, may be obtained 
taking the time derivative of the previous equation, that is, 
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Considering that frame {Ci} is attached to the cylinder i and positioned at its centre of mass, 
then 

WiC

B v  is the linear velocity of frame {Ci} as seen by an observer fixed in {B}, and
WiC

Bp  

represents the position of {Ci} relative to {B} and expressed in {W}. 
In frame {B} the following equation can be written: 
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Considering the centre of mass of each cylinder is located at a constant distance, bC, from the 
cylinder to base platform connecting point, Bi, (Figure 3), then its position relative to frame 
{B} is 

 iiCBiC

B b blp  ˆ  (46) 

where, 
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Fig. 3. Position of the centre of mass of the cylinder i 
 
The linear velocity of the cylinder centre of mass, 

BiC
Bp , relative to {B} and expressed in the 

same frame, may be computed as: 

 iCBil

B

BiC

B b lωp ˆ  (49) 

 
where 

Bil

Bω  represents the leg angular velocity, which can be found from:  
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The inertial components of the forces in the manipulator actuators (actuating forces) will be 
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P f  is the gravitational generalized force applied to {P} and expressed in {W}. This 
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PPP zgmP   representing the mobile platform potential energy. 

The gravitational component of the actuating forces due to the moving platform,  graPτ , is 
given by equation (42), which can be added to equations (37) and (38). 
 

     BgraP

PT
CgraP fJτ    (42) 
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then 
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The linear velocity of the cylinder centre of mass, 

BiC
Bp , relative to {B} and expressed in the 

same frame, may be computed as: 
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where 
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Bω  represents the leg angular velocity, which can be found from:  
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As the leg (both the cylinder and piston) cannot rotate along its own axis, the angular 
velocity along il̂  is always zero, and vectors li and 

Bil
Bω are always perpendicular. This 

enables equation (50) to be rewritten as: 
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where jacobian 

iDJ is given by: 
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and, for a given vector  Tzyx aaaa , 
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On the other hand, equation (49) can be rewritten as: 
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where the jacobian 

iBJ is given by: 
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The total linear momentum of the cylinder i, expressed in frame {B} will be 
 

 

   BiC

W
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mC being the cylinder mass. 
Taking the time derivative of the previous equation results in 
 

   BiC

W
CBtotiC

m vQ    (59) 

 
where, 
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The inertial part of the total force applied in {Ci}, due to the cylinder translation, expressed 
in frame {B} will be 

      BtotiCBtotineiC
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That is, 
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where    BfixineiC

iC F  represents the inertial part of the force, considering the base platform is 

not moving, and    BmanineiC
iC F  represents the inertial part of the force which results from the 

base motion. 
When equation (61) is pre-multiplied by T

iBJ , the inertial component of the generalized force 
applied to {P}, due to each cylinder translation is obtained in frame {B}: 
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The inertial components of the actuating forces will be 
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On the other hand, the total angular momentum of the cylinder about its centre of mass and 
expressed in frame {B} will be: 

www.intechopen.com



Fast Dynamic Model of a Moving-base 6-DOF Parallel Manipulator 371

 

 
Bi

P

BP

B

BP

B
iBil

B pωvlω   (50) 

 
As the leg (both the cylinder and piston) cannot rotate along its own axis, the angular 
velocity along il̂  is always zero, and vectors li and 

Bil
Bω are always perpendicular. This 

enables equation (50) to be rewritten as: 
 

   
Bi

P

BP

B

BP

B
i

i
T
i

Bil

B pωvl
ll

ω 



1  (51) 

or, 

 













BP

B
BP

B

iDBil

B

ω
v

Jω  (52) 

 
where jacobian 

iDJ is given by: 

 



  T

Bi

P
iiiD pllJ ~~~

 (53) 

 
i

T
i

i
i ll

ll


  (54) 

 
and, for a given vector  Tzyx aaaa , 

 






















0
0

0
~

xy

xz

yz

aa
aa

aa
a  (55) 

 
On the other hand, equation (49) can be rewritten as: 
 

 













BP

B
BP

B

iBBiC

B

ω
v

Jp  (56) 

 
where the jacobian 

iBJ is given by: 
 

 



  T

Bi

P
i

T
iCi

T
iCiB bb pllllJ ~~~

ˆ~~
ˆ  (57) 

 
The total linear momentum of the cylinder i, expressed in frame {B} will be 
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Taking the time derivative of the previous equation results in 
 

   BiC

W
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m vQ    (59) 

 
where, 
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The inertial part of the total force applied in {Ci}, due to the cylinder translation, expressed 
in frame {B} will be 

      BtotiCBtotineiC
iC QF   (61) 

That is, 

          BmanineiC
iC

BfixineiC
iC

BtotineiC
iC FFF   (62) 
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where    BfixineiC

iC F  represents the inertial part of the force, considering the base platform is 

not moving, and    BmanineiC
iC F  represents the inertial part of the force which results from the 

base motion. 
When equation (61) is pre-multiplied by T

iBJ , the inertial component of the generalized force 
applied to {P}, due to each cylinder translation is obtained in frame {B}: 
 

        BtotineiC
iCT

iBBtratotineiC

P FJf   (65) 

 
The inertial components of the actuating forces will be 
 

         BtrafixineiC

PT
CtrafixineiC fJτ    (66) 

         BtramanineiC

PT
CtramanineiC fJτ    (67) 

 
On the other hand, the total angular momentum of the cylinder about its centre of mass and 
expressed in frame {B} will be: 
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W
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Taking the time derivative of the previous equation results in 
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where, 
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Considering that  

iCrotiC
I  is the inertia constant matrix of the rotating cylinder i, expressed in 

the frame fixed to the cylinder itself, {Ci}{
iCiCiC zyx ,, }, then 

 

    
T

iC
B

iCrotiCiC
B

BrotiC RIRI   (72) 

 
where 

iC
BR is the orientation matrix of each cylinder frame, {Ci}, relative to the base frame, 

{B}. 
Cylinder frames were chosen in the following way: axis 

iCx coincides with the leg axis and 
points towards Pi; axis  

iCy  is perpendicular to 
iCx and always parallel to the base plane, this 

condition being possible given the existence of a universal joint at point Bi, that negates any 
rotation along its own axis; axis 

iCz  completes the referential following the right hand rule, 

and its projection along axis zB is always positive. Thus, matrix 
iC

B R becomes: 
 

  
iCiCiCiC

B zyxR   (73) 

where 

 iiC lx ˆ  (74) 
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iCiCiC yxz   (76) 

 
So, the inertia matrices of the cylinders can be written as: 
 

   ])diag([
zzCyyCxxC

iCrotiC
IIII  (77) 

 
where 

xxCI , 
yyCI  and 

zzCI are the cylinder moments of inertia expressed in its own frame. 

 

The inertial part of the total moment applied in {Ci}, due to the cylinder rotation, expressed 
in frame {B} will be 

      BtotiCBtotineiC
iC HM   (78) 

that is, 

          BmanineiC
iC

BfixineiC
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BtotineiC
iC MMM   (79) 

where, 
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dt
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   BfixineiC
iC M  represents the inertial part of the moment, considering the base platform is not 

moving, and    BmanineiC
iC M  represents the inertial part of the moment which results from the 

base motion. 
When equation (78) is pre-multiplied by T

iDJ , the inertial component of the generalized force 
applied to {P}, due to each cylinder rotation is obtained in frame {B}: 
 

        BtotineiC
iCT

iDBrottotineiC

P MJf   (82) 

 
The inertial components of the actuating forces will be 
 

         BrotfixineiC

PT
CrotfixineiC fJτ    (83) 

         BrotmanineiC

PT
CrotmanineiC fJτ    (84) 

 
Now, with reference to the gravitational part of the generalized force, if the base platform 
orientation changes, then the force applied in {P} and expressed in {B} results in 
 

     WgraiC

PT
B

W

BgraiC

P ff   (85) 

 
where   WgraiC

P f  is the gravitational generalized force applied in {P} and expressed in {W}. 

This force can be computed using the model that considers both a non-moving base 
platform, frame {B} parallel to {W}, and gz ˆB , i.e., 
 

  

 
EBP

B
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B
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WgraiC

P
P

|

|

x

x
f




  (86) 
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Taking the time derivative of the previous equation results in 
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Cylinder frames were chosen in the following way: axis 

iCx coincides with the leg axis and 
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iCy  is perpendicular to 
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So, the inertia matrices of the cylinders can be written as: 
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where 

xxCI , 
yyCI  and 

zzCI are the cylinder moments of inertia expressed in its own frame. 

 

The inertial part of the total moment applied in {Ci}, due to the cylinder rotation, expressed 
in frame {B} will be 
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that is, 

          BmanineiC
iC

BfixineiC
iC

BtotineiC
iC MMM   (79) 

where, 

         BP

B

iDBrotiCBP

B

iDBrotiCBfixineiC
iC

dt
d xJIxJIM    (80) 

         
BiC

B

BB

W

BB

W

BrotiCBB

W

BrotiCBmanineiC
iC ωωωIωIM    (81) 

 

   BfixineiC
iC M  represents the inertial part of the moment, considering the base platform is not 

moving, and    BmanineiC
iC M  represents the inertial part of the moment which results from the 

base motion. 
When equation (78) is pre-multiplied by T

iDJ , the inertial component of the generalized force 
applied to {P}, due to each cylinder rotation is obtained in frame {B}: 
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iDBrottotineiC
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The inertial components of the actuating forces will be 
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Now, with reference to the gravitational part of the generalized force, if the base platform 
orientation changes, then the force applied in {P} and expressed in {B} results in 
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where   WgraiC

P f  is the gravitational generalized force applied in {P} and expressed in {W}. 

This force can be computed using the model that considers both a non-moving base 
platform, frame {B} parallel to {W}, and gz ˆB , i.e., 
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iCP  being the cylinder potential energy. Using equation (46) it can be computed by: 
 

  
Bzi

P
P

i

C
CiC pz

l
bgmP   (87) 

 
The gravitational component of the actuating forces due to each cylinder,  graiCτ , is 
 

     BgraiC

PT
CgraiC fJτ    (88) 

 
3.3. Piston Modelling 
Position of the piston i, relative to {W} and expressed in {W}, may be computed using the 
following equation: 

 
WiS

B

WB

W

WiS

W ppp   (89) 

 
The linear velocity of the piston, relative to {W} and expressed in {W}, may be obtained 
taking the time derivative of the previous equation, that is, 
 

 
WiS

B

WB

W

WiS

B

WB

W

WiS

W pωvvv   (90) 

 
Considering that frame {Si} is attached to the piston i and positioned at its centre of mass, 
then 

WiS

B v  is the linear velocity of frame {Si} as seen by an observer fixed in {B}, and
WiS

Bp  

represents the position of {Si} relative to {B} and expressed in {W}. 
In frame {B} the following equation can be written: 
 

 
BiS

B

BB

W

BiS

B

BB

W

BiS

W pωvvv   (91) 

 
If the centre of mass of each piston is located at a constant distance, bS, from the piston to 
moving platform connecting point, Pi, (Figure 4), then its position relative to frame {B} is: 
 

   BposP

B

Bi

B
iSBiS

B b xplp  ˆ  (92) 

 
The linear velocity of the piston centre of mass, 

BiS

Bp , relative to {B} and expressed in the 

same frame, may be computed as: 

  iSBil

B
iBiS

B b lωlp ˆ   (93) 
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where the jacobian 

iGJ is given by: 

 













  T

Bi

P
i

T
iSi

T
iSiG bb pllIllIJ ~~~

ˆ~~
ˆ  (95) 

 
Pi

Bi
B

PPpi

bi xB

yB

zB

 
B

P pos B
x

bS

BS
B

i
p

il

 
Fig. 4. Position of the centre of mass of the piston i 
 
The total linear momentum of the piston i, expressed in frame {B} will be 
 

   BiS

W
SBtotiS m vQ   (96) 

 
mS being the piston mass. 
Taking the time derivative of the previous equation results in 
 

   BiS

W
SBtotiS

m vQ    (97) 

where, 
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The inertial part of the total force applied in {Si}, due to the piston translation, expressed in 
frame {B} will be 

      BtotiSBtotineiS
iS QF   (99) 

That is, 

          BmanineiS
iS

BfixineiS
iS

BtotineiS
iS FFF   (100) 
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iCP  being the cylinder potential energy. Using equation (46) it can be computed by: 
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moving platform connecting point, Pi, (Figure 4), then its position relative to frame {B} is: 
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Fig. 4. Position of the centre of mass of the piston i 
 
The total linear momentum of the piston i, expressed in frame {B} will be 
 

   BiS
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mS being the piston mass. 
Taking the time derivative of the previous equation results in 
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The inertial part of the total force applied in {Si}, due to the piston translation, expressed in 
frame {B} will be 

      BtotiSBtotineiS
iS QF   (99) 

That is, 

          BmanineiS
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BfixineiS
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BtotineiS
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B
SBfixineiS

iS mmm xJxJvF    (101) 
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where    BfixineiS

iS F  represents the inertial part of the force, considering the base platform is 

not moving, and    BmanineiS
iS F  represents the inertial part of the force which results from the 

base motion. 
When equation (99) is pre-multiplied by T

iGJ , the inertial component of the generalized force 
applied to {P}, due to each piston translation is obtained in frame {B}: 
 

        BtotineiS
iST

iGBtratotineiS

P FJf   (103) 

 
The inertial components of the actuating forces will be 
 

         BtrafixineiS

PT
CtrafixineiS fJτ    (104) 

         BtramanineiS

PT
CtramanineiS fJτ    (105) 

 
On the other hand, the total angular momentum of the piston about its centre of mass, 
expressed in frame {B}, will be: 
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Taking the time derivative of the previous equation results in 
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Considering that  

iSrotiS
I  is the inertia constant matrix of the rotating piston i, expressed in 

the frame fixed to the piston itself, {Si}, then 
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where  

iS
B R is the orientation matrix of each piston frame, {Si}, relative to the base frame, {B}. 

 

As the relative motion between cylinder and piston is a pure translation, {Si} can be chosen 
parallel to {Ci}. Therefore, 

iS
BR =

iC
B R . 

So, the inertia matrices of the pistons can be written as: 
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where 

xxSI , 
yySI  and 

zzSI are the piston moments of inertia expressed in its own frame. 

The inertial part of the total moment applied in {Si}, due to the piston rotation, expressed in 
frame {B} will be 
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   BfixineiS
iS M  represents the inertial part of the moment, considering the base platform is not 

moving, and    BmanineiS
iS M  represents the inertial part of the moment which results from the 

base motion. 
When equation (112) is pre-multiplied by T

iDJ , the inertial component of the generalized 
force applied to {P}, due to each piston rotation is obtained in frame {B}: 
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The inertial components of the actuating forces will be 
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Now, with reference to the gravitational part of the generalized force, if the base platform 
orientation changes, then the force applied in {P} and expressed in {B} results in 
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where    BfixineiS

iS F  represents the inertial part of the force, considering the base platform is 

not moving, and    BmanineiS
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When equation (99) is pre-multiplied by T
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where   WgraiS

P f  is the gravitational generalized force applied in {P} and expressed in {W}. 

This force can be computed using the model that considers both a non-moving base 
platform, frame {B} parallel to {W}, and gz ˆB , i.e., 
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iSP  being the piston potential energy. Using equation (92) it can be computed by: 
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The gravitational component of the actuating forces due to each piston,  graiSτ , is 
 

     BgraiS

PT
CgraiS fJτ    (122) 

 
It should be noted that the base platform motion originates new inertial contributions to the 
parallel manipulator dynamic model, expressed by equations (38), (67), (84), (105) and (118). 
These contributions should the added to the corresponding ones resulting from the model 
that considers a fixed-base: equations (37), (66), (83), (104) and (117).  Regarding the 
gravitational part of the dynamic model, the base platform motion modifies the 
gravitational force components, resulting in the equations (42), (88) and (122), which can 
also be added to the previous ones. 
Computational efficiency of the proposed model has been evaluated by counting the 
number of scalar operations needed in the calculations (sums, multiplications and 
divisions). For this purpose, the Maple® software package was used. The results were then 
compared with the ones obtained by using the Lagrange formulation. The generalized 
momentum approach resulted in a much more efficient dynamic model. Regarding the total 
number of sums and multiplications involved in the two models, the ratio is five, 
approximately. This might be a great advantage if real-time simulation and control is 
needed. 

 
4. Conclusion 
 

A parallel manipulator is a complex multi-body dynamic system having several closed 
loops. Typically, it is composed of a (usually) fixed base platform and a moving payload 
platform, connected by at least two independent open kinematic chains. Dynamic modelling 
of parallel manipulators presents an inherent difficulty. Despite the intensive study in this 
topic of robotics, mostly conducted in the last two decades, additional research still has to be 
done in this area. 

 

In this book chapter an approach based on the manipulator generalized momentum was 
explored and applied to the dynamic modelling of a Stewart platform manipulator. The 
system dynamic equations were obtained for the general case of a non-fixed base platform. 
It was shown the base platform motion originates new inertial force contributions to the 
parallel manipulator dynamic model. Compact analytical expressions for these contributions 
were presented and it was shown they can be easily added to the corresponding ones 
resulting from the model that considers a fixed base. On the other hand, regarding the 
gravitational part of the dynamic model, the base platform motion modifies the 
gravitational force components derived when considering a fixed base platform. Analytical 
expressions for these components were also presented. Computational efficiency of the 
dynamic model was evaluated by counting the number of scalar operations that are needed.  
The results were then compared with the ones obtained by using the Lagrange formulation. 
The generalized momentum approach results in a much more efficient dynamic model. 
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