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1. Introduction 
 

Intermittent faults (IFs) are difficult to diagnose and may cause a great disruption in 
industrial processes. Most IFs are related to gradual degradation of components or systems. 
For instance, evolution of connection failures is shown in Fig. 1 (Correcher et al., 2004), 
(Sorensen et al, 1998). Connection failures are rarely repaired so its behaviour worsens over 
time. Intermittent faults behave as small noise fluctuations in stage 1 of their development. 
As the amplitude and duration of the fluctuations increase (stage 2), IFs start to occur. The 
effects of IFs are severe in stage 3. 
Therefore, in many instances, the occurrence of IFs in a device is a prelude of permanent 
failures (PFs). In these cases, if IFs can be detected then appropriate actions could be taken 
in order to minimise the economic impact. 
In (Correcher et al., 2004) an IFs diagnosis tool was presented by the authors. This tool was 
able to diagnose the failure and recovery events in a system with IFs. This paper presents an 
extension of the work in (Correcher et al., 2004) which includes not only event detection but 
also fault dynamics detection, defined as the evolution of IFs occurrence over time. Other 
approaches to IFs diagnosis (Contant et al., 2004), (Jinag et al. 2003), do not consider IF 
dynamics. 
 

Fig. 1. Connection IF evolution through device life. 
 
However, the existence of IF dynamics is experimentally shown in (Sorensen et al., 1998) 
and in the destructive tests presented in this paper. Therefore, we can introduce the 
diagnosis problem to be addressed. 

29
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Definition 1: IF diagnosis problem. 
Starting from a temporal input (U) and output (Y) sequence, obtained by means of sensors 
in the process, compute the presence of any failure f (with f included in a failure set), its 
recoveries and its dynamics. 
The proposed solution has a clear industrial interest, as not only diagnoses IFs, but also 
provides valuable information on the fault evolution for maintenance purposes. First, 
section 2 presents a study about the evolution of the IF during its online diagnosis. This 
approach is able to extract some characteristic parameters of the IF. These parameters will be 
useful for estimating the behaviour of the fault in the future. The approach is also applied to 
experimental data. 
Section 3 analyses the effectiveness of the approach in the solution of the problem stated in 
definition 1 when diagnosing Discrete Event Systems (DES) (Cassandras & Lafortune, 1999). 
Section 4 presents an application of IF dynamics diagnosis with Coloured Petri Nets. Finally, 
we present some conclusions in section 5. 

 
2. Temporal modeling 
 

IF dynamics characterization generates useful information for preventive maintenance 
scheduling. Two complementary parameters are defined in this section: temporal failure 
density (DF) and pseudoperiod (Ps). The goal of these parameters is to characterize the IF 
dynamics. DF and Ps can be on-line computed. DF and Ps can also predict future behaviour 
of the faulty device. 
DF and Ps are computed from IF time occurrence and IF duration (defined as the time 
difference between fault and recovery). Therefore, two arrays are computed for each fault: 
the fault time vector (FTFj=[FT(1)Fj,FT(2)Fj,…,FT(n)Fj]) and the duration time vector (TFj=[T(1)Fj, 
T (2)Fj,…,T (n)Fj ]), where F j stands for a fault included in the fault set and "n" is the index 
number of detected faults. Arrays and parameters are computed recursively on-line 
considering a moving time window of a given duration. 

 
2.1 Temporal failure density 
Temporal failure density (DF or density in the rest of the paper) is defined as the average 
time a particular fault (Fj) is active within a sliding time window of duration W. Therefore, if 
we define the current time as "ti", the density is computed from "ti-W" to "ti". Therefore, 
DF is computed for time "ti" as: 
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where CNT is the number of faults inside the window, "k" stands for the index of the first 
fault detected inside the window {k: FT(k)Fj 半"岫ßÆ┽9岻 }(k: FT(k)Fj > (ti-W) and FT(k-1)Fj<(ti-W)} 
if exists, otherwise {k=CNT+1} and "TA" takes into account the duration of a fault occurred 
before "ti-W" which continues active inside the window. Therefore: 
 
 ( 1) ( 1) ( )A k Fj k FjT FT T ti W      (2) 

Equation (2) is valid only if "TA" is positive, otherwise "TA=0", as this fact would indicate 
that the first considered fault is completely outside of the window. 
In a real system, DF tends to increase with time; thus confirming the hypothesis that IFs 
progressively damage the faulty device. Figures 2 and 3 show the computed DF from 
experimental data and its filtered signal (low-pass fourth order Butterworth filter). The 
experimental data has been obtained from ten million operation tests on relays switching a 
resistive load. As the time between operations was 100 milliseconds, the overall duration of 
each experiment was 277.8 hours. 
 

 
Fig. 2. Fault density. Window size is 10000 operations. 
 

 
Fig. 3. Fault density. Window size is 100000 operations 
 
The rising characteristic of the density can be used to estimate the optimal time to repair or 
substitute the faulty device. Effectively, a certain maximum density threshold can be 
defined as the limit for unacceptable behaviour. Then, an adequate extrapolation model can 
be used to predict the number of operations the device is capable of carrying out before 
reaching the unacceptable behaviour limit. Obviously, the unacceptable density threshold 
should be defined specifically for each process device, depending on its specific 
functionality and reliability requirements. 
The simplest prediction model consists of a density linear increase. In this case, filtered 
density data can be treated with classical techniques (Lemmis, 1995) such as least squares 
(LS) or recursive least squares (RLS). Therefore, we obtain a model: 
 
 ti tiD m t n    (3) 
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experimental data and its filtered signal (low-pass fourth order Butterworth filter). The 
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Fig. 2. Fault density. Window size is 10000 operations. 
 

 
Fig. 3. Fault density. Window size is 100000 operations 
 
The rising characteristic of the density can be used to estimate the optimal time to repair or 
substitute the faulty device. Effectively, a certain maximum density threshold can be 
defined as the limit for unacceptable behaviour. Then, an adequate extrapolation model can 
be used to predict the number of operations the device is capable of carrying out before 
reaching the unacceptable behaviour limit. Obviously, the unacceptable density threshold 
should be defined specifically for each process device, depending on its specific 
functionality and reliability requirements. 
The simplest prediction model consists of a density linear increase. In this case, filtered 
density data can be treated with classical techniques (Lemmis, 1995) such as least squares 
(LS) or recursive least squares (RLS). Therefore, we obtain a model: 
 
 ti tiD m t n    (3) 
 

www.intechopen.com



Factory Automation572

where D stands for the density, t stands for the time and the subindex ti stands for the time 
value when density is estimated. If we consider a threshold "Do", the time (tD0) when the 
density "D0" will be reached is: 
 

  0
0

ti
D

ti

D n
t

m


  (4) 

 
Therefore, "tD0" is the time when the faulty device should be replaced. This time is named as 
Linear Substitution Time at time "ti" (LSTti). In addition, it is possible to define another 
parameter much more suitable for preventive maintenance: Operations to Replacement at 
time "ti" (OTRti). This parameter represents an estimation of the useful operations left on a 
device, and can be computed as: 
 
 ti tiOTR LST ti   (5) 
 
Obviously, only positive values of OTRti are meaningful, otherwise the corresponding OTRti 
is considered equal to zero. 
The proposed linear prediction model has been found to be suitable for the use with the 
experimental used through the chapter. However, this kind of model might not be adequate 
for other devices. For instance, if the fault density follows first order dynamics then LSTti 
will predict an optimistic substitution time. This problem can be solved by using RLS with 
forgotten factor to fit LSTti. In any case, LSTti and OTRti reflect the underlying fault 
dynamics, and could be used to model systems that do not follow linear increase laws. 
Therefore, the fault diagnosis system will predict the time when a device must be replaced 
in two stages. First, fault density will be computed and, from this value, LSTti and OTRti will 
be predicted. 
As mentioned before, the sliding window size should be appropriately chosen, as short 
windows will imply high variability and noise in the calculated failure density and long 
windows, which exhibit a greater filtering effect, involve high computational costs and 
might mask part of the fault underlying dynamics. 
Figures 2 and 3 show the effect of window size in the variability of the density. From 
calculations with a range of window sizes, it has been found that windows greater than 5000 
operations include the same low frequency component, as shown in figs. 2 and 3. Therefore, 
LSTti and OTRti computed from window sizes greater than 5000 operations are identical. 
Figure 4 shows the evolution of OTRti obtained from the experiments in figs 2 and 3. Figure 
4 shows that the device should be replaced when reaching 6 million operations instead of 
the substitution time recommended by the manufacturer (10 million operations). 

Fig.4. OTRti for an acceptable density threshold below 15%.  

 
2.2 Pseudoperiod. 
Fault density can be used to predict the device substitution time, however it does not 
completely explain IF dynamics. For instance, fig. 5 shows two cases with exactly the same 
failure density. However, the effects on the device are clearly different. 
 

 
Fig. 5. IF with the same density but different dynamics. 
 
The difference between the two behaviours can be modelled by the time difference between 
the occurrences of two consecutive faults. 
The time difference can be measured with a new parameter, the Pseudoperiod (Ps). Ps is 
defined as the average time difference between faults inside a sliding window. Moreover, Ps 
is normalized by the number of faults, and can be computed at time "ti" as: 
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where "ti" stands for current time, "FT" is the detection time for fault "i", and "j", "k" are the 
first and last fault indexes in the window, respectively. 
Pseudoperiod is clearly a magnitude related to mean time between failures (MTBF), 
commonly used to model reliability of reparable systems. Moreover, pseudoperiod is a 
dynamic magnitude. Therefore, we can compute a Ps curve for any IF. This curve can be 
used to predict the substitution time of the device. 
The evolution of Pseudoperiod (figs. 6 and 7) shows an increase until a maximum value is 
reached, to decrease towards a value close to zero. This dynamic behaviour is consistent 
with the nature of IFs (fig. 1). The computed Pseudoperiod remains in the range 600 to 800 
from 4 million operations onwards. Therefore, it is possible to conclude that, in average, the 
number of failures from the 4 millionth operation remains reasonably constant. Moreover, 
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where "ti" stands for current time, "FT" is the detection time for fault "i", and "j", "k" are the 
first and last fault indexes in the window, respectively. 
Pseudoperiod is clearly a magnitude related to mean time between failures (MTBF), 
commonly used to model reliability of reparable systems. Moreover, pseudoperiod is a 
dynamic magnitude. Therefore, we can compute a Ps curve for any IF. This curve can be 
used to predict the substitution time of the device. 
The evolution of Pseudoperiod (figs. 6 and 7) shows an increase until a maximum value is 
reached, to decrease towards a value close to zero. This dynamic behaviour is consistent 
with the nature of IFs (fig. 1). The computed Pseudoperiod remains in the range 600 to 800 
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the average duration of each failure slowly increases with the number of operations, as the 
density (fig. 3) increases. 
 

Fig. 6. Pseudoperiod. Window size is 100000 operations. 
 

Fig. 7. Zoom in Pseudoperiod. Window size is 100000 operations. 
 
Pseudoperiod can be used to compute some limit in the desirable behaviour of the system. 
The shape of the Pseudoperiod signal suggests the estimation of this limit with RLS with 
forgetting factor. Another solution could be a mixed model with a polynomial and linear 
estimation for each side of the signal. This last approach seems to be more promising but its 
computing is no trivial. Continuity and derivability must be guaranteed. Moreover, the 
order of the filter used in the Pseudoperiod signal will affect in the delay of the model. 
These problems will be addressed in future works. 

 
3. Intermittent fault dynamics diagnosability 
 

It is necessary to ascertain if the proposed dynamic parameters can be used to perform the 
complete fault diagnosis as per definition 1. To complete definition 1, a definition of fault 
dynamics diagnosis is introduced, based on the definition of discrete-time systems 
observability (Smolensky et. al, 1996)   "A discrete-time system is observable if a finite k 
exists such that knowledge of the outputs to k-1 is sufficient to determine the initial state of 
the system. " 
 
Definition 2. IF dynamics diagnosis problem. 
Given a temporal fault sequence,     0...iTF tf i n  , and a temporal recovery 

sequence,   0...jTRF trf j m  , compute the next value in  if TF m n or the next value 

in  if TRF m n . 

Definition 2 states that IF dynamics is diagnosable if we can compute the next time when a 
fault or recovery will occur. IFs are asynchronous and non-deterministic. So, IF dynamics 
cannot be diagnosed with deterministic precision. Therefore, we propose a relaxed 
definition. 
 
Definition 3. Bounded IF dynamics diagnosis problem. 
Given a temporal fault sequence,     0...iTF tf i r  , and a temporal recovery sequence, 

    0...jTRF trf j s  , compute the next value in   TF if s r or the next value 

in   TRF if s r , with a bounded uncertainty. 
 
This uncertainty can be used to compare different methods of diagnosis.  

 
3.1 Bounded IF dynamics diagnosis with DFTj. 
IF dynamics diagnosis start from a temporal fault event sequence and a temporal recovery 
event sequence until the actual time         ( ( 0... ), ( 0... ))i jTF tf i s TRF trf j r . DF can be computed 
as in equations (1) and (2). Let us assume that TA=0, therefore, the next event will be a fault. 
In this case, the problem in definition 3 will consist of computing the next fault time. As 
historical data is known until time  , it is possible to compute a sequence of fault densities 
{Dl}(l=0... ). Density RLS prediction computes the estimated density for a given instant of 
time  : D m n    , where m and n are the results of the RLS estimation. Density 
increases when there is a new diagnosed fault in the system. Moreover, density increases for 
a maximum of "tm/w", where "tm" is the sampling period and "w" is the window size. 
Therefore, the next failure will occur when the linear model will estimate this density value. 
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The estimation error is therefore, the error in the RLS estimation (Smolensky, et. al, 1996). 
If we want to compute the time for a recovery, (TA≠0) the density will decrease in, at least, 
"tm/w", so: 
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We can conclude that the density allows for the complete diagnosis of the IF dynamics with 
a bounded error. 
In order to compute the IF density, the fault diagnosis system should include the 
identification of fault starting time and duration. The fault diagnosis system should also be 
able to compute the corresponding fault densities. 
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the average duration of each failure slowly increases with the number of operations, as the 
density (fig. 3) increases. 
 

Fig. 6. Pseudoperiod. Window size is 100000 operations. 
 

Fig. 7. Zoom in Pseudoperiod. Window size is 100000 operations. 
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identification of fault starting time and duration. The fault diagnosis system should also be 
able to compute the corresponding fault densities. 
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4. Latent Nestling. 
The previous section showed that the diagnosis of an IF involves not only the diagnosis of 
fault and recovery events, but also the diagnosis of its dynamics. This section shows how to 
diagnose IF dynamics with the methodology based on Coloured Petri Nets (CPN) presented 
in (Garcia et al., 2008) (Rodriguez et al., 2008). This methodology allows IF dynamics 
diagnosis because it includes timing information. We also include a complete diagnosis 
example of an industrial process. 
 
A Coloured Petri Net for Fault Diagnosis (DCPNs) is: 
 
 0( , , , , , , , , )fD P T Post M C f PLNf T PVf  (10) 

 
where 

• P is a finite set of places. 
• T is a finite set of transitions. 
• Pre and Post are input and output arc functions. 
• M0 is the initial marking. 
• C is the colour set assigned to different identifiers. C N f  is the subset of 

coloured tokens representing the normal system behaviour. 
•  1 2, ,..., if f f f is the subset of coloured tokens representing fault set. 
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• PVf 汽 P is the subset of fault verification places. 
• Tf 汽 T is the transition subset including coloured functions. Tf links PLNfi with PVf. 

Fault verification places are P-timed. Therefore, they include pairs <R, TimR>; where R is a 
coloured mark and TimR is a timer. TimR will be used to compute IF Density and 
Pseudoperiod. 
Thorough this paper the notation M(Pl( V )){Pl  P; V  C} will refer to the marking of place 
"Pl". This notation represents that there is a "V" coloured token in place "Pl" (for Pre 
functions). This notation also represents that a "V" coloured token is placed in "Pl" (for Post 
functions). 

 
4.1 System modelling 
The first step of the method consists of the dynamic system modelling. The system model is 
designed with generalized Petri Nets (PNs) (David & Alla, 2005), for simple systems, or with 
CPNs (for complex systems) (Hensen, 1997). 
Let us show the methodology applied to a rectifying industrial machine. The machine 
rectifies blocks of a synthetic compound that imitates the natural stone. Figure 8 shows the 
process scheme. The rectifying process consists of the mechanical elimination of some 
material in order to achieve the desired width. The system can be divided into four 
subsystems. Since each milling works with an independent motor, each subsystem will 
consist of a pair motor-milling with a blade cooling and lubrication system. The blade 
cooling system consists of a pair pump-valve that pours cutting oil over the millings. The 
motors can suffer Ifs resulting from fretting corrosion in their electrical contacts. The 
millings fail when there is any defect in the tool. This failure is a PF that can be due to 

maintenance failure. Milling failure will cause a great torque and, therefore, a power 
consumption greater that usual. 
 

 
Fig. 8. Artificial Stone rectifying process. 
 
Moreover, a fault in a previous subsystem can cause the same symptoms because the milling 
will cut more material. The cooling and lubrication system can also suffer IFs. Typical IFs in 
a pump-valve system are electrical contact failures and valve blocking. 
Figure 9 and table 1 show the PN system model. Table 2 shows the relationship between 
places and system states. 
 

 
Fig. 9. System PN model. 
 

 
Table 1. Transitions in PN system model. 
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4. Latent Nestling. 
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Table 2. Places in PN system model. 
 
The next step consists of the folding to a CPN (Garcia et al., 2008). Figure 10 shows the 
result. The CPN system model stars in Pc1. Tr1 starts all subsystems and generates normal 
working tokens in Pc2. Arc functions g and g1 denote the relationship between the general 
normal working token with particular normal working tokens: 

 g n C    

 1 ng C    
1 2 3 4n n n nC S S S S     

where   1..4nSj j stands for normal subsystem coloured token. 

Transition Tr2 puts a stone in the machine. This action starts the first subsystem (place Pc4) 
and moves the other three subsystems to "waiting for stone arrival" state (Pc3). Function gs1 
and gsk model the different paths followed by subsystems: 

 1 1 1n ngs S S   

 2 3 4 2 3 4n n n n n ngsk S S S S S S       

Transition  3 7, 8, 9Tr T T T  starts sequentially the other subsystems by marking Pc4. 

Transition  4 6, 10, 11, 12Tr T T T T  stops sequentially the cutting process of each 
subsystem. Transition Tr5 starts the shutdown routine for every subsystem. 

 
4.2 Fault set definition 
The next step is the fault analysis of system devices. The goal is to define the faults to be 
diagnosed in each device. Each fault has a coloured fault token. Therefore, the fault set 
consists of the union of the coloured fault tokens f = {f1, f2,   , fi }. Fault isolation will be 
guaranteed because any fault is associated to a device. Each subsystem includes four 
devices: motor, milling, pump, and valve. Table 3 shows the faults included in the example: 
 

 
Table 3. Fault set definition 

 
4.3 Places of latent nestling faults, PLNf 
The next step consists of marking all fault coloured tokens in specific CPN places. These 
places are called "Places of latent nestling faults" (PLNf). Expert's empirical knowledge sets 
the rules for this operation. Figure 10 shows the marking for this example.
 

 
Fig. 10. System CPN model and fault allocation ( ¡={1,2 ,3 ,4} ) .  
 
The computing of the thresholds to generate k(N) and Ii(S) events is not trivial, because the 
sensor will observe an overcurrent when the tool touches the block (normal working). 
Nevertheless, we can easily generate these events if having a normal working current 
pattern. Let us suppose that we have a current pattern for each motor: Patt(t). The continuous 
measure of the sensor is Ii(t). Therefore, for each time tk: 
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where dmax is the maximum difference allowed between both signals. Therefore, we can 
define the three current events as: 

 
where y is close to zero and it allows noise filtering. 
 
Flow sensors, Fli (i樺{1..4)}) generate two levels: Fli(0), no flow; Fli(1), flow. Pressure sensors,  
Pri (i樺{1..4)}) generate two levels: Pri(0), no pressure; Pri(1), pressure. 
 
The set of sensor values is SM. The set of possible sensor values combinations for marking 
Mk is denoted as "SROVj(Mk)" (j樺{1...n)}), where "n" is the number of possible combinations. 
"SROVj(Mk)" can be split into two subsets: SROV(Mk)=SROVev(Mk)  SROVnev(Mk). "SROVev(Mk)" 
stands for the subset of expected values and "SROVnev(Mk)" stands for the subset of non 
expected. We use "SROVnev(Mk)" to generate the trajectories of fault verification. 
We use this information to build the system diagnoser. The diagnoser consists of the 
extension of the system model by including the trajectories of fault verification. The 
complete algorithm is shown in (Garcia et al., 2008). Figure 12 shows the CPN diagnoser. 
Figure 12 duplicates places Pc2, Pc3, and Pc4. Nevertheless, the diagnoser includes only one 
place Pc2, one Pc3, and one Pc4. We use the representation in figure 12 to increase the 
readability of the figure. 
Table 4 defines the trajectories of fault verification for the diagnoser. "*" stands for any 
value of other sensors. Function g2 evaluates place markings and returns fault marks when 
necessary. 

g2(Pl,V) {Pl 樺P; V樺 f }  :  
if ( ( ))M Pl V  then null else ( ( ))M Pl V  

The diagnoser must solve the problem of chained faults. The main effect of any subsystem 
fault is less material cut. Therefore, the following subsystem will observe greater currents. 
Nevertheless, this situation does not involve two faults. Tf3 (table 4) solves the problem by 
including previous subsystem faults in the diagnosis. 
 

 
Fig. 12. Diagnoser 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4. Fault and recovery transition definition. 
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PVF place diagnoses subsystem faults. IF dynamics can also be diagnosed by collecting 
diagnosed faults temporal information. Table 5 shows the information required for IF 
dynamics diagnosis: 
 

Table 5. Fault information. 
 
Where CNT, FT, T, TA, DF, Ps, LST, and OTR have the same meaning as in equations (1), (2), 
(3), (4), (5), and (6). 
 
The diagnoser builds a table like table 5 for each IF. Moreover, the diagnoser updates the 
tables each sampling time. Figure 13 shows the updating algorithm. 
 

Fig. 13. Updating algorithm. 
 
Therefore, the diagnoser computes LST and OTR each sampling time. Moreover, each table 
must be cleared when the faulty device is replaced with a new one. 

 

5. Conclusions 
 

This chapter presents the problem of diagnosing IFs dynamics. We have presented a way of 
modelling IF dynamics and we have tested it with real data. The density model allows us to 
compute the best time to repair or substitute the faulty device. This model does not need 
historical data. 
IF dynamics diagnosis has the problem of determine a sliding window size. This problem will 
be treated in a future work. 
We have stated a new definition for IF dynamics and we have proved that the model is able to 
diagnose the IF dynamics. 
We have also presented the integration of IF dynamics diagnosis within a diagnosis technique 
for discrete event systems based on CPNs. This integration allows the acquisition of temporal 
information required to compute density and pseudoperiod. Therefore, the diagnosis system 
will be able to diagnose the IF dynamics. 
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