
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Collaborative rules operating manipulators 133

Collaborative rules operating manipulators

José Martins Junior, Luiz Camolesi Jr and Glauco Augusto de Paula Caurin

x

Collaborative rules operating manipulators

José Martins Junior1, Luiz Camolesi Jr2 and
 Glauco Augusto de Paula Caurin3

1 Piracicaba School of Engineering
2University of Campinas, 3University of São Paulo

Brazil

1. Introduction

Collaboration among robots and human beings has inspired researchers and novelists since
a long time ago. Apropos, the word “robot” first appeared in a theatre play (“R.U.R.”, Karel
Capek, 1921) referring to an automata character, a slave humanoid. Important advances for
control strategies were presented by researchers, applied to service robots, toys and
automata vehicles, concerning the interaction with human beings.
Over time, manipulator robots were massively used on industrial plants, performing
predefined and repetitive tasks. Modern applications for manipulators, involving two or
more robots on cooperative tasks, are now arising in industry. Most of the scientific
publications on this area present solutions for some aspects involving humans, mainly
related to the safety in robots’ workspaces, and the flexibility to fast operate and reconfigure
them. However, the way to operate manipulators remains rigidly based on imperative
programming, through a HRI (Human-Robot Interface). On the other hand, a new approach
proposed by (Brooks, 1986), based on behaviours, allows the definition of reactive models of
control applied to mobile robots. The main limitation of this approach is its strictly reactive
behaviour, i.e. all knowledge the robot will learn about the environment is unpredictable.
Current trends in several research areas are pointing to a possible occurrence of a new
singularity, when the mankind will experiment the knowledge disembodiment, i.e. the
human knowledge will be retrieved from brain, including its consciousness, and transferred
to another place, or machine (Vinge, 2008). Psychologists (Pinker, 1999) defend that the
mental states, as well as deliberations and emotions, can be represented by means of
symbols of a mental language, known as “Mentalese”. The free representation of signals and
symbols for all mental states and their causalities is practically impossible, considering the
current state of the art in technology. However, if conceived to specific domains, this can be
fetched. Rules and policies for collaborative environments consist of well formed sentences,
which describe states, causal relationships and their effects, applied to collaboration among
human beings. These rules and policies have been used for several situations, involving
computer supported cooperative work (CSCW).
This chapter presents and discusses the application of symbolic rules to coordinate
collaborative environments with manipulators and humans. It also demonstrates how to
express a set of collaborative rules, with common effects for machines and humans. We

7

www.intechopen.com

Advances in Robot Manipulators134

know that the elephants don’t play chess (Brooks, 1990), but at the end of this chapter was
presented our “robotic elephant” which plays a Tic Tac Toe game.

2. Robot control strategies

The traditional approach for robots control is feedback based and hierarchically
subordinated to a trajectory generator that is responsible for mapping tasks into sets of
movement sequences (rotations and translations). These sequences are obtained by
combining the individual motions defined by links or mobile parts of a robot. The generated
information is presented to the control modules, which are responsible for motors actuation.
A different strategy was presented by (Brooks, 1986). It describes a multilayer architecture
with several levels of abstraction, allowing reactive behaviours (Nwana, 1996) for mobile
robots. Each layer consists of a distinct level of competence, which may be activated. Thus, a
layer can modify the resultant output, by including its component on the signal, and also
inhibiting the signal produced by the lower layers.

2.1 Manipulators and the traditional approach
The large majority of industrial robot manipulators, available in the market today, use the
control architecture originally proposed by Engelberger/Devol and their UNIMATE robot
more than 30 years ago. The movements are decomposed by the user during the
programming task into a sequence of primitive movements, i.e. point to point, straight line,
circle. Normally the robot controller programming interfaces are implemented in an
interpretative form. All the movements are related to a "tool center point - TCP". Time
intervals or velocity to be reached during the execution of each primitive movement is also
user defined using the programming interface.
A strong point of this strategy is the capability to generate complex behaviour and
movements independently on which kind of end-effector the manipulator is carrying on. A
weakness of this approach remains in the ability of such equipment to interact with a non-
static environment, as for example, in assembly tasks. Each primitive of an individual
movement is further transformed into coordinates for the joints using inverse kinematic
calculation. The coordinates and its derivatives are finally transmitted to the robot
controllers, for each single joint, as a function of time.

2.2 Cooperative robots, humanoids and the behavioural-based approach
Cooperative applications research for multiple robots sprung in the last decade (Parker,
2003). (Cao et al, 1997) state that cooperative behaviour can be observed on more complex
animals (vertebrates, for instance), including human beings. Such behaviour has social
motivation, demanding each isolated participant to feel the need or desire to cooperate. A
system with multiple robots can present cooperative behaviour if, when performing some
task with any cooperative mechanism, the increase on the efficiency of the whole system
emerge.
Several architectures were proposed to solve the distributed control problem for mobile
multi-robots, but this subject is out of the main focus of this chapter. A good description
about this research area can be found in (Parker, 2003). On the other hand, there are few

published works (Lau & Ng, 2006) that discuss solutions for control problems for robotic
manipulators using distributed strategies.

Reactive behaviour models
Behaviour may be defined (Bishop & Potter 2004) as an observable and repeated pattern in
the relationships among spatio-temporal events associated with an agent and its
environment. Behaviour based robots use the information they gather from the environment
through the sensors to react to specific situations. The internal representations of
environment are extremely limited when not completely inexistent. Isolated models of
simple behaviours are responsible to respond to specific sensor signal conditions. The
overall robot behaviour results from the output combination of each model. It is exactly the
synthesis of coherent reaction, i.e. emerging intelligence as the result of the fusion of each
behaviour model constitutes an open challenging task.
Reactive models are very important for strategies involving robots learning, especially
mobiles ones, because they allow to assume the world as its own best model (Brooks, 1990).
This feature is primordial in situations involving adaptation for robots’ behaviours acting in
unknown environments, like other planets.

Deliberative behaviour models
In deliberative control, the robot takes all of the available sensory information, and
compares this information with its internally stored knowledge. Therefore in this approach
a complete representation of the environment is stimulated using all available internal robot
computer resources. To accomplish its task, the robot must further plan its future actions.
This requires the robot program to look ahead. As a consequence, the control structure must
provide multi task real time capabilities allowing the robot to act strategically.
If we pretend to see robots replicating behaviours based on the knowledge previously
obtained by a human (in opposite to a non-deterministic learning by observing the
environment), this knowledge must be formally expressed and converted into deliberative
actions, according to this interpretation. Currently, two different approaches may apply: the
neuronal model of the brain and the symbolic model of the mind.
The first (connectionist) aims to reproduce in computers the basic functions of the brain
inspired by its topology. The main limitations for this approach refer to the enormous
quantity of neurons and synaptic connections, and also the plasticity of neural networks
created by the brain.
The symbolic model is presented and discussed at session 3.1 of this chapter.

2.3 Distributed and modular strategies for control architectures
Modular Robotics offers an answer for various complex tasks. Instead of designing a new
and different mechanical robot for each task, simple module reconfiguration when connect
in a suitable form may accomplish complicated things and meet the demands of different
tasks or different working environments.
Each module is improved with individual capabilities for processing, sensing,
communicating and actuating. The overall functionality of a modular system is only
achieved when several modules are connected as a unique robot, i.e. a single module
presents low utility.

www.intechopen.com

Collaborative rules operating manipulators 135

know that the elephants don’t play chess (Brooks, 1990), but at the end of this chapter was
presented our “robotic elephant” which plays a Tic Tac Toe game.

2. Robot control strategies

The traditional approach for robots control is feedback based and hierarchically
subordinated to a trajectory generator that is responsible for mapping tasks into sets of
movement sequences (rotations and translations). These sequences are obtained by
combining the individual motions defined by links or mobile parts of a robot. The generated
information is presented to the control modules, which are responsible for motors actuation.
A different strategy was presented by (Brooks, 1986). It describes a multilayer architecture
with several levels of abstraction, allowing reactive behaviours (Nwana, 1996) for mobile
robots. Each layer consists of a distinct level of competence, which may be activated. Thus, a
layer can modify the resultant output, by including its component on the signal, and also
inhibiting the signal produced by the lower layers.

2.1 Manipulators and the traditional approach
The large majority of industrial robot manipulators, available in the market today, use the
control architecture originally proposed by Engelberger/Devol and their UNIMATE robot
more than 30 years ago. The movements are decomposed by the user during the
programming task into a sequence of primitive movements, i.e. point to point, straight line,
circle. Normally the robot controller programming interfaces are implemented in an
interpretative form. All the movements are related to a "tool center point - TCP". Time
intervals or velocity to be reached during the execution of each primitive movement is also
user defined using the programming interface.
A strong point of this strategy is the capability to generate complex behaviour and
movements independently on which kind of end-effector the manipulator is carrying on. A
weakness of this approach remains in the ability of such equipment to interact with a non-
static environment, as for example, in assembly tasks. Each primitive of an individual
movement is further transformed into coordinates for the joints using inverse kinematic
calculation. The coordinates and its derivatives are finally transmitted to the robot
controllers, for each single joint, as a function of time.

2.2 Cooperative robots, humanoids and the behavioural-based approach
Cooperative applications research for multiple robots sprung in the last decade (Parker,
2003). (Cao et al, 1997) state that cooperative behaviour can be observed on more complex
animals (vertebrates, for instance), including human beings. Such behaviour has social
motivation, demanding each isolated participant to feel the need or desire to cooperate. A
system with multiple robots can present cooperative behaviour if, when performing some
task with any cooperative mechanism, the increase on the efficiency of the whole system
emerge.
Several architectures were proposed to solve the distributed control problem for mobile
multi-robots, but this subject is out of the main focus of this chapter. A good description
about this research area can be found in (Parker, 2003). On the other hand, there are few

published works (Lau & Ng, 2006) that discuss solutions for control problems for robotic
manipulators using distributed strategies.

Reactive behaviour models
Behaviour may be defined (Bishop & Potter 2004) as an observable and repeated pattern in
the relationships among spatio-temporal events associated with an agent and its
environment. Behaviour based robots use the information they gather from the environment
through the sensors to react to specific situations. The internal representations of
environment are extremely limited when not completely inexistent. Isolated models of
simple behaviours are responsible to respond to specific sensor signal conditions. The
overall robot behaviour results from the output combination of each model. It is exactly the
synthesis of coherent reaction, i.e. emerging intelligence as the result of the fusion of each
behaviour model constitutes an open challenging task.
Reactive models are very important for strategies involving robots learning, especially
mobiles ones, because they allow to assume the world as its own best model (Brooks, 1990).
This feature is primordial in situations involving adaptation for robots’ behaviours acting in
unknown environments, like other planets.

Deliberative behaviour models
In deliberative control, the robot takes all of the available sensory information, and
compares this information with its internally stored knowledge. Therefore in this approach
a complete representation of the environment is stimulated using all available internal robot
computer resources. To accomplish its task, the robot must further plan its future actions.
This requires the robot program to look ahead. As a consequence, the control structure must
provide multi task real time capabilities allowing the robot to act strategically.
If we pretend to see robots replicating behaviours based on the knowledge previously
obtained by a human (in opposite to a non-deterministic learning by observing the
environment), this knowledge must be formally expressed and converted into deliberative
actions, according to this interpretation. Currently, two different approaches may apply: the
neuronal model of the brain and the symbolic model of the mind.
The first (connectionist) aims to reproduce in computers the basic functions of the brain
inspired by its topology. The main limitations for this approach refer to the enormous
quantity of neurons and synaptic connections, and also the plasticity of neural networks
created by the brain.
The symbolic model is presented and discussed at session 3.1 of this chapter.

2.3 Distributed and modular strategies for control architectures
Modular Robotics offers an answer for various complex tasks. Instead of designing a new
and different mechanical robot for each task, simple module reconfiguration when connect
in a suitable form may accomplish complicated things and meet the demands of different
tasks or different working environments.
Each module is improved with individual capabilities for processing, sensing,
communicating and actuating. The overall functionality of a modular system is only
achieved when several modules are connected as a unique robot, i.e. a single module
presents low utility.

www.intechopen.com

Advances in Robot Manipulators136

Similarly, a manipulator robot can be decomposed and its parts individually analyzed.
These parts present individual capabilities, like modules. Thus, the robot can be classified as
an n-modular system, where n is the number of different types of modules.

2.4 Supporting collaborative behaviours
A multilayer control model, adapted from (Brooks, 1986), was proposed in (Martins Jr et al,
2008). This new approach includes cooperative and collaborative behaviours, and was
designed to operate on distributed systems, defining different contexts – local and global –
as shown in Figure 1.

Collaborative Behavior

Cooperative Behavior

Global

Local
Trajectory Generator

Task Scheduler

Motor Controller

Virtual Environment Creator

S
en

so
rs

A
ct

ua
to

rs

Fig. 1. Multilayer control model

Distinct parameters of criticality and strictness for agents operating on each of the two
contexts (local and global) can be individually treated into its respective layer and provide
means to define its coupling degree to the target (robot). Figure 2 shows the appropriated
allocation of the layers on a distributed environment.
The local functions describe processes that are highly rigorous for execution time, but
demand a small amount of resources (storage and processing power). They can be classified
as local agents, tightly coupled to the target.
On the other hand, in the global context, the processes are less rigorous with respect to
performance time, but need larger amount of resources. These features indicate that the
designed agents must not be embedded into the target, but executed on loosely coupled
remote computers. Local agents interact directly with the target using communication
boards connected to actuators and sensors.
Each distinct part (link) of the robot, including its sensors, motors and mechanisms can be
individually considered as different modules. Thus, the movements’ composition for each
module can be resolved on a higher level, as a cooperative task. This is one of the
advantages provided by the architecture.

Local
Trajectory Generator

Task Scheduler
Motor Controller

Remote Agents (host)

Local Agents (target)

Robot
Module

Motor Sensors

Robot
Module

Sensors Sensors

Robot Module

Motor Sensors

I/O
Boards

Collaborative Behavior
Cooperative Behavior

Glob
al

Virtual Environment Creator

Collaborative Behavior
Cooperative Behavior

Glob
al

Virtual Environment Creator

Collaborative Behavior
Cooperative Behavior

Global

Virtual Environment Creator

HTTP/
CORBA

Rules
Database

Fig. 2. Distributed architecture

Remote agents can be assigned for each module and interact with local agents to provide
appropriate behaviour for the global model of the environment. This interaction can be done
through a local network, and supported by data communication protocols (such as CORBA,
or HTTP). The cooperative behaviour can be achieved by joint deliberation involving remote
agents, based on cooperation rules and on environment model. Cooperation is frequently
associated to a specific task execution.
The collaborative behaviour is placed on top of the architecture. Collaboration can be
observed when a robot interacts with a set of tasks contributing to achieve a common goal to
other agents in the environment, including humans. In the same manner, this behaviour is
deliberated from decisions taken by agents, by analyzing collaborative rules and checking
the current state of the environment.
The guiding rules for cooperation and collaboration are stored in a rules database, and can
be accessed by global agents, at its respective actuation level.
A brief description of each architecture layer is presented on the following subsections.

Motor controller
Motor controller describes the bottommost layer, highly dependent and coupled to the
hardware. Software agents developed to this level are locally executed (embedded) on the
target. Real time requirements are highly rigorous, requiring performance time up to 1
millisecond.
The main function of this layer is to emit signals to the drivers that directly actuate on each
of the motors. Data from sensors (encoders) attached to the motors are returned to the
control mesh as feedback, to ensure correct performance of the actuators.

www.intechopen.com

Collaborative rules operating manipulators 137

Similarly, a manipulator robot can be decomposed and its parts individually analyzed.
These parts present individual capabilities, like modules. Thus, the robot can be classified as
an n-modular system, where n is the number of different types of modules.

2.4 Supporting collaborative behaviours
A multilayer control model, adapted from (Brooks, 1986), was proposed in (Martins Jr et al,
2008). This new approach includes cooperative and collaborative behaviours, and was
designed to operate on distributed systems, defining different contexts – local and global –
as shown in Figure 1.

Collaborative Behavior

Cooperative Behavior

Global

Local
Trajectory Generator

Task Scheduler

Motor Controller

Virtual Environment Creator

S
en

so
rs

A
ct

ua
to

rs

Fig. 1. Multilayer control model

Distinct parameters of criticality and strictness for agents operating on each of the two
contexts (local and global) can be individually treated into its respective layer and provide
means to define its coupling degree to the target (robot). Figure 2 shows the appropriated
allocation of the layers on a distributed environment.
The local functions describe processes that are highly rigorous for execution time, but
demand a small amount of resources (storage and processing power). They can be classified
as local agents, tightly coupled to the target.
On the other hand, in the global context, the processes are less rigorous with respect to
performance time, but need larger amount of resources. These features indicate that the
designed agents must not be embedded into the target, but executed on loosely coupled
remote computers. Local agents interact directly with the target using communication
boards connected to actuators and sensors.
Each distinct part (link) of the robot, including its sensors, motors and mechanisms can be
individually considered as different modules. Thus, the movements’ composition for each
module can be resolved on a higher level, as a cooperative task. This is one of the
advantages provided by the architecture.

Local
Trajectory Generator

Task Scheduler
Motor Controller

Remote Agents (host)

Local Agents (target)

Robot
Module

Motor Sensors

Robot
Module

Sensors Sensors

Robot Module

Motor Sensors

I/O
Boards

Collaborative Behavior
Cooperative Behavior

Glob
al

Virtual Environment Creator

Collaborative Behavior
Cooperative Behavior

Glob
al

Virtual Environment Creator

Collaborative Behavior
Cooperative Behavior

Global

Virtual Environment Creator

HTTP/
CORBA

Rules
Database

Fig. 2. Distributed architecture

Remote agents can be assigned for each module and interact with local agents to provide
appropriate behaviour for the global model of the environment. This interaction can be done
through a local network, and supported by data communication protocols (such as CORBA,
or HTTP). The cooperative behaviour can be achieved by joint deliberation involving remote
agents, based on cooperation rules and on environment model. Cooperation is frequently
associated to a specific task execution.
The collaborative behaviour is placed on top of the architecture. Collaboration can be
observed when a robot interacts with a set of tasks contributing to achieve a common goal to
other agents in the environment, including humans. In the same manner, this behaviour is
deliberated from decisions taken by agents, by analyzing collaborative rules and checking
the current state of the environment.
The guiding rules for cooperation and collaboration are stored in a rules database, and can
be accessed by global agents, at its respective actuation level.
A brief description of each architecture layer is presented on the following subsections.

Motor controller
Motor controller describes the bottommost layer, highly dependent and coupled to the
hardware. Software agents developed to this level are locally executed (embedded) on the
target. Real time requirements are highly rigorous, requiring performance time up to 1
millisecond.
The main function of this layer is to emit signals to the drivers that directly actuate on each
of the motors. Data from sensors (encoders) attached to the motors are returned to the
control mesh as feedback, to ensure correct performance of the actuators.

www.intechopen.com

Advances in Robot Manipulators138

Task scheduler
Task scheduler plays an important role in the local context of the architecture, because it
provides means to coordinate the processes that operate during each of the individual
movement of the robot links. The execution of individual movements is part of the strategy
defined by an upper layer (trajectory generator), allowing general repositioning of the robot
in the environment.

Trajectory generator
Trajectory generator is the topmost layer in local context. It also imposes rigorous
restrictions concerning real time, yet it allows larger deadlines, of around 10 milliseconds.
Its main function is to define individual movements for each motor, by decomposing a
desired trajectory between two points and sending it to the robot (inverse kinematics).

Virtual environment creator
The bottommost layer of global context is to implement the general model of the
environment where the robot will be placed. At this level, geometric aspects are considered,
allowing robot's workspace analysis to be performed. Visual and proximity sensors can
provide data to be compared with the current state of the model, internally represented by a
software agent. Global strategies to replace the robot in the environment can be defined at
this level. These functions demand more computing power and, as compensation, allow
flexibility to response times. The main advantage of an environment model which keeps
close fidelity to the real world is the easiness to perform robot simulation on a virtual
environment. In this manner, all the development and testing stages for high-level
functionality, involving cooperative and collaborative behaviours, can be previously done
on a simulated environment.

Cooperative behaviour
Cooperative behaviour describes relations among robots (or parts of them) and must be
implemented by global agents, based on environment model and predefined rules (rules
database). It is possible to notice behavioural capacities, both reactive and deliberative, of
these agents. The reactive capacity is provided by environment analysis, which represents
its internal model, differently from the deliberative, which results from decisions about
cooperation rules.

Collaborative behaviour
In the same manner, collaborative behaviour for human interaction can be also provided.
Previously defined collaborative rules are stored in a database and allow analysis by agents,
by comparing to the current state of the environment model.

Rules database
The rules database is an important artifact of the whole architecture, and it was designed to
store all cooperative and collaborative rules. These rules were defined using the M-Forum
model (Camolesi Jr & Martins, 2006), and describe interaction policies by means of
collaborative situations, involving different agents. M-Forum is presented in the next
sessions.

3. Languages and rules

Languages define written or spoken symbols that are used for communication purposes.
Written symbols can be jointly combined into words that, and depending on the context,
provide the meaning of transmitted ideas. The sentences composition in a language is
previously defined by a grammar. Sentences are constituted by a finite sequence of symbols
from some finite alphabet (Slonneger & Kurtz, 1995).
The syntax of a programming language describes how the symbols may be combined to
create well-formed sentences (or programs). The meaning, obtained by interpreting the
words of a sentence, defines its semantics (originally conceived in “Mentalese”, the
language of thought). Thus, intentions about a desired behaviour can be described by means
of rules, using an interpretable language.
Restricted and non-ambiguous formal grammars were proposed to express programming
languages for computers. BNF (Backus-Naur form) is a widely adopted formal model to
specify grammars that describe terminal symbols of a valid alphabet, non-terminal symbols
and production rules. The main benefit of using a BNF style language is the easy to
implement programs that work as its lexical interpreters.

3.1 Symbolism and the mind-brain dilemma
Symbolism can be described as a movement that defends symbolic representation of mental
activities, inspired by computer like way of operation. In this sense, a constructive approach
is defined using a top-down strategy (Minsky, 1990): begin at the level of commonsense
psychology and try to imagine processes that could simulate it. The central idea consists,
assuming a greater challenge, to search for a solution by decomposing it into simpler parts.
This refers to a reductionist method, a typical approach commonly applied in AI (Artificial
Intelligence), and known as heuristic programming.
Two relevant aspects can be highlighted from the concept of the mind presented in (Pinker,
1999), which constitutes the foundation of computational theory of the mind. The first states
that the mental computations are applied to information, and this can be expressed using an
internal symbolic representation. The other refers to the functional composition of the
mental modules, which perform the computations. Thus, no matter what kind of subject
(physical) where mental computation is performed, the functionality of the modules that
compose the mind and the symbols are submitted to it. As a consequence, beliefs and
desires can be seen as information, physically embodied as configurations and symbols.
In the last decades, with the advances in AI research, a new approach for philosophy of the
mind – not dualist either materialist – has emerged, the functionalism. Functionalism
introduces the concept of causal role, in which a mental state can be described by their
causal relations with other mental states. Functionalism is based on the distinction
established by computer science about hardware (physical components) and software
(programs). From this point of view of psychology, a system can describe a human being or
a machine, and its basic constitution (neurons or electronics) is not what really matters, but
how parts are organized (Fodor, 1981). Thus, functionalism does not rule out the possibility
of a mechanical or electronic system having mental states and processes.
The central subject of this chapter is related to collaboration among robots (machines) and
human beings. In this sense, we have adopted a top-down model, where the behavioural
rules, with common sense for both types of actors, have been stated using a formal language

www.intechopen.com

Collaborative rules operating manipulators 139

Task scheduler
Task scheduler plays an important role in the local context of the architecture, because it
provides means to coordinate the processes that operate during each of the individual
movement of the robot links. The execution of individual movements is part of the strategy
defined by an upper layer (trajectory generator), allowing general repositioning of the robot
in the environment.

Trajectory generator
Trajectory generator is the topmost layer in local context. It also imposes rigorous
restrictions concerning real time, yet it allows larger deadlines, of around 10 milliseconds.
Its main function is to define individual movements for each motor, by decomposing a
desired trajectory between two points and sending it to the robot (inverse kinematics).

Virtual environment creator
The bottommost layer of global context is to implement the general model of the
environment where the robot will be placed. At this level, geometric aspects are considered,
allowing robot's workspace analysis to be performed. Visual and proximity sensors can
provide data to be compared with the current state of the model, internally represented by a
software agent. Global strategies to replace the robot in the environment can be defined at
this level. These functions demand more computing power and, as compensation, allow
flexibility to response times. The main advantage of an environment model which keeps
close fidelity to the real world is the easiness to perform robot simulation on a virtual
environment. In this manner, all the development and testing stages for high-level
functionality, involving cooperative and collaborative behaviours, can be previously done
on a simulated environment.

Cooperative behaviour
Cooperative behaviour describes relations among robots (or parts of them) and must be
implemented by global agents, based on environment model and predefined rules (rules
database). It is possible to notice behavioural capacities, both reactive and deliberative, of
these agents. The reactive capacity is provided by environment analysis, which represents
its internal model, differently from the deliberative, which results from decisions about
cooperation rules.

Collaborative behaviour
In the same manner, collaborative behaviour for human interaction can be also provided.
Previously defined collaborative rules are stored in a database and allow analysis by agents,
by comparing to the current state of the environment model.

Rules database
The rules database is an important artifact of the whole architecture, and it was designed to
store all cooperative and collaborative rules. These rules were defined using the M-Forum
model (Camolesi Jr & Martins, 2006), and describe interaction policies by means of
collaborative situations, involving different agents. M-Forum is presented in the next
sessions.

3. Languages and rules

Languages define written or spoken symbols that are used for communication purposes.
Written symbols can be jointly combined into words that, and depending on the context,
provide the meaning of transmitted ideas. The sentences composition in a language is
previously defined by a grammar. Sentences are constituted by a finite sequence of symbols
from some finite alphabet (Slonneger & Kurtz, 1995).
The syntax of a programming language describes how the symbols may be combined to
create well-formed sentences (or programs). The meaning, obtained by interpreting the
words of a sentence, defines its semantics (originally conceived in “Mentalese”, the
language of thought). Thus, intentions about a desired behaviour can be described by means
of rules, using an interpretable language.
Restricted and non-ambiguous formal grammars were proposed to express programming
languages for computers. BNF (Backus-Naur form) is a widely adopted formal model to
specify grammars that describe terminal symbols of a valid alphabet, non-terminal symbols
and production rules. The main benefit of using a BNF style language is the easy to
implement programs that work as its lexical interpreters.

3.1 Symbolism and the mind-brain dilemma
Symbolism can be described as a movement that defends symbolic representation of mental
activities, inspired by computer like way of operation. In this sense, a constructive approach
is defined using a top-down strategy (Minsky, 1990): begin at the level of commonsense
psychology and try to imagine processes that could simulate it. The central idea consists,
assuming a greater challenge, to search for a solution by decomposing it into simpler parts.
This refers to a reductionist method, a typical approach commonly applied in AI (Artificial
Intelligence), and known as heuristic programming.
Two relevant aspects can be highlighted from the concept of the mind presented in (Pinker,
1999), which constitutes the foundation of computational theory of the mind. The first states
that the mental computations are applied to information, and this can be expressed using an
internal symbolic representation. The other refers to the functional composition of the
mental modules, which perform the computations. Thus, no matter what kind of subject
(physical) where mental computation is performed, the functionality of the modules that
compose the mind and the symbols are submitted to it. As a consequence, beliefs and
desires can be seen as information, physically embodied as configurations and symbols.
In the last decades, with the advances in AI research, a new approach for philosophy of the
mind – not dualist either materialist – has emerged, the functionalism. Functionalism
introduces the concept of causal role, in which a mental state can be described by their
causal relations with other mental states. Functionalism is based on the distinction
established by computer science about hardware (physical components) and software
(programs). From this point of view of psychology, a system can describe a human being or
a machine, and its basic constitution (neurons or electronics) is not what really matters, but
how parts are organized (Fodor, 1981). Thus, functionalism does not rule out the possibility
of a mechanical or electronic system having mental states and processes.
The central subject of this chapter is related to collaboration among robots (machines) and
human beings. In this sense, we have adopted a top-down model, where the behavioural
rules, with common sense for both types of actors, have been stated using a formal language

www.intechopen.com

Advances in Robot Manipulators140

(constituted by symbols). Then, the rules were implemented and their functionality
observed during the coordination of a collaborative activity (more specifically, a game).

3.2 Behavioural rules, policies and collaborative environments
Interaction Policies are norms for the interactions in an environment; those can be
established by logic grouping of rules with well defined goals or objectives. In the definition
of a Collaboration and Control Policy (CCP) model for human-robot interaction, a policy
must observe the relationship among robotic and human agents in a same environment,
regarding collaborative task performance.
The research (Camolesi Jr & Martins, 2005) has achieved excellent progress for structure and
ontology definition. However it still has a lot to advance on applications, such as robots
control. Towards the approach of these questions, the M-Forum model supports
collaborative interactions modelling through the definition of rules by providing support to
five dimensions: actor; activity; object; time and space. A comparison between M-Forum and
the other models for rules (Tonti et al, 2003) is presented in Table 1.

 Kaos Rei Ponder M-Forum
Ontology
based

Yes Yes No Yes

Specification
language

DAML/OWL Prolog based Ponder
Language

L-Forum

Tool for
specification
policy

KPAT – Graphical
Editor

No (GUI under
development)

Graphical Editor No (GUI under
development)

Reasoning
support

Java Theorem
Prover

Prolog engine;
Event-condition-
action model.

Event calculus Activity theorem;
Deontic theorem;
Event-condition-
action model.

Enforcement
mechanisms

Policy automation
being explored for
the next version

Action execution
is outside the Rei
engine

Java interfaces
for enforcement
agents

Rule execution is
outside the engine

Flexibility Ontology can be
extended with
domain dependent
descriptions of
local entities

Ontology can be
extended with
domain
dependent
descriptions of
local entities

Management
domain as a
structuring
technique for
partitioning
complex object

Ontology can be
extended with
domain dependent
descriptions of local
entities

Elements
represented

Actors, actions,
groups, places

Subject, activity,
object

Subject, activity,
object, domain

Actor, activity, object,
time, space,
association, domain,
composition and
generalization
abstractions

Table 1. Comparison between M-Forum and other models for rules

3.3 The M-Forum model
In M-Forum (Camolesi Jr & Martins, 2006), the Actor dimension allows the representation of
an agent in a collaborative environment through activity rights, prohibitions and

obligations. The actors of a collaborative environment can be classified in human or not-
human. Every human actor has an identifier (Ach_id), a current state (AchState) and a set of
attributes (Ach_AttS). Given qh as the number of human actors at the environment and qs,
the number of not-humans, the formal statements are:

Actors are responsible for the execution of individual or collective activities, thus being able
to reach objects, an actor or actors group.
Activity is an execution unit that can be carried through by an actor or group. Normally,
activities involve the manipulation or transformation of an object. Activities must be defined
using Activity Operators and logic Operators representing rights, prohibitions and
obligations. Activity Operators are required to specify the interaction between actors and
objects. Activities have identifiers (At_id), a state (AtState), an activities subset (At_S), a set of
operations (OpS) and a set of attributes (At_AttributeS). Given qa as the number of activities
in an environment:

Object is any element that can be used in actions on objects or actors. An object represents
the structural characteristics and the behaviour of reality. Activities can be carried through
in objects to modify its characteristics. An object modelling in such a way establishes
uniformity of vision and treatment, useful for collaborative environment projects. An object
may be composed by others objects (CompObS) and has an identifier (Ob_id), a state
(ObState) and a set of attributes (Ob_AttS). Activities and Operations may be performed on
Objects that allows its state or attributes changing.

Spaces are localization areas of actors or objects and the specific areas used for activities.
Like other elements presented in this section, the spaces are essential for modelling a
collaborative environment.
On the collaborative interaction, elements of the dimension space must be defined using the
Space Operator (SpOp) to specify the position or the size of actors and objects in
collaborative environments. The space element has an identifier (Sp_id), a state (SpState) and
a set of attributes (SpAttS). If qe is the number of spaces into an environment:

www.intechopen.com

Collaborative rules operating manipulators 141

(constituted by symbols). Then, the rules were implemented and their functionality
observed during the coordination of a collaborative activity (more specifically, a game).

3.2 Behavioural rules, policies and collaborative environments
Interaction Policies are norms for the interactions in an environment; those can be
established by logic grouping of rules with well defined goals or objectives. In the definition
of a Collaboration and Control Policy (CCP) model for human-robot interaction, a policy
must observe the relationship among robotic and human agents in a same environment,
regarding collaborative task performance.
The research (Camolesi Jr & Martins, 2005) has achieved excellent progress for structure and
ontology definition. However it still has a lot to advance on applications, such as robots
control. Towards the approach of these questions, the M-Forum model supports
collaborative interactions modelling through the definition of rules by providing support to
five dimensions: actor; activity; object; time and space. A comparison between M-Forum and
the other models for rules (Tonti et al, 2003) is presented in Table 1.

 Kaos Rei Ponder M-Forum
Ontology
based

Yes Yes No Yes

Specification
language

DAML/OWL Prolog based Ponder
Language

L-Forum

Tool for
specification
policy

KPAT – Graphical
Editor

No (GUI under
development)

Graphical Editor No (GUI under
development)

Reasoning
support

Java Theorem
Prover

Prolog engine;
Event-condition-
action model.

Event calculus Activity theorem;
Deontic theorem;
Event-condition-
action model.

Enforcement
mechanisms

Policy automation
being explored for
the next version

Action execution
is outside the Rei
engine

Java interfaces
for enforcement
agents

Rule execution is
outside the engine

Flexibility Ontology can be
extended with
domain dependent
descriptions of
local entities

Ontology can be
extended with
domain
dependent
descriptions of
local entities

Management
domain as a
structuring
technique for
partitioning
complex object

Ontology can be
extended with
domain dependent
descriptions of local
entities

Elements
represented

Actors, actions,
groups, places

Subject, activity,
object

Subject, activity,
object, domain

Actor, activity, object,
time, space,
association, domain,
composition and
generalization
abstractions

Table 1. Comparison between M-Forum and other models for rules

3.3 The M-Forum model
In M-Forum (Camolesi Jr & Martins, 2006), the Actor dimension allows the representation of
an agent in a collaborative environment through activity rights, prohibitions and

obligations. The actors of a collaborative environment can be classified in human or not-
human. Every human actor has an identifier (Ach_id), a current state (AchState) and a set of
attributes (Ach_AttS). Given qh as the number of human actors at the environment and qs,
the number of not-humans, the formal statements are:

Actors are responsible for the execution of individual or collective activities, thus being able
to reach objects, an actor or actors group.
Activity is an execution unit that can be carried through by an actor or group. Normally,
activities involve the manipulation or transformation of an object. Activities must be defined
using Activity Operators and logic Operators representing rights, prohibitions and
obligations. Activity Operators are required to specify the interaction between actors and
objects. Activities have identifiers (At_id), a state (AtState), an activities subset (At_S), a set of
operations (OpS) and a set of attributes (At_AttributeS). Given qa as the number of activities
in an environment:

Object is any element that can be used in actions on objects or actors. An object represents
the structural characteristics and the behaviour of reality. Activities can be carried through
in objects to modify its characteristics. An object modelling in such a way establishes
uniformity of vision and treatment, useful for collaborative environment projects. An object
may be composed by others objects (CompObS) and has an identifier (Ob_id), a state
(ObState) and a set of attributes (Ob_AttS). Activities and Operations may be performed on
Objects that allows its state or attributes changing.

Spaces are localization areas of actors or objects and the specific areas used for activities.
Like other elements presented in this section, the spaces are essential for modelling a
collaborative environment.
On the collaborative interaction, elements of the dimension space must be defined using the
Space Operator (SpOp) to specify the position or the size of actors and objects in
collaborative environments. The space element has an identifier (Sp_id), a state (SpState) and
a set of attributes (SpAttS). If qe is the number of spaces into an environment:

www.intechopen.com

Advances in Robot Manipulators142

In time modelling, Duration, Date and Occurrence have basic semantic for temporal
references establishment. These semantics are used to define a logical action with duration,
occurrence date or occurrence interval of activities defined on interactions between actors
and objects.
The formal basis for temporal elements describes the natural set of numbers (N), and
representations for years (Ty), months (Tm), days (Td), hours (Th), minutes (Tmi) and
seconds (Ts), for a Moment or Interval. Enumerated sets of relative values (Tmr, Tdr, Thr,
Tmir, Tsr) are used to represent dates for a specific calendar. Given qt as the number of time
moments or intervals occurring on an environment:

The dimensional elements of a rule are defined in three contexts:

 Applicability: condition for the execution or activation of a rule and definition of
the scenes (values of attributes or space aspects) in which it can be applied;

 Execution: a set of expressions that establishes the actions or conditions for the
interactions between elements, being able to optionally involve transitory aspects
of time and space;

 Survivability: it is an optional context specifying the other rules with the same
applicability. Also the scenes can be defined (values of attributes or space aspects)
to establish the instant at which the rule must be activated or deactivated.

3.4 The L-Forum syntax
L-Forum is a language developed to formalize the concepts specified by the M-Forum
model. The language allows the definition of rules for an environment, increasing their
precision and improving disambiguation for collaborative environment designers. Its

overall structure may be described by clauses, which are defined for three particular
purposes:

 Context: this clause is composed by performing or activating parameters of a rule
and comply with applicability conditions of the scenario (value of attributes, spatial
or temporal aspects) for a rule adoption;

 Definition (body): it is composed by a set of expressions where actions or
conditions are established for interacting elements and may involve transitory
aspects of time and space. Rules and actions may be directly invocated at the body
of a rule, which allows to compose the expressions;

 Regime: this is the scope of a rule, and refers to an optional set composed by
interrelated rules having the same orientation to be performed or applied.
Scenarios, involving a rule activation or deactivation, can be also described.

The main elements of L-Forum syntax are presented in Table 2.

3.5 Collaborative rules for human-robot interactions
At this point, we address to the problem of defining the collaborative rules among robots
and humans. To illustrate it, a simple task was considered: a tool passing between the
human and the robot.
For the robot to identify the different collaborative situations, involving the task, a visual
code was established. If the human presents his(er) open hand over the common workspace
(a table surface), the situation “tool passes from robot to the human” must be assumed. If
the human presents his(er) hand holding the tool, the opposite situation must be considered.
Summarizing, the dimensional elements to elaborate collaborative rules, are:

 Actors: robot and human. The robot is an actor composed by different links. The
human being is also an actor established by the composition of single parts,
detaching the hand;

 Objects: the tool, which will be collaboratively shared by the actors;
 Space: there are three involved spaces in the problem: the common workspace

(table surface) where will be shared to pass the tool; the individual spaces, where
the human and the robot stay. Each individual space is exclusive. Only the
common area must be shared collaboratively by both actors;

 Activity: ordering and delivering are activities that may be realized by both actors
(human and robot). The activities will be recognized by both actors analyzing the
state their parts, i.e., the human's hand and the robot's gripper (end-effector). A
hand or a gripper on “open” state means the tool ordering; a hand or a gripper
holding the tool is associated to a tool delivering. Grasping and releasing are also
related activities on the working process.

When modelling the collaborative actions, the human is the actor with primary actuation,
and so, he (or she) establishes the frequency and sequence for actions. In this sense,
considering the dimensional elements of the collaborative work scenery, previously
presented, some rules to compose the Collaboration and Control Policy (CCP) are shown in
Table 3.

www.intechopen.com

Collaborative rules operating manipulators 143

In time modelling, Duration, Date and Occurrence have basic semantic for temporal
references establishment. These semantics are used to define a logical action with duration,
occurrence date or occurrence interval of activities defined on interactions between actors
and objects.
The formal basis for temporal elements describes the natural set of numbers (N), and
representations for years (Ty), months (Tm), days (Td), hours (Th), minutes (Tmi) and
seconds (Ts), for a Moment or Interval. Enumerated sets of relative values (Tmr, Tdr, Thr,
Tmir, Tsr) are used to represent dates for a specific calendar. Given qt as the number of time
moments or intervals occurring on an environment:

The dimensional elements of a rule are defined in three contexts:

 Applicability: condition for the execution or activation of a rule and definition of
the scenes (values of attributes or space aspects) in which it can be applied;

 Execution: a set of expressions that establishes the actions or conditions for the
interactions between elements, being able to optionally involve transitory aspects
of time and space;

 Survivability: it is an optional context specifying the other rules with the same
applicability. Also the scenes can be defined (values of attributes or space aspects)
to establish the instant at which the rule must be activated or deactivated.

3.4 The L-Forum syntax
L-Forum is a language developed to formalize the concepts specified by the M-Forum
model. The language allows the definition of rules for an environment, increasing their
precision and improving disambiguation for collaborative environment designers. Its

overall structure may be described by clauses, which are defined for three particular
purposes:

 Context: this clause is composed by performing or activating parameters of a rule
and comply with applicability conditions of the scenario (value of attributes, spatial
or temporal aspects) for a rule adoption;

 Definition (body): it is composed by a set of expressions where actions or
conditions are established for interacting elements and may involve transitory
aspects of time and space. Rules and actions may be directly invocated at the body
of a rule, which allows to compose the expressions;

 Regime: this is the scope of a rule, and refers to an optional set composed by
interrelated rules having the same orientation to be performed or applied.
Scenarios, involving a rule activation or deactivation, can be also described.

The main elements of L-Forum syntax are presented in Table 2.

3.5 Collaborative rules for human-robot interactions
At this point, we address to the problem of defining the collaborative rules among robots
and humans. To illustrate it, a simple task was considered: a tool passing between the
human and the robot.
For the robot to identify the different collaborative situations, involving the task, a visual
code was established. If the human presents his(er) open hand over the common workspace
(a table surface), the situation “tool passes from robot to the human” must be assumed. If
the human presents his(er) hand holding the tool, the opposite situation must be considered.
Summarizing, the dimensional elements to elaborate collaborative rules, are:

 Actors: robot and human. The robot is an actor composed by different links. The
human being is also an actor established by the composition of single parts,
detaching the hand;

 Objects: the tool, which will be collaboratively shared by the actors;
 Space: there are three involved spaces in the problem: the common workspace

(table surface) where will be shared to pass the tool; the individual spaces, where
the human and the robot stay. Each individual space is exclusive. Only the
common area must be shared collaboratively by both actors;

 Activity: ordering and delivering are activities that may be realized by both actors
(human and robot). The activities will be recognized by both actors analyzing the
state their parts, i.e., the human's hand and the robot's gripper (end-effector). A
hand or a gripper on “open” state means the tool ordering; a hand or a gripper
holding the tool is associated to a tool delivering. Grasping and releasing are also
related activities on the working process.

When modelling the collaborative actions, the human is the actor with primary actuation,
and so, he (or she) establishes the frequency and sequence for actions. In this sense,
considering the dimensional elements of the collaborative work scenery, previously
presented, some rules to compose the Collaboration and Control Policy (CCP) are shown in
Table 3.

www.intechopen.com

Advances in Robot Manipulators144

<rule> ::= ´Rule ́<rule name> ´[´<status>´]´ ´{´ <context>
´Body ::´<definition> [<regime>] }́´

<context> ::= ´Parameters: (´<parameters>´)´ [<applicability>]
<definition> ::= <condition> | <action> | <rule call> [<definition>]
<regime> ::= <survivability> [´Priorities:´ <priority>]
<parameters> ::= (´any ́| álĺ | <identifier>)´:´<element> [´,´

<parameters>]
<element> ::= <actor> | <group> | <object> | <space> | <time> |

<association> | <activity> | <operation>
<type> ::= ´actor ́| ǵroup´ | ´object´ | ´space ́| t́ime´ |

´association´ | ´activity´ | ´operation´
<applicability> ::= ´Applicability:: ́<condition expression>
<survivability> ::= ´Survivability::´ <condition expression>
<condition> ::= ´If ´ <condition expression> ́ then {´ <definition> ́ }´

[´else {´ <definition>´}´]
<action> ::= ´Action: (´ <actor> <normative operator> {<activity>

(<actor> | <object>)} [<space attribution operation>
<space>] [<time attribution operation> <time>]) [´); ́
<action>])́;´

<supreme action> ::= <actor> <normative operator> <primitive operator>
(<element>|<domain>|(´is part of´|´is a´)
<element>) |
<actor> <normative operator> <primitive group
operator> <group> <element>)

<definition action> ::= <actor> ´set´ <status>
<attribution action> ::= <actor> ´attribute´ (<value>|<formula>| ((next |

prior) (<value domain>|<domain name>)) <attribute>
<condition expression> ::=

´(´ (<attribute><attribute condition
operator>(<value>| ([´all´|´any´] (<value
domain>|<domain name>)) | (<condition expression>
(and | or)) ́)´

<rule call> ::= ´Rule (´ <rule name> ´ (´<parameters>´)´ <normative
operator> [´);´ <rule call>] ´);´

<priority> ::= <name> [´,́ <priority>]
<group> ::= <name>´:Group´
<actor> ::= <name>´:Actor´
<activity> ::= <name> ´:Activity´
<operation> ::= <activity>´.´<name> ́ :Operation ́
<object> ::= <name>´:Object´
<space> ::= <name>´:Space´
<time> ::= <name>´:Time ́
<association> ::= <element>´.́ <name> [´.´<association>]´:Association´
<attribute> ::= <element>´.́ <name> [‘:Attribute´]
<domain> ::= <name> (<value domain> | <grouping>)
<value domain> ::= ´(´ (<numeric value> {´,́ <numeric value>}) |

(<string> {´,́ <string>}) ́)´
<grouping> ::= (<type> <name> <attribute condition operator> (

<value>|([´all´| ́ any´](<value domain>|<domain
name>)))
{(and| or) <grouping>}) |
 (<element> {´,́ <element>})

<element status> ::= <element> <status attribution operator> <value>
<status> ::= [´active´] | [ínactive´]
<primitive group operator> ::= ´insert́ | ́ delete´ | ́ update´
<primitive operator> ::= ´create´ | ´destroy´
<group element operator> ::= ´´ | ´´ |
<group group operator> ::= ´´ | ´´ | ́ ´
<activity condition operator> ::= [´not́] ´has´
<normative operator> ::= ´right´ | ´prohibition´ | ́ obligation´ | ´dispensation´
<activity attribution operator> ::= ´receive´
<status attribution operator> ::= ´put on´ | ´move to´
<space attribution operator> ::= ´==´ | ´inside´ | óutside´ | ´north´ | ́ south ́| ́ east́

| ´west́
<time attribution operator> ::= ´in´ | ´on´ | ´at´

Table 2. L-Forum syntax

Rule Human Delivers Tool [active] {

Parameters:: (hu: human, ro: robot, too: tool, ts: table Surface)
Applicability:: (hu.hand not is open) and (ro.gripper is open) and
 (hu.hand not is on ts) and (ro.gripper not is on ts)

Body:: Action (hu obligate hand put on ts);
 Action (hu obligate release too on ts);
 Action (hu.hand obligate put of ts);
 Rule Robot Moves to the work (ro , ts)
 Action (ro obligate hold too);
 Action (ro.gripper obligate put of ts); }
Rule Human Orders Tool [active] {

Parameters:: (hu: human, ro: robot, too: tool, ts: table Surface)
Applicability:: (hu.hand is open) and (ro.gripper not is open) and
 (hu.hand not is on ts) and (ro.gripper not is on ts)

Body:: Action (hu.hand put on ts)
 Action (hu.hand obligate put of ts)
 Rule Robot Moves to the work (ro , ts)
 Action (ro obligate release too on ts);
 Action (ro.gripper obligate put of ts);
 Action (hu.hand obligate put on ts)
 Action (hu obligate hold too);
 Action (hu.hand obligate put of ts) }
Rule Robot Moves to the work [active] {

Parameters:: (ro: robot, ts: table Surface)
Applicability:: (hu.hand not is on ts)

Body:: Action (ro.vector_a prohibition move on ts)
 Action (ro.vector_b prohibition move on ts)
 Rule Moving Vector_c (ro, ts)

Survivability:: Priorities: Human Delivers Tool , Human Orders Tool }
Rule Moving Vector_C [active] {

Parameters:: (hu:human; ro: robot, ts: table Surface)
Applicability:: (hu.hand not is on ts)

Body:: Action (ro.vector_c obligate move to ts) }

Table 3. Rules for collaborative tool passing

4. Case study: Tic Tac Toe game

In this session we present an experimental case study, involving human and robot
interaction faced as opponents in a board game, known as Tic Tac Toe. The game was
chosen because its rules are very easy to learn, allowing it to be played by people with
different levels of skill, from children to adult.

www.intechopen.com

Collaborative rules operating manipulators 145

<rule> ::= ´Rule ́<rule name> ´[´<status>´]´ ´{´ <context>
´Body ::´<definition> [<regime>] }́´

<context> ::= ´Parameters: (´<parameters>´)´ [<applicability>]
<definition> ::= <condition> | <action> | <rule call> [<definition>]
<regime> ::= <survivability> [´Priorities:´ <priority>]
<parameters> ::= (´any ́| álĺ | <identifier>)´:´<element> [´,´

<parameters>]
<element> ::= <actor> | <group> | <object> | <space> | <time> |

<association> | <activity> | <operation>
<type> ::= ´actor ́| ǵroup´ | ´object´ | ´space ́| t́ime´ |

´association´ | ´activity´ | ´operation´
<applicability> ::= ´Applicability:: ́<condition expression>
<survivability> ::= ´Survivability::´ <condition expression>
<condition> ::= ´If ´ <condition expression> ́ then {´ <definition> ́ }´

[´else {´ <definition>´}´]
<action> ::= ´Action: (´ <actor> <normative operator> {<activity>

(<actor> | <object>)} [<space attribution operation>
<space>] [<time attribution operation> <time>]) [´); ́
<action>])́;´

<supreme action> ::= <actor> <normative operator> <primitive operator>
(<element>|<domain>|(´is part of´|´is a´)
<element>) |
<actor> <normative operator> <primitive group
operator> <group> <element>)

<definition action> ::= <actor> ´set´ <status>
<attribution action> ::= <actor> ´attribute´ (<value>|<formula>| ((next |

prior) (<value domain>|<domain name>)) <attribute>
<condition expression> ::=

´(´ (<attribute><attribute condition
operator>(<value>| ([´all´|´any´] (<value
domain>|<domain name>)) | (<condition expression>
(and | or)) ́)´

<rule call> ::= ´Rule (´ <rule name> ´ (´<parameters>´)´ <normative
operator> [´);´ <rule call>] ´);´

<priority> ::= <name> [´,́ <priority>]
<group> ::= <name>´:Group´
<actor> ::= <name>´:Actor´
<activity> ::= <name> ´:Activity´
<operation> ::= <activity>´.´<name> ́ :Operation ́
<object> ::= <name>´:Object´
<space> ::= <name>´:Space´
<time> ::= <name>´:Time ́
<association> ::= <element>´.́ <name> [´.´<association>]´:Association´
<attribute> ::= <element>´.́ <name> [‘:Attribute´]
<domain> ::= <name> (<value domain> | <grouping>)
<value domain> ::= ´(´ (<numeric value> {´,́ <numeric value>}) |

(<string> {´,́ <string>}) ́)´
<grouping> ::= (<type> <name> <attribute condition operator> (

<value>|([´all´| ́ any´](<value domain>|<domain
name>)))
{(and| or) <grouping>}) |
 (<element> {´,́ <element>})

<element status> ::= <element> <status attribution operator> <value>
<status> ::= [´active´] | [ínactive´]
<primitive group operator> ::= ´insert́ | ́ delete´ | ́ update´
<primitive operator> ::= ´create´ | ´destroy´
<group element operator> ::= ´´ | ´´ |
<group group operator> ::= ´´ | ´´ | ́ ´
<activity condition operator> ::= [´not́] ´has´
<normative operator> ::= ´right´ | ´prohibition´ | ́ obligation´ | ´dispensation´
<activity attribution operator> ::= ´receive´
<status attribution operator> ::= ´put on´ | ´move to´
<space attribution operator> ::= ´==´ | ´inside´ | óutside´ | ´north´ | ́ south ́| ́ east́

| ´west́
<time attribution operator> ::= ´in´ | ´on´ | ´at´

Table 2. L-Forum syntax

Rule Human Delivers Tool [active] {

Parameters:: (hu: human, ro: robot, too: tool, ts: table Surface)
Applicability:: (hu.hand not is open) and (ro.gripper is open) and
 (hu.hand not is on ts) and (ro.gripper not is on ts)

Body:: Action (hu obligate hand put on ts);
 Action (hu obligate release too on ts);
 Action (hu.hand obligate put of ts);
 Rule Robot Moves to the work (ro , ts)
 Action (ro obligate hold too);
 Action (ro.gripper obligate put of ts); }
Rule Human Orders Tool [active] {

Parameters:: (hu: human, ro: robot, too: tool, ts: table Surface)
Applicability:: (hu.hand is open) and (ro.gripper not is open) and
 (hu.hand not is on ts) and (ro.gripper not is on ts)

Body:: Action (hu.hand put on ts)
 Action (hu.hand obligate put of ts)
 Rule Robot Moves to the work (ro , ts)
 Action (ro obligate release too on ts);
 Action (ro.gripper obligate put of ts);
 Action (hu.hand obligate put on ts)
 Action (hu obligate hold too);
 Action (hu.hand obligate put of ts) }
Rule Robot Moves to the work [active] {

Parameters:: (ro: robot, ts: table Surface)
Applicability:: (hu.hand not is on ts)

Body:: Action (ro.vector_a prohibition move on ts)
 Action (ro.vector_b prohibition move on ts)
 Rule Moving Vector_c (ro, ts)

Survivability:: Priorities: Human Delivers Tool , Human Orders Tool }
Rule Moving Vector_C [active] {

Parameters:: (hu:human; ro: robot, ts: table Surface)
Applicability:: (hu.hand not is on ts)

Body:: Action (ro.vector_c obligate move to ts) }

Table 3. Rules for collaborative tool passing

4. Case study: Tic Tac Toe game

In this session we present an experimental case study, involving human and robot
interaction faced as opponents in a board game, known as Tic Tac Toe. The game was
chosen because its rules are very easy to learn, allowing it to be played by people with
different levels of skill, from children to adult.

www.intechopen.com

Advances in Robot Manipulators146

The decision was also influenced by another feature, that the game is played on a predefined
board (field), facilitating the coordination of movements done by opponents (robot and
human) into the common workspace.
This case study was proposed as a proof of concept for using collaborative rules to govern
the interactions among different types of actors, a robot and a human. It was also important
to demonstrate the need for a strategy definition when selecting rules in collaborative
environments, in order to surpass the unpredictability of some human behaviour.

4.1 The game
The Tic Tac Toe is a two player game where the participants take turns drawing tokens (X or
O) on a 3 x 3 grid. Winning the game involves a player placing three tokens in a row,
column or diagonal. When the grid is completely full and no sequence of three equal tokens
occur (row, column or diagonal), they got a draw.
Figure 3 shows a particular and possible situation during a Tic Tac Toe match. In this case,
the player of X tokens won.

Fig. 3. A Tic Tac Toe situation

An expert performance for Tic Tac Toe game can be described as a set of few rules (Crowley
& Siegler, 1993), as shown in Table 4. These rules are enough to describe every faced
situation, during a Tic Tac Toe game, but often occurs that more than one rule can be
applied, pointing to the need to define a criteria to select the most appropriated.

Adaptability for different levels of skill
Despite the rules simplicity, selecting them in order to make a move depends on several
factors, like attention, knowledge and others. These factors are clearly influenced by the
player’s age, and thus, the system must be able to use appropriate strategies for different
levels of skill presented by its opponent. Otherwise, a child will never be able to win, and
could become bored.

Move type Conditions Action

Win If there is a row, column or diagonal with two of my
pieces and a blank space

Play the blank
space

Block If there is a row, column or diagonal with two of my
opponent’s pieces and a blank space

Play the blank
space

Fork

If there are two intersecting rows, columns or diagonals
with one of my pieces and two blanks
AND
If the intersecting space is empty

Move to the
intersecting
space

Block fork
(1)

If there are two intersecting rows, columns or diagonals
with one of my opponent’s pieces and two blanks
AND
If the intersecting space is empty
AND
If there is an empty location that creates a two-in-a-row
for me

Move to the
location

Block fork
(2)

If there are two intersecting rows, columns or diagonals
with one of my opponent’s pieces and two blanks
AND
If the intersecting space is empty
AND
If there is NOT an empty location that creates a two-in-a-
row for me

Move to the
intersecting
space

Play center If the center is blank Play the center
Play
opposite
corner

If my opponent is in a corner
AND
If the opposite corner is empty

Play the
opposite
corner

Play empty
corner If there is an empty corner Move to an

empty corner
Play empty
side If there is an empty side Move to an

empty side
Table 4. Set of rules for expert performance on a Tic Tac Toe game

4.2 Defining the rules of the game
The next step consists on translating rules to L-Forum format. According to L-Forum syntax,
described above, a rule may be stated using some elements of the language. A rule must
have a unique name and declare its status. The parameters of a rule specify the involved
elements, like actors, space and objects. The applicability refers to the conditions that cause a
rule selectable. The body of a rule describes actions to be performed.
Two examples for rules mapping are presented in Table 5. The first refers to the “Play
Center” rule for a Tic Tac Toe expert match, and may be applied when the center is empty
and the game is not finished. The second implements a rule that may be selected in four
situations, relating to each corner of the board.

www.intechopen.com

Collaborative rules operating manipulators 147

The decision was also influenced by another feature, that the game is played on a predefined
board (field), facilitating the coordination of movements done by opponents (robot and
human) into the common workspace.
This case study was proposed as a proof of concept for using collaborative rules to govern
the interactions among different types of actors, a robot and a human. It was also important
to demonstrate the need for a strategy definition when selecting rules in collaborative
environments, in order to surpass the unpredictability of some human behaviour.

4.1 The game
The Tic Tac Toe is a two player game where the participants take turns drawing tokens (X or
O) on a 3 x 3 grid. Winning the game involves a player placing three tokens in a row,
column or diagonal. When the grid is completely full and no sequence of three equal tokens
occur (row, column or diagonal), they got a draw.
Figure 3 shows a particular and possible situation during a Tic Tac Toe match. In this case,
the player of X tokens won.

Fig. 3. A Tic Tac Toe situation

An expert performance for Tic Tac Toe game can be described as a set of few rules (Crowley
& Siegler, 1993), as shown in Table 4. These rules are enough to describe every faced
situation, during a Tic Tac Toe game, but often occurs that more than one rule can be
applied, pointing to the need to define a criteria to select the most appropriated.

Adaptability for different levels of skill
Despite the rules simplicity, selecting them in order to make a move depends on several
factors, like attention, knowledge and others. These factors are clearly influenced by the
player’s age, and thus, the system must be able to use appropriate strategies for different
levels of skill presented by its opponent. Otherwise, a child will never be able to win, and
could become bored.

Move type Conditions Action

Win If there is a row, column or diagonal with two of my
pieces and a blank space

Play the blank
space

Block If there is a row, column or diagonal with two of my
opponent’s pieces and a blank space

Play the blank
space

Fork

If there are two intersecting rows, columns or diagonals
with one of my pieces and two blanks
AND
If the intersecting space is empty

Move to the
intersecting
space

Block fork
(1)

If there are two intersecting rows, columns or diagonals
with one of my opponent’s pieces and two blanks
AND
If the intersecting space is empty
AND
If there is an empty location that creates a two-in-a-row
for me

Move to the
location

Block fork
(2)

If there are two intersecting rows, columns or diagonals
with one of my opponent’s pieces and two blanks
AND
If the intersecting space is empty
AND
If there is NOT an empty location that creates a two-in-a-
row for me

Move to the
intersecting
space

Play center If the center is blank Play the center
Play
opposite
corner

If my opponent is in a corner
AND
If the opposite corner is empty

Play the
opposite
corner

Play empty
corner If there is an empty corner Move to an

empty corner
Play empty
side If there is an empty side Move to an

empty side
Table 4. Set of rules for expert performance on a Tic Tac Toe game

4.2 Defining the rules of the game
The next step consists on translating rules to L-Forum format. According to L-Forum syntax,
described above, a rule may be stated using some elements of the language. A rule must
have a unique name and declare its status. The parameters of a rule specify the involved
elements, like actors, space and objects. The applicability refers to the conditions that cause a
rule selectable. The body of a rule describes actions to be performed.
Two examples for rules mapping are presented in Table 5. The first refers to the “Play
Center” rule for a Tic Tac Toe expert match, and may be applied when the center is empty
and the game is not finished. The second implements a rule that may be selected in four
situations, relating to each corner of the board.

www.intechopen.com

Advances in Robot Manipulators148

Rule PlayCenter[active] {

Parameters:: (pl :player:actor; tboard :TicTacToeboard : space; tok :token:object, g

:game:object)
Applicability:: (tboard.center is empty) and (g not is finished)

Body:: Action (pl right play tok inside tboard.center); }
Rule PlayCorner[active] {

Parameters:: (pl :player:actor; tboard :TicTacToeboard : space; tok :token:object)
Applicability:: (g not is finished)

Body:: if (tboard.corner_high_right is empty)
 then { Action (pl right play tok inside tboard.corner_high_right);
 }
 else {
 if (tboard.corner_high_left is empty)
 then { Action (pl right play tok inside tboard.corner_high_left);
 }
 else {
 if (tboard.corner_low_right is empty)
 then { Action (pl right play tok inside tboard.corner_low_right);
 }
 else {
 Action (pl right play tok inside tboard.corner_low_left);
 }
 }
 }
}

Table 5. “Play center” and “play corner” rules translated to L-Forum

4.3 The hardware infrastructure
An IBM 7545 SCARA robot retrofitted with open platform (Aroca et al, 2007), was used in
this project. The target's hardware, assembled on a CompactPCI rack, contains the following
components:

 Boards: Inova AMD K6, Acromag Carriers, National Instruments I/O;
 Industry Packs (IP): Tews 48 Digital I/O, Tews IP Quadrature, Tews DAC.

Figure 4 presents the whole view of the architecture.
Since the main purpose of this project was not related to research accurate positioning and
fine control, and aiming to simplify the robot operation, a strategy based on fixed points was
adopted. All the nineteen positions, representing valid locations of the game, were
predefined and marked into an 800x400 mm board, as shown in Figure 5. Ten of these
positions (five at each side of the game field) were designed as pieces repositories.

Fig. 4. The retrofitted IBM 7545 SCARA robot

www.intechopen.com

Collaborative rules operating manipulators 149

Rule PlayCenter[active] {

Parameters:: (pl :player:actor; tboard :TicTacToeboard : space; tok :token:object, g

:game:object)
Applicability:: (tboard.center is empty) and (g not is finished)

Body:: Action (pl right play tok inside tboard.center); }
Rule PlayCorner[active] {

Parameters:: (pl :player:actor; tboard :TicTacToeboard : space; tok :token:object)
Applicability:: (g not is finished)

Body:: if (tboard.corner_high_right is empty)
 then { Action (pl right play tok inside tboard.corner_high_right);
 }
 else {
 if (tboard.corner_high_left is empty)
 then { Action (pl right play tok inside tboard.corner_high_left);
 }
 else {
 if (tboard.corner_low_right is empty)
 then { Action (pl right play tok inside tboard.corner_low_right);
 }
 else {
 Action (pl right play tok inside tboard.corner_low_left);
 }
 }
 }
}

Table 5. “Play center” and “play corner” rules translated to L-Forum

4.3 The hardware infrastructure
An IBM 7545 SCARA robot retrofitted with open platform (Aroca et al, 2007), was used in
this project. The target's hardware, assembled on a CompactPCI rack, contains the following
components:

 Boards: Inova AMD K6, Acromag Carriers, National Instruments I/O;
 Industry Packs (IP): Tews 48 Digital I/O, Tews IP Quadrature, Tews DAC.

Figure 4 presents the whole view of the architecture.
Since the main purpose of this project was not related to research accurate positioning and
fine control, and aiming to simplify the robot operation, a strategy based on fixed points was
adopted. All the nineteen positions, representing valid locations of the game, were
predefined and marked into an 800x400 mm board, as shown in Figure 5. Ten of these
positions (five at each side of the game field) were designed as pieces repositories.

Fig. 4. The retrofitted IBM 7545 SCARA robot

www.intechopen.com

Advances in Robot Manipulators150

Fig. 5. Design of the Tic Tac Toe board

Nineteen reed switches (magnetic presence sensors) were fixed on the board, at each
position for pieces locations (marked with small circles on the board). The reed switches are
used to detect magnetic field generated by magnets, which in this case, were inserted in each
piece of the Tic Tac Toe game, as shown in Figure 6.

Fig. 6. Magnetic pieces

All sensors were connected to a board, with 32 digital inputs. This board multiplexes all
digital entries through a parallel interface, connected to a computer port.
Since the main focus of this project was to present coherent means to allow robot and
human collaboration, another subject comes up. Several researches in Robotics have pointed
to the relevance of robot’s appearance when interacting with humans. Human beings
usually feel more comfortable to interact when the other subject looks familiar.
Considering that this robot must interact with human beings, including children, we decide
to give it a playful look. The SCARA robot was dressed in an elephant costume, making it
very fun and with a less formal aspect.
Figure 7 shows the robot during a Tic Tac Toe match. The picture also presents the board
and the pieces over it.

Fig. 7. Robot dressed as an elephant

4.4 Software design and implementation
The local software agents were designed to execute specific roles, implementing the
bottommost levels of the distributed model, i.e., the trajectory planner, the task manager and
the motor controller (Aroca et al, 2007).
The base system was developed using a real time interface to the Linux kernel – RTAI
(RealTime Application Interface). Some of its features are the actuator for motors, a PID
(Proportional Integral Derivative) controller, and sensor acquisition, through an industrial
PC. The infrastructure also allows interacting with the robot, across the local network.
The overall solution was based on host-target model. A computer (host) was being used to
develop and compile the software, before it was embedded in the industrial PC (target).
Both computers run Linux operating system, but only the target's kernel was increased by
the real time modules and the RTAI interface. Other facilities were also implemented,
allowing more flexibility in robot reconfiguration and high level protocols for data
communication (Tavares et al, 2007).
A three-dimensional HRI (Human-Robot Interface), called Scara3D, was presented in
(Martins Jr et al, 2008). The interface was developed to perform tests for high-level layers
integration into the architecture. The obtained results were satisfactory and proved the
feasible implementation for the “Virtual Environment Creator” layer of the proposed model.
When designing the game we considered the interaction among a SCARA Robot and human
beings, which can be classified as actors according M-Forum specifications. The SCARA
Robot is composed by translational and rotational links and has a pneumatic gripper, while
a Tic Tac Toe game contains a board and pieces (X and O); these individual parts are
represented as objects in Forum model. These relationships are presented in a class diagram,
as shown in Figure 8.
Current state of the real environment can be monitored by sensors integrated into the
architecture, and so the virtual model can be updated, representing the interaction among
several objects and actors within the game.

www.intechopen.com

Collaborative rules operating manipulators 151

Fig. 5. Design of the Tic Tac Toe board

Nineteen reed switches (magnetic presence sensors) were fixed on the board, at each
position for pieces locations (marked with small circles on the board). The reed switches are
used to detect magnetic field generated by magnets, which in this case, were inserted in each
piece of the Tic Tac Toe game, as shown in Figure 6.

Fig. 6. Magnetic pieces

All sensors were connected to a board, with 32 digital inputs. This board multiplexes all
digital entries through a parallel interface, connected to a computer port.
Since the main focus of this project was to present coherent means to allow robot and
human collaboration, another subject comes up. Several researches in Robotics have pointed
to the relevance of robot’s appearance when interacting with humans. Human beings
usually feel more comfortable to interact when the other subject looks familiar.
Considering that this robot must interact with human beings, including children, we decide
to give it a playful look. The SCARA robot was dressed in an elephant costume, making it
very fun and with a less formal aspect.
Figure 7 shows the robot during a Tic Tac Toe match. The picture also presents the board
and the pieces over it.

Fig. 7. Robot dressed as an elephant

4.4 Software design and implementation
The local software agents were designed to execute specific roles, implementing the
bottommost levels of the distributed model, i.e., the trajectory planner, the task manager and
the motor controller (Aroca et al, 2007).
The base system was developed using a real time interface to the Linux kernel – RTAI
(RealTime Application Interface). Some of its features are the actuator for motors, a PID
(Proportional Integral Derivative) controller, and sensor acquisition, through an industrial
PC. The infrastructure also allows interacting with the robot, across the local network.
The overall solution was based on host-target model. A computer (host) was being used to
develop and compile the software, before it was embedded in the industrial PC (target).
Both computers run Linux operating system, but only the target's kernel was increased by
the real time modules and the RTAI interface. Other facilities were also implemented,
allowing more flexibility in robot reconfiguration and high level protocols for data
communication (Tavares et al, 2007).
A three-dimensional HRI (Human-Robot Interface), called Scara3D, was presented in
(Martins Jr et al, 2008). The interface was developed to perform tests for high-level layers
integration into the architecture. The obtained results were satisfactory and proved the
feasible implementation for the “Virtual Environment Creator” layer of the proposed model.
When designing the game we considered the interaction among a SCARA Robot and human
beings, which can be classified as actors according M-Forum specifications. The SCARA
Robot is composed by translational and rotational links and has a pneumatic gripper, while
a Tic Tac Toe game contains a board and pieces (X and O); these individual parts are
represented as objects in Forum model. These relationships are presented in a class diagram,
as shown in Figure 8.
Current state of the real environment can be monitored by sensors integrated into the
architecture, and so the virtual model can be updated, representing the interaction among
several objects and actors within the game.

www.intechopen.com

Advances in Robot Manipulators152

Fig. 8. Class diagram for Tic Tac Toe game

As described above, sensors were integrated to the system to detect the presence of pieces
on nineteen different positions of the board. Another presence sensor (currently, a single
switch) was also included to detect the presence of a human being into the shared
workspace. The states of these twenty presence sensors are monitored by a client application
that fires UDP (User Datagram Protocol) messages into the local network. Thus, using an
UDP server (UDPMessageReceiver), the system allows asynchronous messages reading and
performing event passing through appropriated listener implementations.
The current positions for servomotors were obtained by the system using an encoder
monitor, which submits TCP (Transmission Control Protocol) requisitions to the target that
controls the robot. TCP messages are also sent to the target by MotorActuator to reposition
the servomotors, according the current states of their virtual representations by means of
ServoMotor class instances.
As mentioned, listeners were used to provide events communication about states changing
across objects into the virtual environment representation. Every change among virtual and
real environments is communicated using TCP or UDP messages, allowing the distribution
of the system components and the integration between high and low-level layers of the
architecture.

5. Conclusion

In this chapter was presented a new architecture for robot control, which provides layers
including deliberative behaviour on robot operation. The other features of the proposed

model refer to the explicit definition of local and global contexts and its operating support
for distributed environments.
The collaboration among robots and human beings was described using a symbolic
representation, through a formal model of rules. This approach was successfully
experimented in restricted situations, describing human-robot interactions. An experimental
case study was also presented for this purpose, involving a collaborative game among a
manipulator and humans.
Future research about this subject can be applied evolving the model to support
representations of other mental states and allowing the extraction of rules from knowledge
databases. It is also encouraged the use of the model for other situations, including
collaboration among other subjects (mobile robots or other machines), as uncovered by this
chapter.

6. Acknowledgment

The publication fee of this chapter was supported by Municipal Education Foundation of
Piracicaba (FUMEP – Fundação Municipal de Ensino de Piracicaba).
The authors would like to thank researchers of Mechatronics Laboratory at São Carlos
School of Engineering (University of São Paulo) by all help with the experiments described
in this chapter.

7. References

Aroca, R.; Tavares, D.M. & Caurin, G.A.P. (2007). Scara Robot Controller Using Real Time
Linux. Proceedings of International Conference on Advanced Intelligent Mechatronics, pp.
1-6, ISBN 978-1-4244-1264-8, Zürich – Switzerland, Sep 2007, IEEE, New York.

Bishop, J. N.; Potter, W.D.; (2004). Towards Developing Behavior Based Control
Architectures for Mobile Robots Using Simulated Behaviors. Proceeding of the
International Conference on Artificial Intelligence (ICAI'04), Las Vegas, Nevada.

Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, Vol. 2, Issue 1, Mar 1986, pp. 14-23, ISSN 0882-4967.

Brooks, R. A. (1990). Elephants don’t play chess. Robotics and Autonomous Systems, Vol. 6,
Issue 1, Jun 1990, pp. 3-15, ISSN 0921-8890.

Camolesi Jr, L. & Martins, L. E. G. (2006). A Model for Interaction Rules to Define
Governance Policies in Collaborative Environments. In: Lecture Notes in Computer
Science, Vol. 3865, Shen, W.; Chao, K.-M.; Lin, Z.; Barthès, J.-P.A.; James, A. (Eds.),
pp. 11-20, Springer Berlin, ISBN 978-3-540-32969-5, Heidelberg.

Camolesi Jr, L. & Martins, L.E.G. (2005). Specifying Powerful Rules to Govern Collaborative
Environments. Proceedings of 9th International Conference on Computer Supported
Cooperative Work in Design (CSCWD 2005), pp. 810-815, ISBN 1-84600-002-5,
Coventry – UK, May 2005, IEEE, New York.

Cao, Y. U.; Fukunaga, A. S. & Kahng, A. B. (1997). Cooperative Mobile Robotics:
Antecedents and Directions. Autonomous Robots, Vol. 4, No. 1, Mar 1997, pp. 7-27,
ISSN 1573-7527.

www.intechopen.com

Collaborative rules operating manipulators 153

Fig. 8. Class diagram for Tic Tac Toe game

As described above, sensors were integrated to the system to detect the presence of pieces
on nineteen different positions of the board. Another presence sensor (currently, a single
switch) was also included to detect the presence of a human being into the shared
workspace. The states of these twenty presence sensors are monitored by a client application
that fires UDP (User Datagram Protocol) messages into the local network. Thus, using an
UDP server (UDPMessageReceiver), the system allows asynchronous messages reading and
performing event passing through appropriated listener implementations.
The current positions for servomotors were obtained by the system using an encoder
monitor, which submits TCP (Transmission Control Protocol) requisitions to the target that
controls the robot. TCP messages are also sent to the target by MotorActuator to reposition
the servomotors, according the current states of their virtual representations by means of
ServoMotor class instances.
As mentioned, listeners were used to provide events communication about states changing
across objects into the virtual environment representation. Every change among virtual and
real environments is communicated using TCP or UDP messages, allowing the distribution
of the system components and the integration between high and low-level layers of the
architecture.

5. Conclusion

In this chapter was presented a new architecture for robot control, which provides layers
including deliberative behaviour on robot operation. The other features of the proposed

model refer to the explicit definition of local and global contexts and its operating support
for distributed environments.
The collaboration among robots and human beings was described using a symbolic
representation, through a formal model of rules. This approach was successfully
experimented in restricted situations, describing human-robot interactions. An experimental
case study was also presented for this purpose, involving a collaborative game among a
manipulator and humans.
Future research about this subject can be applied evolving the model to support
representations of other mental states and allowing the extraction of rules from knowledge
databases. It is also encouraged the use of the model for other situations, including
collaboration among other subjects (mobile robots or other machines), as uncovered by this
chapter.

6. Acknowledgment

The publication fee of this chapter was supported by Municipal Education Foundation of
Piracicaba (FUMEP – Fundação Municipal de Ensino de Piracicaba).
The authors would like to thank researchers of Mechatronics Laboratory at São Carlos
School of Engineering (University of São Paulo) by all help with the experiments described
in this chapter.

7. References

Aroca, R.; Tavares, D.M. & Caurin, G.A.P. (2007). Scara Robot Controller Using Real Time
Linux. Proceedings of International Conference on Advanced Intelligent Mechatronics, pp.
1-6, ISBN 978-1-4244-1264-8, Zürich – Switzerland, Sep 2007, IEEE, New York.

Bishop, J. N.; Potter, W.D.; (2004). Towards Developing Behavior Based Control
Architectures for Mobile Robots Using Simulated Behaviors. Proceeding of the
International Conference on Artificial Intelligence (ICAI'04), Las Vegas, Nevada.

Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, Vol. 2, Issue 1, Mar 1986, pp. 14-23, ISSN 0882-4967.

Brooks, R. A. (1990). Elephants don’t play chess. Robotics and Autonomous Systems, Vol. 6,
Issue 1, Jun 1990, pp. 3-15, ISSN 0921-8890.

Camolesi Jr, L. & Martins, L. E. G. (2006). A Model for Interaction Rules to Define
Governance Policies in Collaborative Environments. In: Lecture Notes in Computer
Science, Vol. 3865, Shen, W.; Chao, K.-M.; Lin, Z.; Barthès, J.-P.A.; James, A. (Eds.),
pp. 11-20, Springer Berlin, ISBN 978-3-540-32969-5, Heidelberg.

Camolesi Jr, L. & Martins, L.E.G. (2005). Specifying Powerful Rules to Govern Collaborative
Environments. Proceedings of 9th International Conference on Computer Supported
Cooperative Work in Design (CSCWD 2005), pp. 810-815, ISBN 1-84600-002-5,
Coventry – UK, May 2005, IEEE, New York.

Cao, Y. U.; Fukunaga, A. S. & Kahng, A. B. (1997). Cooperative Mobile Robotics:
Antecedents and Directions. Autonomous Robots, Vol. 4, No. 1, Mar 1997, pp. 7-27,
ISSN 1573-7527.

www.intechopen.com

Advances in Robot Manipulators154

Crowley, K. & Siegler, R. S. (1993). Flexible strategy use in young children's tic-tac-toe.
Cognitive Science: A Multidisciplinary Journal, Vol. 17, Issue 4, October-December
1993, pp. 531-561, ISSN 1551-6709.

Fodor, J. A. (1981). The Mind-Body Problem. Scientific American, Vol. 244, No. 1, Jan 1981,
pp. 114-123.

Lau, H. Y. K. & Ng, A. K. S. (2006). Immunology-based Motion Control for Modular Hyper-
redundant Manipulators. Proceedings of the 16th IFAC World Congress, ISBN 978-0-
08-045108-4, Prague, Jul 2005, Elsevier, New York.

Martins Jr, J.; Camolesi Jr, L. & Caurin, G. A. P. (2008). Scara3D: 3-Dimensional HRI
integrated to a distributed control architecture for remote and cooperative
actuation, Proceedings of the 23rd Annual ACM Symposium on Applied Computing
(SAC 2008), pp. 1597-1601, ISBN 978-1-59593-753-7, Fortaleza - Ceara - Brazil, Mar
2008, ACM, New York.

Minsky, M. (1990). Logical vs. analogical or symbolic vs. connectionist or neat vs. scruffy. In:
Artificial Intelligence at MIT, Expanding Frontiers, Vol. 1, P. H. Winston & S. A.
Shellard, pp. 218-243, MIT Press, ISBN 978-0262231541, Cambridge.

Nwana, H. S. (1996). Software Agents: An Overview. Knowledge Engineering Review, Vol. 11,
Issue 3, Sep 1996, pp. 205-244.

Parker, L. E. (2003). Current research in multirobot systems. Artificial Life and Robotics, Vol. 7,
No. 1-2, Mar 2003, pp. 1-5, ISSN 1614-7456.

Pinker, S. (1999). How The Mind Works, Penguin UK, ISBN 9780140244915, London.
Slonneger, K. & Kurtz, B. L. (1995). Formal Syntax and Semantics of Programming Languages: a

laboratory based approach, Addison-Wesley Publishing Company, ISBN 0-201-65697-
3, New York.

Tavares, D.M.; Aroca, R.V. & Caurin, G.A.P. (2007). Upgrade of a SCARA Robot using
OROCOS. Proceedings of the 13th IASTED International Conference on Robotics and
Applications, ISBN 978-0-88986-685-0, Würzburg – Germany, Aug 2007, ACTA
Press, Calgary.

Tonti, G.; Bradshaw, J. M.; Jeffers, R.; Montanari, R.; Suri, N. & Uszok, A. (2003). Semantic
Web Languages for Policy Representation and Reasoning: A Comparison of KAoS,
Rei, and Ponder. In: Lecture Notes in Computer Science, Vol. 2870, Fensel, Dieter;
Sycara, Katia; Mylopoulos, John (Eds.), pp. 419-437, Springer Berlin, ISBN 978-3-
540-20362-9, Heidelberg.

Vinge, V. (2008). Signs of the Singularity. IEEE Spectrum, Vol. 45, No. 6, Jun 2008, pp. 68-74,
ISSN 0018-9235.

www.intechopen.com

Advances in Robot Manipulators

Edited by Ernest Hall

ISBN 978-953-307-070-4

Hard cover, 678 pages

Publisher InTech

Published online 01, April, 2010

Published in print edition April, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The purpose of this volume is to encourage and inspire the continual invention of robot manipulators for

science and the good of humanity. The concepts of artificial intelligence combined with the engineering and

technology of feedback control, have great potential for new, useful and exciting machines. The concept of

eclecticism for the design, development, simulation and implementation of a real time controller for an

intelligent, vision guided robots is now being explored. The dream of an eclectic perceptual, creative controller

that can select its own tasks and perform autonomous operations with reliability and dependability is starting to

evolve. We have not yet reached this stage but a careful study of the contents will start one on the exciting

journey that could lead to many inventions and successful solutions.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jose Martins Junior, Luiz Camolesi Jr and Glauco Augusto de Paula Caurin (2010). Collaborative rules

operating manipulators, Advances in Robot Manipulators, Ernest Hall (Ed.), ISBN: 978-953-307-070-4, InTech,

Available from: http://www.intechopen.com/books/advances-in-robot-manipulators/collaborative-rules-

operating-manipulators

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

