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1. Introduction  

Software piracy has long been a confusing challenge to the software industry; especially 
with the popularity of the Internet today, this threat is growing more seriously. As a 
valuable form of data, software represents significant intellectual property. However, 
reverse engineering of software code by competitors may reveal important technological 
secrets, bring great harm to software developers and software providers. Because of this 
deterministic and self-cleared behaviour, as well as the environmental dependency 
property, when running under a malicious host, software may be accessed and modified by 
infinite resources and tools, all useful information would be definitely exposed to the 
attacker, which brings about great difficulty to software protection. 
Along with the intensification of software market competition, technology theft poses 

another threat to the intellectual property rights protection. The competitors may analyze 

and collect the key technology or algorithm in the software through reverse engineering, 

which will quickly narrow the technology gap. They can also adjust their strategy according 

to the weakness or leakage explored from the software, and then they can use them to carry 

on some attacks, resulting in malicious competition. In some cases, the competitors may 

even do not need to understand the software internal working principle, they can directly 

extract the key code and integrated it into their own software to effectively enhance their 

competitiveness, thus seize the market share. 

Clearly, there is a strong need for developing more efficient and effective mechanisms to 
protect software from becoming the victim of reverse engineering. Among those major 
approaches developed by different researchers, program obfuscation seems to be one of the 
most promising techniques. The concept of obfuscation was first mentioned by Diffie and 
Hellman (1976). When introducing the public-key cryptosystem, they claimed that, given 
any means for obscuring data structures in a private-key encryption scheme, one could 
convert this algorithm into a public-key encryption scheme. 
Informally, obfuscation is a kind of special translation process. It translates a “readable” 
program into a function equivalent one, but which is more “unreadable” or harder to 
understand relatively. This kind of translation has the widespread potential applications 
both in cryptography and software protection, such as designing homomorphic public-key 
cryptosystems, removing random oracles from cryptographic protocols and converting 
private-key encryption schemes into public-key ones etc. in cryptography, or preventing 
reverse engineering (Collberg et al. (1997, 1998a, 1998b)), defending against computer 
viruses (Cohen (1993), Josse (2006)), protecting software watermarks and fingerprints 
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(Collberg & Thomborson (2000), Naccache et al. (1999)) and providing security of mobile 
agents (D’Anna et al. (2003), Hohl (1998)) etc. in software protection. The main difference 
between these two research directions is: the former is based on information theory, its goal 
is to try to get an obfuscator with well-defined and provable security, while the later is 
based on software engineering, though lacking the firm ground for estimating to what 
extent such methods serve the purpose, it does increase program complexity, bring barriers 
to program understanding. 
The chapter is structured as follows: Section 2 reviews various forms of formal definition of 
obfuscators put forward by different researchers and the corresponding positive and 
negative effect on the possibility of such obfuscator. Part of this section refers to the survey 
made by Wyseur (2009). Section 3 gives a systemic description of software obfuscation 
based on software engineering perspective, it is mainly composed of the concept and 
taxonomy developed by Collberg et al. (1997), and it also includes some most recently new 
research results. In Section 4 and Section 5, we propose two Java program obfuscating 
method respectively, namely the call-flow obfuscation and instruction obfuscation. Section 6 
concludes the paper. 

2. Obfuscation theory 

2.1 Notations 

PPTdenotes probabilistic polynomial-time Turing machine. For PPT A and any input x the 

output ( )A x is a random variable. ( )MA x  denote the out put of A when executed on input x  

and oracle access to M .We will write | |A  to denote the size of A . For a pair of Turing 

machines A and B , A B≈ denotes their equivalence, i.e. ( ) ( )A x B x= holds for any input 

x .Function : [0,1]f N →  is negligible if it decreases faster than any inverse polynomial, i.e. 

for any k N∈  there exists 0n  such that ( ) 1 / kf n n<  holds for all 0n n≥ . We use ( )neg ⋅  to 

denote unspecified negligible function. 

2.2 Definitions of obfuscation 

The first contributions towards a formalization of code obfuscation were made by Hada 

(2000), who presented definitions for obfuscation based on the simulation paradigm for zero 

knowledge. The main difference between the obfuscation definition and the simulation-

based definition used in (black-box) cryptography, lies in the type of objects the adversary 

interacts with. In the obfuscation case, it is a comparison between (white-box) interaction to 

an implementation of the primitive, and the interaction with an oracle implementation 

(black-box). In the tradition cryptography case, it is between an oracle implementation of the 

cryptographic primitive, and an idealized version. This new concept is captured by the 

Virtual Black-Box Property (VBBP). Informally, obfuscators should satisfy the following two 

requirements: (1) functionality: the new program has the same functionality as the original 

one and (2) Virtual Black-Box Property: whatever one can efficiently compute given the new 

program, can also be computed given oracle access to the original program. The 

functionality requirement is a syntactic requirement while the virtual black-box property 

represents the security requirement that the obfuscated program should be unintelligible. 

The definition of obfuscation was firstly formalized by Barak et al. (2001). 

Definition 1 (Obfuscator): A probabilistic algorithm O is an obfuscator if the following 
three conditions hold: 
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• Functionality: P∀ ∈P , ( )O P has the same function as P . 

• Polynomial slowdown: There is a polynomial p , such that for every P , 

| ( ) | (| |)O P p P≤ , and if P  halts in t steps on some input x, then ( )O P halts in ( )p t steps 

on input x. 

• Virtual Black-Box Property: Given access to the obfuscated program ( )O P , an 

adversary should not be able to learn anything more about the program P , than it 

could learn from oracle access to P . 
The Virtual Black-Box Property was defined in several different notions by Barak et al. 
(2001). 
Predicate-based obfuscation 

In this notion, an adversary aims to compute some predicate on the program P . In this 

sense, the virtual black-box property captures that for any adversary and any Boolean 

predicate π , the probability that an adversary is able to compute ( )Pπ  given the 

obfuscation ( )O P  should be comparable to the probability that a simulator S  is able to 

compute ( )Pπ  when given only oracle access to P . Roughly speaking, this guarantees that 

the adversary A  does not have any advantage of white-box access, compared to a black-box 

simulation, hence the obfuscation does not leak any extra information on ( )Pπ .  

Definition 2 (Predicate-based Virtual Black-Box Property): An obfuscator O  satisfies the 

Predicate-based Virtual Black-Box Property if for any predicate π  and for any (polynomial 

time) adversary A , there exists a (polynomial time) simulator S , such that for P∀ ∈P : 

| | | ||Pr[ (1 , ( )) ( )] Pr[ (1 ) ( )] | (| |)P P P

AA O P P S P neg Pπ π= − = ≤ , 

where the probabilities are taken over the coin tosses of A , S , and O . 
As pointed out by Barak et al. (2001) and Hohenberger et al. (2007), the predicate definition 
does give some quantifiable notion that some information (i.e., predicates) remains hidden, 
but other non-black-box information might leak and compromise the security of the system. 
This lead to a stronger notion of “virtual black-box”. 
Distinguisher-based obfuscation 

This notion of obfuscation is based on computational indistinguishability, and does not 

restrict what the adversary is trying to compute. For any adversary given the obfuscated 

program ( )O P , it should be possible to construct a simulator S  (with only oracle access to 

P ) that is able to produce a similar output. This notion of similarity is captured by a 

distinguisher D . 

Definition 3 (Distinguisher-based Virtual Black-Box Property): An obfuscator O  satisfies 

the distinguisher-based Virtual Black-Box Property if for any (polynomial time) 

adversary A , there exists a (polynomial time) simulator S , such that that for P∀ ∈P : 

| ||Pr[ ( ( ( ))) 1] Pr[ ( (1 )) 1] | (| |)P PD A O P D S neg P= − = ≤ , 

where D  is a distinguisher, and the probabilities are taken over the coin tosses of A , S , 

and O . 
This notion of security is quite similar to the notion of semantic security for (black-box) 
cryptographic schemes. As pointed out by Wee (2005), this removes the need to quantify 
over all adversaries, as it is necessary and sufficient to simulate the output of the obfuscator. 
To avoid trivial obfuscation, Hofheinz et al. (2007) extended the distinguisher-based 
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definition by giving the distinguisher oracle access to the functionality P . This leads to a 
very strong notion of obfuscation. 
The above definitions are defined for cryptography purpose, however, for most program 
obfuscation in real world, this virtual black-box condition is too strong. For ordinary 
software, it is usually supplied with a user manual specifying its functionality. That is, the 
adversary knows the function the program compute. The aim of obfuscation in this case is 
not to hide any property of the program which refers to its functionality, but to make 
unintelligible the implementation of these functional properties in a particular program. 
This lead to a non black-box definition − Best-possible obfuscation (Goldwasser & Rothblum 
(2007)). 
Best possible obfuscation 
Best possible obfuscation makes the relaxed requirement that the obfuscated program leaks 
as little information as any other program with the same functionality (and of similar size). 
In particular, this definition allows the program to leak non black-box information. Best-
possible obfuscation guarantees that any information that is not hidden by the obfuscated 
program is also not hidden by any other similar-size program computing the same 
functionality, and thus the obfuscation is (literally) the best possible.  

Definition 4 (Distinguisher-based Best-possible Obfuscation): An obfuscator O  is said to 

be a best possible obfuscator if there exists a (polynomial time) simulator S , such that for 

any two programs 1 2,P P ∈P  that compute the same function, and 1 2| | | |P P= , such that: 

1 2 1| Pr[ ( ( )) 1] Pr[ ( ( )) 1] | (| |)D O P D S P neg P= − = ≤ , 

where D  is a distinguisher, and the probabilities are taken over the coin tosses of S and O . 

Instead of requiring that an obfuscator strip a program of any non black-box information, 
this definition requires only that the (best-possible) obfuscated program leak as little 
information as possible. Namely, the obfuscated program should be “as private as” any 
other program computing the same functionality (and of a certain size). A best-possible 
obfuscator should transform any program so that anything that can be computed given 
access to the obfuscated program should also be computable from any other equivalent 
program (of some related size). A best-possible obfuscation may leak non black-box 
information (e.g. the code of a hard-to-learn function), as long as whatever it leaks is 
efficiently learnable from any other similar-size circuit computing the same functionality. 
While this relaxed notion of obfuscation gives no absolute guarantee about what 
information is hidden in the obfuscated program, it does guarantee (literally) that the 
obfuscated code is the best possible. It is thus a meaningful notion of obfuscation, especially 
when we consider that programs are obfuscated every day in the real world without any 
provable security guarantee. In this sense, it may be conjectured that best possible 
obfuscation is more closed to software protection obfuscation. 
Apart from these three definitions above, there are other notions of obfuscation, such as that 
based on computational indistinguishability, satisfying a relation or computing a predicate, 
we refer Barak et al. (2001), Hofheinz et al. (2007), Hohenberger et al. (2007), Kuzurin et 
al.(2007), Wee (2005) for more details. 

2.3 Negative results 

In their seminal paper, Barak et al. (2001) show that it is impossible to achieve the notion of 

obfuscation according to Definition 2, that is, it is impossible to construct a generic 
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obfuscator for all family of programs P . This is proved by constructing a family of 

functions F which is inherently unobfuscatable in the sense that there exists some predicate 

: {0,1}Fπ →  that can be computed efficiently when having access to an obfuscated 

implementation ( )O f of f F∈ , but no efficient simulator can compute ( )fπ  much better 

than by random guessing, given solely oracle access to f . This result follows from the 

following paradox. 

• If one-way functions exist, then there exists an inherently unobfuscatable function 
ensemble. 

• The existence of an efficient obfuscator implies the existence of one-way functions. 
As a result of the above, it can be concluded that efficient obfuscators do not exist. 
Due to the paradox, every cryptographic primitive that implies the existence of a one-way 
function, implies the existence of a respectively unobfuscatable primitive. This applies to 
digital signature schemes, symmetric-key encryption schemes, pseudo-random function 
ensembles, and MAC algorithms. 
Goldwasser and Kalai (2005) argued in the predicate-based notion of obfuscation to hold in 
the presence of auxiliary input. They observe that this is an important requirement for many 
applications of obfuscation, because auxiliary input comes into play in the real world. They 
prove that there exist many natural classes of functions that cannot be obfuscated with 
respect to auxiliary input (both dependent and independent auxiliary input).  
Wee (2005) explored obfuscation of deterministic programs under the strong (distinguisher-
based) notion of obfuscation, and concluded that deterministic functions can be obfuscated 
if and only if the function is learnable. Hofheinz et al. (2007) also remarked that any family 
of deterministic functions must be approximately learnable to be obfuscatable (in their 
augmented strong notion of obfuscation). Hence, it is not possible to obfuscate 
(deterministic) pseudo-random functions under their definition.  
On non black-box definition, Goldwasser and Rothblum (2007) show that if there exist (not 
necessarily efficient) statistically secure best-possible obfuscators for the simple circuit 
family of 3-CNF circuits, then the polynomial hierarchy collapses to its second level, and 
give the impossibility result for (efficient) computationally best-possible obfuscation in the 
(programmable) random oracle model. 

2.4 Positive results 

A positive result on obfuscation was presented prior to the first formulation of definitions 
for obfuscation. Canetti (1997) presented a special class of functions suitable for obfuscation 
under very strong computational assumptions, that works for (almost) arbitrary function 
distributions. In subsequent work, Canetti et al. (1998) presented a construction suitable for 
obfuscation under standard computational assumptions, which is proved secure for uniform 
function distribution. Both results are probabilistic and technically very sophisticated. 
Lynn et al. (2004) explored the question of obfuscation within an idealized setting − the 
random oracle model, in which all parties (including the adversary) can make queries to a 
random oracle. The heart of their construction is the obfuscation of a point function. A point 

function ( )I xα  is defined to be 1 if x α= , or 0 otherwise, and they observed that in the 

random oracle model point functions can be obfuscated, leading to obfuscation algorithms 
for more complex access control functionalities. Under cryptographic assumptions, it is also 
known how to obfuscate point functions without a random oracle. Canetti (1997) showed 
(implicitly) how to obfuscate point functions (even under a strong auxiliary-input 
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definition), using a strong variant of the Decisional Diffie-Hellman assumption. Wee (2005) 
presented a point function obfuscator based on the existence of one-way permutations that 
are hard to invert on a very strong sense. Wee also presented a construction for obfuscating 

point functions with multi-bit output, which are point functions , ( )I xα β  that evaluate to β  

on input α , and to 0 on any other input. 

Most of the obfuscation definitions presented above, are either too weak for or incompatible 
with cryptographic applications, have been shown impossible to achieve, or both. 
Hohenberger et al. (2007) and Hofheinz et al. (2007) present new definitions which have a 
potential for interesting positive results. Hohenberger et al. introduce the notion of average-
case secure obfuscation, based on a distinguisher-based definition that allows families of 
circuits to be probabilistic. They present a probabilistic re-encryption functionality that can 
be securely obfuscated according to this new definition. Similarly, Hofheinz et al. present 
another variant of a distinguisher-based definition. The deviation is that they consider 
probabilistic functions and select the function to be obfuscated according to a distribution. 
Their new notion is coined average obfuscation. The goal is to consider obfuscations for 
specific applications, and they demonstrated the obfuscation of an IND-CPA secure 
symmetric encryption scheme that results into an IND-CPA secure asymmetric scheme. 
Similar results hold for the obfuscation of MAC algorithms into digital signature schemes. 

3. Heuristic obfuscation 

Despite the fundamental results so far from theoretical approaches on code obfuscation, 
their influence on software engineering of this branch is minor: security requirements 
studied in the context of cryptographic applications are either too strong or inadequate to 
many software protection problems emerged in practice. Everybody dealing with program 
understanding knows that, in many cases, even small programs require considerable efforts 
to reveal their meaning. This means that there exists the possibility of some weakly secure 
obfuscators. Program obfuscation is received more attention gradually exactly based on this 
viewpoint in software engineering in the last decade. The practical goal of obfuscation is then 
to make reverse engineering uneconomical by various semantic preserving transformations, 
it is sufficient that the program code be difficult to understand, requiring more effort from 
the attacker than writing a program with the same functionality from scratch.  
Early attempts of obfuscation aim at machine code level rewriting. Cohen (1993) used a 

technique he called “program evolution” to protect operating systems that included the 

replacement of instructions, or small sequences of instructions, with ones that perform 

semantically equal functions. Transformations included instruction reordering, adding or 

removing arbitrary jumps, and even de-inlining methods. However, it was until the 

appearance of the paper by Collberg et al. (1997), software engineering community became 

acquainted with obfuscation. They gave the first detailed classification of obfuscating 

transformations together with the definition of some analytical methods for quality 

measures. 

3.1 Types of obfuscation 
Lexical obfuscation 
This involves renaming program identifiers to avoid giving away clues to their meaning. 
Since the identifiers have little semantic association with program itself, their meaning can 
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be inferred from the context by a determined attacker, lexical obfuscation has very limited 
capability and is not alone sufficient. Typical Java obfuscators such as SourceGuard1 and 
yGuard2 etc. all implement this kind of obfuscation. It is worth noting that, in order to 
mislead the analyzer, Jaurora3 randomly exchange identifiers instead of scramble them, 
thus, has the more secrete property. Chan et al. (2004) bring forward an advanced identifier 
scrambling algorithm. They utilize the hierarchy characteristic of jar package, i.e. a sub 
package or a top-level type (classes and interfaces) may have the same name as the 
enclosing package. Sequentially generated identifiers are used to replace those original 
identifiers in a package, and the generation of identifiers is restarted for every package. 
They also use the gap between a Java compiler and a Java virtual machine to construct 
source-code-level rules-violation, such as illegal identifiers, nested type names. However, 
this kind of source-code-level rules-violation can be repaired at bytecode level by some 
automated tools (Cimato et al. (2005)). 
Data obfuscation 
This transformation targets at data and data structures contained in the program, tries to 
complicate their operations and obscures their usage, such as data encoding, variable and 
array splitting and merging, variable reordering, and inheritance relation modifying. 
Among them, the array reconstruction method receives more attention in recent years. 
Array splitting, merging, folding, and flattening was discussed by Collberg (1998a) in detail. 
Further researches are also carried out later, such as generalized array splitting method 
(Drape (2006)), composite function based indexing method(Ertaul & Venkatesh (2005)), 
homomorphic function based indexing method (Zhu (2007)), and class encapsulated array 
reconstruction method (Praveen & Lal (2007)) etc. Data obfuscation is especially useful for 
protecting object-oriented application since the inheritance relation is crucial to software 
architecture undestanding. Sonsonkin et al. (2003) present a high-level data transformations 
of Java program structure − design obfuscation. They replaced several classes with a single 
class by class coalescing, and replaced a single class with multiple classes by class splitting. 
They hold that, if class splitting is used in tandem with class coalescing, program structure 
would be changed very significantly, which can hide design concept and increase difficulty 
of understanding. 
Control Obfuscation 
This approach alters the flow of control within the code, e.g. reordering statements, 
methods, loops and hiding the actual control flow behind irrelevant conditional statements. 
This form of obfuscation can be further divided into two categories, dynamic dispatch and 
opaque predicate. For the dynamic dispatch, Wang et al. (2001) proposed a dynamic 
dispatch model based on the fact that aliases in a program drastically reduce the precision of 
static analysis of the program. Chow et al. (2001) transformed a program to flat model by 
dividing it into basic blocks, and embed into it an intractable problem with respect to 
computational complexity theory. Consequently, to determine the target address is 
equivalent to solving the intractable problem. Toyofuku et al. (2005) assigned each method 
with a unique ID. During program execution, the control flow will randomly points to any 
method, and whether the target method will execute or not is based on the comparison 

                                                 
1 http://www.4thpass.com/ 

2 http://www.yworks.com/products/yguard/ 

3 http://wwwhome.cs.utwente.nl/~oord/ 
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between the method’s ID and a global variable that is updated after each method execution. 
An opaque predicate is a conditional expression whose value is known to the obfuscator, 
but is difficult for an adversary to deduce statically. For the construction of opaque 
predicate, Collberg’s (1998b) algorithm is based on the intractability property of pointer 
alias, Venkatraj’s (2003) algorithm is based on well-known mathematical axioms and 
probability distribution, Palsberg’s (2000) algorithm is based on data structure correlation, 
while Drape’s (2007) algorithm is based on program slicing information. 
Prevention obfuscation 
This transformation is quite different in flavor from control or data transformation. In 

contrast to these, their main goal is not to obscure the program to human reader. Rather, it is 

designed to make known automatic deobfuscation techniques more difficult, or to explore 

known problems in current deobfuscators or decompilers, e.g. junk bytes insertion. Some 

dynamic dispatching methods inherently have this capability. Batchelder and Hendren 

(2007) proposed a number of prevention transformation techniques for Java program by 

exploiting the semantic gap between what is legal in source code and what is legal in 

bytecode. The methods include converting branches to jsr instructions, disobeying 

constructor conventions, and combining try blocks with their catch blocks etc., all which 

lead to the decompilers failing to decompile the bytecodes. Instead of obfuscating the 

program itself, Monden et al. (2004) gave an idea for obfuscating the program interpretation. 

If the interpretation being taken is obscure and thus it can not be understood by a hostile 

user, the program being interpreted is also kept obscure since the user lacks the information 

about “how to read it.” 

3.2 Quality of obfuscation 

According to Collberg (1997), there are four main metrics measure the effectiveness of an 

obfuscating transformation in terms of potency, resilience, cost, and stealth. Potency 

measures the complexity added to the obfuscated program. Resilience measures how well 

the transformation holds up under attack from an automatic deobfuscator. Cost measures 

the execution time/space penalty of obfuscating a program. Stealth measures how much the 

obfuscated code looks like the original one and how well it fits in with the other code. These 

proposed measures are known as analytical methods, since they extract information by 

taking obfuscation algorithms parameter, source program and obfuscated program. 

Utilizing these metrics, Wroblewski (2002) gave a thorough comparison of different 

obfuscation algorithms based on source code level transformation. Dyke and Colin (2006) 

proposed an obfuscation method at assembly-code level and did a similar comparison work. 

Karnick et al. (2006) developed an analytical method based on these metrics to evaluate the 

strength of some commercial Java obfuscators. 

The drawback of these metrics is that they do not define exactly to what extent the difficulty 

or hardness it takes to understand the obfuscated program compared to the original one for 

an analyzer. This is partially due to the considerable gap between theory and practice of 

program obfuscation (Kuzurin et al. (2007)). The formal definition of obfuscation for 

cryptography purpose is not suitable for most program protection applications in real 

world. Thus, how to clearly reveal the most important common properties required in any 

software obfuscation and give the corresponding effective measure metrics still need a long 

road to run. 
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4. Call-flow obfuscation 

Linn and Debray (2003) proposed the concept of branch function in their native code 
tamper-proofing algorithm. Unconditional branch instructions are converted to calls to a 
branch function. The branch function will transfer execution to the original target based on 
information of stack, which will prevent a disassembler from identifying the target address, 
thus resist to static analysis effectively. Unfortunately, this algorithm is only applicable to 
native code which can access and modify its own stack, but not suitable to Java byte code. 
As a control obfuscation algorithm, the proposed scheme generalized this idea and apply it 
to Java object-oriented language. One instance method invocation in Java language can be 
interpreted as a kind of special unconditional jump in assembly language level, and all those 
methods invocation can be transformed to a unified style, so long as they have the same 
parameter and return type. This form of transformation will lead to a strong obfuscation 
result by further using of alias and method polymorphism. This kind of obfuscation 
algorithm is called as call-flow obfuscation. In Fig. 1, the codes of some methods in user 
defined class are extracted and embedded into some object’s methods in the object pool. All 
the objects in the class pool are inherited from the same super class, and their relations are 
either paternity or sibling. Each object’s DoIt method is the mergence of more than two 
methods in user defined classes. When the program going to execute one merged method 
which is originally defined in user defined class, a request is sent to the class pool, and the 
class pool will return one object whose method is executed instead according to the request 
parameter. Since objects in the class pool are up cast to their common base type, which 
object’s DoIt method will really execute can only be ascertained at runtime. Static analyze of 
this kind of single level type with dynamic dispatch inter-procedure points-to is PSPACE 
hard (Chatterjee et al. (2001)). 
 

A.Job1

. . .

O.DoIt()

B.Job3

K.Job7

. . .

. . .

GetObject()

Ob2GetObject()

GetObject()

. . .

Ob1

Obn

. . .
O.DoIt()

O.DoIt()

Object pool

 

Fig. 1. The object pool model 

4.1 Obfuscation algorithm 

In Java language, an application consists of one or more packages, and it may also use some 
packages in the standard library or other proprietary libraries. The part of a program that 
will be obfuscated by the obfuscation techniques is called the obfuscation scope. In this 
section, obfuscation scope only refers to those packages developed by the programmer 
himself. 
The obfuscation algorithm mainly consists of three steps, namely the invocation format 
unification, inter-classes method merging, and object pool construction. 
Invocation format unification 
The parameters and return types defined in a method of a program are usually different 
from each other. In order to perform inter-classes method merging, their invocation formats 
should be unified. The two classes import in Fig. 2 are used for this purpose. They 
encapsulate the parameters and return type for any method. In these two classes, all non-
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primitive data types are represented by some items in the object array aO. The ParamObject 
has a few more Boolean fields than the ReturnObject, they are used to select the execution 
branch after multiple methods have been merged. In this case, there are three flags in 
ParamObject, which means at most four different methods can be merged into one DoIt 
method. The interface DoJob declares only one method DoIt, which uses ParamObject as its 
formal parameter and ReturnObject as its return type. All the methods to be merged will be 
eventually embedded into the DoIt method of some subclasses inherited from DoJob. 
 

public class ParamObject {

   public double[] aD;   public float[] aF;

   public long[] aL;      public int[] aI;

   public short[] aS;      public byte[] aY;

   public char[] aC;      public boolean[] aB;

   public Object[] aO;

   boolean flag1, flag2, flag3;

}

public iterface DoJob {

     public ReturnObject DoIt (ParamObject p);

}

public class ReturnObject {

   public double[] aD;   public float[] aF;

   public long[] aL;      public int[] aI;

   public short[] aS;      public byte[] aY;

   public char[] aC;      public boolean[] aB;

   public Object[] aO;

}

 

Fig. 2. Unification of invocation format 

 

public class A {

   public int DoJobA1(int x)

   public long DoJobA2(double x, double y)

}

{

     a = new A();     b = new B();

     a.DoJobA1(10);     b.DoJobB3(false, 'A');

}

public class B {

   public int DoJobB1(int x, int y)

   public char DoJobB2(String s)

   public boolean DoJobB3(boolean b, char c)

}

 

Fig. 3. The original classes definition and method invocation 

 

public class DoJob1 implements DoJob {

   public ReturnObject DoJob(ParamObject p) {

      ReturnObject o = new ReturnObject();

      if(p.flag1){   //DoJobB2   } else if(p.flag2){   //DoJobA1   } else{     //Garbage code     }

      return o;

   }

}
 

Fig. 4. Inter-classes method merging 

Inter-classes method merging 
In determining which method can be merged, factors such as inheritance relation and 
method dependency relation must take into consideration. Methods in the following scope 
should not be obfuscated. 
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• Method inherited from (implements of an abstract method or overrides an inherited 
method) super class or super interface that is outside of the obfuscation scope. 

• Constructor, callback function, native method and finalize method 

• Method declaration with throws statement 

• Method which access inner-class 

• Methods whose internal codes invoke other non-public methods, which inherited from 
super class or super interface that is outside of the obfuscation scope. 

Fig. 4 shows a possible merging instance of two classes defined in Fig. 3. Method DoJobA1 
and DoJobB2 which belong to class A and class B respectively are merged into one DoIt 
method. Since it only needs two flags in this instance,  other flags in the ParamObject can be 
used to control the execution of garbage code, which forms a kind of obfuscating 
enhancement. (The garbage code here refers to the code that can executes normally, but will 
not destroy the data or control flow of the program.) 
When carry on method merging, three special situations need handling. 
Method polymorphism: If the merged method is inherited from super class or super 
interface that is within the obfuscation scope, all methods with the same signature (method 
name, formal parameter type and numbers) in the inherited chain should also be extracted 
and embedded into some DoIt methods respectively. 
Method dependency: The merged method invokes other methods defined in current class or  
its super class, eg. an invocation to DoJobA2 inside method DoJobA1. There are two 
approaches to this situation: 

• If DoJobA2 is a user-defined method, it can be merged further, otherwise, its access 
property is modified to public, and the following action is taken the same as the second 
approach. 

• The invocation is transformed to the standard form by adding a qualifier in front of the 
invocated method, i.e. DoJobA2 is converted to a. DoJobA2. The qualifier a is an instance 
of class A which is put into the object array of ParamObject as an additional parameter. 
Field dependency: The merged method uses the field defined in current class or its 
super class. There are also two approaches: 

• Class qualifier can be added before the fields accessed by this method, which is similar 
to the second approach in method dependency. But this is not suitable for the non-
public field inherited from super class that is outside of the obfuscation scope. 

• This solution adds GetFields and SetFields method for each class. The GetFields returns an 
instance of ReturnObject which includes fields used by all methods that are to be 
merged, and this instance is put into the object array of the ParamObject. Code in DoIt 
method can use this parameter to refer to the fields in the original class. After the 
execution of DoIt, an instance of ReturnObject is transferred back by invoking the 
SetFields method which making changes to the fields in the original class. 

Object pool construction 
A lot of collection data types provided by JDK can be used to construct the object pool, such 
as List, Set and Map etc. However, these existing data types have standard operation mode, 
which will divulge some inner logical information of the program. The universal hashing is 
a desired candidate to construct the object pool here. 
The main idea behind universal hashing is to select the hash function at random from a 
carefully designed class of functions at the beginning of execution. Randomization 
guarantees that no single input will always evoke worst-case behavior. Due to this 
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randomization property, the algorithm can behave differently on each execution, even for 
the same input, guaranteeing good average-case performance for any input.  

Definition 5: Let H be a finite collection of hash functions that map a given universe U of 

keys into the range {0,1, , 1}m −A . Such a collection is said to be universal if for each pair of 

distinct keys ,k l U∈ , the number of hash functions h H∈ which ( ) ( )h k h l=  is at most 

| | /H m .  

One construction algorithm for a universal class of hash functions is: Choosing a prime 

number p large enough so that every possible key k is in the range 0 to 1p − , inclusive. p  

is greater than the number of slots in the hash table m , Let 1pZ denote the set {0,1, , 1}p −A , 

and let 2pZ denote the set {1,2, , 1}p −A . For any 1 1pa Z∈  and 2 2pa Z∈ , the following 

equation makes up of a collection of universal hashing functions. 

1 2, 1 2( ) (( )mod )moda ah k a k a p m= +  

The universal hashing table is used to store all instances of classes inherited from DoJob. If 
collision occurs, second level hashing table is established in the corresponding slot. The 
randomizahion characteristic of universal hashing enables us to assign different values to a1 
and a2 each time the program start. According to this characteristic, any expressions can be  
constructed based on a1 and a2, and be used as the key to access hashing table. In this case, 
the key is no longer a constant, and better information hiding result obtained. Fig. 5 shows 
the structure of hashing table. In which, instance of class DoJob9 is stored by key keym, and 
the same instance is acquired by key keyl. Notice that the key used to store an object is 
different from the key to request the same object, their relation and hashing table itself may 
be protected by other data or control obfuscating algorithm. In Fig. 6, invocation to class A’s 
mehod DoJobA1 is replaced by invocation to DoIt method in one of DoJob’s subclass. 
 

DoJob

DoJob

Slot1

Slot2

Slotk DoJob

UHash.Add(keyl, DoJob9)

. . .

DoJob o = UHash.Get(keym)

Level 1

Slot1

Slot2

. . .

Level 2

 

Fig. 5. Structure of hashing table 

However, using key to access hashing table directly will cause some problem when in face 

of method polymorphism. Consider the inherited relation in Fig. 7, if all methods in class A 

are extracted and embedded into some DoIt methods, method extraction should be 

performed during each method overridden in subclasses of A. Due to the complexity of 

points-to analysis, it’s hard to determine which instance a will refers to in the statement of 

a.DoJob1. As a result, it still cannot be determined that which key should be used to access 

the hashing table. Under this situation, one method GetIDs should be appended to the super 

class A. GetIDs will return an array includes all keys corresponding to those methods in 
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current class which have been merged into the object pool. If subclass overrides any method 

of parent class, the GetIDs method should also be overridden. Fig. 7 shows the return arrays 

of each class corresponding to the left side. All IDs of the overridden method have the same 

position in the array as the original method in super class. In this way, the statement 

a.DoJob1 can be replaced by invocation to Uhash.Get with the first element in the array as the 

parameter. 
 

   DoJob1 dojob = new DoJob1();

   UHash.Add( 217, dojob);

   . . .

   //a.DoJobA1(10)

   ParamObject p = new ParamObject();

   int[] i = new int[1];     i[0] = 10;

   p.aI = d;     p.flag2 = true;

   DoJob dojob = UHash.Get( 3 * a
1
+  a

2
 + 13 );

   ReturnObject r = do.DoIt(p);
 

Fig. 6. Invocation to class A’s mehod DoJobA1 is replaced by invocation to DoIt method in 
one of DoJob’s subclass 

DoJob1()

DoJob2()

DoJob3()

A

DoJob1()

B

DoJob1()

DoJob2()

C

DoJob3()

D

ID1 ID2 ID3

ID4 ID2 ID3

ID5 ID6 ID3

ID5 ID6 ID7

A

B

C

D

 

Fig. 7. Method polymorphism and return array 

4.2 Obfuscating enhancement 
In order to perform effective attack, which instance each DoJob references to should be 
precisely located. Since all objects added into the object pool have been upcast to their super 
class DoJob, and different keys are used to store and access the same object in hashing table. 
It is not feasible to clarify all the call-flows in a program relying solely on static analysis. 
However, frequently accessing of hashing table, and the if-else block partitioned according 
to flag in DoIt method still leak some useful information to a malicious end user. These 
information may be used as the start point of dynamic attack. There are many mechanisms 
to hide these information. 
Multi-duplication: This approach makes multi duplication to some merged methods. Each 
duplication is transformed by different algorithm to have distinct appearance, such as 
parameter type conversion, variable or array compressing and decompressing, splitting and 
merging. Wenever a merged method is executed, the same functionality can be realized 
whatever object is selected. 
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Method interleaving: Since methods merged into the same DoIt are branch selected by the 
flag value, bears the obvious block characteristic. Further action may be taken to interleave 
these blocks, obscuring their boundaries. The Boolean type flags can be obscured at the 
same time, e.g. importing opaque predicate, replacing one Boolean type with two or more 
integer types. 
Random assignment of parameters: Since only parts of the fields in ParamObject are used 
during one execution of a merged method, they may be used to perform pattern matching 
attack by malicious users. Those unused fields can be randomly assigned any value before 
invocating to DoIt, and further action can be taken to add some garbage codes which 
reference to these fields. 
Hashing table extension: This aproach extends some slots to insert new objects. The 
parameters used in DoIt method of these newly inserted object are different from the DoIt 
method of objects that have already existed. When a slot that includes more than one objects 
is located by the given key, the return object is randomly selected from those in this slot. 
Before entering the corresponding execution branch according to the given flag, a check will 
be made to ensure whether those formal parameters in ParamObject are valid or not, 
including fields used by following instructions should not be null, and fields not used 
should be null. If parameter mismatch found, an exception is thrown. Now the DoIt 
invocation code is enclosed in a loop block (Fig. 8), and following instructions will not be 
executed until a success invocation to the DoIt method. 
 

     while(true){

          try{

               dojob = UHash.Get( 572 );

               r = do.DoIt(p);

               break;
          }catch(ParamMismatchException e){
               continue;

          }
     }

 

Fig. 8. The DoIt method invocation model after hashing table extension 

Dynamic adjusting of object pool: Multi-rules can be adapted simultaneously to construct 
the object pool. At the program start point, one operation rule is randomly selected, and a 
new thread is introduced by which readjust the operation rule once in a while. The key used 
to access object pool should also be modified along with the rule change. Clearly, combined 
with the previous mechanism, this enhancing measure can withstand dynamic analysis to a 
certain extent. 

4.3 Experimental result 

We extend the refactor plugin in Eclipse, and apply this scheme to five java programs. 
Currently, only the basic obfuscating method is implemented, excluding those enhanced 
mechanisms such as multi-duplication, method interleaving etc. Some of the programs are 
Java applets which will never terminate without user interference. Their execution time is 
only measured in finite cycles. For example, the ASM program will simulate the stock 
market forever, and the corresponding execution time given in Table 1 is based on the first 
thirty cycles. 
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Table 1 indicate that, the program size increasing ratio after obfuscating lies between 1.11 
and 1.62. With the size growing of the original program, the ratio presents a downward 
trend. The reason lies in the fact that all newly-inserted codes are mainly used for object 
pool definition and operation, while the codes used for method merging and invocations are 
relatively few. The largest execution time decline is no more than 6%. In fact, some of the 
merged methods are invoked more than 10000 times, such as the join method in MultiSort. 
However, since all objects in the object pool have been initialized soon after program starts. 
Once accessed, the object pool will only return an object which has already been 
instantiated. And at the same time, the classes ParamObject and ReturnObject are directly 
inherited from Object, apart from the need for loading, linking and initialization during 
their first creation, the follow-up instantiation is only a small amount of work. Thus, the 
proposed scheme has little performance influence on the original program. 
 

Program Description 
Method

Merged
 

Before 

Obf. 

After 

Obf. 
Ratio 

Jar file size (byte) 13755 21892 1.58 
WizCrypt File encryption tool 8 

Execution time (sec) 50.46 51.25 1.02 

Jar file size (byte) 14558 23497 1.62 
MultiSort 

Collection of fifteen 

sortin  algorithms 
17 

Execution time (sec) 102.06 107.83 1.06 

Jar file size (byte) 16772 26123 1.56 
Draw 

Draw random 

graphs 
11 

Execution time (sec) 6.12 6.23 1.02 

Jar file size (byte) 87796 97149 1.11 
ASM 

Artificial stock 

market 
29 

Execution time (sec) 31.20 32.38 1.04 

Jar file size (byte) 59030 68555 1.17 
DataReport Report generator 22 

Execution time (sec) 8.71 9.15 1.05 

Table 1. Experimental result by using only the basic obfuscation method 

5. Instruction obfuscation 

The concept of obfuscated interpretation was motivited by Monden et al. (2004). They 
employed a finite state machine (FSM) based interpreter to give the context-dependent 
semantics to each instruction in a program, thus, attempts to statically analyze the relation 
between instructions and their semantics will not succeed. In fact, our proposed method is 
similar to this technique. However, the FSM interpretation unit is hardware implemented, 
its state transition rule cannot change any more once being embedded. Further more, in 
order to maintain the same state at the top of any loop body in a translated program, a 
sequence of dummy instructions must be injected into the tail of the loop. These dummy 
instructions will destroy the correctness of the stack signature, which means it is very hard 
(if not impossible) to implement the translation of a Java program after which the translated 
program can still runs normally. In our scheme, the mapping rule is more generally defined, 
which can be easily changed at will. Because there is no need to insert dummy instructions, 
it is extremely easy to make a translated program looks like a normal program whether by 
reverse engineering or runtime inspection. 
The core idea of this framework is to construct an interpreter W, which carries out 
obfuscated interpretations for a given program P, where P is a translated version of an 
original program P0 written in Java bytecode. The obfuscated interpretation means that an 
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interpretation for a given instruction c is not fixed; specifically, the interpretation for c is 
determined not only by c itself but also by other auxiliary input to W (Fig. 9). 
 

……
Program

P

……

add mul sub sub
Obfuscated

Interpretation

Input I

Instruction stream

No  static

relationship

div

sub

sub

add

...

Result of

interpretation

(Semantics)

 

Fig. 9. Obfuscated interpretation concept 

In order to realize the obfuscated interpretation in W, a permutation mechanism is 

employed that takes input as an instruction c where each permutation makes a different 

interpretation for c. Since the interpretation for a particular type of instruction varies with 

respect to permutation definitions, we call such W a permutation-based interpreter. In this 

framework, W is built independent of P0; thus, many programs run on a single interpreter 

W, and any of the programs can be easily replaced to a new program for the sake of 

updating. 

5.1 Framework for obfuscated interpretation 
Overview 
The following diagram (Fig. 10) shows brief definitions of materials related to W. 
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Output
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Program
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W
0

 

Fig. 10. Obfuscated interpretation framework 

P0: is a target program intended to be hidden from hostile users. Let us assume that P0 is 

written in bytecode, where each statement in P0 consists of a single opcode and 

(occasionally) some operands. 

W0: is a common (conventional) interpreter for P0 such as a Java Virtual Machine. 
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Px: is a “translated program” containing encoded instructions whose semantics are 

determined during execution according to the auxiliary input Aux. This Px is an equivalently 

translated version of P0, i.e., Px has the same functionality as P0. 

I: is an input of P0 and Px. Note that P0 and Px take the same input. 
Wp: is a permutation-based interpreter that can evaluate encoded instructions of Px 

according to the auxiliary input Aux. This Wp is an extension of W0 with a permutation unit. 

Each Wp has a unique key which is used to decrypt Aux. 

T: is a program translator that automatically translates P0 into Px with respect to the 
randomly created one-to-many map among all possible instructions. 
Aux: is the one-to-many mapping rule that describe how one opcode map to the others 
generated randomly by T when translating a program. The content of Aux is encrypted by 
the same key as that of Wp. 
In this framework, it is assumed that Wp is hidden from the end user as much as possible, 

e.g., it is integrated with the Java Virtual Machine. However, Px must be delivered to the 

user and put in an accessible area so as to enable it to update. Each Wp should be equipped 

with a different key so that an adversary cannot easily guess one Wp’s interpreter after 

having “cracked” some other Wp’s interpreter. 

Permutation Unit 
The permutation unit denoted as Wp can be defined as follows: 

∑ = {c0, c1, …, cn-1} is the input alphabet. 

Ψ = {c0, c1, …, cn-1} is the output alphabet. 

∏ = {π0, π1, …, πn-1} is the auxiliary input alphabet. It is decrypted from Aux using the key 

owned by Wp. 

λi : ∑×∏ → Ψ is the output function. 
Λ = (λ0, λ1, …, λn-1) is the n -tuple of all output functions. Λ is the specification of a Wp that 

defines a dynamic map between obfuscated instructions. 

Based on Monden et al. (2004), there are four types of design choices for the interpreter, 

which are dependent upon the instruction set used for Px. Let InsP0 and InsPx be the 

instruction sets for P0 and Px,. In Type 1 design, the instruction set for Px is the same as that 

for P0, so InsPx = InsP0. In the rest of this section, we focus on this design type. Let us assume 

InsPx = ∑∪O where elements ci ∈ ∑ are obfuscated instructions, and oi∈O are non-obfuscated 

instructions. This means, Px contains both ci and oi, and, if the permutation unit recognizes ci 

∈ ∑ as input then its semantics is determined by the auxiliary input πi, otherwise an input 

oi∈O is directly passed to the execute unit. Each underlined symbol ci in Ψ denotes the 

normal (untranslated) semantics for the correspondingly-indexed opcode ci in ∑. 
Here is a simple example of Wp where 
∑ = {iadd, isub, imul, idiv} 
Ψ = {iadd, isub, imul, idiv} 
∏ = {0, 1, 2, 3} 
Λ = (λ0(iadd, 0) = isub, λ0(isub, 0) = isub, λ0(imul, 0) = iadd, λ0(idiv, 0) = imul, λ1(iadd, 1) = idiv, 
λ1(isub, 1) = imul, λ1(imul, 1) = idiv, λ1(idiv, 1) = isub, λ2(iadd, 2) = iadd, λ2(isub, 2) = iadd, λ2(imul, 
2) = isub, λ2(idiv, 2) = idiv, λ3(iadd, 3) = imul, λ3(isub, 3) = idiv, λ3(imul, 3) = imul, λ3(idiv, 3) = 
iadd) 

This Wp takes an encoded opcode ci ∈ {iadd, isub, imul, idiv} as an input, translates it into its 

semantics (cleartext opcode) ci ∈ { iadd, isub, imul, idiv } according to πi, and outputs ci. Fig. 11 

www.intechopen.com



 Convergence and Hybrid Information Technologies 

 

294 

shows an example of interpretation for an instruction stream given by this Wp. Obviously, 

even this simple permutation has the ability to conduct an obfuscated interpretation. 
 

iadd 3

imul 0

idiv 2

imul 1

isub 2

imul

iadd

idiv

idiv

iadd

c
i i

c
i

 

Fig. 11. Instruction stream interpretation 

When concerning the other design types, the input alphabet ∑ and the auxiliary input 
alphabet ∏ is larger, which will eventually resulting to a more complex Wp.  
Program Translator 
The translator T can be defined based on interpreter Wp: 
∑’ = Ψ = {c0, c1, …, cn-1} is the input alphabet. 
Ψ’ = ∑ = {c0, c1, …, cn-1} is the output alphabet. 
∏ = {π0, π1, …, πn-1} is the auxiliary output alphabet. It is encrypted by the key of Wp to get 
Aux. 
λ’i : ∑’→ Ψ’ × ∏ is the output function. 
Λ’ = (λ’0, λ’1, …, λ’l), is a tuple of all possible output functions. Its item count l is determined 
by the permutation rule, and is larger than n by far. 
The definition above shows that λ’i is a one-to-many function. This non-deterministic 
characteristic is the key idea to make each translation of P0 different from the other. 
In order to make Px pass Java’s bytecode verifier, bytecode that can substitute each other 

without causing any stack or syntactic errors must be classified into subgroups carefully 

according to their operand type and operand number. For example, the four instructions 

iadd, isub, imul and idiv belong to the same group, because they all pop two integers, perform 

relevant operation, and then push the integer result back into the stack. Each of them form a 

one-to-many relation to the others (including the instruction itself). Thus, the input (and 

output) alphabet is partitioned into many sub groups according to their features, such that 

symbols c0, c1, …, ca-1 are in the first group G1 and the symbols ca, ca+1, …, cb-1 are in the 

second group G2 , and so on. 
During program translation, T only accepts those input instructions that belong to ∑’. For 
each accepted instruction, the following actions are performed: 

• Decide the sub group Gj this instruction belongs to. 

• Search for all λk , … , λk + l ∈ Λ that output ci in Gj. 

• Randomly select m, k ≤ m ≤ k + l, extract cm  and πm from λm, and put them into Ψ’ and ∏ 

respectively. 
Fig. 12 shows an example of program translation corresponding to Wp of Fig. 11. As shown 

in Fig. 12, the output is considerably different from the input of Fig. 11. This means that 

given a program P0, each time a different Px is produced even for the same Wp. In other 

words, this framework can guarantee that each installed copy of a program is unique. More 

precisely, each installed copy differs enough from all other installed copies to ensure that 

successful attacks on its embedded copyright protection mechanism cannot be generalized 

successfully to other installed copies. 
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Fig. 12. Example of T: P0 → Px 

5.2 Implementation  

We now consider some implementation issues of our framework on mobile phones. The 
platform of choice in this setting is Mysaifu JVM4. It is an open source Java Virtual Machine 
runs on the Windows mobile platform. It’s runtime Java library is based on the GNU 
Classpath5 whose target is to be fully compatible with the core of JDK1.5. 
Auxiliary Input 
When Mysaifu JVM opens a jar file, it loads all the class files into memory, and perform 
bytecode verification by iterating through all methods at the same time. JVM also load a few 
system classes such as JavaLangSystem, JavaLangString, JavaLangThread, JavaLangClass 
etc. immediately after startup. Then, the main class is executed by JVM interpreter. The best 
place to embed our Type 1 permutation unit into JVM is right in front of the verifier. 
There are two places to store Aux. One is in the jar manifest file as an extended option, the 
other one is in the class file itself as an attribute. In the former case, filename and relevant 
permutation rule must be included in Aux, and when faced with incremental update, the 
correspondence between filename and permutation rule should also be updated, which will 
call for much more effort to do. In the latter case, we can replace any class file freely, 
without worry about the permutation rule. Because a Java virtual machine implementation 
is permitted to silently ignore any or all attributes in the attributes table of a code attribute, 
the attribute we added which include Aux will not cause any error in a third party JVM. 
Here the latter one is the desired choice for this implementation. 
In this target, SIM card number is used as the key to encrypt Aux. When JVM find the given 
attribute in one code attribute table, it will decrypt the attribute info, and use this info to 
translate some instructions in the corresponding method. In this way, the obfuscated java 
software will be interpreted correctly in the modified JVM. 
Experimental Result 
We have implemented our framework by Visual Studio 2005 and Eclipse 3.2M. 
The Java bytecode instructions are divide into two classes: 

• Simple instructions (Table2): Instructions that can be substitute each other. They are 
classified into seven subgroups further. Subgroups that contain less than five 
instructions are omitted. 

• Local storage related instructions (Table 3):  In order to pass the check by bytecode 
verifier, a data-flow analysis is needed to guarantee that the local variable referenced by 
the submitted instruction has already been defined and initialized. Since the 
 

                                                 
4 http://www2s.biglobe.ne.jp/~dat/java/project/jvm/ 
5 http://www.gnu.org/software/classpath/ 
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Subgroup Instructions Subgroup Instructions 

iconst_m1 fadd 

iconst_0 fsub 

iconst_1 fmul 

iconst_2 fdiv 

iconst_3 frem 

iconst_4 

4 

 

1 

iconst_5 dadd 

iadd dsub 

isub dmul 

imul ddiv 

idiv 

5 

drem 

irem ifeq 

iand ifne 

ior iflt 

2 

ixor ifle 

ladd ifgt 

lsub 

6 

ifge 

lmul if_icmpeq 

ldiv if_icmpne 

lrem if_icmplt 

land if_icmple 

lor if_icmpgt 

3 

lxor 

7 

if_icmpge 

Table 2. Simple instruction subgroups 

Subgroup Instructions Subgroup Instructions 

iload_0 istore_0 

iload_1 istore_1 

iload_2 istore_2 
1 

iload_3 

2 

istore_3 

lload_0 lstore_0 

lload_1 lstore_1 

lload_2 lstore_2 
3 

lload_3 

4 

lstore_3 

fload_0 fstore_0 

fload_1 fstore_1 

fload_2 fstore_2 
5 

fload_3 

6 

fstore_3 

dload_0 dstore_0 

dload_1 dstore_1 

dload_2 dstore_2 
7 

dload_3 

8 

dstore_3 

Table 3. Local storage related instruction subgroups 
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instructions like iload n, istore n etc. have two bytes length, while the instructions in 
Table 3 are one byte in length, substitution of the two different length instructions will 
affect all the following local variable’s address, which leads to a more complicated 
processing, these instructions are also omitted. 

We applied our scheme to five java programs (Table 4 and 5). It can be seen that about 10 
percent of instructions are replaced by other instructions in the same group in Table 4, while 
only about 1 percent of instructions are replaced by other instructions in the same group in 
Table 5 for local storage related instructions. The file size  in the second line of Table 4 gets 
smaller after obfuscated. This is due to the compress algorithm of jar compressed the 
obfuscated files more effectively. In fact, some of the class files inside the jar become bigger 
than the original. 
 

Size (bytes) 
Program Before 

obfuscation 
After 

obfuscation 

Total 
instructions 

Substituted 
instructions 

Example.jar 111580 112480 2218 157 

Imageviewer.jar 4137 4099 369 34 

Jode.jar 530491 551630 83051 9909 

Jbubblebreaker.jar 187795 189978 5718 649 

JHEditor 77036 79942 11896 1545 

Table 4. Simple instruction obfuscation 

Size (bytes) 
Program Before 

obfuscation 
After 

obfuscation 

Total 
instructions 

Substituted 
instructions 

Example.jar 111580 112097 2218 25 

Imageviewer.jar 4137 4196 369 11 

Jode.jar 530491 565753 83051 2981 

Jbubblebreaker.jar 187795 189086 5718 183 

JHEditor 77036 79231 11896 567 

Table 5. Local storage related instruction obfuscation 

All the results in Fig. 13, 14, 15,16 are obtained by the following Mysaifu JVM settings: 
Max heap size: 2M 

• Java stack size: 32KB 

• Native stack size: 160KB 

• Verifier: Off 
In debug mode, the max load delay is less than 10%, while most load delay is lower than 6% 
in release mode. When these programs are ready to run, their efficiency is the same as those 
original programs. Thus, our proposed scheme has little performance influence on the 
original program. 
To some extent, this framework is a mixture of obfuscation, diversity, and tamper-proofing 
techniques. Each instruction is a one-to-many map to its semantics which is determined by 
the auxiliary input at runtime. Due to the fact that each output function λi can be defined 
independently based on different Wp, the translation space is very large. Only for Table 2, 
there will be 7! × 8! ×8! × 5! × 5! × 6! × 6! ≈ 5.1e1022 different rules (translators) 
approximately. Further more, suppose a program contains seventy instructions within 
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Fig. 13. Load time of simple instruction obfuscation in the Pocket PC 2003 SE Emulator 
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Fig. 14. Load time of simple instruction obfuscation in Dopod P800 mobile phone 
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Fig. 15. Load time of local storage related instruction obfuscation in the Pocket PC 2003 SE 
Emulator 
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Fig. 16. Load time of local storage related instruction obfuscation in Dopod P800 mobile 
phone 
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which each ten instructions belongs to a distinct subgroup. Then there would be 107 × 7 × 8 
× 8 × 5 × 5 × 6 × 6 ≈ 4 e 1012  different versions even for a single interpreter. The translated 
program Px can also be seen as an encrypted version. Not knowing the precise map among 
instructions, tampering it will definitely lead to the program’s undefined behavior. An 
malicious users who tries to decompile the translated program only get the wrong 
semantics, he cannot reveal the real algorithm or design model. 
The effective way to attack this framework is to crack Aux. Once the SIM card number is 
obtained, the auxilary input Aux can be easily decrypted. Using SIM card number as the 
enryption key is the most vulnerable weaknpoint of this model, it still need further study to 
establish a more secure way to protect Aux.  

6. Conclusion 

Since Collberg’s (1997) and Barak’s (2001) seminal papers, program obfuscation has received 
considerable attentions over the last decade. As a result, a variety of formal definitions and 
practical methods of obfuscation have been developed. This chapter provides a brief survey 
of this progress on both the context of cryptography and software engineering. As a 
relatively less expensive method, despite the impossibility in cryptography, obfuscation 
does introduce the difficulty to reverse engineering. In this sense, it is still one of the 
promising techniques on software protection. In Sections 4, a call-flow obfuscation method 
is presented for Java program, which is also applicable to any other object oriented 
language. At the final section, an instruction obfuscation framework target at mobile phone 
Java applications is discussed. Different from personal computer platform, the JVM run in 
embedded system is usually customized according to different mobile phone hardware 
model, which leads to a large variety of JVMs. This kind diversity of JVM indicates that it is 
feasible and easy to apply the framework to the protection of mobile Java program. 
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