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1. Introduction     
 

Rigid Link Electrically Driven (RLED) robot manipulators are used extensively in 
applications. For RLED manipulators, a hybrid adaptive-learning controller, which do not 
utilize the velocity measurements, is designed and proved that it can be made semi-global 
asymptotically stable (Canbolat et al., 1996). The learning part in that work (Canbolat et al., 
1996) is based on the results given in (Messner et al. 1991). However (Messner et al., 1991) 
neglected the electrical dynamics and the velocity measurements are available. In (Canbolat 
et al., 1996), the system is designed through a high pass filter which produces the surrogates 
of velocity. Later in another work, (Kaneko & Horowitz, 1997) designed a similar controller 
for a robot manipulator using a velocity observer neglecting the electrical dynamics. The 
system in (Canbolat et al., 1996) had not been verified through simulation and experiments. 
Recently, (Uguz & Canbolat, 2006) published the simulation results of the controller 
proposed in (Canbolat et al., 1996) for a sinusoidal desired position. However, a typical 
desired position for a robotic application is not generally sinusoidal. Due to this, more 
general position vectors should be generated. A general task requires a smooth trajectory, 
which starts from an initial position to a final position and repeats this over and over again. 
Such a desired trajectory can be generated in several ways (Fu et al., 1987). In the simulation 
of the system in (Canbolat et al., 1996), desired functions should satisfy the certain 
specifications. For this purpose, the polynomial method given in (Fu et al., 1987) is slightly 
modified in order to accommodate with the requirements of the controller. The 
modifications are necessary due to the continuous third derivative or jerk requirement in 
(Canbolat et al., 1996). Here, we also proposed other methods, which utilize transcendental 
functions. Transcendental function methods give a trajectory that can be continuously 
differentiable up to any order.  
Learning control law is usually used for repetitive tasks in which a certain task should be 
repeated in each cycle. Indeed, the adaptive and learning control schemes are very similar, 
since both strategies are based on the estimation of unknown system dynamics. However, 
the learning control philosophy tries to estimate the unknown time functions instead of 
estimating the unknown constant parameters of the system as in the adaptive control setup. 
The aim of the learning control is to improve the tracking performance of the manipulator at 
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each cycle using the error information obtained during the previous cycles. Thus the 
tracking of a desired trajectory is expected to improve in a period of the specified task 
comparing the results in the previous period (Arimoto, 1986; Messner et al., 1991). The 
control law is adjusted using the tracking error obtained at previous trials. The controller is 
expected to “learn” the unknown dynamics and make the tracking error goes to zero 
(Messner et al., 1991). The research on the design of adaptive control laws which tracks a 
desired trajectory asymptotically for rigid link robot manipulators has been conducted for 
years. The parametric uncertainties for a given system are inevitable for precise control. The 
uncertainties considerably affect the control performance of the system. Adaptive 
controllers, which updates the parameter estimates according to an adaptive update rule, 
tries to achieve the required specifications in the presence of parametric uncertainties (Lewis 
et al., 1993). In the case of robot manipulators, the control should be nonlinear due to the 
nonlinear nature of robot manipulator dynamics. Adaptive control law requires the linear 
parameterization of the system dynamics (Sadegh et al., 1990). However, the learning 
controller is generally used for periodic desired trajectories (Arimoto et al., 1985; Bondi et 
al., 1988; Horowitz et al., 1991; Kaneko & Horowitz, 1992; Kawamura et al., 1988; Kuc et al., 
1992; Qu et al., 1993). (Messner et al., 1991) proposed a new learning algorithm. The 
algorithm is based on the selection of a Hilbert-Schmidt kernel. The uncertainties are 
modeled as an integral equation, which includes the multiplication of the kernel and a 
function that represents the system uncertainties. The learning update rule is based on the 
estimation of the system uncertainties via an update rule for the unknown function in the 
integral equation in terms of the known system variables. The controller makes the system 
follow the desired trajectory asymptotically (Canbolat et al., 1996). 
The simulation of the learning control scheme (Canbolat et al., 1996) could not be achieved 
due to the partial derivatives of the control law with respect to the second time variable 
created by the Hilbert-Schmidt kernel. The two-time variables make the system complicated 
to simulate using traditional simulation packages, such as MATLAB® Simulink and 
SIMNON. In order to simulate the system in Simulink, the second time variable is 
considered to be discrete. Therefore, only the samples of the variables at specified locations 
on the second axis are estimated instead of a continuum of time. However, this process does 
not result a discrete-time system. Instead, the process results a higher order nonlinear 
continuous system through the state variables created due to the time-dynamic nature of the 
control law in both independent time variables, that is, the controller equations include 
partial derivatives with respect to both time variables. Since time is not discretized the 
resulting variables on the second axis has still continuous dynamics with respect to the real 
time. 
In this work, the hybrid adaptive/learning controller proposed by (Canbolat et al., 1996) is 
simulated. The controller does not need the exact parameter values of the robot 
manipulator. The parameters of the electrical subsystem are updated according to an 
adaptive rule; while the uncertainties in the mechanical subsystem are compensated via 
learning term presented by (Messner et al., 1991) and (Canbolat et al., 1996). The controller 
was designed using a back-stepping technique and follows the desired trajectory 
asymptotically. The system used in the simulation is a rigid-link electrically driven (RLED) 
two-link planar robot manipulator, which is actuated by brushed DC (BDC) motors. The 
controller does not use the link velocities and compensates the electrical subsystem 
parameter uncertainties using an adaptive update law, while compensating the 

 

uncertainties in the mechanical subsystem via a learning law. The controller is a partial state 
feedback controller which uses only the link positions and the actuator currents and forces 
the system follow the desired trajectory asymptotically (Canbolat et al., 1996). The controller 
is simulated using the MATLAB® SIMULINK software package. The results of the 
simulation shows that the proposed controller provides the semi-global asymptotic 
trajectory following. 
Robot manipulators are implemented in various types like rectangular, cylindrical, 
spherical, revolute and horizontal joints to achieve the desired movements. From an 
industrial point of view, the Selective Compliance Articulated Robotic Arm (SCARA) type 
manipulators are utilized in the processes such as pick-and-place, painting, brushing, and 
peg-in-hole. In general, a SCARA manipulator has four degrees of freedom. Shoulder, elbow 
and wrist arms are controlled by servo motors while the fourth movement is realized 
pneumatically.  
Various types of robot manipulators are designed according to the required movement 
types but the design of the controller is as important as the design of the mechanical parts. 
Several studies are available in the literature related to the design of controllers for robot 
manipulators employing classical proportional-integral-differential (PID) (Das & Dulger, 
2005), adaptive (Queiroz et al., 1997; Kaneko & Horowitz, 1997), learning (Canbolat et al., 
1996; Horowitz et al., 1991; Messner et al., 1991) artificial intelligence (Golnazarian, 1995; 
Jungbeck & Madrid, 2001) and fuzzy logic algorithms (Lewis et al., 1993).   
Here, we describe the design of the hybrid adaptive repetitive controllers given in (Canbolat 
et al., 1996) and (Horowitz et al., 1991) and generate desired position functions, which 
satisfy the specifications given. However, the computation of derivatives requires the 
manipulation of highly nonlinear transcendental functions. The physical limitations of the 
robot manipulator are not considered in generation of desired trajectories. For a thorough 
position function the physical properties should be considered, such as, maximum velocity, 
acceleration, and jerk. Then a delayed hybrid adaptive repetitive controller (Sahin & 
Canbolat, 2007) is designed based on the method of (Horowitz et al., 1991). Also, the 
controllers are applied to a Serpent-1 model SCARA manipulator used in (Das & Dulger, 
2005) in a simulation environment for a desired path generated according to the 
specifications of the hybrid adaptive-learning controller. Then, the performance of the robot 
with classical PD controller, learning based controller without electrical dynamics and 
adaptive/learning based hybrid controller are examined by means of simulations. Based on 
the simulation results, the performance of learning based controllers and classical PD 
controller is discussed. 

 
2. Control Objective 
 

The objective of this work is to develop a repetitive link position tracking controller for rigid 
link electrically driven (RLED) robot manipulators driven by brushed DC motors. The 
controller compensates for the effects of actuator dynamics. Furthermore, it uses only the 
link position and motor current measurements while compensating for the parametric 
uncertainty throughout the entire mechanical system and eliminating the link velocity 
measurements.  
To facilitate the control law development, the position tracking error is defined as 

 e=qd-q.      (1) 
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not result a discrete-time system. Instead, the process results a higher order nonlinear 
continuous system through the state variables created due to the time-dynamic nature of the 
control law in both independent time variables, that is, the controller equations include 
partial derivatives with respect to both time variables. Since time is not discretized the 
resulting variables on the second axis has still continuous dynamics with respect to the real 
time. 
In this work, the hybrid adaptive/learning controller proposed by (Canbolat et al., 1996) is 
simulated. The controller does not need the exact parameter values of the robot 
manipulator. The parameters of the electrical subsystem are updated according to an 
adaptive rule; while the uncertainties in the mechanical subsystem are compensated via 
learning term presented by (Messner et al., 1991) and (Canbolat et al., 1996). The controller 
was designed using a back-stepping technique and follows the desired trajectory 
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two-link planar robot manipulator, which is actuated by brushed DC (BDC) motors. The 
controller does not use the link velocities and compensates the electrical subsystem 
parameter uncertainties using an adaptive update law, while compensating the 
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is simulated using the MATLAB® SIMULINK software package. The results of the 
simulation shows that the proposed controller provides the semi-global asymptotic 
trajectory following. 
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spherical, revolute and horizontal joints to achieve the desired movements. From an 
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1996; Horowitz et al., 1991; Messner et al., 1991) artificial intelligence (Golnazarian, 1995; 
Jungbeck & Madrid, 2001) and fuzzy logic algorithms (Lewis et al., 1993).   
Here, we describe the design of the hybrid adaptive repetitive controllers given in (Canbolat 
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manipulation of highly nonlinear transcendental functions. The physical limitations of the 
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The parametric uncertainties of the mechanical subsystem are included in c() of (11) and the 
unknown electrical subsystem parameters are represented by the following vector  
 

 3
1 2, , ... ,

TT T T n
e ene e                                                     (2) 

where 

 3, , T
ei i i biL R K                                                        (3) 

 
in which Li, Ri, and Kbi are the diagonal elements of electrical subsystem matrices L, R, and 
Kb, respectively. The true values of these parameters are not known except it is assumed that 
their upper and lower bounds are known. Whenever these upper and lower bounds are 
referred in the text, we will denote upper and lower bounds of a parameter matrix with the 
subscripts upper and lower, respectively. For example, Llower≤min(L) denotes the lower 
bound for the matrix L, where min(L) is the minimum eigenvalue of the matrix L.  

A dynamic estimate 3ˆ n
e   is used for θe. The parameter estimation error, e  is defined 

as follows  

 ˆ
e e e    .     (4) 

In the following section, we will give the details of the control design. The controller will be 
a partial state feedback controller in the sense that it will not utilize link velocity 
measurements to compensate for parametric uncertainties in the system. It is shown that the 
designed controller guarantees the semi-global asymptotic link position tracking. The 
system performance is simulated through a computer code. The code is written for both 
hybrid adaptive-learning controllers for BDC RLED robot manipulators and for the learning 
controller designed in (Messner et al., 1991). The results of the simulations show that the 
controller performs well in terms of error is below some certain value. However, the error 
does not become zero, but it has some average value. This is because of the complexity of 
the control law and the minimum information used to achieve the control goal. 

 
3. System Model 
 

3.1 Robot and Actuator Dynamics 
The dynamics of an n-link robot manipulator electrically driven by brushed DC (BDC) 
motors can be expressed as follows: 

( ) ( , ) ( )m dM q q V q q q G q F q K I       (mechanical subsystem) (5) 

 bLI + RI + K q = v   (electrical subsystem)  (6) 
where,  

qqq ,,   :nx1 link position, velocity and acceleration vectors, respectively, 
M(q)  :nxn symmetric, positive definite inertia matrix,  

),( qqVm   :nxn matrix of centripetal and Coriolis terms, 
Fd  :nxn constant, diagonal, dynamic friction matrix, 
G(q)  :nx1 gravitational effects vector, 

 

   :nx1 torque vector,  
L  :nxn diagonal inductance matrix,  
R   :nxn diagonal resistance matrix,  
Kb   :nxn diagonal back-emf matrix,  
K   :nxn diagonal torque coefficients matrix, and  
v   :nx1 motor input voltages vector. 
 
The periodic desired trajectory qd(t) and its time derivatives up to 3rd order should be 
continuous and bounded (Canbolat et al., 1996).  
The following properties of robot dynamics were utilized in the stability analysis of the 
controller:  
 
1. For any given vector, x(t), the inertia matrix, M(q), satisfies the following inequality:  
 

 
2 2

1 2( )TM x x M q x M x                                               (7) 
 
where M1 and M2 are known positive constants that depend on the mass properties of the 
specific robot for which the controller is designed. 
 
2. The matrix ( ) 2 ( , )mM q V q q  is skew symmetric, that is, for any given vector x, we have 
 

  ( ) 2 ( , ) 0T
mx M q V q q x                                                (8) 

 
3. The Coriolis-centripetal matrix Vm is bounded as 
 

 ( , )m ciV q q q

                                                    (9) 

 
where c is a known positive constant. 
 
4. The left-hand side of (5) can be written in terms of the desired trajectory as 
 

 ,( ) ( ) ( ) ( )md d d d d d d dw t M q q V q q q G q F q       .                          (10) 

 
Since the desired trajectories , ,d d dq q q  are periodic with the period T, w(t) of (10) is also 
periodic. w(t), can be expressed as a linear integral equation as shown by (Horowitz et al., 
1991). That is, w(t) can be expressed as follows  

 
0

( ) ( , ) ( )
T

w t K t c d                                                 (11) 

 
where K(t,) is a known Hilbert-Schmidt kernel and c() is an unknown influence function. 
Note that t and  are independent variables.  
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0

( ) ( , ) ( )
T

w t K t c d                                                 (11) 

 
where K(t,) is a known Hilbert-Schmidt kernel and c() is an unknown influence function. 
Note that t and  are independent variables.  
 

www.intechopen.com



Advances in Robot Manipulators656

 

5. (Horowitz et al., 1991) used the kernel of the form 

        0
1

cos 2 / cos 2 / sin 2 / sin 2 /( , ) m m
m

f mt T m T d mt T m TK t f      




   ,      (12)  

where fi and di’s are scalar constants, which satisfy the conditions,  
 
Dm-2<| fm| and Dm-2<| dm| for all m>N with D, N are constants. 
 
If the kernel of the form given in (12) is utilized, then 

2

0

( )
T

c d                                                         (13) 

where  is a positive constant. 
 
Consider the following kernel, which is a Gaussian distribution function, given by  

 
2

2
( )1( , ) exp
22

tK t 
 

 
  
 

                                       (14) 

where   is a positive design constant. This function satisfies the conditions given in (12) 
(Horowitz et al., 1991). 
 
If the kernel defined in (13) is used, then the following relations can be shown: 

2

[0, ] 0

sup ( , )
T

t T
K t d  


                                                (15) 

2

[0, ] 0

sup ( , )
T

d
t T

K t d
t

  


       ,           (16) 

where  and d are positive constants.  

 
3.2 Position Tracking Controller 
To achieve the control objective, the methods proposed by (Burg et al., 1996) and (Horowitz 
et al., 1991) are combined. The design procedure can be summarized as: i) We use a pseudo-
velocity filter to generate the signals for use as link velocity, ii) since the developed torque is 
a function of motor currents, a desired current signal is designed to force the link position to 
track the desired trajectory (backstepping) and iii) the voltage control input is designed to 
ensure the motor currents tracks the desired current. 
Using the position tracking error defined in (1), the following high pass filter is designed to 
obtain a velocity dependent signal ef :  

2( 1) ( 1)

(0) (0)
f

p k p k e
e ke p
p ke

    
  




   (17) 

 
where k is a positive gain constant and the auxiliary signal p is used to get two 
implementable equations for the filter.  

 

The filtered tracking error is defined as follows  
 

 fe e e    .     (18) 

 
Note that, the filtered tracking error, , cannot be measured, since the link velocities cannot 
be measured. Based on the dynamics of , the auxiliary variable w1(t) is defined as 
 

1
1

0 0
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Note that the uncertainties in K is now included in w1(t). The desired current, Id, is designed 
to force the filtered tracking error, to zero.  
 
The desired current, Id, is defined as  
 

 1ˆ ( )d fI w t ke e       (20) 

 
and the current tracking error, I, is defined as  

 I dI I              (21) 
 
where 1ˆ ( )w t is the estimate of w1(t) and is defined as 
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 where KL, is an nxn diagonal, positive definite gain matrix.  
 
The electrical parameter regression matrix is defined as  
 

2 ( 1) ( )e e f b d fY Lw k Le kLe RI K q e e           (24) 

where  
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5. (Horowitz et al., 1991) used the kernel of the form 
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where fi and di’s are scalar constants, which satisfy the conditions,  
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where  and d are positive constants.  

 
3.2 Position Tracking Controller 
To achieve the control objective, the methods proposed by (Burg et al., 1996) and (Horowitz 
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where k is a positive gain constant and the auxiliary signal p is used to get two 
implementable equations for the filter.  
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 where KL, is an nxn diagonal, positive definite gain matrix.  
 
The electrical parameter regression matrix is defined as  
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where  
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Based on the current tracking error dynamics the voltage control input is designed as 
 

 2 2 4
51 2 3 42

ˆ 1e e L n In n n niv Y K k k k k k k           (26) 

 
where ║KL║i2 denotes the induced-2 norm of the matrix KL and the kni (i=1,2,...,5) and  are 
positive control gains, and the adaptive electrical parameter update rule is defined as 
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           (27) 
 
with e3nx3n is a positive definite, diagonal adaptive gain matrix and the electrical 
regression matrix Ye3nx3n is defined as  
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where w2i is the ith element of w2 defined in (25). 
 
The following theorem can be stated for the tracking performance of the proposed controller 
(Canbolat et al., 1996).  
 
Theorem 1: If the control gains kni and kn satisfy the following conditions 
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then 

 

 lim ( ) 0.
t
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In the above equations, (.)lower and (.)upper denotes the known lower and upper bounds for the 
eigenvalues of the corresponding unknown parameter matrices, respectively. Similarly, 
min(.) and max(.) denotes the minimum and maximum eigenvalues of the matrix in 
parentheses, respectively. 
 
The proof of this theorem can be found in (Canbolat et al., 1996). For the sake of brevity, the 
proof is omitted here. 

 
3.3 Delayed Learning Rule 
We define the following delayed update rule for 1ˆ ( )w t in (22) and w2(t) in (25) similar to 
(Messner et al., 1991): 
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with 0ˆ ( ) (0, ) (0)x Lc K K e   . Note that the form of (22) and (25) are not changed except 

the estimate of ˆ ( , )xc t   defined in (23) is replaced with ˆ ( )k
xc  . Similarly, all other equations 

are same. One can use the same equations for the controller by changing (22), (23) and (25) 
with (36), (38) and (37), respectively. This definition aims the reduction of computational 
burden for real time applications. One can show that the controller with the delayed 
learning rule of (38) is asymptotically stable using the arguments used by (Messner et al., 
1991) and (Canbolat et al., 1996). 

 
3.4 Generation of Desired Trajectories 
A proper desired trajectory should be generated for the proposed controller, for 
performance evaluation. A position function for a robot manipulator is a smooth function 
that starts from a certain initial position and ends at a final position. Generally, the 
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The following theorem can be stated for the tracking performance of the proposed controller 
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with 0ˆ ( ) (0, ) (0)x Lc K K e   . Note that the form of (22) and (25) are not changed except 

the estimate of ˆ ( , )xc t   defined in (23) is replaced with ˆ ( )k
xc  . Similarly, all other equations 

are same. One can use the same equations for the controller by changing (22), (23) and (25) 
with (36), (38) and (37), respectively. This definition aims the reduction of computational 
burden for real time applications. One can show that the controller with the delayed 
learning rule of (38) is asymptotically stable using the arguments used by (Messner et al., 
1991) and (Canbolat et al., 1996). 

 
3.4 Generation of Desired Trajectories 
A proper desired trajectory should be generated for the proposed controller, for 
performance evaluation. A position function for a robot manipulator is a smooth function 
that starts from a certain initial position and ends at a final position. Generally, the 

www.intechopen.com



Advances in Robot Manipulators660

 

acceleration and velocity are required to be continuous and smooth. However, in our case 
the desired trajectory should be continuously differentiable up to the third order. There are 
several methods to generate the desired trajectories. One common method is to separate the 
trajectory into three main parts (initial-lift off (IL), lift off-set down (LS), and set down-final 
(SF)) and impose the continuity conditions at the boundaries. The coefficients of the 
polynomials are to be solved according to the imposed conditions. (Fig. 1). 

 
Fig. 1. Critical points for a robot end-effector position 

 
In this section, we propose several methods to determine the desired trajectories. 
Polynomial methods are the modifications of 3-5-3 and 4-3-4 methods given in (Fu et al., 
1987). The naming of the method is based on the degrees of the polynomials, which are 
valid for the IL, LS and SF parts. Since these methods generate functions continuously 
differentiable up to the second order, we should have modified the method to generate 
functions with continuous third time derivatives. The modification is done by increasing the 
degrees of the polynomials. Following the same convention, the modified methods are 
named as 4-6-4 and 5-4-5. Detailed formulae can be found in (Fu et al., 1987). 
Formulation is carried as in (Fu et al., 1987). Let t0, t1, t2, t3 be the time boundaries for 
subtrajectories IL, LS and SF (Fig. 2). Let us assign the numbers 1, 2, 3, 4, 5, and 6 for 
forward IL, LS, SF and backward IL, LS, SF subintervals, respectively, and define the 
following dimensionless variable  for each subinterval as follows  
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for t[ti-1, ti] and i=1, 2, …, 6. Note that, in a given subinterval [ti-1, ti] . With the 
definition given in (39) each subtrajectory can be defined on [0, 1]. Boundary conditions 
become the conditions at =0 and =1. 
 

 

Let hi be the polynomial in the ith subinterval. The first and kth derivative of hi can be found 
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Fig. 2. Critical points of a desired trajectory 
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Since both methods use polynomials of maximum 6th degree in each subinterval, one can 
write the following general expressions for hi and its derivatives: 
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Let qi, ql, qs ve qf be the positions at the initial, lift-off, set-down and final positions, 
respectively (Fig. 1). Each polynomial should satisfy the following boundary conditions: 
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acceleration and velocity are required to be continuous and smooth. However, in our case 
the desired trajectory should be continuously differentiable up to the third order. There are 
several methods to generate the desired trajectories. One common method is to separate the 
trajectory into three main parts (initial-lift off (IL), lift off-set down (LS), and set down-final 
(SF)) and impose the continuity conditions at the boundaries. The coefficients of the 
polynomials are to be solved according to the imposed conditions. (Fig. 1). 

 
Fig. 1. Critical points for a robot end-effector position 

 
In this section, we propose several methods to determine the desired trajectories. 
Polynomial methods are the modifications of 3-5-3 and 4-3-4 methods given in (Fu et al., 
1987). The naming of the method is based on the degrees of the polynomials, which are 
valid for the IL, LS and SF parts. Since these methods generate functions continuously 
differentiable up to the second order, we should have modified the method to generate 
functions with continuous third time derivatives. The modification is done by increasing the 
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Since both methods use polynomials of maximum 6th degree in each subinterval, one can 
write the following general expressions for hi and its derivatives: 
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Let qi, ql, qs ve qf be the positions at the initial, lift-off, set-down and final positions, 
respectively (Fig. 1). Each polynomial should satisfy the following boundary conditions: 
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where primes denote the derivative with respect to time. In (42), i should be 1 or 2. (42) 
creates 8 equations for the coefficients. At the initial and final positions, the following 
conditions should be satisfied: 
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From (43) we have another set of 8 equations. Thus we have 16 equations for 17 unknown 
coefficients. In order to have a unique solution, one can use the position at the lift-off or set-
down positions. Using the lift-off position, we have the following equation: 
 

 h1(1)=ql                    (44) 
 
Since the desired trajectory is periodic, the manipulator should go back to the initial position 
at the end of the period. Due to this, the formulation given in (39-44) should be done twice 
for both reaching the final position and returning to the initial position. The forward and 
backward trajectories may not be symmetric. That is, we are free to select different time 
intervals and different lift-off and set-down positions. We can even use different methods in 
the generation of forward and backward paths. Typically, symmetrical trajectories are easy 
to use in applications. 
There are 8 critical points in a period (Fig. 2). The time instants t0, t1, t2, t3, t4, t5, t6, t7 and the 
corresponding positions q0, q1, q2, q3, q4, q5, q6, q7 are critical points of a desired trajectory. The 
first 4 points q0, q1, q2, q3 correspond to initial, lift-off, set-down and final positions of the 
forward path, and the last 4 points q4, q5, q6, q7 correspond to initial, lift-off, set-down and 
final positions of the backward path, respectively. The equalities,  
 

q0=q7, q3=q4,     (45) 
 
should be satisfied for a periodic trajectory. For a symmetrical trajectory, the following 
constraints in positions,  
 

q1=q6, q2=q5,     (46) 
 
and in time 
 

t0=Tt7, t1=Tt6, t2=Tt5, t3=Tt4,   (47) 
 
should be satisfied. For each desired trajectory, the following position values are used: 

 

qi=0, ql=0.08, qs=0.92, qf=1,  
in forward path and 
qi=1, ql=0.92, qs=0.08, qf=0 
in backward path. The corresponding time instants are assigned as follows: 
t0=0,1T;  t1=0,15T;  t2=0,25T;  t3=0,3T 
t4=0,7T;  t5=0,75T;  t6=0,85T;  t7=0,9T 
All position values are in radians, since we used a two-link robot with revolute joints. It is 
possible to select closer lift-off and set-down points. However, in this case the 
subpolynomials may have maxima and minima inside their own subintervals. Typically, a 
robot path should be smooth and monotone increasing or decreasing. 
 
4-6-4 Method 
In this method, IL and SF polynomials are fourth order. Therefore,   
ai6=ai5=0  
in (41). Furthermore, the initial conditions in (43) requires  
a10=qb, a11=a12=a13=0  
for forward path and  
a40=qb, a41=a42=a43=0 
for backward path. The conditions in (42), (43) and (44) give the following matrix equality 
for the unknown coefficients: 
 

1 2
22
21

33
21

2 2 2 2 22
2 2 2 2 2
2 2 2 2 2
3 3 3 3
2 2 2 2

00 0 0 0 0 01 0 0 0
01 0 0 0 0 01 0 0 0
01 0 0 0 0 01 1 0 0
04 0 0 0 00 0 0

6 0 0 0 0 00 0 0
0 0 0 00 0 0 04
1 1 1 1 10 1 1 00

6 5 4 30 2 0 00
0 0 00 15 10 6 3 0
0 0 00 20 10 4 00
0 0 10 0 0 0 0 00
0 0 40 0 0 0 0 00
0 0 60 0 0 0 0 00
0 0 40 0 0 0 0 00

A A
AA

AA

A A A A AA
A A A A A
A A A A







14

10

26

25

24

23

22

3 21
2
3 20

3
3 34

33

32

31

30

00 0
00 0

000 0
000 0 0
000 0 0

00 0 0
00 0 1

0 0 0
0 00

0 00
1 1 11
3 2 01
3 1 00
1 0 00

i

l

qa
qa

a
a
a
a
a

A a
A a

A a
a
a
a
a

  
  
  
  
  
  
  
  
  
      
  
     
  
  
  
  
  
  
  

   

0
0
0
0
0

0
0
0

fq

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (48) 

 
 where Ai’s are defined in (40). (48) is valid for both forward and backward paths. Solving 
(48) for forward and backward paths, we obtained the following solution (Fig. 3): 
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where primes denote the derivative with respect to time. In (42), i should be 1 or 2. (42) 
creates 8 equations for the coefficients. At the initial and final positions, the following 
conditions should be satisfied: 
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From (43) we have another set of 8 equations. Thus we have 16 equations for 17 unknown 
coefficients. In order to have a unique solution, one can use the position at the lift-off or set-
down positions. Using the lift-off position, we have the following equation: 
 

 h1(1)=ql                    (44) 
 
Since the desired trajectory is periodic, the manipulator should go back to the initial position 
at the end of the period. Due to this, the formulation given in (39-44) should be done twice 
for both reaching the final position and returning to the initial position. The forward and 
backward trajectories may not be symmetric. That is, we are free to select different time 
intervals and different lift-off and set-down positions. We can even use different methods in 
the generation of forward and backward paths. Typically, symmetrical trajectories are easy 
to use in applications. 
There are 8 critical points in a period (Fig. 2). The time instants t0, t1, t2, t3, t4, t5, t6, t7 and the 
corresponding positions q0, q1, q2, q3, q4, q5, q6, q7 are critical points of a desired trajectory. The 
first 4 points q0, q1, q2, q3 correspond to initial, lift-off, set-down and final positions of the 
forward path, and the last 4 points q4, q5, q6, q7 correspond to initial, lift-off, set-down and 
final positions of the backward path, respectively. The equalities,  
 

q0=q7, q3=q4,     (45) 
 
should be satisfied for a periodic trajectory. For a symmetrical trajectory, the following 
constraints in positions,  
 

q1=q6, q2=q5,     (46) 
 
and in time 
 

t0=Tt7, t1=Tt6, t2=Tt5, t3=Tt4,   (47) 
 
should be satisfied. For each desired trajectory, the following position values are used: 

 

qi=0, ql=0.08, qs=0.92, qf=1,  
in forward path and 
qi=1, ql=0.92, qs=0.08, qf=0 
in backward path. The corresponding time instants are assigned as follows: 
t0=0,1T;  t1=0,15T;  t2=0,25T;  t3=0,3T 
t4=0,7T;  t5=0,75T;  t6=0,85T;  t7=0,9T 
All position values are in radians, since we used a two-link robot with revolute joints. It is 
possible to select closer lift-off and set-down points. However, in this case the 
subpolynomials may have maxima and minima inside their own subintervals. Typically, a 
robot path should be smooth and monotone increasing or decreasing. 
 
4-6-4 Method 
In this method, IL and SF polynomials are fourth order. Therefore,   
ai6=ai5=0  
in (41). Furthermore, the initial conditions in (43) requires  
a10=qb, a11=a12=a13=0  
for forward path and  
a40=qb, a41=a42=a43=0 
for backward path. The conditions in (42), (43) and (44) give the following matrix equality 
for the unknown coefficients: 
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 where Ai’s are defined in (40). (48) is valid for both forward and backward paths. Solving 
(48) for forward and backward paths, we obtained the following solution (Fig. 3): 
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Fig. 3. Desired position and its derivatives with 4-6-4 spline method 
 
5-4-5 Method 
In this method, we should have  

 

ai6=0 
for IL and SF subintervals in (41) and for the LS subinterval 
ai6=ai5=0. 
From the initial conditions in (43), we write  
a10=qb, a11=a12=a13=0 
for forward path and 
a40=qb, a41=a42=a43=0 
for backward path. 
The conditions in (42), (43) and (44) give the following matrix equality for the unknown 
coefficients: 
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 where Ai’s are defined in (40). (50) is valid for both forward and backward paths. Solving 
(50) for forward and backward paths, we obtained the following solution (Fig. 4): 
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Fig. 3. Desired position and its derivatives with 4-6-4 spline method 
 
5-4-5 Method 
In this method, we should have  
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for forward path and 
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 where Ai’s are defined in (40). (50) is valid for both forward and backward paths. Solving 
(50) for forward and backward paths, we obtained the following solution (Fig. 4): 
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Fig. 4. Desired position and its derivatives with 5-4-5 spline method 
 
Transcendental Function Methods 
In these methods, an upper and lower bounded, monotone increasing or decreasing 
transcendental function, which is continuously differentiable up to the third order, is used. 
In order to obtain a periodic trajectory, the argument of the transcendental function should 
be a continuously differentiable periodic function up to the third order. Typically, a 
sinusoidal function can be selected as the argument. The advantage of using a 
transcendental function with a periodic argument function is that for each subinterval the 
same function is used. This reduces the formulation time of the trajectory. Also the trajectory 
function never has local maxima and minima in the subintervals, since they are monotone 
increasing or decreasing. However, it is not easy to determine the exact lift-off and set-down 
points. The derivatives of the function may become very complex, as in the hyperbolic 
tangent case. Fortunately, we need only the first order derivatives, because the controller 
uses only the desired trajectory and the desired velocity to compute the input functions, as 
in (24).  
 
1.Hyberbolic Tangent Method 
Let us use the hyperbolic tangent function for the trajectory. In this method, there is no need 
to consider the forward and backward subintervals of IL, LS, and SF. Instead, we use a 
hyperbolic tangent function with a continuously differentiable (at least up to the third order) 
periodic function as the argument. Indeed the method uses the fact that the hyperbolic 

 

tangent function can take values in the interval [-1, 1]. Same function is valid for all times 
and for each subinterval of the trajectory. However, it is not easy to determine the 
boundaries for lift-off and set-down positions. There is no general method to determine 
these points. In this method the desired trajectory is defined as:  
 

h(t)=b[a+dtanh(ccos(t))]    (52) 
 
Where b is a weighting constant in radians, a is the constant that determines the initial 
position, c is the constant that determines the lift-off and set-down positions, d is the 
constant which determines the difference between the initial (babd) and final (ba+bd) 
positions,  is the angular frequency of the desired trajectory. Note that cosine function in 
the argument is continuously differentiable of any order. The determination method of the 
constant c is trial and error. Typically, c should be selected large enough so that the 
trajectory reaches to its final position and remains there for some time without subjecting 
excessive velocities and accelerations for a pick and place task (Fig. 5). However, a, b, and d 
can be determined according to the initial and final desired positions. One can easily find 
the velocity, acceleration and jerk functions by taking the successive derivatives of (52) as 
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The jerk expression given in (14) can also be written as follows 
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2.Error Function Method: 
Here the trajectory is selected as the integral of Gaussian distribution function, which is 
known as the error function, defined as 
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To get a continuous and periodic function, we use a sinusoidal argument as in hyperbolic 
tangent function. The following function is periodic, continuous and differentiable at least 
up to the third order: 

 ( ) erf cos( )h t B A D C t    .            (58) 
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To get a continuous and periodic function, we use a sinusoidal argument as in hyperbolic 
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The advantage of this function is that the derivatives are in terms of simple exponential and 
sinusoidal functions. Note that the function given in (58), has the initial value of zero, if one 
selects A=D. 

 
Fig. 5. Desired position with hyperbolic tangent function (c=10) 

 
3.5 PD and Learning Controllers 
A frequently used controller in control systems is the classical proportional-derivative (PD) 
controller (Das & Dulger, 2005). The main advantage of the PD controller is that it can easily 
be implemented on simple microcontroller architectures. On the other hand, the 
performance obtained from PD controllers is not satisfying for most of the sensitive 
applications. In this work, PD and learning controllers (Messner et al., 1991) are simulated 
along with the hybrid adaptive-learning controller (Canbolat et al. 1996) in order to compare 
the achieved performance. For this purpose, we repeat the main equations of learning 
controller below. 
First, the main equation of the PD controller is 

( )( ) ( )k p d
de tV t K e t K

dt
                                                    (59) 

where e(t) is the error function, Kp is the proportional control coefficient and Kd refers to the 
derivative control constant.  

 

The learning algorithm proposed by (Messner et al., 1991) has more complex structure than 
a PD controller. The mechanical part of the robot dynamics can be rearranged as 
 

( ) ( ) ( , ) ( ) ( )m dM q q T t V q q q G q F q                 (60) 
 
where T(t) is the control torques applied to the joints and q(t)=[q1(t), q2(t)]T is the position of 
the manipulator, q  and q  are nx1 vectors of joint velocities, and accelerations, respectively. 
The other terms are defined in (1). The following function, which includes the mechanical 
uncertainties, is defined 
 

( ) ( ) ( , ) ( )r d d m d d d dw t M q q V q q q G q             (61) 
 
where qd(t) denotes the desired periodic trajectory vector of the robot links and the dots 
denote the differentiation with respect to time, t. Using these two equations, the following 
error dynamics and the desired compensation control law (DCCL) can be derived  
 

 ˆ( ) ( , ) ( , ) ( ) ( )r re t f t e B t e w t w t           (62) 

ˆ( ) ( ) ( ) ( ) ( , ) ( )r v v p m n vT t w t F e t F e t d q q q e              (63) 

 
where TT T

p ve e e     and )(ˆ twr  is the estimate of the influence function, wr(t), that 

compensates for mechanical uncertainties, Fv and Fp are PD gains, ev(t) is the reference 
velocity error vector, e(t) is the position error vector, ( , )md q q  is the friction compensation. 
qn(ev) is the nonlinear compensation function. As it can be seen from (63), the repetitive-
learning algorithm utilizes PD control but also uses )(ˆ twr  to compensate for the uncertain 
parameters, thus providing “learning”. The position error is defined as 
 

( ) ( ) ( )p de t q t q t      (64) 

 
where qd(t) is the desired trajectory. The reference velocity error function is defined as 
 

)()()( tetete ppv    ,       (65) 

where  is a positive constant and the nonlinear compensation function is given as: 
 

vpvn eeeq
2

)(        (66) 

 
The estimate of the uncertainty function )(ˆ twr  is updated with following rules: 
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)(),(),(ˆ teRKtK
t
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L





    (68) 

 
where ),( tK  is a function that can be selected by the designer as in hybrid controller, e(t) 
is defined in (63), KL and R are constant matrices (Messner et al., 1991). 

 
4. SCARA Robot Model 
 

The SCARA manipulator considered in this study is an experimental robot that has DC 
servo motors for the movements of elbow and shoulder. The third movement is controlled 
pneumatically. The schematic configuration of the robot is shown in Fig. 6. 
 
The electrical and mechanical dynamical equations of the manipulator are as follows (Das & 
Dulger, 2005) 
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The elements A, B, C, and D in (71) are defined as 
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where Ia1 and Ia2 are motor currents, Va1 and Va2 are motor voltages, T1 and T2 are motor 
torques, θ1 and θ2 are link angles and θm1 and θm2 are motor angles of link 1 and link 2, 
respectively.  Other physical parameters and their values that appear in (72) for the Serpent-
1 model SCARA robot are given in Table 1. 

 
Fig. 6. Upper view of SCARA robot 
 

Parameter Meaning Value 

1aL , 2aL  Armature inductances of 
motors 1 and 2 

1.3mH, 1.3mH 

1aR , 2aR  Armature resistances of 
motors 1 and 2 

3.5 , 3.5  

1eK , 2eK  Inverse emf coefficients of 
motors 1 and 2 

0.047 V.s/rad, 
0.047 V.s/rad 

1TK , 2TK  Torque coefficients of 
motors 1 and 2 

0.047 Nm/A, 
0.047 Nm/A 
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where Ia1 and Ia2 are motor currents, Va1 and Va2 are motor voltages, T1 and T2 are motor 
torques, θ1 and θ2 are link angles and θm1 and θm2 are motor angles of link 1 and link 2, 
respectively.  Other physical parameters and their values that appear in (72) for the Serpent-
1 model SCARA robot are given in Table 1. 

 
Fig. 6. Upper view of SCARA robot 
 

Parameter Meaning Value 

1aL , 2aL  Armature inductances of 
motors 1 and 2 

1.3mH, 1.3mH 

1aR , 2aR  Armature resistances of 
motors 1 and 2 

3.5 , 3.5  

1eK , 2eK  Inverse emf coefficients of 
motors 1 and 2 

0.047 V.s/rad, 
0.047 V.s/rad 

1TK , 2TK  Torque coefficients of 
motors 1 and 2 

0.047 Nm/A, 
0.047 Nm/A 
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1J , 2J  Moment of inertias of 
arms 1 and 2 

0.0980kgm2, 
0.0980kgm2 

1mJ , 2mJ  Inertias of motors 1 and 2 3.3.10-6 kgm2, 
3.3.10-6 kgm2 

1m , 2m  Masses of arms 1 and 2 1.90 kg, 
0.93 kg 

1r , 2r  Lenghts of arms 1 and 2 250 mm, 
150 mm 

1N , 2N  Gearbox ratios of motors 1 
and 2 

90, 
220 

Table 1. Serpent-1 robot parameters and their values 

 
5. Simulation 
 

Dynamics of the SCARA robot and three types of controllers, namely PD, learning and 
adaptive/learning controllers are modelled in MATLAB Simulink environment. A general 
simulation model is given in Fig. 7. 
In the first simulation, the SCARA is controlled by PD controller. In this case, the electrical 
dynamics are neglected and the controller block is replaced with a PD controller (Fig.7). The 
control coefficients are selected as Kp1=300, Kd1=50, Kp2=30, Kd2=15 for link 1 and link 2, 
respectively (Das & Dulger, 2005). 
As the second simulation, SCARA is controlled by learning controller. Here the electrical 
dynamics are again neglected and the controller block is replaced with the learning 
controller designed by (Messner et al., 1991). In the learning controller, the parameters are 
selected as; 

 
Fig. 7. Detailed Block diagram of robot and controller 
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and p=10, ve n=0, dm(xp)=0 (Messner et al., 1991). The computation of ˆxc  and wr are 
accomplished by numerical integration with embedded function blocks. The learning 
controllers have two different independent dynamic (time) variables. The simulation 
packages do not allow more than one independent simulation variables. To overcome this 
limitation, the second time variable is defined as a discrete variable and at every discrete 
point some state variables are introduced according to the dynamics. The differentiation and 
integration in the second variable are defined through summation and difference equations.  
The result is a heavy computational burden on the system. 
The simulation model of the adaptive/learning hybrid controller is essentially the same as 
in Fig. 7. The parameters of the adaptive/learning controller are selected as; k=15, =12 and 
 

100 0
0 100LK  

  
 

    (76) 

 

Again, the computation of  ˆxc , 1w , w2  are realized with numerical integrator blocks. 
The desired link angle function is chosen as 
 

( ) 0.5 ( 1 tanh(10cos( )))dq t t     ,  (77) 
 
where =1 rad/s. 
The function given in (77) is a pick-and-place type task that is widely used in industrial 
applications. This trajectory function satisfies the periodicity and continuous 3rd order 
derivative requirements of hybrid/learning controller as discussed in section 3.4. 
The desired and achieved link angles when PD controller is used and the link angle errors 
are given in Fig. 8 and Fig. 9, respectively. The maximum angle errors are 0.4 rad for first 
link and 0.65 rad for the second link. 
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Fig. 8. Desired and simulated link angles when PD controller is utilized 

 
Fig. 9. Link angle errors when PD controller is used 
 
Similarly, the link angle errors for learning controller are plotted in Fig. 10. The maximum 
angle errors are 0.09 rad for first link and 0.19 rad for the second link. The angle error 
decreased with respect to PD controller case as it is expected. 
The link angle errors are given in Fig. 11 for the hybrid controller. Note that, the maximum 
link angles are lower compared to learning controller, 0.06 rad for both link 1 and link 2 (the 
error plots for link 1and 2 are overlapped in Fig. 11). It is worth noting that, the link angle 
errors have greater average values when hybrid controller is used. We think that the 
average value is greater for the hybrid controller, since it uses less information for the 
compensation of the uncertainties comparing with the learning controller given in (63), 
which uses both link positions and velocities. However the hybrid controller uses the 
measurements of link positions and motor currents. Furthermore, the learning controller 
neglects the electrical dynamics and compensates for only mechanical parameter 
uncertainties. On the other hand, the hybrid controller does not neglect electrical dynamics 
and compensates for mechanical and electrical parameter uncertainties. That is, the 
computational burden on the hybrid controller is much more than the learning controller. 
We think that this fact results more error in the average although the maximum error is less. 

 

 
Fig. 10. Link angle errors when learning controller is used 

 
Fig. 11. Link angle errors when adaptive/learning controller is used  

 
6. Conclusion 
 

In this paper, the design of the hybrid adaptive/learning controller is described. Also the 
design of the learning controller proposed by (Messner et al., 1991) is described shortly 
along with a classical PD controller. The simulation model of a SCARA robot manipulator is 
presented and the performance of the controllers are examined through simulation runs. 
The simulation model and its parameters are based on a physical model of a SCARA robot 
given in (Das & Dulger, 2005). The simulation model includes the mechanical subsystem, 
electrical subsystem and the three different types of controllers. The classical PD, learning 
and adaptive/learning controller schemes are modelled and SCARA robot is simulated with 
three types of controllers. 
The second time variable introduced in learning type controllers results a computational 
burden in dynamics, since the dynamics of controller is dependent both on the real time 
variable and the second time variable created via the Hilbert-Schmidt kernel used in 
learning laws. Moreover, no standard simulation package allows the use of a second 
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independent time variable in the models. To overcome this difficulty, we discretize the 
second variable. In order to keep the dynamics with respect to that variable we should have 
introduced a large number of extra system states at each discrete point of the second 
variable. Although the simulation is sufficiently fast with a high performance (1.7GHz CPU 
and 512MB RAM) personal computer, it is not fast enough with a personal computer of 
lower specifications (667Mhz CPU and 64MB RAM). Considering the much slower 
computers employed for the single task of controlling industrial robots, a real time 
application apparently is not possible at this stage. Therefore, the work to reduce the 
computational burden in the control law is continuing and as soon as this is achieved, an 
experiment to examine the hybrid controller for a real robot will be performed. 
The parameters of a 2-link Serpent-1 model robot are used in simulations and the robot is 
desired to realize a pick and place type movement. According to the simulation results, the 
learning and adaptive/learning hybrid controllers provided lower angle errors compared to 
classical PD controller. Moreover, the maximum angle errors of links when controlled by 
adaptive/learning controller decreased from 0.09 rad to 0.06 rad for first link and 0.19 rad to 
0.06 rad for second link compared to learning controller, which means 33.3% and 63.1% 
decrement for first link and second link, respectively. 
Although the hybrid controller is more complex than PD and learning controllers, its 
position and velocity errors have smaller maximum values than the learning controller. 
However its performance is not good in the error averages. We think that the high error 
averages are due to the fact that the hybrid controller uses partial state information (no link 
velocities) and compensates for both mechanical and electrical parameter uncertainties, 
whereas the learning controller uses full state information (both link positions and 
velocities) though it compensates only for mechanical uncertainties, since it neglects 
electrical dynamics. 
Our work is continuing to develop more powerful computational schemes for the hybrid 
adaptive/learning controller to reduce the computational burden. Recently, we tried to 
introduce a low pass filter in the hybrid controller to filter the high frequency components, 
which effect the tracking performance negatively, in the input voltage. The preliminary 
results show that the error becomes smoother and its average value reduces. 
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