
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Trajectory Control of RLED Robot Manipulators Using a New Type of Learning Rule 651

Trajectory Control of RLED Robot Manipulators Using a New Type of
Learning Rule

Hüseyin Canbolat

x

Trajectory Control of RLED Robot
Manipulators Using a New

Type of Learning Rule

Hüseyin Canbolat
Mersin University

Turkey

1. Introduction

Rigid Link Electrically Driven (RLED) robot manipulators are used extensively in
applications. For RLED manipulators, a hybrid adaptive-learning controller, which do not
utilize the velocity measurements, is designed and proved that it can be made semi-global
asymptotically stable (Canbolat et al., 1996). The learning part in that work (Canbolat et al.,
1996) is based on the results given in (Messner et al. 1991). However (Messner et al., 1991)
neglected the electrical dynamics and the velocity measurements are available. In (Canbolat
et al., 1996), the system is designed through a high pass filter which produces the surrogates
of velocity. Later in another work, (Kaneko & Horowitz, 1997) designed a similar controller
for a robot manipulator using a velocity observer neglecting the electrical dynamics. The
system in (Canbolat et al., 1996) had not been verified through simulation and experiments.
Recently, (Uguz & Canbolat, 2006) published the simulation results of the controller
proposed in (Canbolat et al., 1996) for a sinusoidal desired position. However, a typical
desired position for a robotic application is not generally sinusoidal. Due to this, more
general position vectors should be generated. A general task requires a smooth trajectory,
which starts from an initial position to a final position and repeats this over and over again.
Such a desired trajectory can be generated in several ways (Fu et al., 1987). In the simulation
of the system in (Canbolat et al., 1996), desired functions should satisfy the certain
specifications. For this purpose, the polynomial method given in (Fu et al., 1987) is slightly
modified in order to accommodate with the requirements of the controller. The
modifications are necessary due to the continuous third derivative or jerk requirement in
(Canbolat et al., 1996). Here, we also proposed other methods, which utilize transcendental
functions. Transcendental function methods give a trajectory that can be continuously
differentiable up to any order.
Learning control law is usually used for repetitive tasks in which a certain task should be
repeated in each cycle. Indeed, the adaptive and learning control schemes are very similar,
since both strategies are based on the estimation of unknown system dynamics. However,
the learning control philosophy tries to estimate the unknown time functions instead of
estimating the unknown constant parameters of the system as in the adaptive control setup.
The aim of the learning control is to improve the tracking performance of the manipulator at

32

www.intechopen.com

Advances in Robot Manipulators652

each cycle using the error information obtained during the previous cycles. Thus the
tracking of a desired trajectory is expected to improve in a period of the specified task
comparing the results in the previous period (Arimoto, 1986; Messner et al., 1991). The
control law is adjusted using the tracking error obtained at previous trials. The controller is
expected to “learn” the unknown dynamics and make the tracking error goes to zero
(Messner et al., 1991). The research on the design of adaptive control laws which tracks a
desired trajectory asymptotically for rigid link robot manipulators has been conducted for
years. The parametric uncertainties for a given system are inevitable for precise control. The
uncertainties considerably affect the control performance of the system. Adaptive
controllers, which updates the parameter estimates according to an adaptive update rule,
tries to achieve the required specifications in the presence of parametric uncertainties (Lewis
et al., 1993). In the case of robot manipulators, the control should be nonlinear due to the
nonlinear nature of robot manipulator dynamics. Adaptive control law requires the linear
parameterization of the system dynamics (Sadegh et al., 1990). However, the learning
controller is generally used for periodic desired trajectories (Arimoto et al., 1985; Bondi et
al., 1988; Horowitz et al., 1991; Kaneko & Horowitz, 1992; Kawamura et al., 1988; Kuc et al.,
1992; Qu et al., 1993). (Messner et al., 1991) proposed a new learning algorithm. The
algorithm is based on the selection of a Hilbert-Schmidt kernel. The uncertainties are
modeled as an integral equation, which includes the multiplication of the kernel and a
function that represents the system uncertainties. The learning update rule is based on the
estimation of the system uncertainties via an update rule for the unknown function in the
integral equation in terms of the known system variables. The controller makes the system
follow the desired trajectory asymptotically (Canbolat et al., 1996).
The simulation of the learning control scheme (Canbolat et al., 1996) could not be achieved
due to the partial derivatives of the control law with respect to the second time variable
created by the Hilbert-Schmidt kernel. The two-time variables make the system complicated
to simulate using traditional simulation packages, such as MATLAB® Simulink and
SIMNON. In order to simulate the system in Simulink, the second time variable is
considered to be discrete. Therefore, only the samples of the variables at specified locations
on the second axis are estimated instead of a continuum of time. However, this process does
not result a discrete-time system. Instead, the process results a higher order nonlinear
continuous system through the state variables created due to the time-dynamic nature of the
control law in both independent time variables, that is, the controller equations include
partial derivatives with respect to both time variables. Since time is not discretized the
resulting variables on the second axis has still continuous dynamics with respect to the real
time.
In this work, the hybrid adaptive/learning controller proposed by (Canbolat et al., 1996) is
simulated. The controller does not need the exact parameter values of the robot
manipulator. The parameters of the electrical subsystem are updated according to an
adaptive rule; while the uncertainties in the mechanical subsystem are compensated via
learning term presented by (Messner et al., 1991) and (Canbolat et al., 1996). The controller
was designed using a back-stepping technique and follows the desired trajectory
asymptotically. The system used in the simulation is a rigid-link electrically driven (RLED)
two-link planar robot manipulator, which is actuated by brushed DC (BDC) motors. The
controller does not use the link velocities and compensates the electrical subsystem
parameter uncertainties using an adaptive update law, while compensating the

uncertainties in the mechanical subsystem via a learning law. The controller is a partial state
feedback controller which uses only the link positions and the actuator currents and forces
the system follow the desired trajectory asymptotically (Canbolat et al., 1996). The controller
is simulated using the MATLAB® SIMULINK software package. The results of the
simulation shows that the proposed controller provides the semi-global asymptotic
trajectory following.
Robot manipulators are implemented in various types like rectangular, cylindrical,
spherical, revolute and horizontal joints to achieve the desired movements. From an
industrial point of view, the Selective Compliance Articulated Robotic Arm (SCARA) type
manipulators are utilized in the processes such as pick-and-place, painting, brushing, and
peg-in-hole. In general, a SCARA manipulator has four degrees of freedom. Shoulder, elbow
and wrist arms are controlled by servo motors while the fourth movement is realized
pneumatically.
Various types of robot manipulators are designed according to the required movement
types but the design of the controller is as important as the design of the mechanical parts.
Several studies are available in the literature related to the design of controllers for robot
manipulators employing classical proportional-integral-differential (PID) (Das & Dulger,
2005), adaptive (Queiroz et al., 1997; Kaneko & Horowitz, 1997), learning (Canbolat et al.,
1996; Horowitz et al., 1991; Messner et al., 1991) artificial intelligence (Golnazarian, 1995;
Jungbeck & Madrid, 2001) and fuzzy logic algorithms (Lewis et al., 1993).
Here, we describe the design of the hybrid adaptive repetitive controllers given in (Canbolat
et al., 1996) and (Horowitz et al., 1991) and generate desired position functions, which
satisfy the specifications given. However, the computation of derivatives requires the
manipulation of highly nonlinear transcendental functions. The physical limitations of the
robot manipulator are not considered in generation of desired trajectories. For a thorough
position function the physical properties should be considered, such as, maximum velocity,
acceleration, and jerk. Then a delayed hybrid adaptive repetitive controller (Sahin &
Canbolat, 2007) is designed based on the method of (Horowitz et al., 1991). Also, the
controllers are applied to a Serpent-1 model SCARA manipulator used in (Das & Dulger,
2005) in a simulation environment for a desired path generated according to the
specifications of the hybrid adaptive-learning controller. Then, the performance of the robot
with classical PD controller, learning based controller without electrical dynamics and
adaptive/learning based hybrid controller are examined by means of simulations. Based on
the simulation results, the performance of learning based controllers and classical PD
controller is discussed.

2. Control Objective

The objective of this work is to develop a repetitive link position tracking controller for rigid
link electrically driven (RLED) robot manipulators driven by brushed DC motors. The
controller compensates for the effects of actuator dynamics. Furthermore, it uses only the
link position and motor current measurements while compensating for the parametric
uncertainty throughout the entire mechanical system and eliminating the link velocity
measurements.
To facilitate the control law development, the position tracking error is defined as

 e=qd-q. (1)

www.intechopen.com

Trajectory Control of RLED Robot Manipulators Using a New Type of Learning Rule 653

each cycle using the error information obtained during the previous cycles. Thus the
tracking of a desired trajectory is expected to improve in a period of the specified task
comparing the results in the previous period (Arimoto, 1986; Messner et al., 1991). The
control law is adjusted using the tracking error obtained at previous trials. The controller is
expected to “learn” the unknown dynamics and make the tracking error goes to zero
(Messner et al., 1991). The research on the design of adaptive control laws which tracks a
desired trajectory asymptotically for rigid link robot manipulators has been conducted for
years. The parametric uncertainties for a given system are inevitable for precise control. The
uncertainties considerably affect the control performance of the system. Adaptive
controllers, which updates the parameter estimates according to an adaptive update rule,
tries to achieve the required specifications in the presence of parametric uncertainties (Lewis
et al., 1993). In the case of robot manipulators, the control should be nonlinear due to the
nonlinear nature of robot manipulator dynamics. Adaptive control law requires the linear
parameterization of the system dynamics (Sadegh et al., 1990). However, the learning
controller is generally used for periodic desired trajectories (Arimoto et al., 1985; Bondi et
al., 1988; Horowitz et al., 1991; Kaneko & Horowitz, 1992; Kawamura et al., 1988; Kuc et al.,
1992; Qu et al., 1993). (Messner et al., 1991) proposed a new learning algorithm. The
algorithm is based on the selection of a Hilbert-Schmidt kernel. The uncertainties are
modeled as an integral equation, which includes the multiplication of the kernel and a
function that represents the system uncertainties. The learning update rule is based on the
estimation of the system uncertainties via an update rule for the unknown function in the
integral equation in terms of the known system variables. The controller makes the system
follow the desired trajectory asymptotically (Canbolat et al., 1996).
The simulation of the learning control scheme (Canbolat et al., 1996) could not be achieved
due to the partial derivatives of the control law with respect to the second time variable
created by the Hilbert-Schmidt kernel. The two-time variables make the system complicated
to simulate using traditional simulation packages, such as MATLAB® Simulink and
SIMNON. In order to simulate the system in Simulink, the second time variable is
considered to be discrete. Therefore, only the samples of the variables at specified locations
on the second axis are estimated instead of a continuum of time. However, this process does
not result a discrete-time system. Instead, the process results a higher order nonlinear
continuous system through the state variables created due to the time-dynamic nature of the
control law in both independent time variables, that is, the controller equations include
partial derivatives with respect to both time variables. Since time is not discretized the
resulting variables on the second axis has still continuous dynamics with respect to the real
time.
In this work, the hybrid adaptive/learning controller proposed by (Canbolat et al., 1996) is
simulated. The controller does not need the exact parameter values of the robot
manipulator. The parameters of the electrical subsystem are updated according to an
adaptive rule; while the uncertainties in the mechanical subsystem are compensated via
learning term presented by (Messner et al., 1991) and (Canbolat et al., 1996). The controller
was designed using a back-stepping technique and follows the desired trajectory
asymptotically. The system used in the simulation is a rigid-link electrically driven (RLED)
two-link planar robot manipulator, which is actuated by brushed DC (BDC) motors. The
controller does not use the link velocities and compensates the electrical subsystem
parameter uncertainties using an adaptive update law, while compensating the

uncertainties in the mechanical subsystem via a learning law. The controller is a partial state
feedback controller which uses only the link positions and the actuator currents and forces
the system follow the desired trajectory asymptotically (Canbolat et al., 1996). The controller
is simulated using the MATLAB® SIMULINK software package. The results of the
simulation shows that the proposed controller provides the semi-global asymptotic
trajectory following.
Robot manipulators are implemented in various types like rectangular, cylindrical,
spherical, revolute and horizontal joints to achieve the desired movements. From an
industrial point of view, the Selective Compliance Articulated Robotic Arm (SCARA) type
manipulators are utilized in the processes such as pick-and-place, painting, brushing, and
peg-in-hole. In general, a SCARA manipulator has four degrees of freedom. Shoulder, elbow
and wrist arms are controlled by servo motors while the fourth movement is realized
pneumatically.
Various types of robot manipulators are designed according to the required movement
types but the design of the controller is as important as the design of the mechanical parts.
Several studies are available in the literature related to the design of controllers for robot
manipulators employing classical proportional-integral-differential (PID) (Das & Dulger,
2005), adaptive (Queiroz et al., 1997; Kaneko & Horowitz, 1997), learning (Canbolat et al.,
1996; Horowitz et al., 1991; Messner et al., 1991) artificial intelligence (Golnazarian, 1995;
Jungbeck & Madrid, 2001) and fuzzy logic algorithms (Lewis et al., 1993).
Here, we describe the design of the hybrid adaptive repetitive controllers given in (Canbolat
et al., 1996) and (Horowitz et al., 1991) and generate desired position functions, which
satisfy the specifications given. However, the computation of derivatives requires the
manipulation of highly nonlinear transcendental functions. The physical limitations of the
robot manipulator are not considered in generation of desired trajectories. For a thorough
position function the physical properties should be considered, such as, maximum velocity,
acceleration, and jerk. Then a delayed hybrid adaptive repetitive controller (Sahin &
Canbolat, 2007) is designed based on the method of (Horowitz et al., 1991). Also, the
controllers are applied to a Serpent-1 model SCARA manipulator used in (Das & Dulger,
2005) in a simulation environment for a desired path generated according to the
specifications of the hybrid adaptive-learning controller. Then, the performance of the robot
with classical PD controller, learning based controller without electrical dynamics and
adaptive/learning based hybrid controller are examined by means of simulations. Based on
the simulation results, the performance of learning based controllers and classical PD
controller is discussed.

2. Control Objective

The objective of this work is to develop a repetitive link position tracking controller for rigid
link electrically driven (RLED) robot manipulators driven by brushed DC motors. The
controller compensates for the effects of actuator dynamics. Furthermore, it uses only the
link position and motor current measurements while compensating for the parametric
uncertainty throughout the entire mechanical system and eliminating the link velocity
measurements.
To facilitate the control law development, the position tracking error is defined as

 e=qd-q. (1)

www.intechopen.com

Advances in Robot Manipulators654

The parametric uncertainties of the mechanical subsystem are included in c() of (11) and the
unknown electrical subsystem parameters are represented by the following vector

 3
1 2, , ... ,

TT T T n
e ene e       (2)

where

 3, , T
ei i i biL R K     (3)

in which Li, Ri, and Kbi are the diagonal elements of electrical subsystem matrices L, R, and
Kb, respectively. The true values of these parameters are not known except it is assumed that
their upper and lower bounds are known. Whenever these upper and lower bounds are
referred in the text, we will denote upper and lower bounds of a parameter matrix with the
subscripts upper and lower, respectively. For example, Llower≤min(L) denotes the lower
bound for the matrix L, where min(L) is the minimum eigenvalue of the matrix L.

A dynamic estimate 3ˆ n
e  is used for θe. The parameter estimation error, e is defined

as follows

 ˆ
e e e    . (4)

In the following section, we will give the details of the control design. The controller will be
a partial state feedback controller in the sense that it will not utilize link velocity
measurements to compensate for parametric uncertainties in the system. It is shown that the
designed controller guarantees the semi-global asymptotic link position tracking. The
system performance is simulated through a computer code. The code is written for both
hybrid adaptive-learning controllers for BDC RLED robot manipulators and for the learning
controller designed in (Messner et al., 1991). The results of the simulations show that the
controller performs well in terms of error is below some certain value. However, the error
does not become zero, but it has some average value. This is because of the complexity of
the control law and the minimum information used to achieve the control goal.

3. System Model

3.1 Robot and Actuator Dynamics
The dynamics of an n-link robot manipulator electrically driven by brushed DC (BDC)
motors can be expressed as follows:

() (,) ()m dM q q V q q q G q F q K I       (mechanical subsystem) (5)

 bLI + RI + K q = v  (electrical subsystem) (6)
where,

qqq ,, :nx1 link position, velocity and acceleration vectors, respectively,
M(q) :nxn symmetric, positive definite inertia matrix,

),(qqVm  :nxn matrix of centripetal and Coriolis terms,
Fd :nxn constant, diagonal, dynamic friction matrix,
G(q) :nx1 gravitational effects vector,

 :nx1 torque vector,
L :nxn diagonal inductance matrix,
R :nxn diagonal resistance matrix,
Kb :nxn diagonal back-emf matrix,
K :nxn diagonal torque coefficients matrix, and
v :nx1 motor input voltages vector.

The periodic desired trajectory qd(t) and its time derivatives up to 3rd order should be
continuous and bounded (Canbolat et al., 1996).
The following properties of robot dynamics were utilized in the stability analysis of the
controller:

1. For any given vector, x(t), the inertia matrix, M(q), satisfies the following inequality:

2 2

1 2()TM x x M q x M x  (7)

where M1 and M2 are known positive constants that depend on the mass properties of the
specific robot for which the controller is designed.

2. The matrix () 2 (,)mM q V q q  is skew symmetric, that is, for any given vector x, we have

  () 2 (,) 0T
mx M q V q q x   (8)

3. The Coriolis-centripetal matrix Vm is bounded as

 (,)m ciV q q q

  (9)

where c is a known positive constant.

4. The left-hand side of (5) can be written in terms of the desired trajectory as

 ,() () () ()md d d d d d d dw t M q q V q q q G q F q       . (10)

Since the desired trajectories , ,d d dq q q  are periodic with the period T, w(t) of (10) is also
periodic. w(t), can be expressed as a linear integral equation as shown by (Horowitz et al.,
1991). That is, w(t) can be expressed as follows

0

() (,) ()
T

w t K t c d    (11)

where K(t,) is a known Hilbert-Schmidt kernel and c() is an unknown influence function.
Note that t and  are independent variables.

www.intechopen.com

Trajectory Control of RLED Robot Manipulators Using a New Type of Learning Rule 655

The parametric uncertainties of the mechanical subsystem are included in c() of (11) and the
unknown electrical subsystem parameters are represented by the following vector

 3
1 2, , ... ,

TT T T n
e ene e       (2)

where

 3, , T
ei i i biL R K     (3)

in which Li, Ri, and Kbi are the diagonal elements of electrical subsystem matrices L, R, and
Kb, respectively. The true values of these parameters are not known except it is assumed that
their upper and lower bounds are known. Whenever these upper and lower bounds are
referred in the text, we will denote upper and lower bounds of a parameter matrix with the
subscripts upper and lower, respectively. For example, Llower≤min(L) denotes the lower
bound for the matrix L, where min(L) is the minimum eigenvalue of the matrix L.

A dynamic estimate 3ˆ n
e  is used for θe. The parameter estimation error, e is defined

as follows

 ˆ
e e e    . (4)

In the following section, we will give the details of the control design. The controller will be
a partial state feedback controller in the sense that it will not utilize link velocity
measurements to compensate for parametric uncertainties in the system. It is shown that the
designed controller guarantees the semi-global asymptotic link position tracking. The
system performance is simulated through a computer code. The code is written for both
hybrid adaptive-learning controllers for BDC RLED robot manipulators and for the learning
controller designed in (Messner et al., 1991). The results of the simulations show that the
controller performs well in terms of error is below some certain value. However, the error
does not become zero, but it has some average value. This is because of the complexity of
the control law and the minimum information used to achieve the control goal.

3. System Model

3.1 Robot and Actuator Dynamics
The dynamics of an n-link robot manipulator electrically driven by brushed DC (BDC)
motors can be expressed as follows:

() (,) ()m dM q q V q q q G q F q K I       (mechanical subsystem) (5)

 bLI + RI + K q = v  (electrical subsystem) (6)
where,

qqq ,, :nx1 link position, velocity and acceleration vectors, respectively,
M(q) :nxn symmetric, positive definite inertia matrix,

),(qqVm  :nxn matrix of centripetal and Coriolis terms,
Fd :nxn constant, diagonal, dynamic friction matrix,
G(q) :nx1 gravitational effects vector,

 :nx1 torque vector,
L :nxn diagonal inductance matrix,
R :nxn diagonal resistance matrix,
Kb :nxn diagonal back-emf matrix,
K :nxn diagonal torque coefficients matrix, and
v :nx1 motor input voltages vector.

The periodic desired trajectory qd(t) and its time derivatives up to 3rd order should be
continuous and bounded (Canbolat et al., 1996).
The following properties of robot dynamics were utilized in the stability analysis of the
controller:

1. For any given vector, x(t), the inertia matrix, M(q), satisfies the following inequality:

2 2

1 2()TM x x M q x M x  (7)

where M1 and M2 are known positive constants that depend on the mass properties of the
specific robot for which the controller is designed.

2. The matrix () 2 (,)mM q V q q  is skew symmetric, that is, for any given vector x, we have

  () 2 (,) 0T
mx M q V q q x   (8)

3. The Coriolis-centripetal matrix Vm is bounded as

 (,)m ciV q q q

  (9)

where c is a known positive constant.

4. The left-hand side of (5) can be written in terms of the desired trajectory as

 ,() () () ()md d d d d d d dw t M q q V q q q G q F q       . (10)

Since the desired trajectories , ,d d dq q q  are periodic with the period T, w(t) of (10) is also
periodic. w(t), can be expressed as a linear integral equation as shown by (Horowitz et al.,
1991). That is, w(t) can be expressed as follows

0

() (,) ()
T

w t K t c d    (11)

where K(t,) is a known Hilbert-Schmidt kernel and c() is an unknown influence function.
Note that t and  are independent variables.

www.intechopen.com

Advances in Robot Manipulators656

5. (Horowitz et al., 1991) used the kernel of the form

        0
1

cos 2 / cos 2 / sin 2 / sin 2 /(,) m m
m

f mt T m T d mt T m TK t f      




   , (12)

where fi and di’s are scalar constants, which satisfy the conditions,

Dm-2<| fm| and Dm-2<| dm| for all m>N with D, N are constants.

If the kernel of the form given in (12) is utilized, then

2

0

()
T

c d   (13)

where  is a positive constant.

Consider the following kernel, which is a Gaussian distribution function, given by

2

2
()1(,) exp
22

tK t 
 

 
  
 

  (14)

where  is a positive design constant. This function satisfies the conditions given in (12)
(Horowitz et al., 1991).

If the kernel defined in (13) is used, then the following relations can be shown:

2

[0,] 0

sup (,)
T

t T
K t d  


   (15)

2

[0,] 0

sup (,)
T

d
t T

K t d
t

  


       , (16)

where  and d are positive constants.

3.2 Position Tracking Controller
To achieve the control objective, the methods proposed by (Burg et al., 1996) and (Horowitz
et al., 1991) are combined. The design procedure can be summarized as: i) We use a pseudo-
velocity filter to generate the signals for use as link velocity, ii) since the developed torque is
a function of motor currents, a desired current signal is designed to force the link position to
track the desired trajectory (backstepping) and iii) the voltage control input is designed to
ensure the motor currents tracks the desired current.
Using the position tracking error defined in (1), the following high pass filter is designed to
obtain a velocity dependent signal ef :

2(1) (1)

(0) (0)
f

p k p k e
e ke p
p ke

    
  




 (17)

where k is a positive gain constant and the auxiliary signal p is used to get two
implementable equations for the filter.

The filtered tracking error is defined as follows

 fe e e    . (18)

Note that, the filtered tracking error, , cannot be measured, since the link velocities cannot
be measured. Based on the dynamics of , the auxiliary variable w1(t) is defined as

1
1

0 0

() (,) () (,) ()
T T

xw t K t c d K K t c d        (19)

Note that the uncertainties in K is now included in w1(t). The desired current, Id, is designed
to force the filtered tracking error, to zero.

The desired current, Id, is defined as

 1ˆ ()d fI w t ke e   (20)

and the current tracking error, I, is defined as

 I dI I   (21)

where 1ˆ ()w t is the estimate of w1(t) and is defined as

 1
0

ˆ ˆ() (,) (,)
T

xw t K t c t d    (22)

where ˆ (,) n
xc t   is an estimate of cx(). ˆ (,)xc t  is updated according to the following

rule

  
0

0

ˆ (,) (,) () ()

(,) () (0,) (0)

(,) () .

t

x L f

L L
t

L

c t K K e e d

K t K e t K K e

K K e d

     

 

   


 

 

    





 (23)

 where KL, is an nxn diagonal, positive definite gain matrix.

The electrical parameter regression matrix is defined as

2 (1) ()e e f b d fY Lw k Le kLe RI K q e e         (24)

where

www.intechopen.com

Trajectory Control of RLED Robot Manipulators Using a New Type of Learning Rule 657

5. (Horowitz et al., 1991) used the kernel of the form

        0
1

cos 2 / cos 2 / sin 2 / sin 2 /(,) m m
m

f mt T m T d mt T m TK t f      




   , (12)

where fi and di’s are scalar constants, which satisfy the conditions,

Dm-2<| fm| and Dm-2<| dm| for all m>N with D, N are constants.

If the kernel of the form given in (12) is utilized, then

2

0

()
T

c d   (13)

where  is a positive constant.

Consider the following kernel, which is a Gaussian distribution function, given by

2

2
()1(,) exp
22

tK t 
 

 
  
 

  (14)

where  is a positive design constant. This function satisfies the conditions given in (12)
(Horowitz et al., 1991).

If the kernel defined in (13) is used, then the following relations can be shown:

2

[0,] 0

sup (,)
T

t T
K t d  


   (15)

2

[0,] 0

sup (,)
T

d
t T

K t d
t

  


       , (16)

where  and d are positive constants.

3.2 Position Tracking Controller
To achieve the control objective, the methods proposed by (Burg et al., 1996) and (Horowitz
et al., 1991) are combined. The design procedure can be summarized as: i) We use a pseudo-
velocity filter to generate the signals for use as link velocity, ii) since the developed torque is
a function of motor currents, a desired current signal is designed to force the link position to
track the desired trajectory (backstepping) and iii) the voltage control input is designed to
ensure the motor currents tracks the desired current.
Using the position tracking error defined in (1), the following high pass filter is designed to
obtain a velocity dependent signal ef :

2(1) (1)

(0) (0)
f

p k p k e
e ke p
p ke

    
  




 (17)

where k is a positive gain constant and the auxiliary signal p is used to get two
implementable equations for the filter.

The filtered tracking error is defined as follows

 fe e e    . (18)

Note that, the filtered tracking error, , cannot be measured, since the link velocities cannot
be measured. Based on the dynamics of , the auxiliary variable w1(t) is defined as

1
1

0 0

() (,) () (,) ()
T T

xw t K t c d K K t c d        (19)

Note that the uncertainties in K is now included in w1(t). The desired current, Id, is designed
to force the filtered tracking error, to zero.

The desired current, Id, is defined as

 1ˆ ()d fI w t ke e   (20)

and the current tracking error, I, is defined as

 I dI I   (21)

where 1ˆ ()w t is the estimate of w1(t) and is defined as

 1
0

ˆ ˆ() (,) (,)
T

xw t K t c t d    (22)

where ˆ (,) n
xc t   is an estimate of cx(). ˆ (,)xc t  is updated according to the following

rule

  
0

0

ˆ (,) (,) () ()

(,) () (0,) (0)

(,) () .

t

x L f

L L
t

L

c t K K e e d

K t K e t K K e

K K e d

     

 

   


 

 

    





 (23)

 where KL, is an nxn diagonal, positive definite gain matrix.

The electrical parameter regression matrix is defined as

2 (1) ()e e f b d fY Lw k Le kLe RI K q e e         (24)

where

www.intechopen.com

Advances in Robot Manipulators658

 2
0

(,) ˆ (,)
T

x
K tw c t d

t
  

 . (25)

Based on the current tracking error dynamics the voltage control input is designed as

 2 2 4
51 2 3 42

ˆ 1e e L n In n n niv Y K k k k k k k         (26)

where ║KL║i2 denotes the induced-2 norm of the matrix KL and the kni (i=1,2,...,5) and  are
positive control gains, and the adaptive electrical parameter update rule is defined as

 ˆ T
e e e IY  

 (27)

with e3nx3n is a positive definite, diagonal adaptive gain matrix and the electrical
regression matrix Ye3nx3n is defined as

2 (1) (1) T

ii fi

e i

idi fi

w k e k e
Y blockdiag I

q e e

     
  
  
   

   


 

 (28)

where w2i is the ith element of w2 defined in (25).

The following theorem can be stated for the tracking performance of the proposed controller
(Canbolat et al., 1996).

Theorem 1: If the control gains kni and kn satisfy the following conditions

 2 2 2
max max max3ni bk L K K   (29)

22

3 1

1 (0) 1nk x
 

 
  
 

  (30)

where

 1 1
1 1 min minmin , , , (), ()e Llower lower lowerK m L K K      (31)

 1 1
max max2 2max , , , (), ()upper upper e upper LK m L K K      (32)

2 2
2

3
51 2 3 4

1 1 1min ,1 bupper upper
upperlower

nn n n n

K K
K L

k k k k k



   

   
   

      (33)

8
0

(,)
TTT T T T T T n

e xIfx e e c t d     
  

   , (34)

then

 lim () 0.
t

e t


 (35)

In the above equations, (.)lower and (.)upper denotes the known lower and upper bounds for the
eigenvalues of the corresponding unknown parameter matrices, respectively. Similarly,
min(.) and max(.) denotes the minimum and maximum eigenvalues of the matrix in
parentheses, respectively.

The proof of this theorem can be found in (Canbolat et al., 1996). For the sake of brevity, the
proof is omitted here.

3.3 Delayed Learning Rule
We define the following delayed update rule for 1ˆ ()w t in (22) and w2(t) in (25) similar to
(Messner et al., 1991):

1
0

ˆ ˆ() (,) () (1)
T

k
xw t K t c d kT t k T      (36)

2
0

ˆ() (,) () (1)
T

k
xw t K t c d kT t k T

t
         (37)

where ˆ ()k
xc  is defined as

 

 

1ˆ ˆ() () (,) ()

, () ()

, () ,

k k
x x L

kT

L f
kT T

kT

L
kT T

c c K kT K e kT

K K e e d

K K e d

  

    

   








 

   

 
  





 (38)

with 0ˆ () (0,) (0)x Lc K K e   . Note that the form of (22) and (25) are not changed except

the estimate of ˆ (,)xc t  defined in (23) is replaced with ˆ ()k
xc  . Similarly, all other equations

are same. One can use the same equations for the controller by changing (22), (23) and (25)
with (36), (38) and (37), respectively. This definition aims the reduction of computational
burden for real time applications. One can show that the controller with the delayed
learning rule of (38) is asymptotically stable using the arguments used by (Messner et al.,
1991) and (Canbolat et al., 1996).

3.4 Generation of Desired Trajectories
A proper desired trajectory should be generated for the proposed controller, for
performance evaluation. A position function for a robot manipulator is a smooth function
that starts from a certain initial position and ends at a final position. Generally, the

www.intechopen.com

Trajectory Control of RLED Robot Manipulators Using a New Type of Learning Rule 659

 2
0

(,) ˆ (,)
T

x
K tw c t d

t
  

 . (25)

Based on the current tracking error dynamics the voltage control input is designed as

 2 2 4
51 2 3 42

ˆ 1e e L n In n n niv Y K k k k k k k         (26)

where ║KL║i2 denotes the induced-2 norm of the matrix KL and the kni (i=1,2,...,5) and  are
positive control gains, and the adaptive electrical parameter update rule is defined as

 ˆ T
e e e IY  

 (27)

with e3nx3n is a positive definite, diagonal adaptive gain matrix and the electrical
regression matrix Ye3nx3n is defined as

2 (1) (1) T

ii fi

e i

idi fi

w k e k e
Y blockdiag I

q e e

  
   
  
  
   

   


 

 (28)

where w2i is the ith element of w2 defined in (25).

The following theorem can be stated for the tracking performance of the proposed controller
(Canbolat et al., 1996).

Theorem 1: If the control gains kni and kn satisfy the following conditions

 2 2 2
max max max3ni bk L K K   (29)

22

3 1

1 (0) 1nk x
 

 
  
 

  (30)

where

 1 1
1 1 min minmin , , , (), ()e Llower lower lowerK m L K K      (31)

 1 1
max max2 2max , , , (), ()upper upper e upper LK m L K K      (32)

2 2
2

3
51 2 3 4

1 1 1min ,1 bupper upper
upperlower

nn n n n

K K
K L

k k k k k



   

   
   

      (33)

8
0

(,)
TTT T T T T T n

e xIfx e e c t d     
  

   , (34)

then

 lim () 0.
t

e t


 (35)

In the above equations, (.)lower and (.)upper denotes the known lower and upper bounds for the
eigenvalues of the corresponding unknown parameter matrices, respectively. Similarly,
min(.) and max(.) denotes the minimum and maximum eigenvalues of the matrix in
parentheses, respectively.

The proof of this theorem can be found in (Canbolat et al., 1996). For the sake of brevity, the
proof is omitted here.

3.3 Delayed Learning Rule
We define the following delayed update rule for 1ˆ ()w t in (22) and w2(t) in (25) similar to
(Messner et al., 1991):

1
0

ˆ ˆ() (,) () (1)
T

k
xw t K t c d kT t k T      (36)

2
0

ˆ() (,) () (1)
T

k
xw t K t c d kT t k T

t
         (37)

where ˆ ()k
xc  is defined as

 

 

1ˆ ˆ() () (,) ()

, () ()

, () ,

k k
x x L

kT

L f
kT T

kT

L
kT T

c c K kT K e kT

K K e e d

K K e d

  

    

   








 

   

 
  





 (38)

with 0ˆ () (0,) (0)x Lc K K e   . Note that the form of (22) and (25) are not changed except

the estimate of ˆ (,)xc t  defined in (23) is replaced with ˆ ()k
xc  . Similarly, all other equations

are same. One can use the same equations for the controller by changing (22), (23) and (25)
with (36), (38) and (37), respectively. This definition aims the reduction of computational
burden for real time applications. One can show that the controller with the delayed
learning rule of (38) is asymptotically stable using the arguments used by (Messner et al.,
1991) and (Canbolat et al., 1996).

3.4 Generation of Desired Trajectories
A proper desired trajectory should be generated for the proposed controller, for
performance evaluation. A position function for a robot manipulator is a smooth function
that starts from a certain initial position and ends at a final position. Generally, the

www.intechopen.com

Advances in Robot Manipulators660

acceleration and velocity are required to be continuous and smooth. However, in our case
the desired trajectory should be continuously differentiable up to the third order. There are
several methods to generate the desired trajectories. One common method is to separate the
trajectory into three main parts (initial-lift off (IL), lift off-set down (LS), and set down-final
(SF)) and impose the continuity conditions at the boundaries. The coefficients of the
polynomials are to be solved according to the imposed conditions. (Fig. 1).

Fig. 1. Critical points for a robot end-effector position

In this section, we propose several methods to determine the desired trajectories.
Polynomial methods are the modifications of 3-5-3 and 4-3-4 methods given in (Fu et al.,
1987). The naming of the method is based on the degrees of the polynomials, which are
valid for the IL, LS and SF parts. Since these methods generate functions continuously
differentiable up to the second order, we should have modified the method to generate
functions with continuous third time derivatives. The modification is done by increasing the
degrees of the polynomials. Following the same convention, the modified methods are
named as 4-6-4 and 5-4-5. Detailed formulae can be found in (Fu et al., 1987).
Formulation is carried as in (Fu et al., 1987). Let t0, t1, t2, t3 be the time boundaries for
subtrajectories IL, LS and SF (Fig. 2). Let us assign the numbers 1, 2, 3, 4, 5, and 6 for
forward IL, LS, SF and backward IL, LS, SF subintervals, respectively, and define the
following dimensionless variable  for each subinterval as follows

1

1

i

i i

t t
t t

 







 (39)

for t[ti-1, ti] and i=1, 2, …, 6. Note that, in a given subinterval [ti-1, ti] . With the
definition given in (39) each subtrajectory can be defined on [0, 1]. Boundary conditions
become the conditions at =0 and =1.

Let hi be the polynomial in the ith subinterval. The first and kth derivative of hi can be found
as

1

1
  





  




i i i i
i

i i
k k

ki i
ik k

dh dh dh dhd A
dt d dt t t d d
d h d h

A
dt d

 (40)

Fig. 2. Critical points of a desired trajectory

where
1

1
i

i i

A
t t 




.

Since both methods use polynomials of maximum 6th degree in each subinterval, one can
write the following general expressions for hi and its derivatives:

 

 
 

 
 

6 5 4 3 2
6 5 4 3 2 1 0

' 5 4 3 2
6 5 4 3 2 1

1

'' 4 3 2
6 5 4 3 22

1

''' 3 2
6 5 4 33

1

()
1() 6 5 4 3 2

1() 30 20 12 6 2

1() 120 60 24 6 .

i i i i i i i i

i i i i i i i
i i

i i i i i i
i i

i i i i i
i i

h a a a a a a a

h a a a a a a
t t

h a a a a a
t t

h a a a a
t t

      

     

    

   







      

     


    


   


 (41)

Let qi, ql, qs ve qf be the positions at the initial, lift-off, set-down and final positions,
respectively (Fig. 1). Each polynomial should satisfy the following boundary conditions:

 q3 q4

 q2 q5

 q1 q6

0 t0 t1 t2 t3 t4 t5 t6 t7 T
0 T

www.intechopen.com

Trajectory Control of RLED Robot Manipulators Using a New Type of Learning Rule 661

acceleration and velocity are required to be continuous and smooth. However, in our case
the desired trajectory should be continuously differentiable up to the third order. There are
several methods to generate the desired trajectories. One common method is to separate the
trajectory into three main parts (initial-lift off (IL), lift off-set down (LS), and set down-final
(SF)) and impose the continuity conditions at the boundaries. The coefficients of the
polynomials are to be solved according to the imposed conditions. (Fig. 1).

Fig. 1. Critical points for a robot end-effector position

In this section, we propose several methods to determine the desired trajectories.
Polynomial methods are the modifications of 3-5-3 and 4-3-4 methods given in (Fu et al.,
1987). The naming of the method is based on the degrees of the polynomials, which are
valid for the IL, LS and SF parts. Since these methods generate functions continuously
differentiable up to the second order, we should have modified the method to generate
functions with continuous third time derivatives. The modification is done by increasing the
degrees of the polynomials. Following the same convention, the modified methods are
named as 4-6-4 and 5-4-5. Detailed formulae can be found in (Fu et al., 1987).
Formulation is carried as in (Fu et al., 1987). Let t0, t1, t2, t3 be the time boundaries for
subtrajectories IL, LS and SF (Fig. 2). Let us assign the numbers 1, 2, 3, 4, 5, and 6 for
forward IL, LS, SF and backward IL, LS, SF subintervals, respectively, and define the
following dimensionless variable  for each subinterval as follows

1

1

i

i i

t t
t t

 







 (39)

for t[ti-1, ti] and i=1, 2, …, 6. Note that, in a given subinterval [ti-1, ti] . With the
definition given in (39) each subtrajectory can be defined on [0, 1]. Boundary conditions
become the conditions at =0 and =1.

Let hi be the polynomial in the ith subinterval. The first and kth derivative of hi can be found
as

1

1
  





  




i i i i
i

i i
k k

ki i
ik k

dh dh dh dhd A
dt d dt t t d d
d h d h

A
dt d

 (40)

Fig. 2. Critical points of a desired trajectory

where
1

1
i

i i

A
t t 




.

Since both methods use polynomials of maximum 6th degree in each subinterval, one can
write the following general expressions for hi and its derivatives:

 

 
 

 
 

6 5 4 3 2
6 5 4 3 2 1 0

' 5 4 3 2
6 5 4 3 2 1

1

'' 4 3 2
6 5 4 3 22

1

''' 3 2
6 5 4 33

1

()
1() 6 5 4 3 2

1() 30 20 12 6 2

1() 120 60 24 6 .

i i i i i i i i

i i i i i i i
i i

i i i i i i
i i

i i i i i
i i

h a a a a a a a

h a a a a a a
t t

h a a a a a
t t

h a a a a
t t

      

     

    

   







      

     


    


   


 (41)

Let qi, ql, qs ve qf be the positions at the initial, lift-off, set-down and final positions,
respectively (Fig. 1). Each polynomial should satisfy the following boundary conditions:

 q3 q4

 q2 q5

 q1 q6

0 t0 t1 t2 t3 t4 t5 t6 t7 T
0 T

www.intechopen.com

Advances in Robot Manipulators662

1
' '

1

'' ''
1

''' '''
1

(1) (0)

(1) (0)

(1) (0)

(1) (0)

i i

i i

i i

i i

h h
h h
h h
h h

















 (42)

where primes denote the derivative with respect to time. In (42), i should be 1 or 2. (42)
creates 8 equations for the coefficients. At the initial and final positions, the following
conditions should be satisfied:

1
' '' '''
1 1 1

3

' '' '''
3 3 3

(0)

(0) (0) (0) 0
(1)

(1) (1) (1) 0

b

f

h q
h h h
h q

h h h



  


  

 (43)

From (43) we have another set of 8 equations. Thus we have 16 equations for 17 unknown
coefficients. In order to have a unique solution, one can use the position at the lift-off or set-
down positions. Using the lift-off position, we have the following equation:

 h1(1)=ql (44)

Since the desired trajectory is periodic, the manipulator should go back to the initial position
at the end of the period. Due to this, the formulation given in (39-44) should be done twice
for both reaching the final position and returning to the initial position. The forward and
backward trajectories may not be symmetric. That is, we are free to select different time
intervals and different lift-off and set-down positions. We can even use different methods in
the generation of forward and backward paths. Typically, symmetrical trajectories are easy
to use in applications.
There are 8 critical points in a period (Fig. 2). The time instants t0, t1, t2, t3, t4, t5, t6, t7 and the
corresponding positions q0, q1, q2, q3, q4, q5, q6, q7 are critical points of a desired trajectory. The
first 4 points q0, q1, q2, q3 correspond to initial, lift-off, set-down and final positions of the
forward path, and the last 4 points q4, q5, q6, q7 correspond to initial, lift-off, set-down and
final positions of the backward path, respectively. The equalities,

q0=q7, q3=q4, (45)

should be satisfied for a periodic trajectory. For a symmetrical trajectory, the following
constraints in positions,

q1=q6, q2=q5, (46)

and in time

t0=Tt7, t1=Tt6, t2=Tt5, t3=Tt4, (47)

should be satisfied. For each desired trajectory, the following position values are used:

qi=0, ql=0.08, qs=0.92, qf=1,
in forward path and
qi=1, ql=0.92, qs=0.08, qf=0
in backward path. The corresponding time instants are assigned as follows:
t0=0,1T; t1=0,15T; t2=0,25T; t3=0,3T
t4=0,7T; t5=0,75T; t6=0,85T; t7=0,9T
All position values are in radians, since we used a two-link robot with revolute joints. It is
possible to select closer lift-off and set-down points. However, in this case the
subpolynomials may have maxima and minima inside their own subintervals. Typically, a
robot path should be smooth and monotone increasing or decreasing.

4-6-4 Method
In this method, IL and SF polynomials are fourth order. Therefore,
ai6=ai5=0
in (41). Furthermore, the initial conditions in (43) requires
a10=qb, a11=a12=a13=0
for forward path and
a40=qb, a41=a42=a43=0
for backward path. The conditions in (42), (43) and (44) give the following matrix equality
for the unknown coefficients:

1 2
22
21

33
21

2 2 2 2 22
2 2 2 2 2
2 2 2 2 2
3 3 3 3
2 2 2 2

00 0 0 0 0 01 0 0 0
01 0 0 0 0 01 0 0 0
01 0 0 0 0 01 1 0 0
04 0 0 0 00 0 0

6 0 0 0 0 00 0 0
0 0 0 00 0 0 04
1 1 1 1 10 1 1 00

6 5 4 30 2 0 00
0 0 00 15 10 6 3 0
0 0 00 20 10 4 00
0 0 10 0 0 0 0 00
0 0 40 0 0 0 0 00
0 0 60 0 0 0 0 00
0 0 40 0 0 0 0 00

A A
AA

AA

A A A A AA
A A A A A
A A A A







14

10

26

25

24

23

22

3 21
2
3 20

3
3 34

33

32

31

30

00 0
00 0

000 0
000 0 0
000 0 0

00 0 0
00 0 1

0 0 0
0 00

0 00
1 1 11
3 2 01
3 1 00
1 0 00

i

l

qa
qa

a
a
a
a
a

A a
A a

A a
a
a
a
a

  
  
  
  
  
  
  
  
  
      
  
     
  
  
  
  
  
  
  

   

0
0
0
0
0

0
0
0

fq

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (48)

 where Ai’s are defined in (40). (48) is valid for both forward and backward paths. Solving
(48) for forward and backward paths, we obtained the following solution (Fig. 3):

www.intechopen.com

Trajectory Control of RLED Robot Manipulators Using a New Type of Learning Rule 663

1
' '

1

'' ''
1

''' '''
1

(1) (0)

(1) (0)

(1) (0)

(1) (0)

i i

i i

i i

i i

h h
h h
h h
h h

















 (42)

where primes denote the derivative with respect to time. In (42), i should be 1 or 2. (42)
creates 8 equations for the coefficients. At the initial and final positions, the following
conditions should be satisfied:

1
' '' '''
1 1 1

3

' '' '''
3 3 3

(0)

(0) (0) (0) 0
(1)

(1) (1) (1) 0

b

f

h q
h h h
h q

h h h



  


  

 (43)

From (43) we have another set of 8 equations. Thus we have 16 equations for 17 unknown
coefficients. In order to have a unique solution, one can use the position at the lift-off or set-
down positions. Using the lift-off position, we have the following equation:

 h1(1)=ql (44)

Since the desired trajectory is periodic, the manipulator should go back to the initial position
at the end of the period. Due to this, the formulation given in (39-44) should be done twice
for both reaching the final position and returning to the initial position. The forward and
backward trajectories may not be symmetric. That is, we are free to select different time
intervals and different lift-off and set-down positions. We can even use different methods in
the generation of forward and backward paths. Typically, symmetrical trajectories are easy
to use in applications.
There are 8 critical points in a period (Fig. 2). The time instants t0, t1, t2, t3, t4, t5, t6, t7 and the
corresponding positions q0, q1, q2, q3, q4, q5, q6, q7 are critical points of a desired trajectory. The
first 4 points q0, q1, q2, q3 correspond to initial, lift-off, set-down and final positions of the
forward path, and the last 4 points q4, q5, q6, q7 correspond to initial, lift-off, set-down and
final positions of the backward path, respectively. The equalities,

q0=q7, q3=q4, (45)

should be satisfied for a periodic trajectory. For a symmetrical trajectory, the following
constraints in positions,

q1=q6, q2=q5, (46)

and in time

t0=Tt7, t1=Tt6, t2=Tt5, t3=Tt4, (47)

should be satisfied. For each desired trajectory, the following position values are used:

qi=0, ql=0.08, qs=0.92, qf=1,
in forward path and
qi=1, ql=0.92, qs=0.08, qf=0
in backward path. The corresponding time instants are assigned as follows:
t0=0,1T; t1=0,15T; t2=0,25T; t3=0,3T
t4=0,7T; t5=0,75T; t6=0,85T; t7=0,9T
All position values are in radians, since we used a two-link robot with revolute joints. It is
possible to select closer lift-off and set-down points. However, in this case the
subpolynomials may have maxima and minima inside their own subintervals. Typically, a
robot path should be smooth and monotone increasing or decreasing.

4-6-4 Method
In this method, IL and SF polynomials are fourth order. Therefore,
ai6=ai5=0
in (41). Furthermore, the initial conditions in (43) requires
a10=qb, a11=a12=a13=0
for forward path and
a40=qb, a41=a42=a43=0
for backward path. The conditions in (42), (43) and (44) give the following matrix equality
for the unknown coefficients:

1 2
22
21

33
21

2 2 2 2 22
2 2 2 2 2
2 2 2 2 2
3 3 3 3
2 2 2 2

00 0 0 0 0 01 0 0 0
01 0 0 0 0 01 0 0 0
01 0 0 0 0 01 1 0 0
04 0 0 0 00 0 0

6 0 0 0 0 00 0 0
0 0 0 00 0 0 04
1 1 1 1 10 1 1 00

6 5 4 30 2 0 00
0 0 00 15 10 6 3 0
0 0 00 20 10 4 00
0 0 10 0 0 0 0 00
0 0 40 0 0 0 0 00
0 0 60 0 0 0 0 00
0 0 40 0 0 0 0 00

A A
AA

AA

A A A A AA
A A A A A
A A A A







14

10

26

25

24

23

22

3 21
2
3 20

3
3 34

33

32

31

30

00 0
00 0

000 0
000 0 0
000 0 0

00 0 0
00 0 1

0 0 0
0 00

0 00
1 1 11
3 2 01
3 1 00
1 0 00

i

l

qa
qa

a
a
a
a
a

A a
A a

A a
a
a
a
a

  
  
  
  
  
  
  
  
  
      
  
     
  
  
  
  
  
  
  

   

0
0
0
0
0

0
0
0

fq

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (48)

 where Ai’s are defined in (40). (48) is valid for both forward and backward paths. Solving
(48) for forward and backward paths, we obtained the following solution (Fig. 3):

www.intechopen.com

Advances in Robot Manipulators664

4414

4010

5626

5525

5424

23 53

22 52

21 51

20 50

34 64

33 63

32 62

31 61

30 60

0.0800
0.0000
3.4695

11.6716
12.4098
2.5600
1.9200
0.6400
0.0800
0.0077
0.03

aa
aa
aa
aa
aa

a a
a a
a a
a a
a a
a a
a a
a a
a a

 
 
 
  
 
 
  
 
 
 
  
 
 
 
  
 
 
 
 
 
   

0.0800
1.0000
3.4695
11.6716
12.4098
2.5600
1.9200
0.6400
0.9200
0.0077

09 0.0309
0.0463 0.0463
0.0309 0.0309
0.9923 0.0077

 
 
 
 
 

 
 
 

 
  

 
 
 
 
 

 
 
 

 
   

 (49)

Fig. 3. Desired position and its derivatives with 4-6-4 spline method

5-4-5 Method
In this method, we should have

ai6=0
for IL and SF subintervals in (41) and for the LS subinterval
ai6=ai5=0.
From the initial conditions in (43), we write
a10=qb, a11=a12=a13=0
for forward path and
a40=qb, a41=a42=a43=0
for backward path.
The conditions in (42), (43) and (44) give the following matrix equality for the unknown
coefficients:

1 1 2
22 2
21 1

33 3
21 1

2 2 22
2 2 2
2 2 2
3 3
2 2

00 0 0 0 01 0 0 0 0
01 1 0 0 01 0 0 0 0
01 1 0 0 01 1 0 0 0
05 4 0 00 0 0 0 0

10 6 0 0 00 0 0 0 0
0 00 0 0 0 0 010 4
1 1 10 1 1 0 0 00 0

4 30 2 0 0 0 00 0
0 0 0 0 00 0 6 3 0
0 0 0 00 0 4 00
0 0 1 10 0 0 0 00
0 0 5 40 0 0 0 00
0 0 10 60 0 0 0 00
0 0 10 40 0 0 0 00

A A A
AA A

AA A

A A AA
A A A

AA A









15

14

10

24

23

22

21

3 20
2
3 35

3
3 34

33

32

31

30

00 0
00 0

000 0
000 0
000 0
000 0
000 1
00 0
000
00 00

1 1 11
3 2 01 0
3 1 00
1 0 00

i

l

f

a q
a q
a
a
a
a
a

A a
A a

a
qa

a
a
a

  
  
  
  
  
  
  
  
  
      
  
     
  
  
  
  
  
  
  

   

0
0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (50)

 where Ai’s are defined in (40). (50) is valid for both forward and backward paths. Solving
(50) for forward and backward paths, we obtained the following solution (Fig. 4):

15 45

14 44

10 40

24 54

23 53

22 52

21 51

20 50

35 65

34 64

33 63

32 62

31 61

30 60

0.0644
0.1444
0.0000
0.0381
0.5299
0.8900
0.5113
0.0800
0.0720
0.2013
0.08

a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a

 
 
 
 
 

 
  
 
 
 
  
 
   
 
 

 
 
 
 
   

0.0644
0.1444
1.0000
0.0381
0.5299
0.8900
0.5113
0.9200
0.0720
0.2013

53 0.0853
0.2320 0.2320
0.2747 0.2747
0.9133 0.0867

 
  
 
 
 
 
 

 
  
 
 
 
 
 
 
 
 
 
   

 (51)

www.intechopen.com

Trajectory Control of RLED Robot Manipulators Using a New Type of Learning Rule 665

4414

4010

5626

5525

5424

23 53

22 52

21 51

20 50

34 64

33 63

32 62

31 61

30 60

0.0800
0.0000
3.4695

11.6716
12.4098
2.5600
1.9200
0.6400
0.0800
0.0077
0.03

aa
aa
aa
aa
aa

a a
a a
a a
a a
a a
a a
a a
a a
a a

 
 
 
  
 
 
  
 
 
 
  
 
 
 
  
 
 
 
 
 
   

0.0800
1.0000
3.4695
11.6716
12.4098
2.5600
1.9200
0.6400
0.9200
0.0077

09 0.0309
0.0463 0.0463
0.0309 0.0309
0.9923 0.0077

 
 
 
 
 

 
 
 

 
  

 
 
 
 
 

 
 
 

 
   

 (49)

Fig. 3. Desired position and its derivatives with 4-6-4 spline method

5-4-5 Method
In this method, we should have

ai6=0
for IL and SF subintervals in (41) and for the LS subinterval
ai6=ai5=0.
From the initial conditions in (43), we write
a10=qb, a11=a12=a13=0
for forward path and
a40=qb, a41=a42=a43=0
for backward path.
The conditions in (42), (43) and (44) give the following matrix equality for the unknown
coefficients:

1 1 2
22 2
21 1

33 3
21 1

2 2 22
2 2 2
2 2 2
3 3
2 2

00 0 0 0 01 0 0 0 0
01 1 0 0 01 0 0 0 0
01 1 0 0 01 1 0 0 0
05 4 0 00 0 0 0 0

10 6 0 0 00 0 0 0 0
0 00 0 0 0 0 010 4
1 1 10 1 1 0 0 00 0

4 30 2 0 0 0 00 0
0 0 0 0 00 0 6 3 0
0 0 0 00 0 4 00
0 0 1 10 0 0 0 00
0 0 5 40 0 0 0 00
0 0 10 60 0 0 0 00
0 0 10 40 0 0 0 00

A A A
AA A

AA A

A A AA
A A A

AA A









15

14

10

24

23

22

21

3 20
2
3 35

3
3 34

33

32

31

30

00 0
00 0

000 0
000 0
000 0
000 0
000 1
00 0
000
00 00

1 1 11
3 2 01 0
3 1 00
1 0 00

i

l

f

a q
a q
a
a
a
a
a

A a
A a

a
qa

a
a
a

  
  
  
  
  
  
  
  
  
      
  
     
  
  
  
  
  
  
  

   

0
0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (50)

 where Ai’s are defined in (40). (50) is valid for both forward and backward paths. Solving
(50) for forward and backward paths, we obtained the following solution (Fig. 4):

15 45

14 44

10 40

24 54

23 53

22 52

21 51

20 50

35 65

34 64

33 63

32 62

31 61

30 60

0.0644
0.1444
0.0000
0.0381
0.5299
0.8900
0.5113
0.0800
0.0720
0.2013
0.08

a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a

 
 
 
 
 

 
  
 
 
 
  
 
   
 
 

 
 
 
 
   

0.0644
0.1444
1.0000
0.0381
0.5299
0.8900
0.5113
0.9200
0.0720
0.2013

53 0.0853
0.2320 0.2320
0.2747 0.2747
0.9133 0.0867

 
  
 
 
 
 
 

 
  
 
 
 
 
 
 
 
 
 
   

 (51)

www.intechopen.com

Advances in Robot Manipulators666

Fig. 4. Desired position and its derivatives with 5-4-5 spline method

Transcendental Function Methods
In these methods, an upper and lower bounded, monotone increasing or decreasing
transcendental function, which is continuously differentiable up to the third order, is used.
In order to obtain a periodic trajectory, the argument of the transcendental function should
be a continuously differentiable periodic function up to the third order. Typically, a
sinusoidal function can be selected as the argument. The advantage of using a
transcendental function with a periodic argument function is that for each subinterval the
same function is used. This reduces the formulation time of the trajectory. Also the trajectory
function never has local maxima and minima in the subintervals, since they are monotone
increasing or decreasing. However, it is not easy to determine the exact lift-off and set-down
points. The derivatives of the function may become very complex, as in the hyperbolic
tangent case. Fortunately, we need only the first order derivatives, because the controller
uses only the desired trajectory and the desired velocity to compute the input functions, as
in (24).

1.Hyberbolic Tangent Method
Let us use the hyperbolic tangent function for the trajectory. In this method, there is no need
to consider the forward and backward subintervals of IL, LS, and SF. Instead, we use a
hyperbolic tangent function with a continuously differentiable (at least up to the third order)
periodic function as the argument. Indeed the method uses the fact that the hyperbolic

tangent function can take values in the interval [-1, 1]. Same function is valid for all times
and for each subinterval of the trajectory. However, it is not easy to determine the
boundaries for lift-off and set-down positions. There is no general method to determine
these points. In this method the desired trajectory is defined as:

h(t)=b[a+dtanh(ccos(t))] (52)

Where b is a weighting constant in radians, a is the constant that determines the initial
position, c is the constant that determines the lift-off and set-down positions, d is the
constant which determines the difference between the initial (babd) and final (ba+bd)
positions,  is the angular frequency of the desired trajectory. Note that cosine function in
the argument is continuously differentiable of any order. The determination method of the
constant c is trial and error. Typically, c should be selected large enough so that the
trajectory reaches to its final position and remains there for some time without subjecting
excessive velocities and accelerations for a pick and place task (Fig. 5). However, a, b, and d
can be determined according to the initial and final desired positions. One can easily find
the velocity, acceleration and jerk functions by taking the successive derivatives of (52) as

 2() () sin()sech cos()dv t h t bcd t c t
dt

     (53)

 2 2 2() () sech cos() cos() 2 tanh(cos()sin ()da t v t bcd c t t c c t t
dt

          (54)

 

    

3 2

2 2 2 2

() () sin()sech cos() 1 6 cos() tanh(cos()

2 sin () sech cos() 2 tanh cos() .

dj t a t bcd t c t c t c t
dt
c t c t c t

    

  

  

  

 (55)

The jerk expression given in (14) can also be written as follows

 

  

3 2

2 2 2

() () sin()sech cos() 1 6 cos() tanh(cos()

2 sin () 3sech cos() 2 .

dj t a t bcd t c t c t c t
dt
c t c t

    

 

  

  

 (56)

2.Error Function Method:
Here the trajectory is selected as the integral of Gaussian distribution function, which is
known as the error function, defined as

2

2
0

2erf () exp
t

t d 
 

 
   

 
 . (57)

To get a continuous and periodic function, we use a sinusoidal argument as in hyperbolic
tangent function. The following function is periodic, continuous and differentiable at least
up to the third order:

 () erf cos()h t B A D C t    . (58)

www.intechopen.com

Trajectory Control of RLED Robot Manipulators Using a New Type of Learning Rule 667

Fig. 4. Desired position and its derivatives with 5-4-5 spline method

Transcendental Function Methods
In these methods, an upper and lower bounded, monotone increasing or decreasing
transcendental function, which is continuously differentiable up to the third order, is used.
In order to obtain a periodic trajectory, the argument of the transcendental function should
be a continuously differentiable periodic function up to the third order. Typically, a
sinusoidal function can be selected as the argument. The advantage of using a
transcendental function with a periodic argument function is that for each subinterval the
same function is used. This reduces the formulation time of the trajectory. Also the trajectory
function never has local maxima and minima in the subintervals, since they are monotone
increasing or decreasing. However, it is not easy to determine the exact lift-off and set-down
points. The derivatives of the function may become very complex, as in the hyperbolic
tangent case. Fortunately, we need only the first order derivatives, because the controller
uses only the desired trajectory and the desired velocity to compute the input functions, as
in (24).

1.Hyberbolic Tangent Method
Let us use the hyperbolic tangent function for the trajectory. In this method, there is no need
to consider the forward and backward subintervals of IL, LS, and SF. Instead, we use a
hyperbolic tangent function with a continuously differentiable (at least up to the third order)
periodic function as the argument. Indeed the method uses the fact that the hyperbolic

tangent function can take values in the interval [-1, 1]. Same function is valid for all times
and for each subinterval of the trajectory. However, it is not easy to determine the
boundaries for lift-off and set-down positions. There is no general method to determine
these points. In this method the desired trajectory is defined as:

h(t)=b[a+dtanh(ccos(t))] (52)

Where b is a weighting constant in radians, a is the constant that determines the initial
position, c is the constant that determines the lift-off and set-down positions, d is the
constant which determines the difference between the initial (babd) and final (ba+bd)
positions,  is the angular frequency of the desired trajectory. Note that cosine function in
the argument is continuously differentiable of any order. The determination method of the
constant c is trial and error. Typically, c should be selected large enough so that the
trajectory reaches to its final position and remains there for some time without subjecting
excessive velocities and accelerations for a pick and place task (Fig. 5). However, a, b, and d
can be determined according to the initial and final desired positions. One can easily find
the velocity, acceleration and jerk functions by taking the successive derivatives of (52) as

 2() () sin()sech cos()dv t h t bcd t c t
dt

     (53)

 2 2 2() () sech cos() cos() 2 tanh(cos()sin ()da t v t bcd c t t c c t t
dt

          (54)

 

    

3 2

2 2 2 2

() () sin()sech cos() 1 6 cos() tanh(cos()

2 sin () sech cos() 2 tanh cos() .

dj t a t bcd t c t c t c t
dt
c t c t c t

    

  

  

  

 (55)

The jerk expression given in (14) can also be written as follows

 

  

3 2

2 2 2

() () sin()sech cos() 1 6 cos() tanh(cos()

2 sin () 3sech cos() 2 .

dj t a t bcd t c t c t c t
dt
c t c t

    

 

  

  

 (56)

2.Error Function Method:
Here the trajectory is selected as the integral of Gaussian distribution function, which is
known as the error function, defined as

2

2
0

2erf () exp
t

t d 
 

 
   

 
 . (57)

To get a continuous and periodic function, we use a sinusoidal argument as in hyperbolic
tangent function. The following function is periodic, continuous and differentiable at least
up to the third order:

 () erf cos()h t B A D C t    . (58)

www.intechopen.com

Advances in Robot Manipulators668

The advantage of this function is that the derivatives are in terms of simple exponential and
sinusoidal functions. Note that the function given in (58), has the initial value of zero, if one
selects A=D.

Fig. 5. Desired position with hyperbolic tangent function (c=10)

3.5 PD and Learning Controllers
A frequently used controller in control systems is the classical proportional-derivative (PD)
controller (Das & Dulger, 2005). The main advantage of the PD controller is that it can easily
be implemented on simple microcontroller architectures. On the other hand, the
performance obtained from PD controllers is not satisfying for most of the sensitive
applications. In this work, PD and learning controllers (Messner et al., 1991) are simulated
along with the hybrid adaptive-learning controller (Canbolat et al. 1996) in order to compare
the achieved performance. For this purpose, we repeat the main equations of learning
controller below.
First, the main equation of the PD controller is

()() ()k p d
de tV t K e t K

dt
  (59)

where e(t) is the error function, Kp is the proportional control coefficient and Kd refers to the
derivative control constant.

The learning algorithm proposed by (Messner et al., 1991) has more complex structure than
a PD controller. The mechanical part of the robot dynamics can be rearranged as

() () (,) () ()m dM q q T t V q q q G q F q       (60)

where T(t) is the control torques applied to the joints and q(t)=[q1(t), q2(t)]T is the position of
the manipulator, q and q are nx1 vectors of joint velocities, and accelerations, respectively.
The other terms are defined in (1). The following function, which includes the mechanical
uncertainties, is defined

() () (,) ()r d d m d d d dw t M q q V q q q G q     (61)

where qd(t) denotes the desired periodic trajectory vector of the robot links and the dots
denote the differentiation with respect to time, t. Using these two equations, the following
error dynamics and the desired compensation control law (DCCL) can be derived

 ˆ() (,) (,) () ()r re t f t e B t e w t w t   (62)

ˆ() () () () (,) ()r v v p m n vT t w t F e t F e t d q q q e     (63)

where TT T

p ve e e    and)(ˆ twr is the estimate of the influence function, wr(t), that

compensates for mechanical uncertainties, Fv and Fp are PD gains, ev(t) is the reference
velocity error vector, e(t) is the position error vector, (,)md q q is the friction compensation.
qn(ev) is the nonlinear compensation function. As it can be seen from (63), the repetitive-
learning algorithm utilizes PD control but also uses)(ˆ twr to compensate for the uncertain
parameters, thus providing “learning”. The position error is defined as

() () ()p de t q t q t  (64)

where qd(t) is the desired trajectory. The reference velocity error function is defined as

)()()(tetete ppv   , (65)

where  is a positive constant and the nonlinear compensation function is given as:

vpvn eeeq
2

)( (66)

The estimate of the uncertainty function)(ˆ twr is updated with following rules:

www.intechopen.com

Trajectory Control of RLED Robot Manipulators Using a New Type of Learning Rule 669

The advantage of this function is that the derivatives are in terms of simple exponential and
sinusoidal functions. Note that the function given in (58), has the initial value of zero, if one
selects A=D.

Fig. 5. Desired position with hyperbolic tangent function (c=10)

3.5 PD and Learning Controllers
A frequently used controller in control systems is the classical proportional-derivative (PD)
controller (Das & Dulger, 2005). The main advantage of the PD controller is that it can easily
be implemented on simple microcontroller architectures. On the other hand, the
performance obtained from PD controllers is not satisfying for most of the sensitive
applications. In this work, PD and learning controllers (Messner et al., 1991) are simulated
along with the hybrid adaptive-learning controller (Canbolat et al. 1996) in order to compare
the achieved performance. For this purpose, we repeat the main equations of learning
controller below.
First, the main equation of the PD controller is

()() ()k p d
de tV t K e t K

dt
  (59)

where e(t) is the error function, Kp is the proportional control coefficient and Kd refers to the
derivative control constant.

The learning algorithm proposed by (Messner et al., 1991) has more complex structure than
a PD controller. The mechanical part of the robot dynamics can be rearranged as

() () (,) () ()m dM q q T t V q q q G q F q       (60)

where T(t) is the control torques applied to the joints and q(t)=[q1(t), q2(t)]T is the position of
the manipulator, q and q are nx1 vectors of joint velocities, and accelerations, respectively.
The other terms are defined in (1). The following function, which includes the mechanical
uncertainties, is defined

() () (,) ()r d d m d d d dw t M q q V q q q G q     (61)

where qd(t) denotes the desired periodic trajectory vector of the robot links and the dots
denote the differentiation with respect to time, t. Using these two equations, the following
error dynamics and the desired compensation control law (DCCL) can be derived

 ˆ() (,) (,) () ()r re t f t e B t e w t w t   (62)

ˆ() () () () (,) ()r v v p m n vT t w t F e t F e t d q q q e     (63)

where TT T

p ve e e    and)(ˆ twr is the estimate of the influence function, wr(t), that

compensates for mechanical uncertainties, Fv and Fp are PD gains, ev(t) is the reference
velocity error vector, e(t) is the position error vector, (,)md q q is the friction compensation.
qn(ev) is the nonlinear compensation function. As it can be seen from (63), the repetitive-
learning algorithm utilizes PD control but also uses)(ˆ twr to compensate for the uncertain
parameters, thus providing “learning”. The position error is defined as

() () ()p de t q t q t  (64)

where qd(t) is the desired trajectory. The reference velocity error function is defined as

)()()(tetete ppv   , (65)

where  is a positive constant and the nonlinear compensation function is given as:

vpvn eeeq
2

)( (66)

The estimate of the uncertainty function)(ˆ twr is updated with following rules:

www.intechopen.com

Advances in Robot Manipulators670


T

r dtctKtw
0

),(ˆ),()(ˆ  (67)

)(),(),(ˆ teRKtK
t
tc T

L





 (68)

where),(tK is a function that can be selected by the designer as in hybrid controller, e(t)
is defined in (63), KL and R are constant matrices (Messner et al., 1991).

4. SCARA Robot Model

The SCARA manipulator considered in this study is an experimental robot that has DC
servo motors for the movements of elbow and shoulder. The third movement is controlled
pneumatically. The schematic configuration of the robot is shown in Fig. 6.

The electrical and mechanical dynamical equations of the manipulator are as follows (Das &
Dulger, 2005)

. .

1 11 1 1 1 1
. .

2 1 2 2 2
2 2

0 0 0
0 0 0

aa a a e a

a a a e a
a

L R I K VI
L R I K VI





                                         

 (69)

 11 1

22 2

0
0

aT

aT

IK T
IK T
    

    
    

 (70)

..

1 1
..

2
2

TA B C
TE D F





                     

 (71)

The elements A, B, C, and D in (71) are defined as

2 2 2
21 2 1 1 2 2 2 1 2 1 2

1 2 2 2
1 1 1 2

() 4 cos
4

m
m

J J m r m r m r m r rA J
N N N N

   
     

 
 (72a)

2
22 2 2 2 1 2

1 2 1 2 1 2 2

cos
4 2

mJ m r m r rB
N N N N N N N

 
    

 
 (72b)

2
1 2 2 22 1 2

1 2 1 2 2

sin
2

m m m mm r rC
N N N N N

      
    

  

  
 (72c)

2
2 2 2

1 2 2
2 24m

J m rD J
N N

   (72d)

2
22 2 2 2 1 2

1 2 1 2 1 2 2

cos
4 2

mJ m r m r rE
N N N N N N N

 
    

 
 (72e)

2
1 22 1 2

1 2 1 2

sin
2

m mm r rF
N N N N

    
    

  


 (72f)

where Ia1 and Ia2 are motor currents, Va1 and Va2 are motor voltages, T1 and T2 are motor
torques, θ1 and θ2 are link angles and θm1 and θm2 are motor angles of link 1 and link 2,
respectively. Other physical parameters and their values that appear in (72) for the Serpent-
1 model SCARA robot are given in Table 1.

Fig. 6. Upper view of SCARA robot

Parameter Meaning Value

1aL , 2aL Armature inductances of
motors 1 and 2

1.3mH, 1.3mH

1aR , 2aR Armature resistances of
motors 1 and 2

3.5 , 3.5

1eK , 2eK Inverse emf coefficients of
motors 1 and 2

0.047 V.s/rad,
0.047 V.s/rad

1TK , 2TK Torque coefficients of
motors 1 and 2

0.047 Nm/A,
0.047 Nm/A

www.intechopen.com

Trajectory Control of RLED Robot Manipulators Using a New Type of Learning Rule 671


T

r dtctKtw
0

),(ˆ),()(ˆ  (67)

)(),(),(ˆ teRKtK
t
tc T

L





 (68)

where),(tK is a function that can be selected by the designer as in hybrid controller, e(t)
is defined in (63), KL and R are constant matrices (Messner et al., 1991).

4. SCARA Robot Model

The SCARA manipulator considered in this study is an experimental robot that has DC
servo motors for the movements of elbow and shoulder. The third movement is controlled
pneumatically. The schematic configuration of the robot is shown in Fig. 6.

The electrical and mechanical dynamical equations of the manipulator are as follows (Das &
Dulger, 2005)

. .

1 11 1 1 1 1
. .

2 1 2 2 2
2 2

0 0 0
0 0 0

aa a a e a

a a a e a
a

L R I K VI
L R I K VI





                                         

 (69)

 11 1

22 2

0
0

aT

aT

IK T
IK T
    

    
    

 (70)

..

1 1
..

2
2

TA B C
TE D F





                     

 (71)

The elements A, B, C, and D in (71) are defined as

2 2 2
21 2 1 1 2 2 2 1 2 1 2

1 2 2 2
1 1 1 2

() 4 cos
4

m
m

J J m r m r m r m r rA J
N N N N

   
     

 
 (72a)

2
22 2 2 2 1 2

1 2 1 2 1 2 2

cos
4 2

mJ m r m r rB
N N N N N N N

 
    

 
 (72b)

2
1 2 2 22 1 2

1 2 1 2 2

sin
2

m m m mm r rC
N N N N N

      
    

  

  
 (72c)

2
2 2 2

1 2 2
2 24m

J m rD J
N N

   (72d)

2
22 2 2 2 1 2

1 2 1 2 1 2 2

cos
4 2

mJ m r m r rE
N N N N N N N

 
    

 
 (72e)

2
1 22 1 2

1 2 1 2

sin
2

m mm r rF
N N N N

    
    

  


 (72f)

where Ia1 and Ia2 are motor currents, Va1 and Va2 are motor voltages, T1 and T2 are motor
torques, θ1 and θ2 are link angles and θm1 and θm2 are motor angles of link 1 and link 2,
respectively. Other physical parameters and their values that appear in (72) for the Serpent-
1 model SCARA robot are given in Table 1.

Fig. 6. Upper view of SCARA robot

Parameter Meaning Value

1aL , 2aL Armature inductances of
motors 1 and 2

1.3mH, 1.3mH

1aR , 2aR Armature resistances of
motors 1 and 2

3.5 , 3.5

1eK , 2eK Inverse emf coefficients of
motors 1 and 2

0.047 V.s/rad,
0.047 V.s/rad

1TK , 2TK Torque coefficients of
motors 1 and 2

0.047 Nm/A,
0.047 Nm/A

www.intechopen.com

Advances in Robot Manipulators672

1J , 2J Moment of inertias of
arms 1 and 2

0.0980kgm2,
0.0980kgm2

1mJ , 2mJ Inertias of motors 1 and 2 3.3.10-6 kgm2,
3.3.10-6 kgm2

1m , 2m Masses of arms 1 and 2 1.90 kg,
0.93 kg

1r , 2r Lenghts of arms 1 and 2 250 mm,
150 mm

1N , 2N Gearbox ratios of motors 1
and 2

90,
220

Table 1. Serpent-1 robot parameters and their values

5. Simulation

Dynamics of the SCARA robot and three types of controllers, namely PD, learning and
adaptive/learning controllers are modelled in MATLAB Simulink environment. A general
simulation model is given in Fig. 7.
In the first simulation, the SCARA is controlled by PD controller. In this case, the electrical
dynamics are neglected and the controller block is replaced with a PD controller (Fig.7). The
control coefficients are selected as Kp1=300, Kd1=50, Kp2=30, Kd2=15 for link 1 and link 2,
respectively (Das & Dulger, 2005).
As the second simulation, SCARA is controlled by learning controller. Here the electrical
dynamics are again neglected and the controller block is replaced with the learning
controller designed by (Messner et al., 1991). In the learning controller, the parameters are
selected as;

Fig. 7. Detailed Block diagram of robot and controller

Electrical
subsystem K

Mechanical
subsystem

 
qd(t)

HP
Filter

Learning
Controller

Adaptive
Controller

Current
Gain




Id

v(t) q(t)

()q t

Current

Robot Dynamics

Controller Dynamics

Learning
term (w1)

Learning
term (w2)

Differentiator

Torque

2000 0
0 160pF  

  
 

 (73)

200 0
0 4vF  

  
 

 (74)

2000 0
0 175LK  

  
 

 (75)

and p=10, ve n=0, dm(xp)=0 (Messner et al., 1991). The computation of ˆxc and wr are
accomplished by numerical integration with embedded function blocks. The learning
controllers have two different independent dynamic (time) variables. The simulation
packages do not allow more than one independent simulation variables. To overcome this
limitation, the second time variable is defined as a discrete variable and at every discrete
point some state variables are introduced according to the dynamics. The differentiation and
integration in the second variable are defined through summation and difference equations.
The result is a heavy computational burden on the system.
The simulation model of the adaptive/learning hybrid controller is essentially the same as
in Fig. 7. The parameters of the adaptive/learning controller are selected as; k=15, =12 and

100 0
0 100LK  

  
 

 (76)

Again, the computation of ˆxc , 1w , w2 are realized with numerical integrator blocks.
The desired link angle function is chosen as

() 0.5 (1 tanh(10cos()))dq t t     , (77)

where =1 rad/s.
The function given in (77) is a pick-and-place type task that is widely used in industrial
applications. This trajectory function satisfies the periodicity and continuous 3rd order
derivative requirements of hybrid/learning controller as discussed in section 3.4.
The desired and achieved link angles when PD controller is used and the link angle errors
are given in Fig. 8 and Fig. 9, respectively. The maximum angle errors are 0.4 rad for first
link and 0.65 rad for the second link.

www.intechopen.com

Trajectory Control of RLED Robot Manipulators Using a New Type of Learning Rule 673

1J , 2J Moment of inertias of
arms 1 and 2

0.0980kgm2,
0.0980kgm2

1mJ , 2mJ Inertias of motors 1 and 2 3.3.10-6 kgm2,
3.3.10-6 kgm2

1m , 2m Masses of arms 1 and 2 1.90 kg,
0.93 kg

1r , 2r Lenghts of arms 1 and 2 250 mm,
150 mm

1N , 2N Gearbox ratios of motors 1
and 2

90,
220

Table 1. Serpent-1 robot parameters and their values

5. Simulation

Dynamics of the SCARA robot and three types of controllers, namely PD, learning and
adaptive/learning controllers are modelled in MATLAB Simulink environment. A general
simulation model is given in Fig. 7.
In the first simulation, the SCARA is controlled by PD controller. In this case, the electrical
dynamics are neglected and the controller block is replaced with a PD controller (Fig.7). The
control coefficients are selected as Kp1=300, Kd1=50, Kp2=30, Kd2=15 for link 1 and link 2,
respectively (Das & Dulger, 2005).
As the second simulation, SCARA is controlled by learning controller. Here the electrical
dynamics are again neglected and the controller block is replaced with the learning
controller designed by (Messner et al., 1991). In the learning controller, the parameters are
selected as;

Fig. 7. Detailed Block diagram of robot and controller

Electrical
subsystem K

Mechanical
subsystem

 
qd(t)

HP
Filter

Learning
Controller

Adaptive
Controller

Current
Gain




Id

v(t) q(t)

()q t

Current

Robot Dynamics

Controller Dynamics

Learning
term (w1)

Learning
term (w2)

Differentiator

Torque

2000 0
0 160pF  

  
 

 (73)

200 0
0 4vF  

  
 

 (74)

2000 0
0 175LK  

  
 

 (75)

and p=10, ve n=0, dm(xp)=0 (Messner et al., 1991). The computation of ˆxc and wr are
accomplished by numerical integration with embedded function blocks. The learning
controllers have two different independent dynamic (time) variables. The simulation
packages do not allow more than one independent simulation variables. To overcome this
limitation, the second time variable is defined as a discrete variable and at every discrete
point some state variables are introduced according to the dynamics. The differentiation and
integration in the second variable are defined through summation and difference equations.
The result is a heavy computational burden on the system.
The simulation model of the adaptive/learning hybrid controller is essentially the same as
in Fig. 7. The parameters of the adaptive/learning controller are selected as; k=15, =12 and

100 0
0 100LK  

  
 

 (76)

Again, the computation of ˆxc , 1w , w2 are realized with numerical integrator blocks.
The desired link angle function is chosen as

() 0.5 (1 tanh(10cos()))dq t t     , (77)

where =1 rad/s.
The function given in (77) is a pick-and-place type task that is widely used in industrial
applications. This trajectory function satisfies the periodicity and continuous 3rd order
derivative requirements of hybrid/learning controller as discussed in section 3.4.
The desired and achieved link angles when PD controller is used and the link angle errors
are given in Fig. 8 and Fig. 9, respectively. The maximum angle errors are 0.4 rad for first
link and 0.65 rad for the second link.

www.intechopen.com

Advances in Robot Manipulators674

Fig. 8. Desired and simulated link angles when PD controller is utilized

Fig. 9. Link angle errors when PD controller is used

Similarly, the link angle errors for learning controller are plotted in Fig. 10. The maximum
angle errors are 0.09 rad for first link and 0.19 rad for the second link. The angle error
decreased with respect to PD controller case as it is expected.
The link angle errors are given in Fig. 11 for the hybrid controller. Note that, the maximum
link angles are lower compared to learning controller, 0.06 rad for both link 1 and link 2 (the
error plots for link 1and 2 are overlapped in Fig. 11). It is worth noting that, the link angle
errors have greater average values when hybrid controller is used. We think that the
average value is greater for the hybrid controller, since it uses less information for the
compensation of the uncertainties comparing with the learning controller given in (63),
which uses both link positions and velocities. However the hybrid controller uses the
measurements of link positions and motor currents. Furthermore, the learning controller
neglects the electrical dynamics and compensates for only mechanical parameter
uncertainties. On the other hand, the hybrid controller does not neglect electrical dynamics
and compensates for mechanical and electrical parameter uncertainties. That is, the
computational burden on the hybrid controller is much more than the learning controller.
We think that this fact results more error in the average although the maximum error is less.

Fig. 10. Link angle errors when learning controller is used

Fig. 11. Link angle errors when adaptive/learning controller is used

6. Conclusion

In this paper, the design of the hybrid adaptive/learning controller is described. Also the
design of the learning controller proposed by (Messner et al., 1991) is described shortly
along with a classical PD controller. The simulation model of a SCARA robot manipulator is
presented and the performance of the controllers are examined through simulation runs.
The simulation model and its parameters are based on a physical model of a SCARA robot
given in (Das & Dulger, 2005). The simulation model includes the mechanical subsystem,
electrical subsystem and the three different types of controllers. The classical PD, learning
and adaptive/learning controller schemes are modelled and SCARA robot is simulated with
three types of controllers.
The second time variable introduced in learning type controllers results a computational
burden in dynamics, since the dynamics of controller is dependent both on the real time
variable and the second time variable created via the Hilbert-Schmidt kernel used in
learning laws. Moreover, no standard simulation package allows the use of a second

www.intechopen.com

Trajectory Control of RLED Robot Manipulators Using a New Type of Learning Rule 675

Fig. 8. Desired and simulated link angles when PD controller is utilized

Fig. 9. Link angle errors when PD controller is used

Similarly, the link angle errors for learning controller are plotted in Fig. 10. The maximum
angle errors are 0.09 rad for first link and 0.19 rad for the second link. The angle error
decreased with respect to PD controller case as it is expected.
The link angle errors are given in Fig. 11 for the hybrid controller. Note that, the maximum
link angles are lower compared to learning controller, 0.06 rad for both link 1 and link 2 (the
error plots for link 1and 2 are overlapped in Fig. 11). It is worth noting that, the link angle
errors have greater average values when hybrid controller is used. We think that the
average value is greater for the hybrid controller, since it uses less information for the
compensation of the uncertainties comparing with the learning controller given in (63),
which uses both link positions and velocities. However the hybrid controller uses the
measurements of link positions and motor currents. Furthermore, the learning controller
neglects the electrical dynamics and compensates for only mechanical parameter
uncertainties. On the other hand, the hybrid controller does not neglect electrical dynamics
and compensates for mechanical and electrical parameter uncertainties. That is, the
computational burden on the hybrid controller is much more than the learning controller.
We think that this fact results more error in the average although the maximum error is less.

Fig. 10. Link angle errors when learning controller is used

Fig. 11. Link angle errors when adaptive/learning controller is used

6. Conclusion

In this paper, the design of the hybrid adaptive/learning controller is described. Also the
design of the learning controller proposed by (Messner et al., 1991) is described shortly
along with a classical PD controller. The simulation model of a SCARA robot manipulator is
presented and the performance of the controllers are examined through simulation runs.
The simulation model and its parameters are based on a physical model of a SCARA robot
given in (Das & Dulger, 2005). The simulation model includes the mechanical subsystem,
electrical subsystem and the three different types of controllers. The classical PD, learning
and adaptive/learning controller schemes are modelled and SCARA robot is simulated with
three types of controllers.
The second time variable introduced in learning type controllers results a computational
burden in dynamics, since the dynamics of controller is dependent both on the real time
variable and the second time variable created via the Hilbert-Schmidt kernel used in
learning laws. Moreover, no standard simulation package allows the use of a second

www.intechopen.com

Advances in Robot Manipulators676

independent time variable in the models. To overcome this difficulty, we discretize the
second variable. In order to keep the dynamics with respect to that variable we should have
introduced a large number of extra system states at each discrete point of the second
variable. Although the simulation is sufficiently fast with a high performance (1.7GHz CPU
and 512MB RAM) personal computer, it is not fast enough with a personal computer of
lower specifications (667Mhz CPU and 64MB RAM). Considering the much slower
computers employed for the single task of controlling industrial robots, a real time
application apparently is not possible at this stage. Therefore, the work to reduce the
computational burden in the control law is continuing and as soon as this is achieved, an
experiment to examine the hybrid controller for a real robot will be performed.
The parameters of a 2-link Serpent-1 model robot are used in simulations and the robot is
desired to realize a pick and place type movement. According to the simulation results, the
learning and adaptive/learning hybrid controllers provided lower angle errors compared to
classical PD controller. Moreover, the maximum angle errors of links when controlled by
adaptive/learning controller decreased from 0.09 rad to 0.06 rad for first link and 0.19 rad to
0.06 rad for second link compared to learning controller, which means 33.3% and 63.1%
decrement for first link and second link, respectively.
Although the hybrid controller is more complex than PD and learning controllers, its
position and velocity errors have smaller maximum values than the learning controller.
However its performance is not good in the error averages. We think that the high error
averages are due to the fact that the hybrid controller uses partial state information (no link
velocities) and compensates for both mechanical and electrical parameter uncertainties,
whereas the learning controller uses full state information (both link positions and
velocities) though it compensates only for mechanical uncertainties, since it neglects
electrical dynamics.
Our work is continuing to develop more powerful computational schemes for the hybrid
adaptive/learning controller to reduce the computational burden. Recently, we tried to
introduce a low pass filter in the hybrid controller to filter the high frequency components,
which effect the tracking performance negatively, in the input voltage. The preliminary
results show that the error becomes smoother and its average value reduces.

7. References

Arimoto, S. (1986). Mathematical theory of learning with applications to robot control, In:
Adaptive and Learning Systems, K.S. Narendra (Ed.), Plenum Press, ISBN:
0306422638, New York.

Arimoto, S.; Kawamura, S.; Miyazaki, F. & Tamaki, S. (1985). Learning control theory for
dynamical systems. Proceedings of IEEE 24th Conference on Decision and Control,
1375-1380, ISBN: 9999269222, Ft. Lauderdale FL, December 1985, IEEE Press,
Piscataway NJ.

Bondi, P.; Casalino, G. & Gambardella, L. (1988). On the iterative learning control theory of
robotic manipulators. IEEE Journal of Robotics and Automation, Vol. 4, No.1,
(February 1988), 14-22, ISSN: 0882-4967.

Burg, T.; Dawson, D. M.; Hu, J. and de Queiroz, M. (1996). An adaptive partial state
feedback controller for RLED robot manipulators. IEEE Transactions on Automatic
Control, Vol. 41, No. 7, (July 1996), 1024-1030, ISSN:0018-9286.

Canbolat, H.; Hu, J. & Dawson, D.M. (1996). A hybrid learning/adaptive partial state
feedback controller for RLED robot manipulators. International Journal of Systems
Science, Vol. 27, No. 11, (November 1996), 1123-1132, ISSN:0020 7721.

Das, T. & Dülger, C. (2005). Mathematical Modeling, Simulation and Experimental
Verification of a SCARA Robot. Simulation Modelling Practice and Theory, Vol.13,
No.3, (April 2005), 257-271, ISSN:1569-190X.

De Queiroz, M.S.; Dawson, D.M. & Canbolat, H. (1997). Adaptive Position/Force Control of
BDC-RLED Robots without Velocity Measurements. Proceedings of the IEEE
International Conference on Robotics and Automation, 525-530, ISSN:1050-4729,
Albuquerque NM, April 1997, IEEE Press, Piscataway NJ.

Fu, K.S.; Gonzalez, R.C. & Lee, C.S.G. (1987). Robotics: Control, Sensing, Vision, and
Intelligence, McGraw-Hill, ISBN:0-07-100421-1, New York.

Golnazarian, W. (1995). Time-Varying Neural Networks for Robot Trajectory Control. Ph.D.
Thesis, University Of Cincinnati, U.S.A.

Horowitz, R.; Messner, W. & Moore, J. (1991). Exponential convergence of a learning
controller for robot manipulators. IEEE Transactions on Automatic Control, Vol. 36,
No. 7, (July 1991), 890-894, ISSN:0018-9286.

Jungbeck, M. & Madrid, M.K. (2001). Optimal Neural Network Output Feedback Control for
Robot Manipulators. Proceedings of the Second International Workshop on Robot
Motion Control, 85-90, ISBN: 8371435150, Bukowy Dworek Poland, October 2001,
Uniwersytet Zielonogorski, Instytut Organizacji i Zarzadzania.

Kaneko, K.& Horowitz, R. (1992). Learning control of robot manipulators with velocity
estimation. Proceedings of USA/Japan Symposium on Flexible Automation, 828-
836, ISBN: 0791806758, M. Leu (Ed.), San Fransisco CA, July 1992, ASME.

Kaneko, K. & Horowitz, R. (1997). Repetitive and Adaptive Control of Robot Manipulators
with Velocity Estimation. IEEE Trans. Robotics and Automation, Vol. 13, No. 2
(April 1997), 204-217, ISSN:1042-296X.

Kawamura, S.; Miyazaki, F. & Arimoto, S. (1988). Realization of robot motion based on a
learning method. IEEE Transactions on Systems, Man and Cybernetics, Vol.18, No.
1, (Jan/Feb 1988), 126-134, ISSN:0018-9472.

Kuc, T.; Lee, J. & Nam, K. (1992). An iterative learning control theory for a class of nonlinear
dynamic systems. Automatica Vol.28, No.6, (November 1992), 1215-1221,
ISSN:0005-1098.

Lewis, F.L.; Abdallah, C.T. & Dawson, D.M. (1993). Control of Robot Manipulators,
Macmillan, ISBN: 0023705019, New York.

Messner, W.; Horowitz, R.; Kao, W.W. & Boals M. (1991). A new adaptive learning rule.
IEEE Transactions on Automatic Control, Vol. 36, No. 2, (February 1991) 188-197,
ISBN:0018-9286.

Qu, Z.; Dorsey, J.; Johnson, R. & Dawson, D.M. (1993). Linear learning control of robot
motion. Journal of Robotic Systems Vol.10, No.1, (February 1993), 123-140, ISBN:
0741-2223.

Sadegh, N.; Horowitz, ; Kao, W.W. & Tomizuka, M. (1990). A unified approach to the design
of adaptive and repetitive controllers for robotic manipulators. ASME Journal of
Dynamic Systems, Measurement and Control, Vol.112, No.4 (December 1990), 618-
629, ISSN: 0022-0434.

www.intechopen.com

Trajectory Control of RLED Robot Manipulators Using a New Type of Learning Rule 677

independent time variable in the models. To overcome this difficulty, we discretize the
second variable. In order to keep the dynamics with respect to that variable we should have
introduced a large number of extra system states at each discrete point of the second
variable. Although the simulation is sufficiently fast with a high performance (1.7GHz CPU
and 512MB RAM) personal computer, it is not fast enough with a personal computer of
lower specifications (667Mhz CPU and 64MB RAM). Considering the much slower
computers employed for the single task of controlling industrial robots, a real time
application apparently is not possible at this stage. Therefore, the work to reduce the
computational burden in the control law is continuing and as soon as this is achieved, an
experiment to examine the hybrid controller for a real robot will be performed.
The parameters of a 2-link Serpent-1 model robot are used in simulations and the robot is
desired to realize a pick and place type movement. According to the simulation results, the
learning and adaptive/learning hybrid controllers provided lower angle errors compared to
classical PD controller. Moreover, the maximum angle errors of links when controlled by
adaptive/learning controller decreased from 0.09 rad to 0.06 rad for first link and 0.19 rad to
0.06 rad for second link compared to learning controller, which means 33.3% and 63.1%
decrement for first link and second link, respectively.
Although the hybrid controller is more complex than PD and learning controllers, its
position and velocity errors have smaller maximum values than the learning controller.
However its performance is not good in the error averages. We think that the high error
averages are due to the fact that the hybrid controller uses partial state information (no link
velocities) and compensates for both mechanical and electrical parameter uncertainties,
whereas the learning controller uses full state information (both link positions and
velocities) though it compensates only for mechanical uncertainties, since it neglects
electrical dynamics.
Our work is continuing to develop more powerful computational schemes for the hybrid
adaptive/learning controller to reduce the computational burden. Recently, we tried to
introduce a low pass filter in the hybrid controller to filter the high frequency components,
which effect the tracking performance negatively, in the input voltage. The preliminary
results show that the error becomes smoother and its average value reduces.

7. References

Arimoto, S. (1986). Mathematical theory of learning with applications to robot control, In:
Adaptive and Learning Systems, K.S. Narendra (Ed.), Plenum Press, ISBN:
0306422638, New York.

Arimoto, S.; Kawamura, S.; Miyazaki, F. & Tamaki, S. (1985). Learning control theory for
dynamical systems. Proceedings of IEEE 24th Conference on Decision and Control,
1375-1380, ISBN: 9999269222, Ft. Lauderdale FL, December 1985, IEEE Press,
Piscataway NJ.

Bondi, P.; Casalino, G. & Gambardella, L. (1988). On the iterative learning control theory of
robotic manipulators. IEEE Journal of Robotics and Automation, Vol. 4, No.1,
(February 1988), 14-22, ISSN: 0882-4967.

Burg, T.; Dawson, D. M.; Hu, J. and de Queiroz, M. (1996). An adaptive partial state
feedback controller for RLED robot manipulators. IEEE Transactions on Automatic
Control, Vol. 41, No. 7, (July 1996), 1024-1030, ISSN:0018-9286.

Canbolat, H.; Hu, J. & Dawson, D.M. (1996). A hybrid learning/adaptive partial state
feedback controller for RLED robot manipulators. International Journal of Systems
Science, Vol. 27, No. 11, (November 1996), 1123-1132, ISSN:0020 7721.

Das, T. & Dülger, C. (2005). Mathematical Modeling, Simulation and Experimental
Verification of a SCARA Robot. Simulation Modelling Practice and Theory, Vol.13,
No.3, (April 2005), 257-271, ISSN:1569-190X.

De Queiroz, M.S.; Dawson, D.M. & Canbolat, H. (1997). Adaptive Position/Force Control of
BDC-RLED Robots without Velocity Measurements. Proceedings of the IEEE
International Conference on Robotics and Automation, 525-530, ISSN:1050-4729,
Albuquerque NM, April 1997, IEEE Press, Piscataway NJ.

Fu, K.S.; Gonzalez, R.C. & Lee, C.S.G. (1987). Robotics: Control, Sensing, Vision, and
Intelligence, McGraw-Hill, ISBN:0-07-100421-1, New York.

Golnazarian, W. (1995). Time-Varying Neural Networks for Robot Trajectory Control. Ph.D.
Thesis, University Of Cincinnati, U.S.A.

Horowitz, R.; Messner, W. & Moore, J. (1991). Exponential convergence of a learning
controller for robot manipulators. IEEE Transactions on Automatic Control, Vol. 36,
No. 7, (July 1991), 890-894, ISSN:0018-9286.

Jungbeck, M. & Madrid, M.K. (2001). Optimal Neural Network Output Feedback Control for
Robot Manipulators. Proceedings of the Second International Workshop on Robot
Motion Control, 85-90, ISBN: 8371435150, Bukowy Dworek Poland, October 2001,
Uniwersytet Zielonogorski, Instytut Organizacji i Zarzadzania.

Kaneko, K.& Horowitz, R. (1992). Learning control of robot manipulators with velocity
estimation. Proceedings of USA/Japan Symposium on Flexible Automation, 828-
836, ISBN: 0791806758, M. Leu (Ed.), San Fransisco CA, July 1992, ASME.

Kaneko, K. & Horowitz, R. (1997). Repetitive and Adaptive Control of Robot Manipulators
with Velocity Estimation. IEEE Trans. Robotics and Automation, Vol. 13, No. 2
(April 1997), 204-217, ISSN:1042-296X.

Kawamura, S.; Miyazaki, F. & Arimoto, S. (1988). Realization of robot motion based on a
learning method. IEEE Transactions on Systems, Man and Cybernetics, Vol.18, No.
1, (Jan/Feb 1988), 126-134, ISSN:0018-9472.

Kuc, T.; Lee, J. & Nam, K. (1992). An iterative learning control theory for a class of nonlinear
dynamic systems. Automatica Vol.28, No.6, (November 1992), 1215-1221,
ISSN:0005-1098.

Lewis, F.L.; Abdallah, C.T. & Dawson, D.M. (1993). Control of Robot Manipulators,
Macmillan, ISBN: 0023705019, New York.

Messner, W.; Horowitz, R.; Kao, W.W. & Boals M. (1991). A new adaptive learning rule.
IEEE Transactions on Automatic Control, Vol. 36, No. 2, (February 1991) 188-197,
ISBN:0018-9286.

Qu, Z.; Dorsey, J.; Johnson, R. & Dawson, D.M. (1993). Linear learning control of robot
motion. Journal of Robotic Systems Vol.10, No.1, (February 1993), 123-140, ISBN:
0741-2223.

Sadegh, N.; Horowitz, ; Kao, W.W. & Tomizuka, M. (1990). A unified approach to the design
of adaptive and repetitive controllers for robotic manipulators. ASME Journal of
Dynamic Systems, Measurement and Control, Vol.112, No.4 (December 1990), 618-
629, ISSN: 0022-0434.

www.intechopen.com

Advances in Robot Manipulators678

Sahin, V.D. & Canbolat, H. (2007). DC Motorlarla Sürülen Robot Manipülatörleri için
Gecikmeli Öğrenme Denetleyicisi Tasarm (Design of Delayed Learning Controller
for RLED Robot Manipulators Driven by DC Motors). TOK'07 Otomatik Kontrol
Milli Toplants Bildiriler Kitab (Proc. of TOK'07 Automatic Control National
Meeting), 130-133, Istanbul, Turkey, September 2007, Istanbul (Turkish).

Uğuz, H. & Canbolat, H. (2006). Simulation of a Hybrid Adaptive-Learning Control Law for
a Rigid Link Electrically Driven Robot Manipulator. Robotica, vol.24, No.3, (May
2006), 349-354, ISSN: 0263-5747.

www.intechopen.com

Advances in Robot Manipulators

Edited by Ernest Hall

ISBN 978-953-307-070-4

Hard cover, 678 pages

Publisher InTech

Published online 01, April, 2010

Published in print edition April, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The purpose of this volume is to encourage and inspire the continual invention of robot manipulators for

science and the good of humanity. The concepts of artificial intelligence combined with the engineering and

technology of feedback control, have great potential for new, useful and exciting machines. The concept of

eclecticism for the design, development, simulation and implementation of a real time controller for an

intelligent, vision guided robots is now being explored. The dream of an eclectic perceptual, creative controller

that can select its own tasks and perform autonomous operations with reliability and dependability is starting to

evolve. We have not yet reached this stage but a careful study of the contents will start one on the exciting

journey that could lead to many inventions and successful solutions.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Huseyin Canbolat (2010). Trajectory Control of RLED Robot Manipulators Using a New Type of Learning Rule,

Advances in Robot Manipulators, Ernest Hall (Ed.), ISBN: 978-953-307-070-4, InTech, Available from:

http://www.intechopen.com/books/advances-in-robot-manipulators/trajectory-control-of-rled-robot-

manipulators-using-a-new-type-of-learning-rule

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

