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Abstract 
This chapter focuses on the dynamic control issues of lightweight robots as well as flexible 
joint robots. The goal is to increase the bandwidth and the accuracy of the trajectory tracking 
control. Besides the joint flexibility, the control design considers the dynamics of the electric 
motor in AC-form i.e. the three phase permanent magnet synchronous motor (PMSM). The 
final system model is a fifth order non-linear system. Based on the theory of integral sliding 
mode control a robust control approach for the trajectory tracking control of rigid-body 
robots is presented at first. This control approach has pole-placement capability despite 
system uncertainties. The controller is then used as the outer position controller for the 
control of flexible joint robots. To handle the joint flexibility, singular perturbation approach 
is employed, resulting in reference currents for the inner current control loop of joint 
motors. For the current control, sliding mode PWM technique is used to overcome the 
disadvantages of conventional open-loop PWM. The developed control algorithms are 
simple enough for practical implementation and verified by simulation studies based on a 
dynamic model consisting of a two-link flexible joint robot with two joint motors. 

 
1. Introduction 
 

The development of robotics in the past few years has been extended from the earlier 
standard applications of industrial robots to new fields such as service, space robotics and 
force-feedback systems. The design goals of the new robot generation aim at lightweight, 
high output torque, high speed, multi-sensory and high degree of learning capability. Such 
advanced features inevitably increase the complexity of the dynamic control tasks. For a 
lightweight robot, to avoid the disturbance torque, such as backlash etc., gearboxes with 
harmonic drive are often involved; this leads to flexibility in robot joints in turns. It is 
recognized meanwhile that the dynamic control of real world lightweight robots to reach a 
high system bandwidth is a challenging topic to the current development of robotics and 
available control technologies. The key factor which limits the system bandwidth is the 
“high-order”, originated from the joint flexibility and the dynamics of the electric motors. 
It is recognized that the state-space approach based on the feedback linearization is not 
adequate for the control of real world lightweight robots and even not adequate for the 
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control of any high-order non-linear uncertain system, despite being able to assign the 
closed-loop poles arbitrarily. Another methodology to control the lightweight robots is to 
decompose the high-order system into two or more lower order sub-systems. There are 
some remarkable advantages with this methodology: control approaches for rigid-body 
robots may be used further; the higher order time derivatives of the link position such as 
acceleration and jerk may be avoided; and, it is easier to set the control system into 
operation. One of the control methods under this category is the famous singular 
perturbation approach (as well as the integral manifold approach) which takes the joint 
torque sub-system as an algebraic system for the link position control and adds some 
damping for the fast motion in the joint torque. In this way, the joint torque dynamics are 
resolved without the need of exact tracking of a joint torque reference trajectory. Because the 
joint torque dynamics are almost “by-passed”, this approach may possess a higher 
bandwidth for the link position control than the pure cascaded control structure with a joint 
torque control loop being inserted between the link position and motor current control loops. 
As a result, the composed control structure of singular perturbation approach for the joint 
torque dynamics can be interpreted as a feed-forward control of the joint torque added by 
some damping to the fast motion in the joint torque. Singular perturbation approach is 
verified as a simple and effective approach to stabilize the joint flexibility. 
A pioneer of flexible joint robot control is Professor Mark W. Spong when he worked for 
University Illinois from1984 to 2008. He established the famous Spong-model for flexible 
joint robots and studied almost all aspects for the dynamic control of this kind of robots. 
In the following, some important publications will be citied to clarify the main stream of the 
dynamic control issues.  
The concept of new generation robotics with modular structure was proposed by 
Hirzinger’s group as the spring-out of space robotics technologies (Hirzinger et al., 1994; 
Gombert et al., 1995). Later on, the concept was modified to the goals of having human arm 
performance with very high load/own-weight ratio as well as torque sensing and feed-back 
capability, with certain degree of human intelligence, providing new possibilities for space, 
medicine and other applications (Stieber et al., 2000; Schmidt, 2000; Hirzinger et al., 2001; 
Hirzinger et al., 2001; Koeppe & Hirzinger, 2001). 
The fundamental control approaches for flexible joint robots were established by Spong 
(Marino & Spong, 1986; Spong, 1987; Spong, 1988; Spong, 1989). Since then, numerous 
theoretical results are developed and mainly tested with computer simulation. The 
developed control methods include:  
(a). state-space approach based on the feedback linearization 
(b). singular perturbation approach as well as integral manifold approach 
(c). dynamic feedback linearization approach  
(d). adaptive control technique 
(e). simple PD control 
(f). PD control + joint torque feedback 
(g). passivity based control approach 
As proposed in (Spong , 1987), for the state-space approach based on the feedback 
linearization, even using simplified robot model, the resulting control algorithm may not be 
realizable due to the state transformation and the inverse calculation of the control inputs. 
The control algorithm depends on the robot parameters, which are generally unknown. 

 

As stated before, singular perturbation approach is a promising approach by solving the 
control problem in two time scalars: a fast joint torque damping term for the fast mode of 
the joint torque dynamics, and a slow joint torque feed-forward term for the outer position 
control loop (related to the rigid body dynamics of the robot arm) (Spong, 1987; Readman & 
Mark, 1994). 
De Luca involves the previous system information to form the so-called dynamic feedback 
linearization (De Luca et al., 1998). He uses not only the actual states of the robot dynamics, 
but also the past states; no global state transformation is required. The resulting control 
structure is of 2n(n-1) order (with n being the number of robot joints). (De Luca et al., 1998) 
won a best paper awarded during conference IRCA98 due to the theoretical contribution. 
In order to remove the requirement of exact knowledge about robot parameters, adaptive 
control techniques for flexible joint robots have been developed (Spong, 1989, Lin et al., 
1995). These approaches can be viewed as an extension of adaptive control for rigid body 
robots (Slotine & Li, 1987). Though theoretically looks well, this method met the problem of 
over complexity for the practical implementation. 
Engineers tried PD (or PID) controllers, traditionally used for industrial robots, adding some 
damping term for the joint flexibility. Stability proof for such control systems, if it is possible, 
is more involved than that of using extensive model information. Starting from (Arimoto, 
1994), which provides the theoretical justification for the PD controller still used in most 
industrial robots, Tomei (Tomei, 1991) proved the stability of PD control with gravity 
compensation also for flexible joint robots. However, the stability proofs are only valid for 
the link position regulation and not for the trajectory tracking control. 
Albu-Schaeffer (Albu-Schaeffer & Hirzinger, 2000) proposes an intermediate approach 
between the theoretical and the practical solutions for the link position control i.e. PD 
control + joint torque feedback. He uses a simple control structure in the form of joint state 
feedback with gravity compensation, applicable for a lightweight robot with 7DOF. A 
stability proof based on Lyapunov theory was provided as well. Also here, the stability 
proof is valid only for the case of point-to-point motion of the robot arm and not valid for 
the trajectory tracking control. 
Ott (Ott, 2008) studied and tested several control approaches systematically including the 
passivity based control approach. It comes to the conclusion that the passivity based control 
approach doesn’t show an improved performance for the trajectory tracking control despite 
of some other advantages. Similar to the works by Albu-Schaeffer (Albu-Schaeffer, 2002), the 
proposed control algorithms by Ott need often the system parameters which may not be 
available for general purpose lightweight robots. 
In (Ozgoli & Taghirad, 2006) an extensive survey about the control of flexible joint robots is 
given in which 173 papers from different aspects of the control issue are cited. 
It is recognized meanwhile that to design a good control system, the controller designer 
must have a deep understanding about the physic plant to be controlled, independent from 
which control approach is applied. As a result, at least a rough model for the controlled 
plant is required, though there are some unmodeled dynamics, external disturbances and 
parameter uncertainties associated with this rough model. As a candidate of physic oriented 
control theories, sliding mode control (Utkin et al., 2009) is selected here for the control 
problems of flexible joint robots. As it well known, sliding mode control theory can be 
applied to high-order, non-linear, uncertain MIMO systems and the resulting controllers are 
simple enough for practical implementations. Another advantage of sliding mode control 
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control of any high-order non-linear uncertain system, despite being able to assign the 
closed-loop poles arbitrarily. Another methodology to control the lightweight robots is to 
decompose the high-order system into two or more lower order sub-systems. There are 
some remarkable advantages with this methodology: control approaches for rigid-body 
robots may be used further; the higher order time derivatives of the link position such as 
acceleration and jerk may be avoided; and, it is easier to set the control system into 
operation. One of the control methods under this category is the famous singular 
perturbation approach (as well as the integral manifold approach) which takes the joint 
torque sub-system as an algebraic system for the link position control and adds some 
damping for the fast motion in the joint torque. In this way, the joint torque dynamics are 
resolved without the need of exact tracking of a joint torque reference trajectory. Because the 
joint torque dynamics are almost “by-passed”, this approach may possess a higher 
bandwidth for the link position control than the pure cascaded control structure with a joint 
torque control loop being inserted between the link position and motor current control loops. 
As a result, the composed control structure of singular perturbation approach for the joint 
torque dynamics can be interpreted as a feed-forward control of the joint torque added by 
some damping to the fast motion in the joint torque. Singular perturbation approach is 
verified as a simple and effective approach to stabilize the joint flexibility. 
A pioneer of flexible joint robot control is Professor Mark W. Spong when he worked for 
University Illinois from1984 to 2008. He established the famous Spong-model for flexible 
joint robots and studied almost all aspects for the dynamic control of this kind of robots. 
In the following, some important publications will be citied to clarify the main stream of the 
dynamic control issues.  
The concept of new generation robotics with modular structure was proposed by 
Hirzinger’s group as the spring-out of space robotics technologies (Hirzinger et al., 1994; 
Gombert et al., 1995). Later on, the concept was modified to the goals of having human arm 
performance with very high load/own-weight ratio as well as torque sensing and feed-back 
capability, with certain degree of human intelligence, providing new possibilities for space, 
medicine and other applications (Stieber et al., 2000; Schmidt, 2000; Hirzinger et al., 2001; 
Hirzinger et al., 2001; Koeppe & Hirzinger, 2001). 
The fundamental control approaches for flexible joint robots were established by Spong 
(Marino & Spong, 1986; Spong, 1987; Spong, 1988; Spong, 1989). Since then, numerous 
theoretical results are developed and mainly tested with computer simulation. The 
developed control methods include:  
(a). state-space approach based on the feedback linearization 
(b). singular perturbation approach as well as integral manifold approach 
(c). dynamic feedback linearization approach  
(d). adaptive control technique 
(e). simple PD control 
(f). PD control + joint torque feedback 
(g). passivity based control approach 
As proposed in (Spong , 1987), for the state-space approach based on the feedback 
linearization, even using simplified robot model, the resulting control algorithm may not be 
realizable due to the state transformation and the inverse calculation of the control inputs. 
The control algorithm depends on the robot parameters, which are generally unknown. 

 

As stated before, singular perturbation approach is a promising approach by solving the 
control problem in two time scalars: a fast joint torque damping term for the fast mode of 
the joint torque dynamics, and a slow joint torque feed-forward term for the outer position 
control loop (related to the rigid body dynamics of the robot arm) (Spong, 1987; Readman & 
Mark, 1994). 
De Luca involves the previous system information to form the so-called dynamic feedback 
linearization (De Luca et al., 1998). He uses not only the actual states of the robot dynamics, 
but also the past states; no global state transformation is required. The resulting control 
structure is of 2n(n-1) order (with n being the number of robot joints). (De Luca et al., 1998) 
won a best paper awarded during conference IRCA98 due to the theoretical contribution. 
In order to remove the requirement of exact knowledge about robot parameters, adaptive 
control techniques for flexible joint robots have been developed (Spong, 1989, Lin et al., 
1995). These approaches can be viewed as an extension of adaptive control for rigid body 
robots (Slotine & Li, 1987). Though theoretically looks well, this method met the problem of 
over complexity for the practical implementation. 
Engineers tried PD (or PID) controllers, traditionally used for industrial robots, adding some 
damping term for the joint flexibility. Stability proof for such control systems, if it is possible, 
is more involved than that of using extensive model information. Starting from (Arimoto, 
1994), which provides the theoretical justification for the PD controller still used in most 
industrial robots, Tomei (Tomei, 1991) proved the stability of PD control with gravity 
compensation also for flexible joint robots. However, the stability proofs are only valid for 
the link position regulation and not for the trajectory tracking control. 
Albu-Schaeffer (Albu-Schaeffer & Hirzinger, 2000) proposes an intermediate approach 
between the theoretical and the practical solutions for the link position control i.e. PD 
control + joint torque feedback. He uses a simple control structure in the form of joint state 
feedback with gravity compensation, applicable for a lightweight robot with 7DOF. A 
stability proof based on Lyapunov theory was provided as well. Also here, the stability 
proof is valid only for the case of point-to-point motion of the robot arm and not valid for 
the trajectory tracking control. 
Ott (Ott, 2008) studied and tested several control approaches systematically including the 
passivity based control approach. It comes to the conclusion that the passivity based control 
approach doesn’t show an improved performance for the trajectory tracking control despite 
of some other advantages. Similar to the works by Albu-Schaeffer (Albu-Schaeffer, 2002), the 
proposed control algorithms by Ott need often the system parameters which may not be 
available for general purpose lightweight robots. 
In (Ozgoli & Taghirad, 2006) an extensive survey about the control of flexible joint robots is 
given in which 173 papers from different aspects of the control issue are cited. 
It is recognized meanwhile that to design a good control system, the controller designer 
must have a deep understanding about the physic plant to be controlled, independent from 
which control approach is applied. As a result, at least a rough model for the controlled 
plant is required, though there are some unmodeled dynamics, external disturbances and 
parameter uncertainties associated with this rough model. As a candidate of physic oriented 
control theories, sliding mode control (Utkin et al., 2009) is selected here for the control 
problems of flexible joint robots. As it well known, sliding mode control theory can be 
applied to high-order, non-linear, uncertain MIMO systems and the resulting controllers are 
simple enough for practical implementations. Another advantage of sliding mode control 

www.intechopen.com



Advances in Robot Manipulators158

 

theory is easy to understand for normal control engineers (it is the main reason why this 
control theory becomes more and more popular). The major disadvantage associated with 
sliding mode control is the chattering phenomena due to the high frequency switching of 
the discontinuous control input. However, if the chattering problem can be solved or the 
inherent discontinuous property of the plant actuators (like electric motors) can be 
positively utilized, sliding mode control theory will be a good design tool for deriving the 
control algorithms. In this chapter, the design methodology of sliding mode control will be 
the major theoretical tool for the control of flexible joint robots. 
 
The rest of this chapter is organized as follows: 
In Section 2, the control problems for rigid-body robot manipulators with modelling 
uncertainties and external disturbances will be dealt with. The resulting control algorithm 
will be used for the link position tracking control of flexible joint robots. Section 3 handles 
the joint torque dynamics based on the singular perturbation approach. We use the result of 
other researchers without repeating the theory of singularly perturbed systems. Section 4 
presents the theoretical derivation of sliding mode PWM for the current control of PMSM. 
This current controller will be used as the most internal control loop for the link position 
tracking control. Section 5 shows the simulation study, verifying the developed control 
algorithms, based on a dynamic model consisting of a two-link flexible joint robot with two 
joint motors. In section 6 some conclusions will be given. 

 
2. Robust control of rigid manipulators based on integral sliding mode 
 

2.1 Problem statement 
For rigid body robot manipulators, the computed torque approach provides asymptotic 
stability for tracking control tasks. However, the state dependent matrices needed to 
complete the computed torque algorithm are normally unknown and possibly too complex 
for a real-time implementation. This section proposes a simple controller with computed-
torque-like structure enhanced by integral sliding mode, having pole-placement capability. 
For the reduction of the chattering effect generated by the sliding mode part, the integral 
sliding mode is posed as a perturbation estimator with quasi-continuous control action 
provided by an additional low-pass filter. The time-constant of the latter tunes the controller 
functionality between the perturbation compensation and a pure integral sliding mode 
control, as well as between chattering reduction and system robustness. 
Studies on the control of chain-like mechanical systems have been a subject of intensive and 
profitable research over the last three decades. Robot manipulators, as dynamically coupled 
non-linear MIMO systems have attracted the attention of many control scientists and 
engineers. Arbitrary assignment of the system poles of a set of decoupled and linearised 
sub-systems has been the final design goal. The computed torque (Hunt et al., 1983; Gilbert 
& Ha, 1984), as a theoretically simplest and most comprehensive approach for the tracking 
control of robot manipulators, allows one to assign the poles of the closed-loop system 
arbitrarily at the price of an exact feedback linearization with state dependent quantities for 
compensation of the system non-linearity with coupling terms. Any mismatch due to 
parameter or modelling uncertainties in the plant will violate exact linearization and 
decoupling. Moreover, even when these quantities are known exactly, the real-time 

 

implementation is still an issue, since the computational overhead might be too large to 
prevent the control algorithm from being realized in control hardware. 
Motivated by the recent developments on integral sliding mode control (Utkin & Shi, 1996; 
Poznyak et al., 2004; Cao & Xu, 2004; Castaños & Fridman, 2006; Utkin et al., 2009), by 
taking regard on algorithm complexity, this section proposes a novel control structure with 
pole-placement capability for rigid body robot manipulators. Simple matrices describing the 
nominal model (normally they are constant, as long as the available joint torques are high 
enough) are used to form a computed-torque-like controller, whereas two diagonal control 
gain matrices are responsible for the pole-placement. In addition, an additive control vector 
is designed based on the concept of integral sliding mode to compensate for the overall 
matched system uncertainties (for systems with unmatched uncertainties, other than the 
case of full actuated robot manipulators, the readers are referred to (Cao & Xu, 2004; 
Castaños & Fridman, 2006)). 
Control of robot manipulators using sliding mode technique has a rather long history. Since 
the first set-point sliding mode controller suggested by (Young, 1978), numerous variations 
have been proposed in the literature, such as the component-wise control discussed by 
(Slotine, 1985) and by (Chen et al., 1990). The robustness property of the conventional 
sliding mode control with respect to variations of system parameters and external 
disturbances can only be achieved after the occurrence of sliding mode. During the reaching 
phase, however, there is no guarantee for robustness. Integral sliding mode aims at 
eliminating the reaching phase by enforcing the sliding mode on the entire system response 
(Utkin & Shi, 1996). As a result, robustness of the system can be guaranteed starting from 
the initial time instant, that is, a robot manipulator is able to track the reference trajectory 
(with designed error dynamics given by the pole placement) throughout the entire system 
response despite the system uncertainties. 
However, since a discontinuous term appears in the resulting joint torque, direct 
implementation of the integral sliding mode control algorithm may be difficult due to the 
chattering effect. To solve this implementation problem i.e. to reduce the chattering level, the 
discontinuous term is used for a perturbation estimator based on an auxiliary internal 
dynamic process. It will be shown that the equivalent control of such a discontinuous term 
is indeed able to compensate the net system perturbation. 
If the equivalent control could be obtained exactly, the system perturbation could be 
compensated for completely, so that the system would be free of chattering and robust 
starting from the initial time instant. Strictly speaking, the exact equivalent control based on 
the system model is impossible to achieve, primarily due to model uncertainties. However, 
if the spectrum of the equivalent control has no overlap with the switching frequency of the 
discontinuous control term (it is normally the case in practice), a low-pass filter can be used 
to extract the equivalent control from the discontinuous control term (Utkin, 1992). Using 
low-pass filter to extract equivalent control from the discontinuous control term provides 
the basic information source of proposed control design. 
From the practical point of view, the bandwidth of the low-pass filter is designed as low as 
possible, so that the amplitude of the chattering remains low level. However, since the 
frequency of the equivalent control is time-varying, a low-pass filter with a fixed time-
constant and low bandwidth would “cut” the equivalent control and lose the information 
about the system perturbation. Thus, there is a trade-off between the system robustness 

www.intechopen.com



Control of Lightweight Manipulators Based on Sliding Mode Technique 159

 

theory is easy to understand for normal control engineers (it is the main reason why this 
control theory becomes more and more popular). The major disadvantage associated with 
sliding mode control is the chattering phenomena due to the high frequency switching of 
the discontinuous control input. However, if the chattering problem can be solved or the 
inherent discontinuous property of the plant actuators (like electric motors) can be 
positively utilized, sliding mode control theory will be a good design tool for deriving the 
control algorithms. In this chapter, the design methodology of sliding mode control will be 
the major theoretical tool for the control of flexible joint robots. 
 
The rest of this chapter is organized as follows: 
In Section 2, the control problems for rigid-body robot manipulators with modelling 
uncertainties and external disturbances will be dealt with. The resulting control algorithm 
will be used for the link position tracking control of flexible joint robots. Section 3 handles 
the joint torque dynamics based on the singular perturbation approach. We use the result of 
other researchers without repeating the theory of singularly perturbed systems. Section 4 
presents the theoretical derivation of sliding mode PWM for the current control of PMSM. 
This current controller will be used as the most internal control loop for the link position 
tracking control. Section 5 shows the simulation study, verifying the developed control 
algorithms, based on a dynamic model consisting of a two-link flexible joint robot with two 
joint motors. In section 6 some conclusions will be given. 

 
2. Robust control of rigid manipulators based on integral sliding mode 
 

2.1 Problem statement 
For rigid body robot manipulators, the computed torque approach provides asymptotic 
stability for tracking control tasks. However, the state dependent matrices needed to 
complete the computed torque algorithm are normally unknown and possibly too complex 
for a real-time implementation. This section proposes a simple controller with computed-
torque-like structure enhanced by integral sliding mode, having pole-placement capability. 
For the reduction of the chattering effect generated by the sliding mode part, the integral 
sliding mode is posed as a perturbation estimator with quasi-continuous control action 
provided by an additional low-pass filter. The time-constant of the latter tunes the controller 
functionality between the perturbation compensation and a pure integral sliding mode 
control, as well as between chattering reduction and system robustness. 
Studies on the control of chain-like mechanical systems have been a subject of intensive and 
profitable research over the last three decades. Robot manipulators, as dynamically coupled 
non-linear MIMO systems have attracted the attention of many control scientists and 
engineers. Arbitrary assignment of the system poles of a set of decoupled and linearised 
sub-systems has been the final design goal. The computed torque (Hunt et al., 1983; Gilbert 
& Ha, 1984), as a theoretically simplest and most comprehensive approach for the tracking 
control of robot manipulators, allows one to assign the poles of the closed-loop system 
arbitrarily at the price of an exact feedback linearization with state dependent quantities for 
compensation of the system non-linearity with coupling terms. Any mismatch due to 
parameter or modelling uncertainties in the plant will violate exact linearization and 
decoupling. Moreover, even when these quantities are known exactly, the real-time 

 

implementation is still an issue, since the computational overhead might be too large to 
prevent the control algorithm from being realized in control hardware. 
Motivated by the recent developments on integral sliding mode control (Utkin & Shi, 1996; 
Poznyak et al., 2004; Cao & Xu, 2004; Castaños & Fridman, 2006; Utkin et al., 2009), by 
taking regard on algorithm complexity, this section proposes a novel control structure with 
pole-placement capability for rigid body robot manipulators. Simple matrices describing the 
nominal model (normally they are constant, as long as the available joint torques are high 
enough) are used to form a computed-torque-like controller, whereas two diagonal control 
gain matrices are responsible for the pole-placement. In addition, an additive control vector 
is designed based on the concept of integral sliding mode to compensate for the overall 
matched system uncertainties (for systems with unmatched uncertainties, other than the 
case of full actuated robot manipulators, the readers are referred to (Cao & Xu, 2004; 
Castaños & Fridman, 2006)). 
Control of robot manipulators using sliding mode technique has a rather long history. Since 
the first set-point sliding mode controller suggested by (Young, 1978), numerous variations 
have been proposed in the literature, such as the component-wise control discussed by 
(Slotine, 1985) and by (Chen et al., 1990). The robustness property of the conventional 
sliding mode control with respect to variations of system parameters and external 
disturbances can only be achieved after the occurrence of sliding mode. During the reaching 
phase, however, there is no guarantee for robustness. Integral sliding mode aims at 
eliminating the reaching phase by enforcing the sliding mode on the entire system response 
(Utkin & Shi, 1996). As a result, robustness of the system can be guaranteed starting from 
the initial time instant, that is, a robot manipulator is able to track the reference trajectory 
(with designed error dynamics given by the pole placement) throughout the entire system 
response despite the system uncertainties. 
However, since a discontinuous term appears in the resulting joint torque, direct 
implementation of the integral sliding mode control algorithm may be difficult due to the 
chattering effect. To solve this implementation problem i.e. to reduce the chattering level, the 
discontinuous term is used for a perturbation estimator based on an auxiliary internal 
dynamic process. It will be shown that the equivalent control of such a discontinuous term 
is indeed able to compensate the net system perturbation. 
If the equivalent control could be obtained exactly, the system perturbation could be 
compensated for completely, so that the system would be free of chattering and robust 
starting from the initial time instant. Strictly speaking, the exact equivalent control based on 
the system model is impossible to achieve, primarily due to model uncertainties. However, 
if the spectrum of the equivalent control has no overlap with the switching frequency of the 
discontinuous control term (it is normally the case in practice), a low-pass filter can be used 
to extract the equivalent control from the discontinuous control term (Utkin, 1992). Using 
low-pass filter to extract equivalent control from the discontinuous control term provides 
the basic information source of proposed control design. 
From the practical point of view, the bandwidth of the low-pass filter is designed as low as 
possible, so that the amplitude of the chattering remains low level. However, since the 
frequency of the equivalent control is time-varying, a low-pass filter with a fixed time-
constant and low bandwidth would “cut” the equivalent control and lose the information 
about the system perturbation. Thus, there is a trade-off between the system robustness 
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(whether the system perturbation can be compensated for completely) and the chattering 
reduction by tuning of the time-constant of the low-pass filter. 

 
2.2 Integral sliding mode control and perturbation estimator 
In this section, the basic concept and the main result of integral sliding mode control will be 
outlined. 
For a given dynamic system represented by the following state space equation 
 

          ( ) ( ) ( )x f x B x u h x,t    (1) 
with nx  being the state vector, mu being the control input vector (  ( )rank B x m ) and 

( )h x,t  being the perturbation vector due to model uncertainties or external disturbances; 
( )h x,t  is bounded and assumed to fulfil the matching condition. The control low for system 

(1) is proposed as 
 

        0 1u u u   (2) 
where m

0u   is responsible for the performance of the nominal system; m
1u   is a 

discontinuous control action that rejects the perturbations by ensuring the sliding motion. 
The sliding manifold is defined as  
 

 0 ( )s s x z  ,  
 with 

   0,  ( ),  ms s x z  
(3) 

    0
0( ) ( ) ( )sz f x B x u x

x



    

   0(0) ( (0))z s x   

 
where initial condition (0)z  is determined under the requirement (0) 0s  . It can be proven 
that the equivalent control of 1u  will cancel out the perturbation term ( )h x,t , see (Utkin et al. 
2009). Discontinuous control 1u  has a proper selected control gain which ensures sliding 
motion starting from 0t   i.e. (0) 0s  . 
In real applications, however, discontinuous control 1u  may result in chattering effect, 
imposing high frequency vibrations. To reduce this undesired effect, the control system can 
be modified as follows: 
 

 0 ( )s s x z   

(4) 
 0

1( ) ( ) ( )sz f x B x u B x u
x




     

0(0) ( (0))z s x   

0 1avu u u   

1 1( )avu lowpass u  

 

By solving equation 0s   for 1u , it can be directly checked that the equivalent control of 1u  
still cancels the system perturbation. In the above controller, relation 1 1eq avu u  is used, for 
proof see (Utkin, 1992). Finally, the term 1avu  is quasi-continuous (depending on the time-
constant of the low-pass filter) and equal to the perturbation term to be compensated for, 
serving as the perturbation estimator. Moreover, since discontinuous control 1u  appears 
only in the control computer, its gain is more flexible to tune. 

 
2.3 Control of robot manipulators 
 

2.3.1 Model of rigid body robot manipulators 
The model of a rigid body robot manipulator with n  degrees of freedom can be written as 
 

( ) ( , ) ( ) ( )M q q C q q q G q F q         (5) 
 
where ( ) n nM q   is the mass matrix; ( , ) nC q q q  is the vector including centrifugal and  
Coriolis forces; ( ) nG q   is the gravity force vector; ( ) nF q   is the friction force vector; 

nq  represents the joint position vector and n   denotes the joint torque vector. 
For the purpose of control design, the notation of the above model can be formally changed 
to 
 

( ) ( , )M q q N q q     (6) 
 
where vector ( , ) ( , ) ( ) ( )N q q C q q q G q F q       does not contain term q . This model can be 
rewritten as the sum of an ideal model and a perturbation term: 
 

0 0( ) ( , ) ( , , )M q q N q q H q q q       (7) 
 
where 0 ( ) ( )M q M q M   , 0 ( , ) ( , )N q q N q q N    , with M  and N  being the unknown 
part of matrix ( )M q  and vector ( , )N q q , respectively; vector ( , , )H q q q   denotes the overall 
system perturbation and has the form ( , , ) ( )H q q q M q N       . Note that the perturbation 
term ( , , )H q q q   satisfies the matching condition. 

 
2.3.2 Control design using integral sliding mode 
Following the design principle given in section 2.2, the joint torque vector   can be 
designed as two additive terms: 
 

0 1     
(8) 

0 0 0( )( ) ( , )d D e P eM q q K q K q N q q        
 
where 0 0( ),  ( , )M q N q q  are the nominal value of ( ),  ( , )M q N q q , respectively, as defined 
with equation (7); ,  n n n n

P DK K    are positive definite diagonal gain matrices 
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(whether the system perturbation can be compensated for completely) and the chattering 
reduction by tuning of the time-constant of the low-pass filter. 

 
2.2 Integral sliding mode control and perturbation estimator 
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        0 1u u u   (2) 
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0u   is responsible for the performance of the nominal system; m
1u   is a 

discontinuous control action that rejects the perturbations by ensuring the sliding motion. 
The sliding manifold is defined as  
 

 0 ( )s s x z  ,  
 with 

   0,  ( ),  ms s x z  
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    0
0( ) ( ) ( )sz f x B x u x

x



    

   0(0) ( (0))z s x   

 
where initial condition (0)z  is determined under the requirement (0) 0s  . It can be proven 
that the equivalent control of 1u  will cancel out the perturbation term ( )h x,t , see (Utkin et al. 
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By solving equation 0s   for 1u , it can be directly checked that the equivalent control of 1u  
still cancels the system perturbation. In the above controller, relation 1 1eq avu u  is used, for 
proof see (Utkin, 1992). Finally, the term 1avu  is quasi-continuous (depending on the time-
constant of the low-pass filter) and equal to the perturbation term to be compensated for, 
serving as the perturbation estimator. Moreover, since discontinuous control 1u  appears 
only in the control computer, its gain is more flexible to tune. 

 
2.3 Control of robot manipulators 
 

2.3.1 Model of rigid body robot manipulators 
The model of a rigid body robot manipulator with n  degrees of freedom can be written as 
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Coriolis forces; ( ) nG q   is the gravity force vector; ( ) nF q   is the friction force vector; 

nq  represents the joint position vector and n   denotes the joint torque vector. 
For the purpose of control design, the notation of the above model can be formally changed 
to 
 

( ) ( , )M q q N q q     (6) 
 
where vector ( , ) ( , ) ( ) ( )N q q C q q q G q F q       does not contain term q . This model can be 
rewritten as the sum of an ideal model and a perturbation term: 
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part of matrix ( )M q  and vector ( , )N q q , respectively; vector ( , , )H q q q   denotes the overall 
system perturbation and has the form ( , , ) ( )H q q q M q N       . Note that the perturbation 
term ( , , )H q q q   satisfies the matching condition. 

 
2.3.2 Control design using integral sliding mode 
Following the design principle given in section 2.2, the joint torque vector   can be 
designed as two additive terms: 
 

0 1     
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where 0 0( ),  ( , )M q N q q  are the nominal value of ( ),  ( , )M q N q q , respectively, as defined 
with equation (7); ,  n n n n

P DK K    are positive definite diagonal gain matrices 
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determining the closed loop performance; and the tracking error is defined as 
( ) ( ) ( )e dq t q t q t   with  ( )  ( )  ( )d d dq t q t q t   being the reference trajectory and its time 

derivatives. Note that 0  represents the computed torque part of the controller. 
Discontinuous control 1  is now derived based on the design principle of integral sliding 
model control: 
Step 1: Sliding Manifold 
The sliding manifold is defined based on equation (3)  
 

0 ( )s s x z   

(9) 

 0     e

e

q
s C I

q
 

  
 

 

  1 1
0 0 0 0

    e

d

q
z C I

M N M q 

 
      





 

 (0) (0) (0)e ez Cq q     

 
where n nC   is a positive definite gain matrix and n nI   is a n n  unit matrix.  
Vector s  can be further simplified by substituting 0  with equation (8): 
 

           
0

( ) (0) (0)
t

e D e P e e D es q K q K q d q K q        (10) 

 
Since the requirement (0) 0s   is satisfied, sliding mode will occur starting from the initial 
time instant 0t  . Note that for the implementation of s , matrix C  is not required in the 
final equation, see (10). As one can see from the derivations given above, equation (10) is the 
natural extension of the basic design equation of integral sliding mode (3). 
To prepare the stability analysis, the time derivative of the sliding variable ( )s t  can be 
obtained 
 

                  1
0 1 2 0 1s s z M           (11) 

 
where 1 1

1 0 0( )M N M N     and 1 1
2 0( )M M     represent the mismatches between the 

nominal parameters 0 0( ),  ( , )M q N q q , and the real system parameters ( )M q , ( , )N q q , 
respectively, viewed as system perturbation terms. Note that in this study we assume that 
both 1  and 2 0   are norm-bounded. 
Step 2: Discontinuous control 1  

1  is the discontinuous control dedicated to reject the overall perturbation torque ( , , )H q q q  . 
Here 1  can be selected as 
 

 

1 0
s
s

    (12) 

 
where 0  is a positive constant (control gain may also take other forms) and s  denotes the 

norm 2 of s  i.e. 2 2 2
1 2 ns s s s      . 

 Step 3: Design of the control gain 0  

Select a Lyapunov function candidate as 1 0
2

TV s s   (for 0s  ). The time derivative of V  

along the solutions of (11) is given by 
 

1
1 2 0 0( )T T TV s s s s M s s          (13) 

 
Since matrix 1( )M q  is positive definite and 0  is a positive constant, the most right term 

in (13) i.e. 1
0

Ts M s s  is positive for any 0s  . For a small enough positive number  , 

such that inequality 1
0 0

T Ts M s s s s s    holds, it can be shown that 
  

 0 1 2 0V s          (14) 
 
Clearly, under the norm-boundedness condition of terms 1  and 2 0  , a large enough gain 

0  can always be chosen to guarantee V s   (with 0   and for 0s  ), implying the 
occurrence of sliding mode in finite time. Note that the initial conditions in (10) eliminate 
the reaching phase.  
Step 4: Equivalent control of 1  
Once sliding mode occurs and the system is confined to the manifold ( ) 0s t  , the 
equivalent control of 1  can be used to examine the system behaviour. The equivalent 
control is obtained by formally setting 0s  , yielding 
 

1 1 2 0( )eq M       (15) 
 
Substitution of 0 1eq     in equation (6) with equivalent control (15) leads to the motion 
equation in sliding mode, which can be simplified as 
 

0 0 0( ) ( , )M q q N q q     (16) 
 
Control 0  in (8) thus achieves the designed (closed-loop) error dynamics defined by DK  
and PK , namely 

0e D e P eq K q K q     (17) 
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determining the closed loop performance; and the tracking error is defined as 
( ) ( ) ( )e dq t q t q t   with  ( )  ( )  ( )d d dq t q t q t   being the reference trajectory and its time 

derivatives. Note that 0  represents the computed torque part of the controller. 
Discontinuous control 1  is now derived based on the design principle of integral sliding 
model control: 
Step 1: Sliding Manifold 
The sliding manifold is defined based on equation (3)  
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where n nC   is a positive definite gain matrix and n nI   is a n n  unit matrix.  
Vector s  can be further simplified by substituting 0  with equation (8): 
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Since the requirement (0) 0s   is satisfied, sliding mode will occur starting from the initial 
time instant 0t  . Note that for the implementation of s , matrix C  is not required in the 
final equation, see (10). As one can see from the derivations given above, equation (10) is the 
natural extension of the basic design equation of integral sliding mode (3). 
To prepare the stability analysis, the time derivative of the sliding variable ( )s t  can be 
obtained 
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0 1 2 0 1s s z M           (11) 

 
where 1 1

1 0 0( )M N M N     and 1 1
2 0( )M M     represent the mismatches between the 

nominal parameters 0 0( ),  ( , )M q N q q , and the real system parameters ( )M q , ( , )N q q , 
respectively, viewed as system perturbation terms. Note that in this study we assume that 
both 1  and 2 0   are norm-bounded. 
Step 2: Discontinuous control 1  

1  is the discontinuous control dedicated to reject the overall perturbation torque ( , , )H q q q  . 
Here 1  can be selected as 
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where 0  is a positive constant (control gain may also take other forms) and s  denotes the 

norm 2 of s  i.e. 2 2 2
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 Step 3: Design of the control gain 0  

Select a Lyapunov function candidate as 1 0
2

TV s s   (for 0s  ). The time derivative of V  

along the solutions of (11) is given by 
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Since matrix 1( )M q  is positive definite and 0  is a positive constant, the most right term 

in (13) i.e. 1
0

Ts M s s  is positive for any 0s  . For a small enough positive number  , 

such that inequality 1
0 0

T Ts M s s s s s    holds, it can be shown that 
  

 0 1 2 0V s          (14) 
 
Clearly, under the norm-boundedness condition of terms 1  and 2 0  , a large enough gain 

0  can always be chosen to guarantee V s   (with 0   and for 0s  ), implying the 
occurrence of sliding mode in finite time. Note that the initial conditions in (10) eliminate 
the reaching phase.  
Step 4: Equivalent control of 1  
Once sliding mode occurs and the system is confined to the manifold ( ) 0s t  , the 
equivalent control of 1  can be used to examine the system behaviour. The equivalent 
control is obtained by formally setting 0s  , yielding 
 

1 1 2 0( )eq M       (15) 
 
Substitution of 0 1eq     in equation (6) with equivalent control (15) leads to the motion 
equation in sliding mode, which can be simplified as 
 

0 0 0( ) ( , )M q q N q q     (16) 
 
Control 0  in (8) thus achieves the designed (closed-loop) error dynamics defined by DK  
and PK , namely 

0e D e P eq K q K q     (17) 
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as if perturbation term ( , , )H q q q   in (7) would not have existed. Equation (16) as well as (17) 
represents the system motion in sliding mode. Solving q  from (16) and setting into 

( , , )H q q q  , easily shows the perturbation cancellation property, i.e. 1 ( , , )eq H q q q     . The 
derivation above is only to show the perturbation cancellation property by the equivalent 
control 1eq . Actually, the designed closed loop motion presented by (17) can be obtained 
more easily by taking the time derivative of (10) and set 0s  . 
Summarization of the integral sliding mode control system for the implementation: 
 

0 0 0( )( ) ( , )d D e P eM q q K q K q N q q        

(18) 0

( ) (0) (0)
t

e D e P e e D es q K q K q d q K q        

1 0
s
s

    

0 1     
 
From (18), one can see the benefit of the control system: in order to assign the poles of the 
closed-loop system arbitrarily, one needs only to additionally calculate the variable s  and 

1 , exact knowledge about ( )M q  and ( , )N q q  are not required. Depending on the available 
control resource, the nominal quantities 0 0( ),  ( , )M q N q q  can even be set constant i.e. to 

0 0,  M N . Moreover, the robustness of the tracking control performance is ensured starting 
from 0t  . 

 
2.3.3 Control design using integral sliding mode based perturbation estimator 
Hitherto, the control system described in section 2.3.2 looks perfect. However, in some 
practical applications, the controller given in (18) may not be applicable to robot 
manipulators, as the chattering level generated by the discontinuous control term 1  may be 
very high. Following the control design approach given by (4), the control system can be 
modified to: 
 

0 0 0( )( ) ( , )d D e P eM q q K q K q N q q        

(19) 

1
0 1 1

0 0

( ) (0) (0) ( )( )
t t

e D e P e e D e avs q K q K q d q K q M q d              

1 0
s
s

    

1 1( )av lowpass   

0 1av     
 

 

Note that for a better decoupling, the control gain of 1  may also be selected as 0 0M   
instead of 0 . However, since we are intended to compare the solution based on the 
perturbation estimator with the pure integral sliding mode control (18), the control gain is 
designed to have the same form for the both control systems. Now, the equivalent control of 

1  can be obtained by setting 0s   
1

0 1 2 0 1 0s s z M            
(20) 

1 0 1 2( )eq M       
 
Actually, since 0 1 0 1av eq        , (20) can be further simplified to (15), implying that 

the equivalent control 1eq  remains the same as in the case of pure integral sliding mode 
control. 
For the convergence proof of s  to zero, check that the dynamic motion about s  in the 
closed-loop system can be derived as 
 

1
0 1 2 0 1s s z M           (21) 

 

For a Lyapunov function candidate 1 0
2

TV s s   (for 0s  ), the time derivative of V  along 

the solutions of (21) can be obtained as 
 

1
1 2 0 0( )T T TV s s s s M s s          (22) 

 
Similar lines as in (14) can be followed to show that a large enough control gain 0  can be 

selected such that V s   (with 0   and for 0s  ), implying that sliding mode will be 
enforced in finite time. Note that   in (22) is now quasi-continuous due to the low-pass 
filter, it can be assumed here that terms 1  and 2   are norm-bounded. Again, initial 
conditions guarantee that (0) 0s   in (19), thus eliminating the reaching phase. 
The advantage of controller (19) over the previous controller given by (18) is: the 
discontinuous control term 1  (with gain 0 ) appears only in the control computer and the 
real control   applied to the robot manipulator (see (19)) is low-pass filtered. Control term 

1av  serves here as a perturbation compensator. As one can see from (19), if the time 
constant of the low-pass filter tends to zero, the controller given by (19) will converge to 
controller (18), i.e. from perturbation estimation solution to integral sliding mode control 
solution. For the control system under controller (19), sliding mode ( ) 0s t   is guaranteed 
throughout the entire system response, although a low-pass filter is involved in the control 
loop.  

 
2.3.4 Practical consideration 
Since low-order filters do not ideally cut off the high-frequency switching signal 
components due to the discontinuous term 1 , some amount will be still preserved in 1av . 
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as if perturbation term ( , , )H q q q   in (7) would not have existed. Equation (16) as well as (17) 
represents the system motion in sliding mode. Solving q  from (16) and setting into 

( , , )H q q q  , easily shows the perturbation cancellation property, i.e. 1 ( , , )eq H q q q     . The 
derivation above is only to show the perturbation cancellation property by the equivalent 
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more easily by taking the time derivative of (10) and set 0s  . 
Summarization of the integral sliding mode control system for the implementation: 
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1 0
s
s

    

0 1     
 
From (18), one can see the benefit of the control system: in order to assign the poles of the 
closed-loop system arbitrarily, one needs only to additionally calculate the variable s  and 

1 , exact knowledge about ( )M q  and ( , )N q q  are not required. Depending on the available 
control resource, the nominal quantities 0 0( ),  ( , )M q N q q  can even be set constant i.e. to 

0 0,  M N . Moreover, the robustness of the tracking control performance is ensured starting 
from 0t  . 

 
2.3.3 Control design using integral sliding mode based perturbation estimator 
Hitherto, the control system described in section 2.3.2 looks perfect. However, in some 
practical applications, the controller given in (18) may not be applicable to robot 
manipulators, as the chattering level generated by the discontinuous control term 1  may be 
very high. Following the control design approach given by (4), the control system can be 
modified to: 
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Note that for a better decoupling, the control gain of 1  may also be selected as 0 0M   
instead of 0 . However, since we are intended to compare the solution based on the 
perturbation estimator with the pure integral sliding mode control (18), the control gain is 
designed to have the same form for the both control systems. Now, the equivalent control of 

1  can be obtained by setting 0s   
1

0 1 2 0 1 0s s z M            
(20) 

1 0 1 2( )eq M       
 
Actually, since 0 1 0 1av eq        , (20) can be further simplified to (15), implying that 

the equivalent control 1eq  remains the same as in the case of pure integral sliding mode 
control. 
For the convergence proof of s  to zero, check that the dynamic motion about s  in the 
closed-loop system can be derived as 
 

1
0 1 2 0 1s s z M           (21) 

 

For a Lyapunov function candidate 1 0
2

TV s s   (for 0s  ), the time derivative of V  along 

the solutions of (21) can be obtained as 
 

1
1 2 0 0( )T T TV s s s s M s s          (22) 

 
Similar lines as in (14) can be followed to show that a large enough control gain 0  can be 

selected such that V s   (with 0   and for 0s  ), implying that sliding mode will be 
enforced in finite time. Note that   in (22) is now quasi-continuous due to the low-pass 
filter, it can be assumed here that terms 1  and 2   are norm-bounded. Again, initial 
conditions guarantee that (0) 0s   in (19), thus eliminating the reaching phase. 
The advantage of controller (19) over the previous controller given by (18) is: the 
discontinuous control term 1  (with gain 0 ) appears only in the control computer and the 
real control   applied to the robot manipulator (see (19)) is low-pass filtered. Control term 

1av  serves here as a perturbation compensator. As one can see from (19), if the time 
constant of the low-pass filter tends to zero, the controller given by (19) will converge to 
controller (18), i.e. from perturbation estimation solution to integral sliding mode control 
solution. For the control system under controller (19), sliding mode ( ) 0s t   is guaranteed 
throughout the entire system response, although a low-pass filter is involved in the control 
loop.  

 
2.3.4 Practical consideration 
Since low-order filters do not ideally cut off the high-frequency switching signal 
components due to the discontinuous term 1 , some amount will be still preserved in 1av . 
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Whereas for practical applications, a large time constant for the low-pass filter is normally 
preferred, such that the resulting control signals remain as smooth as possible. However, 
since the instantaneous frequency of the system perturbation (i.e. the frequency of 1eq  after 

sliding mode occurs) is unknown and time changing, it may happen that the bandwidth of 

1eq  is higher than the bandwidth of the low-pass filter and the system perturbation cannot 
be cancelled out completely, thus the system robustness is reduced. For a high control 
performance, the time constant of the low-pass filter should be made small (at least during 
the transient period) such that the bandwidth of the low-pass filter is high enough and 1eq  
can get through the filter completely. 
As a result, in the practical implementation the time constant of the low-pass filter can be 
used as a trade-off between chattering reduction and system robustness: if a high robustness 
as well as high control accuracy during the transient period is required, the time constant of 
the low-pass filter can be made small for the short time period. The trade-off between 
chattering reduction and system robustness by changing the time constant of the low-pass 
filter is demonstrated in Sections 5.2 and 5.3. 

 
3. Singular perturbation approach to handle the joint flexibility 
 

As mentioned in the introduction part, singular perturbation approach has at least the 
following advantages: 
(a). the signals for the control implementation can be made available 
(b). there is no need to implement an exact tracking controller for the joint torque 
(c). the results for the control of rigid-body robots can be used further 
(d). the implementation of the control algorithm is easy 
 
Sure, singular perturbation approach has also disadvantages: 
(a). it is not valid if the joint stiffness is too low 
(b). the control law is sensitive to the change of joint stiffness 
Fortunately, most of lightweight manipulators used in practice have high enough and fixed 
joint stiffness. The flexibility in robot joints is a side-effect to achieve lightweight and it is 
normally not intended by the robot designer. 
The control algorithm of this section will be summarized here without repeating the theory 
of singularly perturbed systems. The way of treating the joint torque dynamics can be find 
e.g. in (Ott, 2008). 
The output of the robust link position controller for rigid body manipulators given in 
Section 2 is denoted here as d (instead of  ), which is the reference input for the joint 
torque implementation. Normally, when using singular perturbation approach for the 
control of slow dynamics, the joint inertia matrix J  has to be considered in the link position 
controller by adding matrix J  to the mass-matrix of the robot arm ( )M q . However, since 
our link position controller is a robust controller, implying that no exact parameters are 
required, the information about the joint inertia is normally not necessary (the system 
robustness depends on the available control resource). 

 

The reference current vector for the joint motors can be calculated from the slow and fast 
torque components i.e. n

s R   and n
f R   for stabilizing the joint torque dynamics 

 
* 1 1 1( )q t m t r s fI K K G        (23) 

where tK  is the diagonal torque constant matrix of the electric motors and rG  is the 

diagonal gear-ratio matrix; * *[ ] n
q qiI i R  , with 1 ~i n , is the reference current vector 

including the reference currents for all joints; m  represents the motor torque vector. The 
slow and fast joint torque components can be given as 
 

s d   

(24) f D      
or  

( )f dK D          
 
with n nD R

 and n nK R
  being constant diagonal control gain matrices to be 

determined by the control designer (if the joint stiffness is changed the control gain matrices 
need to be retuned accordingly). 

 
4. Direct current control using sliding mode PWM 
 

When using the build-in PWM unit of a micro-controller or a DSP, the required reference 
voltage signals generated by the current controller will be modulated in form of pulse-width 
and then it is hoped that the average value of the terminal voltages of the stator windings 
will be equal to the reference voltages that the current controller produces. In this 
configuration there are two problems: 
(a). the PWM implementation of the terminal voltages is done in a way of open-loop, the 
final voltages on the stator windings may differ from the ones what current controller 
requires, depending on the quality of the pulse-width-modulation. 
(b). it introduces some time delay, at lease a duty-cycle has to remain unchanged before the 
corresponding PWM signal being sent out. 
Thus for a high dynamic performance, the build-in PWM unit of a micro-controller or a DSP 
has some disadvantages. 
On the other hand, the conventional current control hardware such as Chopper-Control or 
Hysteresis-Control hardware do not have these disadvantages. Because no micro-processor 
being available, these practically used hardware were not able to implement the concept of 
field-oriented control. In this section we derive a current controller based on sliding mode 
control theory for PMSM which has the performance of field-oriented control, but without 
the disadvantage associated with the open-loop PWM techniques. We call this kind of 
current control “sliding mode PWM current control”. 
At first, we need the motor model to design the current controller. The motor model in the 
( , d q )-coordinate frame, which rotates synchronously with the motor rotor, can be given as 
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Whereas for practical applications, a large time constant for the low-pass filter is normally 
preferred, such that the resulting control signals remain as smooth as possible. However, 
since the instantaneous frequency of the system perturbation (i.e. the frequency of 1eq  after 

sliding mode occurs) is unknown and time changing, it may happen that the bandwidth of 

1eq  is higher than the bandwidth of the low-pass filter and the system perturbation cannot 
be cancelled out completely, thus the system robustness is reduced. For a high control 
performance, the time constant of the low-pass filter should be made small (at least during 
the transient period) such that the bandwidth of the low-pass filter is high enough and 1eq  
can get through the filter completely. 
As a result, in the practical implementation the time constant of the low-pass filter can be 
used as a trade-off between chattering reduction and system robustness: if a high robustness 
as well as high control accuracy during the transient period is required, the time constant of 
the low-pass filter can be made small for the short time period. The trade-off between 
chattering reduction and system robustness by changing the time constant of the low-pass 
filter is demonstrated in Sections 5.2 and 5.3. 

 
3. Singular perturbation approach to handle the joint flexibility 
 

As mentioned in the introduction part, singular perturbation approach has at least the 
following advantages: 
(a). the signals for the control implementation can be made available 
(b). there is no need to implement an exact tracking controller for the joint torque 
(c). the results for the control of rigid-body robots can be used further 
(d). the implementation of the control algorithm is easy 
 
Sure, singular perturbation approach has also disadvantages: 
(a). it is not valid if the joint stiffness is too low 
(b). the control law is sensitive to the change of joint stiffness 
Fortunately, most of lightweight manipulators used in practice have high enough and fixed 
joint stiffness. The flexibility in robot joints is a side-effect to achieve lightweight and it is 
normally not intended by the robot designer. 
The control algorithm of this section will be summarized here without repeating the theory 
of singularly perturbed systems. The way of treating the joint torque dynamics can be find 
e.g. in (Ott, 2008). 
The output of the robust link position controller for rigid body manipulators given in 
Section 2 is denoted here as d (instead of  ), which is the reference input for the joint 
torque implementation. Normally, when using singular perturbation approach for the 
control of slow dynamics, the joint inertia matrix J  has to be considered in the link position 
controller by adding matrix J  to the mass-matrix of the robot arm ( )M q . However, since 
our link position controller is a robust controller, implying that no exact parameters are 
required, the information about the joint inertia is normally not necessary (the system 
robustness depends on the available control resource). 

 

The reference current vector for the joint motors can be calculated from the slow and fast 
torque components i.e. n

s R   and n
f R   for stabilizing the joint torque dynamics 

 
* 1 1 1( )q t m t r s fI K K G        (23) 

where tK  is the diagonal torque constant matrix of the electric motors and rG  is the 

diagonal gear-ratio matrix; * *[ ] n
q qiI i R  , with 1 ~i n , is the reference current vector 

including the reference currents for all joints; m  represents the motor torque vector. The 
slow and fast joint torque components can be given as 
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with n nD R

 and n nK R
  being constant diagonal control gain matrices to be 

determined by the control designer (if the joint stiffness is changed the control gain matrices 
need to be retuned accordingly). 

 
4. Direct current control using sliding mode PWM 
 

When using the build-in PWM unit of a micro-controller or a DSP, the required reference 
voltage signals generated by the current controller will be modulated in form of pulse-width 
and then it is hoped that the average value of the terminal voltages of the stator windings 
will be equal to the reference voltages that the current controller produces. In this 
configuration there are two problems: 
(a). the PWM implementation of the terminal voltages is done in a way of open-loop, the 
final voltages on the stator windings may differ from the ones what current controller 
requires, depending on the quality of the pulse-width-modulation. 
(b). it introduces some time delay, at lease a duty-cycle has to remain unchanged before the 
corresponding PWM signal being sent out. 
Thus for a high dynamic performance, the build-in PWM unit of a micro-controller or a DSP 
has some disadvantages. 
On the other hand, the conventional current control hardware such as Chopper-Control or 
Hysteresis-Control hardware do not have these disadvantages. Because no micro-processor 
being available, these practically used hardware were not able to implement the concept of 
field-oriented control. In this section we derive a current controller based on sliding mode 
control theory for PMSM which has the performance of field-oriented control, but without 
the disadvantage associated with the open-loop PWM techniques. We call this kind of 
current control “sliding mode PWM current control”. 
At first, we need the motor model to design the current controller. The motor model in the 
( , d q )-coordinate frame, which rotates synchronously with the motor rotor, can be given as 
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d
d d e q

diL u Ri L i
dt

    
(25) 

0
q

q q e d e
di

L u Ri L i
dt

       

where L  is the stator inductance and R  is the stator resistance; di  and qi  are the stator 
currents in the ( , d q )  coordinate frame; du and qu are the stator voltages in the same 
coordinate frame; 0  is the flux constant of the rotor permanent magnet; e  is the rotor 
electric angular speed. 
For the sliding mode current controller, the switching functions for the d  and q  current 
components are designed as 
 

*

*
d d d

q q q

s i i

s i i

 

 
 (26) 

 
where *

qi  is the reference current i.e. one of the components of the compose controller (23) 

(index i  is neglected here for simplicity), and reference current component * 0di   for 

constant torque operation and * 0di   for field-weakening operation (Shi & Lu, 1996). The 
time derivative of both switching functions along the solutions of (25) can be found as 
 

* *

* *0

1

1

d d d d d e q d

q q q q q e d e q

Rs i i u i i i
L L

Rs i i u i i i
L L L




 

     

      

  

  
 (27) 

 
Introducing two auxiliary variables df  and qf  as follows 
 

*

*0

d d e q d

q q e d e q

Rf i i i
L
Rf i i i
L L




 

   

    




 (28) 

 
(27) will be simplified to 
 

1

1
d d d

q q q

s f L u

s f L u





 

 




 (29) 

 
The above equation system can be summarized in vector form, resulting in 
 

 

1d d d

q q q

s f u
L

s f u
     

      
     


  (30) 

 
Here stator voltages du  and qu  are not yet the discontinuous voltages applied to the stator 
windings. For the sliding mode current control we need the relationship between the final 
discontinuous voltages applied to the stator windings i.e. 1 3~u u  (which take the values 
from the set 0 0{ , }u u with 0u  being the DC-Bus voltage) and the time derivative of both 
switching functions. This relationship can be given as 
 

1
1 1 1,2,3

2,

3

d d d d
d q

q q q q

u
s f u f

L L A u
s f u f

u

 
 

                     
          


  (31) 

 
where matrix 1,2,3

,d qA  can be expended as 

  

1,2,3
,

cos cos cos
sin sin sin

a b c
d q

a b c
A

  
  

 
     

 (32) 

 
with ,  2 / 3a e b e       , 2 / 3c e     and e  being the rotor electrical angular 
position. Using (32), (31) can be rewritten as 
 

1 2 31

1 2 3

cos cos cos
sin sin sin

d d a b c

q q a b c

s f u u u
L

s f u u u
  
  

      
            


  (33) 

 
To find the control signals 1u , 2u  and 3u , Lyapunov approach can be employed. Design a 
Lyapunov function candidate as  

1
2

T
dq dqV  S S  (34) 

 
where [ ]Tdq d qs sS . The time derivative of V  along the solution of (33) can be found as 
 

1 2 31

1 2 3
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sin sin sin
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dq dq

d
d q

q

d a b c
d q d q

q a b c
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s
s s

s

f u u u
s s L s s

f u u u
  
  
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

 
    

 
    

               






S S

 
(35) 

 
which can be further expanded to 
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d
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dt
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(25) 

0
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q q e d e
di

L u Ri L i
dt
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where L  is the stator inductance and R  is the stator resistance; di  and qi  are the stator 
currents in the ( , d q )  coordinate frame; du and qu are the stator voltages in the same 
coordinate frame; 0  is the flux constant of the rotor permanent magnet; e  is the rotor 
electric angular speed. 
For the sliding mode current controller, the switching functions for the d  and q  current 
components are designed as 
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 
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where *

qi  is the reference current i.e. one of the components of the compose controller (23) 

(index i  is neglected here for simplicity), and reference current component * 0di   for 

constant torque operation and * 0di   for field-weakening operation (Shi & Lu, 1996). The 
time derivative of both switching functions along the solutions of (25) can be found as 
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Introducing two auxiliary variables df  and qf  as follows 
 

*

*0

d d e q d

q q e d e q

Rf i i i
L
Rf i i i
L L




 

   

    




 (28) 

 
(27) will be simplified to 
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The above equation system can be summarized in vector form, resulting in 
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Here stator voltages du  and qu  are not yet the discontinuous voltages applied to the stator 
windings. For the sliding mode current control we need the relationship between the final 
discontinuous voltages applied to the stator windings i.e. 1 3~u u  (which take the values 
from the set 0 0{ , }u u with 0u  being the DC-Bus voltage) and the time derivative of both 
switching functions. This relationship can be given as 
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where matrix 1,2,3
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with ,  2 / 3a e b e       , 2 / 3c e     and e  being the rotor electrical angular 
position. Using (32), (31) can be rewritten as 
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To find the control signals 1u , 2u  and 3u , Lyapunov approach can be employed. Design a 
Lyapunov function candidate as  

1
2

T
dq dqV  S S  (34) 

 
where [ ]Tdq d qs sS . The time derivative of V  along the solution of (33) can be found as 
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s s
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 
    
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


S S

 
(35) 

 
which can be further expanded to 
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1
1 2 3( ) [ ( cos sin ) ( cos sin ) ( cos sin )]

T
dq dq

d d q q d a q a d b q b d c q c

V

s f s f L u s s u s s u s s     



       

 S S
 (36) 

Introducing the following three auxiliary variables 
  

 
1

2

3

( cos sin )
( cos sin )

( cos sin )

d a q a

d b q b

d c q c

s s
s s
s s

 

 

 

  

  

  

 (37) 

 
equation (36) can be simplified to 
  

1
1 1 2 2 3 3( ) ( )d d q qV s f s f L u u u         (38) 

 
In order to guarantee 0V  , the control signals 1u , 2u  and 3u  can be designed as 
 

1 0 1

2 0 2

3 0 3

( )
( )
( )

u u sign
u u sign
u u sign

  
  
  

 (39) 

 
With these notations, equation (38) can be reformulated for the final analysis 
 

 
1

0 1 1 2 2 3 3

1
0 1 2 3

( ) [ ( ) ( ) ( ) ]

( ) [ ]
d d q q

d d q q

V s f s f L u sign sign sign

s f s f L u





          

       


 (40) 

 
In the above equation, 1L  is a constant (but may be unknown). If the scalar term 
( )d d q qs f s f  is bounded and if the DC-bus voltage 0u  is high enough, 0V   can be 
guaranteed, implying that the real currents will converge to their reference counterparts in 
finite time. Thus the stability of the current control system can be ensured under two 
conditions 
(a). the DC-bus voltage 0u  is high enough 
(b). auxiliary variables df  and qf  are bounded 
Since df  and qf  do not contain the control voltages, neither du  and qu , nor 1u , 2u  and 3u , 

the condition (b) is reasonable. Note that if the reference currents *
di  and *

qi  change too fast, 
the stability condition may be violated from time to time (depending on the available DC-
bus voltage 0u ). In this case there exists no current controller which can do better. Some 
researchers design sliding mode link position controller with discontinuous joint torque 
commands and without taking into account the motor dynamics, would meet this problem. 
Other high gain link position controllers without taking into account the motor dynamics 
would meet the same problem.   
Now the implementation procedure is summarized. 

 

Though the derivation of the proposed current controller looks rather involved, the 
implementation of this controller is quite simple. The equations for the implementation are 
summarized as follows   
 

*

*
d d d

q q q
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s i i

 
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(41) 

 
with ,  2 / 3a e b e       , 2 / 3c e    . The final gating signals taking values from set 
{0, 1} (like PWM signals) feeding to the inverter can be found as 
 

 1 1 00.5 1ws u u  , 

4 11w ws s  , 

(42) 
 2 2 00.5 1ws u u  , 

5 21w ws s  , 

 3 3 00.5 1ws u u  , 

6 31w ws s  . 
 
The switching control signals 1 6~w ws s  are pulse signals, the pulse width is not calculated 
from some duty-cycle, but determined directly and instantaneously by the current control 
errors in the field-oriented coordinates. Note that in practical implementation, several s  
time delay is required between signal pair wis  and 3wis  ( 1 ~ 3i  ). This current control 
system does not require the motor parameters as well as the decoupling process, thus it is a 
robust current control system. 

 
5. Simulation Studies 
 

5.1 A two-link robot manipulator as an example 
A planar, two-link manipulator with revolute joints, taken from the example in (Utkin et al., 
2009), is used here to demonstrate the proposed control approaches. The manipulator and 
the associated variables are depicted in Figure 1.  
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With these notations, equation (38) can be reformulated for the final analysis 
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In the above equation, 1L  is a constant (but may be unknown). If the scalar term 
( )d d q qs f s f  is bounded and if the DC-bus voltage 0u  is high enough, 0V   can be 
guaranteed, implying that the real currents will converge to their reference counterparts in 
finite time. Thus the stability of the current control system can be ensured under two 
conditions 
(a). the DC-bus voltage 0u  is high enough 
(b). auxiliary variables df  and qf  are bounded 
Since df  and qf  do not contain the control voltages, neither du  and qu , nor 1u , 2u  and 3u , 

the condition (b) is reasonable. Note that if the reference currents *
di  and *

qi  change too fast, 
the stability condition may be violated from time to time (depending on the available DC-
bus voltage 0u ). In this case there exists no current controller which can do better. Some 
researchers design sliding mode link position controller with discontinuous joint torque 
commands and without taking into account the motor dynamics, would meet this problem. 
Other high gain link position controllers without taking into account the motor dynamics 
would meet the same problem.   
Now the implementation procedure is summarized. 

 

Though the derivation of the proposed current controller looks rather involved, the 
implementation of this controller is quite simple. The equations for the implementation are 
summarized as follows   
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with ,  2 / 3a e b e       , 2 / 3c e    . The final gating signals taking values from set 
{0, 1} (like PWM signals) feeding to the inverter can be found as 
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(42) 
 2 2 00.5 1ws u u  , 

5 21w ws s  , 
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The switching control signals 1 6~w ws s  are pulse signals, the pulse width is not calculated 
from some duty-cycle, but determined directly and instantaneously by the current control 
errors in the field-oriented coordinates. Note that in practical implementation, several s  
time delay is required between signal pair wis  and 3wis  ( 1 ~ 3i  ). This current control 
system does not require the motor parameters as well as the decoupling process, thus it is a 
robust current control system. 

 
5. Simulation Studies 
 

5.1 A two-link robot manipulator as an example 
A planar, two-link manipulator with revolute joints, taken from the example in (Utkin et al., 
2009), is used here to demonstrate the proposed control approaches. The manipulator and 
the associated variables are depicted in Figure 1.  

www.intechopen.com



Advances in Robot Manipulators172

 

 
Fig. 1. Two-link manipulator with link lengths 1L  and 2L , and concentrated link masses 1M  
and 2M . The manipulator is shown in joint configuration 1 2( , )q q , which leads to end-
effector position ( , )W Wx y  in world coordinates. 
 
The end-effector position, ( , )W Wx y , i.e. the location of mass 2M  in world coordinate frame 
( , )x y , is given by 

1 1 2 1 2

1 1 2 1 2

cos cos( ),
sin sin( ),

W

W

x L q L q q
y L q L q q

  
  

 (43) 

 
where 1 2( , )q q denotes the joint displacements and 1 2,L L  are the link lengths. Solving (43) 
for the joint displacements as a function of the end-effector position ( , )W Wx y  yields the 
inverse kinematics as 

2 2 2 2
21 2

2
1 2

1 2 2 1 2 2

atan 2( , ), with , 1
2

atan 2( , ) atan 2( sin , cos )

W W

W W

x y L Lq D C C D C
L L

q y x L q L L q

  
    

  

 (44) 

 
which obviously is not unique due to the two sign options of the square root in variable D. 
The function “atan2( . )” describes the arctan function normalized to the range±180°.  
The dynamic model of the two-link manipulator can be given as 
 

11 12 1 1 1 1 1

21 22 2 2 2 2 2

m m q c g f
m m q c g f




        
                




,i.e. 
(45) 
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21 22
( ) ,
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  
 

1 1 1

2 2 2
( , ) ,
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N q q
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    
  
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  

   
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  

 
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

 
 

 (46) 

 
where vik  and cik  ( 1,2i  ) are coefficients of viscous friction and coulomb friction, 
respectively. 
The joint model for the two robot joints is given by 
 

i i dsi i ri miJ g       
(47) 

( )i i i iK q    1 ~ 2i   
 
where the parameters and variables for the i th   joints are 
 iq : link position 
 i : joint position 
 i : joint torque 
 mi : motor torque 
 dsi : disturbance torque 
 iJ : joint inertia 
 iK : joint stiffness 
 rig : gear ratio 
The electric motor model for each joint is taken from equation (25) with the transformation 
matrix given in (32). 
The plant parameters for the simulation study are selected as shown in Table 1 through 
Table 3. Note that for the simulation, we select the joint disturbance torque in equation (47) 
as pure viscous friction dsi i ik    for both joints (but at link side both viscous and coulomb 
frictions are applied, see equation (46) and section 5.2). 
 

1M  2M  1L  2L  

2 kg 1 kg 0.5 m 0.5 m 

Table 1. Arm Parameters 
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where vik  and cik  ( 1,2i  ) are coefficients of viscous friction and coulomb friction, 
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where the parameters and variables for the i th   joints are 
 iq : link position 
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 i : joint torque 
 mi : motor torque 
 dsi : disturbance torque 
 iJ : joint inertia 
 iK : joint stiffness 
 rig : gear ratio 
The electric motor model for each joint is taken from equation (25) with the transformation 
matrix given in (32). 
The plant parameters for the simulation study are selected as shown in Table 1 through 
Table 3. Note that for the simulation, we select the joint disturbance torque in equation (47) 
as pure viscous friction dsi i ik    for both joints (but at link side both viscous and coulomb 
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L  (H) R (Ohm) 0  (Wb) P  tK  (Nm/A) _ maxqI (A) 0u (V) 
322.5 10  0.78 0.26 4 0(3/ 2)P  50 100 

Table 2. Parameters for motor 1 and motor 2 (P = number of pole-pair) 
 

J ( 2Kgm ) K  (Nm/Rad) rg  k  (Nm/(Rad/s)) 

1.0 12000 20 1 
Table 3. Parameters of joint 1 and joint 2 
 
For the trajectory tracking control task, we will demand the manipulator to follow a circular 
trajectory in its workspace. The circle with centre 0 0( , )d dx y  and radius dr  is given in world 
coordinates by 

0

0

( ) cos

( ) sin

2 2( ) sin , 0 ,

d d d d

d d d d

d f
f f

x t x r

y t y r

t t t t t
t t





 

 

 

 
     

 

 
(48) 

where the operation is assumed to start at time 0t   and to be completed at final time ft t . 
Through the inverse kinematics, the reference link angles for joint 1 and joint 2 are 
calculated according to (44). The parameters for the reference trajectory are chosen as shown 
in Table 4. 
 

0dx  0dy  dr  ft  

0.25 m 0.25 m 0.5 m 2 s 
Table 4. Parameters of reference circular trajectory. 

 
5.2 Controller parameters and simulation configuration 
The parameters for the outer link position control loop are selected as: 
 

0
2.5 0

( )
0 1

M q
 

  
 

,  

0
0

( , )
0

N q q
 

  
 

 , 
(49) 

100 0
0 100pK

 
  
 

, 
20 0
0 20dK

 
  
 

,   

0
400 0
0 400

 
   

 
 

 
The joint torques of both joints are limited to 400Nm. To extract the equivalent control from 
the discontinuous control term to obtain 1 1av eq   in equation (19), a simple first order low-
pass filter is used i.e.  

 

y y u     (50) 
 
where   is the filter time-constant. In the simulation 0.025   is selected. In the transition 
period the frequency of 1eq  may be higher than the edge-frequency of the low-pass filter, 
see the discussion in Section 2.3.4. To solve this problem, the time constant of the low-pass 
filter is made time varying: 
 

(0.025/ 0.5) , 0 0.5
( )

0.025, 0.5
t t

t
t


 

  
 (51) 

 
Now the time constant of the low-pass filter is linearly increased from zero to 0.025s in half 
second and remains constant thereafter. 
For the singular perturbation approach described in Section 3, the simple form f D     is 
used for the fast dynamics, where matrix D  is selected as 
  

0.001 0
0 0.001

D
 

  
 

 (52) 

 
Besides the large parameter mismatches between the values in the plant model and the 
nominal values used in the controller given by equation (49), some disturbances are added 
to the plant model to test the robustness of proposed control algorithms: 
(a). the coefficients of viscous friction and coulomb friction in equation (46) are set as  

1 2 10 /( / )v vk k Nm rad s   and 1 2 5c ck k Nm  , respectively. The generated friction terms are 
sufficient large with respect to gravitation forces, centrifugal and Coriolis forces in the plant 
model. 
(b). an additional disturbance torque during 0 ~ 0.15s with constant amplitude of 100Nm  
is added to both robot joints to test the robustness of the control system in the transition 
period. 

 
5.3. Simulation results and discussion 
The simulation results of the trajectory tracking controller for rigid-body robots presented in 
Section 2 have been given in (Shi et al., 2008), where different sliding mode control 
approaches under different system uncertainties are compared. In this section, we discuss 
only the simulation results for flexible joint robots, which are illustrated by Figure 2 through 
Figure 5. 
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Table 2. Parameters for motor 1 and motor 2 (P = number of pole-pair) 
 

J ( 2Kgm ) K  (Nm/Rad) rg  k  (Nm/(Rad/s)) 

1.0 12000 20 1 
Table 3. Parameters of joint 1 and joint 2 
 
For the trajectory tracking control task, we will demand the manipulator to follow a circular 
trajectory in its workspace. The circle with centre 0 0( , )d dx y  and radius dr  is given in world 
coordinates by 

0

0
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2 2( ) sin , 0 ,

d d d d

d d d d

d f
f f

x t x r

y t y r

t t t t t
t t





 

 

 

 
     

 

 
(48) 

where the operation is assumed to start at time 0t   and to be completed at final time ft t . 
Through the inverse kinematics, the reference link angles for joint 1 and joint 2 are 
calculated according to (44). The parameters for the reference trajectory are chosen as shown 
in Table 4. 
 

0dx  0dy  dr  ft  

0.25 m 0.25 m 0.5 m 2 s 
Table 4. Parameters of reference circular trajectory. 

 
5.2 Controller parameters and simulation configuration 
The parameters for the outer link position control loop are selected as: 
 

0
2.5 0

( )
0 1

M q
 

  
 

,  

0
0

( , )
0

N q q
 

  
 

 , 
(49) 

100 0
0 100pK

 
  
 

, 
20 0
0 20dK

 
  
 

,   

0
400 0
0 400

 
   

 
 

 
The joint torques of both joints are limited to 400Nm. To extract the equivalent control from 
the discontinuous control term to obtain 1 1av eq   in equation (19), a simple first order low-
pass filter is used i.e.  

 

y y u     (50) 
 
where   is the filter time-constant. In the simulation 0.025   is selected. In the transition 
period the frequency of 1eq  may be higher than the edge-frequency of the low-pass filter, 
see the discussion in Section 2.3.4. To solve this problem, the time constant of the low-pass 
filter is made time varying: 
 

(0.025/ 0.5) , 0 0.5
( )

0.025, 0.5
t t

t
t


 

  
 (51) 

 
Now the time constant of the low-pass filter is linearly increased from zero to 0.025s in half 
second and remains constant thereafter. 
For the singular perturbation approach described in Section 3, the simple form f D     is 
used for the fast dynamics, where matrix D  is selected as 
  

0.001 0
0 0.001

D
 

  
 

 (52) 

 
Besides the large parameter mismatches between the values in the plant model and the 
nominal values used in the controller given by equation (49), some disturbances are added 
to the plant model to test the robustness of proposed control algorithms: 
(a). the coefficients of viscous friction and coulomb friction in equation (46) are set as  

1 2 10 /( / )v vk k Nm rad s   and 1 2 5c ck k Nm  , respectively. The generated friction terms are 
sufficient large with respect to gravitation forces, centrifugal and Coriolis forces in the plant 
model. 
(b). an additional disturbance torque during 0 ~ 0.15s with constant amplitude of 100Nm  
is added to both robot joints to test the robustness of the control system in the transition 
period. 

 
5.3. Simulation results and discussion 
The simulation results of the trajectory tracking controller for rigid-body robots presented in 
Section 2 have been given in (Shi et al., 2008), where different sliding mode control 
approaches under different system uncertainties are compared. In this section, we discuss 
only the simulation results for flexible joint robots, which are illustrated by Figure 2 through 
Figure 5. 
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Fig. 2. Pure integral sliding mode control. Left plots: designed and real error dynamics of the 
link position tracking control (dotted-line: designed, solid-line: real, they are too close to be 
distinguished); middle plots: joint torque; right plots: required motor torque.  
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Fig. 3. Integral sliding mode based perturbation estimation approach with constant low-pass 
filter to extract the equivalent control. Left plots: designed and real error dynamics of the 
link position tracking control (dotted-line: designed, solid-line: real); middle plots: joint 
torque; right plots: required motor torque.  
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Fig. 4. Integral sliding mode based perturbation estimation approach with time varying low-
pass filter to extract the equivalent control. Left plots: designed and real error dynamics of 
the link position tracking control (dotted-line: designed, solid-line: real, they are too close to 
be distinguished); middle plots: joint torque; right plots: required motor torque.  
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Fig. 5. Designed and real error dynamics of the link position tracking control (dotted-line: 
designed, solid-line: real) of the three control approaches, but without the singular 
perturbation treatment on the joint flexibility. Left plots: pure integral sliding mode control; 
middle plots: perturbation estimation approach with constant low-pass filter; right plots: 
perturbation estimation approach with time varying low-pass filter. 
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Fig. 2. Pure integral sliding mode control. Left plots: designed and real error dynamics of the 
link position tracking control (dotted-line: designed, solid-line: real, they are too close to be 
distinguished); middle plots: joint torque; right plots: required motor torque.  
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Fig. 3. Integral sliding mode based perturbation estimation approach with constant low-pass 
filter to extract the equivalent control. Left plots: designed and real error dynamics of the 
link position tracking control (dotted-line: designed, solid-line: real); middle plots: joint 
torque; right plots: required motor torque.  
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Fig. 4. Integral sliding mode based perturbation estimation approach with time varying low-
pass filter to extract the equivalent control. Left plots: designed and real error dynamics of 
the link position tracking control (dotted-line: designed, solid-line: real, they are too close to 
be distinguished); middle plots: joint torque; right plots: required motor torque.  
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Fig. 5. Designed and real error dynamics of the link position tracking control (dotted-line: 
designed, solid-line: real) of the three control approaches, but without the singular 
perturbation treatment on the joint flexibility. Left plots: pure integral sliding mode control; 
middle plots: perturbation estimation approach with constant low-pass filter; right plots: 
perturbation estimation approach with time varying low-pass filter. 
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With Figure 2 the pure integral sliding mode control approach i.e. the controller given by 
equation (18) is demonstrated. For rigid-body robots, this controller has a prefect tracking 
control performance despite the large torque disturbance during the transition period (see 
(Shi et al., 2008)), but for flexible joint robots, the steady-state responses are not smooth 
enough, see both left plots in Figure 2. Similar to the case of rigid-body robots, there are high 
frequency oscillations in the joint torque and in the motor torque. The oscillation frequency 
for flexible joint robots is lower than the one for rigid-body robots because of the joint 
flexibility. For both types of robots this controller can not be used in practice due to the high 
level of chattering. 
In Figure 3, the simulation result of the controller given by equation (19) is presented, where 
the low-pass filter is the first order linear filter given by equation (50) with constant  . As 
one can see from the middle and right plots of figure, the joint torque and the required 
motor torques are smoothed significantly due to the perturbation estimation solution 
(implying that this controller can be applied to real world robot systems). However, the 
performance of the position tracking control is decreased a little bit, see the both left plots of 
the figure. 
To recover the tracking control performance while keeping the joint torques and motor 
torques as smooth as possible, the time constant of the low-pass filter is made time varying 
according to equation (51). The simulation result is illustrated in Figure 4. Now, the position 
tracking control has a higher control accuracy, in both transition period and steady-state, see 
the both left plots of Figure 4. From the middle and right plots of Figure 4, one can see that 
the joint torques and the motor torques are still smooth enough, only in the transition period 
the frequency of these signals is higher than the case of Figure 3, because of the smaller time 
constant of the low-pass filter in this time range. Therefore, by tuning the time constant of 
the low-pass filter, the overall system performance can be improved. 
The control approaches demonstrated by the simulation results given by Figure 2 through 
Figure 4 are supported by the singular perturbation treatment on the joint flexibility. 
Without this treatment, none of the control approaches can work properly, see Figure 5 
(where all elements of matrix D  are set to zero). Therefore, joint torque signal as well as its 
time derivative is very important for the control of flexible joint robots. 

 
6. Conclusion 
 

The robust position tracking controller based on integral sliding mode for rigid-body 
manipulators is extended to the position tracking control of lightweight manipulators as 
well as flexible joint robots. Moreover, the control system takes the dynamics of joint motors 
into account. The joint flexibility is solved by singular perturbation approach which needs 
no parameter from the controlled system. Also, the current controller for the joint motors is 
a robust controller without involving the parameters of the electric motors and decoupling 
process. By using sliding mode PWM technique the current controller overcomes the 
disadvantages associated with the conventional build-in PWM in micro-processors or DSPs. 
For the link position tracking control only some rough nominal values are required. It is 
possible to achieve the pole-placement design without the exact knowledge about the 
manipulator system to be controlled. Moreover, the control design is mathematically easy 
and straightforward without involving the properties of the robot dynamics. The resulting 
control algorithms are simple enough for real-time implementation. The tradeoff between 

 

chattering reduction and system robustness can be adjusted by the time constant of a low-
pass filter. As the chattering level being significantly reduced, the control algorithms are 
applicable to real-life systems. Comparative simulation studies have confirmed the 
effectiveness of proposed control approaches and showed the potential toward the control 
of lightweight manipulators for high performance applications. Moreover, the presented 
design methodology can also be applied to other non-linear multi-variable dynamic systems. 
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With Figure 2 the pure integral sliding mode control approach i.e. the controller given by 
equation (18) is demonstrated. For rigid-body robots, this controller has a prefect tracking 
control performance despite the large torque disturbance during the transition period (see 
(Shi et al., 2008)), but for flexible joint robots, the steady-state responses are not smooth 
enough, see both left plots in Figure 2. Similar to the case of rigid-body robots, there are high 
frequency oscillations in the joint torque and in the motor torque. The oscillation frequency 
for flexible joint robots is lower than the one for rigid-body robots because of the joint 
flexibility. For both types of robots this controller can not be used in practice due to the high 
level of chattering. 
In Figure 3, the simulation result of the controller given by equation (19) is presented, where 
the low-pass filter is the first order linear filter given by equation (50) with constant  . As 
one can see from the middle and right plots of figure, the joint torque and the required 
motor torques are smoothed significantly due to the perturbation estimation solution 
(implying that this controller can be applied to real world robot systems). However, the 
performance of the position tracking control is decreased a little bit, see the both left plots of 
the figure. 
To recover the tracking control performance while keeping the joint torques and motor 
torques as smooth as possible, the time constant of the low-pass filter is made time varying 
according to equation (51). The simulation result is illustrated in Figure 4. Now, the position 
tracking control has a higher control accuracy, in both transition period and steady-state, see 
the both left plots of Figure 4. From the middle and right plots of Figure 4, one can see that 
the joint torques and the motor torques are still smooth enough, only in the transition period 
the frequency of these signals is higher than the case of Figure 3, because of the smaller time 
constant of the low-pass filter in this time range. Therefore, by tuning the time constant of 
the low-pass filter, the overall system performance can be improved. 
The control approaches demonstrated by the simulation results given by Figure 2 through 
Figure 4 are supported by the singular perturbation treatment on the joint flexibility. 
Without this treatment, none of the control approaches can work properly, see Figure 5 
(where all elements of matrix D  are set to zero). Therefore, joint torque signal as well as its 
time derivative is very important for the control of flexible joint robots. 

 
6. Conclusion 
 

The robust position tracking controller based on integral sliding mode for rigid-body 
manipulators is extended to the position tracking control of lightweight manipulators as 
well as flexible joint robots. Moreover, the control system takes the dynamics of joint motors 
into account. The joint flexibility is solved by singular perturbation approach which needs 
no parameter from the controlled system. Also, the current controller for the joint motors is 
a robust controller without involving the parameters of the electric motors and decoupling 
process. By using sliding mode PWM technique the current controller overcomes the 
disadvantages associated with the conventional build-in PWM in micro-processors or DSPs. 
For the link position tracking control only some rough nominal values are required. It is 
possible to achieve the pole-placement design without the exact knowledge about the 
manipulator system to be controlled. Moreover, the control design is mathematically easy 
and straightforward without involving the properties of the robot dynamics. The resulting 
control algorithms are simple enough for real-time implementation. The tradeoff between 

 

chattering reduction and system robustness can be adjusted by the time constant of a low-
pass filter. As the chattering level being significantly reduced, the control algorithms are 
applicable to real-life systems. Comparative simulation studies have confirmed the 
effectiveness of proposed control approaches and showed the potential toward the control 
of lightweight manipulators for high performance applications. Moreover, the presented 
design methodology can also be applied to other non-linear multi-variable dynamic systems. 
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