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1. Introduction

It is well known that multiple-input multiple-output (MIMO) systems can provide very high
spectral efficiencies in a rich scattering propagation medium Telatar (1999). They are hence a
promising solution for high-speed, spectrally efficient, and reliable wireless communication
Raoof et al. (2008) .When coherent signal detection is to be performed at the receiver, channel
state information at the receiver (CSIR) is required, for which a channel estimation step is
necessary. Channel estimation plays a critical role in the performance of the receiver. It is a
real challenge in practical MIMO systems where the quality of data recovery is as important
as attaining a high data throughput.
In order to obtain the CSIR, usually some known training (also called pilot) symbols are sent
from the transmitter, based on which the receiver estimates the channel before proceeding
to the detection of data symbols. The classical approach consists in time-multiplexing pilot
and data symbols, usually referred to as pilot symbol-assisted modulation (PSAM) Cavers
(1991). We start the chapter by introducing the PSAM channel estimation for MIMO systems
(Section 2). Instead of this classical channel estimation based on pilot symbols only, we can
perform semi-blind estimation that in addition to pilot symbols, makes use of data symbols in
channel estimation. In this way, a considerable performance improvement can be achieved at
the price of increased receiver complexity De Carvalho & Slock (1997); Giannakis et al. (2001);
Sadough (2008). Usually, these semi-blind approaches are implemented in an iterative scheme
when channel coding is performed. That is, channel estimation is performed iteratively to-
gether with signal detection and channel decoding Sadough, Ichir, Duhamel & Jaffrot (2009).
We, hence, continue Section 2 by considering semi-blind estimation for the case of time-
multiplexed pilots.
The drawback of the PSAM scheme is the encountered loss in the spectral efficiency by the
periodic insertion of pilot symbols. As an alternative to this method, overlay pilots (OP) can
be employed, where pilot symbols are sent in parallel with data symbols Hoeher & Tufvesson
(1999). We introduce the OP approach in Section 3 and explain, in particular, pilot-only-based
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and semi-blind estimation approaches. The pros and cons of OP with respect to PSAM are
discussed too.
Whatever the channel estimation technique, in practice, the receiver can only obtain an im-
perfect estimate of the channel. Classically, for signal detection, the estimated channel is con-
sidered as the perfect estimate. This sub-optimal approach is usually called the mismatched
receiver. Its sub-optimality is due to the fact that the receiver does not take into account the
presence of channel estimation errors Sadough & Duhamel (2008); Sadough (2008). A more
appropriate approach is to take into account channel estimation inaccuracies in the formu-
lation of the detector. We firstly consider in Section 4 the effect of estimation errors on the
receiver performance and the impact of the employed space-time coding scheme.
Next, in Section 5, we consider maximum-likelihood (ML) signal detection and show how to
integrate the imperfect channel knowledge into the design of the detector. More precisely,
we consider two iterative detectors based on maximum a posteriori (MAP) and soft parallel
interference cancellation (soft-PIC), and propose for each case modifications to the MIMO de-
tectors for taking into account the channel estimation errors. The implementation complexity
issues are also discussed. We present some numerical results to demonstrate the performance
improvement obtained via the use of the improved detectors. Finally, Section 8 concludes the
chapter.

Bit
InterleaverEncoder

b c dBinary
Source

Bit/symbol
Mapping /

STC

Spatial
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1

MT
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.
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Fig. 1. Transmitter architecture of MIMO-BICM scheme.

1.1 Assumptions and notations
We consider a single-user MIMO system with MT transmit and MR receive antennas, trans-
mitting over a frequency non-selective channel and refer to it as an (MR × MT) MIMO chan-
nel. Unless otherwise mentioned, single carrier modulation and block fading channel model
is considered where the channel is assumed to remain almost constant over the duration of a
block of symbols.
Figure 1 shows the block diagram of the transmitter that employs the bit-interleaved coded
modulation (BICM) scheme which is known to be a simple and efficient method for exploiting
channel time-selectivity. The binary data sequence bbb is encoded by a forward error correction
(FEC) code before being interleaved by a quasi-random interleaver. The output bits ddd are
mapped to constellation symbols sss and then either multiplexed spatially or encoded according
to a space-time scheme before being sent through the wireless channel. Let us denote by xxx and
yyy respectively the (MT × 1) and (MR × 1) vectors of transmit and received symbols at a given
time reference. For simplicity, we assume for now the simple spatial multiplexing scheme. We
have:

yyy = Hxxx + zzz (1)

where H denotes the (MR × MT) channel matrix and zzz is the vector of additive complex white
Gaussian noise of zero mean and covariance matrix Σz = σ

2
z IMR

, where In denotes an (n × n)
Identity matrix. We assume here that σ

2
z is perfectly known at the receiver and focus on the

estimation of H.

2. Time-multiplexed Pilots and Data

2.1 Pilot-only-based PSAM channel estimation
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1.1 Assumptions and notations

2. Time-multiplexed Pilots and Data

Most current systems use a training-based channel estimation scheme in the form of time-
multiplexed pilot symbols. In what follows, we present the PSAM approach for MIMO sys-
tems and explain two cases of pilot-only-based and semi-blind estimation; the latter is imple-
mented in an iterative receiver.

2.1 Pilot-only-based PSAM channel estimation
When using the PSAM method, we have a trade-off between the channel estimation quality
and the data throughput. With an increased number of pilots, a better channel estimate can be
obtained, but at the same time, the spectral efficiency is sacrificed more. There is a minimum
number of channel-uses that should be devoted to the transmission of pilots in order that the
MIMO channel be identifiable at the receiver. As a general case, if L denotes the maximum
length of the underlying subchannels’ impulse response, the number of pilot channel-uses Np

should satisfy Balakrishnan et al. (2000):

(Np − L + 1) ≥ MT L (2)

Under flat fading conditions where L = 1, this implies: Np ≥ MT. Several works have been
done on the optimal placement of pilots in a frame of symbols, as well as on the optimal
power allocation between pilot and data symbols Hassibi & Hochwald (2003); Dong & Tong
(2002); Adireddy et al. (2002); Ma et al. (2003). They consider the criteria of mean-square chan-
nel estimation error, channel capacity, or the Cramér-Rao bounds. In particular, it is shown
in Hassibi & Hochwald (2003) that, if power optimization over pilot and data symbols is al-
lowed, the optimum Np is Npopt

= MT. In such a case, we should place pilot symbols with

lower power at the beginning and the end of the frame, and those with higher power in the
middle of the frame Dong & Tong (2002). However, if equal power has to be allocated to pilot
and data symbols, then Npopt

can be larger than MT Hassibi & Hochwald (2003).

Considering the simple case of flat block-fading MIMO channel, to estimate the channel, cor-
responding to each fading block, we send Np pilot symbol vectors with the same power as
the data symbols. Let xxxp[k] denote an (MT × 1) pilot symbol vector at the time sample
k. We denote the received vector corresponding to xxxp[k] by yyyp[k]. We can constitute the

(MT × Np) matrix Xp by stacking in its columns the pilot vectors xxxp[k], k = 0,1, Np − 1, i.e.,
Xp = [xxxp[0], . . . , xxxp[Np − 1]].
According to (1), during a given channel training interval, we have:

Yp = H Xp + Zp. (3)

The definitions of Yp and Zp are similar to that of Xp. We denote by Ep the average power of
the training symbols on any subcarrier as

Ep �
1

Np MT
tr
(

XpX
†
p

)

. (4)

The maximum likelihood (ML) channel estimate Ĥ, which is equivalent to the least-squares
solution, is Balakrishnan et al. (2000):

Ĥ =
(

Np−1

∑
k=0

yyyp[k] xxx†
p[k]

)(

Np−1

∑
k=0

xxxp[k] xxx†
p[k]

)−1
, (5)
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which can be written in a more compact form as:

Ĥ = Yp X
†
p (XpX

†
p)

−1, (6)

where .† denotes transpose-conjugate.
Let us denote by E the matrix of estimation errors, that is, E = Ĥ − H. From (3) and (6), it is
easy to show that

E = Zp X
†
p (XpX

†
p)

−1. (7)

It is known that the best channel estimate is obtained with mutually orthogonal training se-
quences, which result in uncorrelated estimation errors. In other words, we should choose Xp

with orthogonal rows such that

XpX
†
p = Np Ep IMT

. (8)

Then, the j-th column E j of E has the covariance matrix Σ given by

Σe = E
[

Ej E
†
j

]

= σ
2
e IMR

, where σ
2
e =

σ
2
z

NpEp
· (9)

2.1.1 Statistics of the Channel Estimation Errors
We saw that the estimated channel matrix Ĥ can be viewed as a noisy version of the perfect
channel matrix H. In Section 5 we show that for channel estimators having this feature, the
detection performance can be improved if the statistics of the channel estimation errors are
known.
Let us reconsider the pilot-based ML channel estimator of equation (7). The good feature of
this estimator is that the statistics of the channel estimation error matrix E are known (see
equation (9)). By using these statistics and equation (7), the conditional pdf of Ĥ given H can
be easily expressed as:

p(Ĥ|H) = CN
(

H,IMT
⊗ Σe

)

, (10)

where ⊗ denotes the Kronecker product and CN denotes the complex Gaussian distribution.
Furthermore, we assume that the channel matrix H has a normal prior distribution as:

H ∼ CN
(

0,IMT
⊗ ΣH

)

=
1

πMR MT det{ΣH}MT
exp

{

− tr
(

HΣ
−1
H H

†
)

}

(11)

where ΣH is the (MR × MR) covariance matrix of the columns of H, and det{} denotes ma-
trix determinant. We assume that the entries of H, i.e., the fading coefficients of different
subchannels, are i.i.d. Then, ΣH is a diagonal matrix with equal diagonal entries σ

2
h .

By using the prior pdf of H from (11) and the pdf of (Ĥ|H) from (10), we can derive the
posterior distribution of the perfect channel matrix, conditioned on its ML estimate, as follows
(see Sadough & Duhamel (2008) for the details of the derivation):

p (H|Ĥ) = CN

(

Σ∆Ĥ, IMT
⊗ Σ∆Σe

)

, (12)

where
Σ∆ = ΣH

(

Σe + ΣH

)−1
. (13)

Under the above-mentioned assumptions, we have

Σ∆ = δIMR
(14)

2.2 Semi-blind PSAM channel estimation

2.2.1 Iterative signal detection

2.2.2 Th-HD semi-blind estimation
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2.1.1 Statistics of the Channel Estimation Errors

where

δ =
σ2

h

σ2
h + σ2

e
· (15)

In particular, when the number of pilot symbols tends to infinity, it is not difficult to see that
δ → 1 and δ σ2

e → 0 and consequently p (H|Ĥ) tends to a Dirac delta function. The availability
of the estimation error distribution is an interesting feature of pilot-only-based PSAM channel
estimation that we used to derive the posterior distribution (12). This distribution constitutes
a Bayesian framework which is exploited in Section 5 for the design of detectors by taking into
account channel estimation inaccuracies.

2.2 Semi-blind PSAM channel estimation
In order to preserve the spectral efficiency for the transmission of data symbols, we are in-
terested in minimizing the number of pilot symbols in a frame. However, by reducing the
number of pilot symbols, the channel may be learned improperly and channel estimation er-
rors may become important. This can result in a considerable performance degradation and
in the need to data retransmission. This performance degradation can be compensated by
smart signal processing at the receiver. In fact, instead of estimation methods based on pi-
lot symbols only, we can use semi-blind approaches that in addition to pilot symbols, make
use of data symbols in channel estimation. In this way, a considerable performance improve-
ment can be achieved at the price of increased receiver complexity de Carvalho & Slock (2001);
Sadough, Ichir, Duhamel & Jaffrot (2009). We present here two semi-blind channel estimation
schemes that we implement in an iterative receiver. The first semi-blind method that we con-
sider is the thresholded hard-decisions (Th-HD) method and the second one is based on the ex-
pectation maximization (EM) algorithm Dempster et al. (1977); Moon (1996). For both meth-
ods, at the first iteration, we calculate a primary channel estimate based on the pilot sequences
only, which allows the semi-blind estimator, used in the succeeding iterations, to bootstrap.
Before describing these methods, we present in the following details on the iterative receiver.

2.2.1 Iterative signal detection
We usually consider in this paper iterative signal detection in the case of using non-orthogonal
space-time codes at the transmitter. As shown in Fig. 2, the receiver mainly consists of a com-
bination of two sub-blocks that exchange soft information with each other. The first sub-block,
referred to as soft detector or demapper, produces extrinsic soft information from the input
symbols and send it to the second sub-block, the soft-input soft-output (SISO) channel de-
coder. Here, we consider SISO channel decoding based on the well known forward-backward
algorithm Bahl et al. (1974). Soft MIMO signal detection and soft-input SISO channel decoding
are performed iteratively and the estimates of the channel coefficients are updated at each iter-
ation of the turbo-detector Sadough, Ichir, Duhamel & Jaffrot (2009); Berthet et al. (2001). The
blocks Π and Π−1 denote bit-level interleaver and de-interleaver, respectively, corresponding
to the BICM scheme used at the transmitter.

2.2.2 Th-HD semi-blind estimation
In the Th-HD method, in addition to pilot symbols, we use in channel estimation
the symbols detected with high reliability at each iteration Khalighi & Boutros (2006);

Sellathurai & Haykin (2002). For instance, consider the a posteriori probability P
(m)
i at the

decoder output at iteration m, corresponding to the coded bit ci. We compare it with a

threshold 0.5 < PTH < 1. If P
(m)
i > PTH, we make the hard decision ĉ

(m+1)
i = 1 ; otherwise,
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Fig. 2. Iterative channel estimation and data detection, yyyi denotes the received signal on the
ith antenna.

if P
(m)
i < (1 − PTH), we make the hard decision ĉ

(m+1)
i = 0; and if none of these conditions

are verified, we give up the channel-use corresponding to ci and do not consider it in chan-
nel estimation. If a hard decision is made on all BMT constituting bits of a channel-use, we
use the resulting hard-detected symbol vector in channel estimation, in the same way as pilot
symbols. The resulting channel estimate is then used in the next iteration of the detector.
The performance of Th-HD depends highly on the choice of the threshold PTH that determines
whether or not the SISO decoder soft-outputs are reliable enough. The practical limitation is
that the optimum threshold value depends on the MIMO structure, i.e., the number of trans-
mit and receive antennas, as well as on the actual SNR Khalighi & Boutros (2006). Note that, if
we take PTH very close to 0.5, we effectively make hard decisions on all detected symbols and
use them in channel estimation. This coincides with the so called decision-feedback channel
estimation Visoz & Berthet (2003).

2.2.3 EM-based semi-blind estimation
The interest of the EM algorithm is that it is guaranteed to be stable and to converge to an ML
estimate Moon & Stirling (2000). We do not present here the details on the formulation of the
EM-based estimator and refer the reader to Khalighi & Boutros (2006), for instance. A simple
and classical formulation is when data and pilot symbols are used in the same way in channel
estimation. By this approach, the estimated channel matrix is given below:

Ĥ = RRRyxRRR
−1
x , (16)

where

RRRyx =
Ns

∑
k=1

yyy[k] x̃xx†[k] (17)

and

RRRx,i,j =











Ns ; i = j
Ns

∑
k=1

x̃xxi[k] x̃xx∗j [k] ; i �= j
(18)

2.2.4 Case study

3. Superimposed Pilots and Data

3.1 Channel estimation using OP
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2.2.3 EM-based semi-blind estimation

Here, Ns denotes the number of channel-uses per frame, yyy[k] is the received symbol vector
at the time reference k, and x̃xx[k] is the corresponding soft-estimates of the transmitted sym-
bol vector, calculated using the SISO channel decoder outputs at the preceding iteration. For
k = 1, · · · , Np, we have x̃xx[k] = xxxp[k]. Also, RRRx,i,j denotes the (i, j)th entry of matrix RRRx. The
formulation that we provided for EM can be modified further to improve the receiver per-
formance. Interested reader may refer to Khalighi & Boutros (2006); Khalighi et al. (2006) for
details.

2.2.4 Case study
BER curves versus Eb/N0 are shown in Fig. 3 for the case of (8 × 8) and (8 × 6) MIMO
structures using the PSAM technique. Rayleigh independent quasi-static fading model is con-
sidered with blocks of length Ns = 64 channel-uses. The number of channel-uses devoted to
pilot transmission is Np = 10. Three cases of pilot-only-based estimation, and Th-HD and
EM-based semi-blind estimations are considered. The case of perfect-CSIR is also provided as
reference. The simple spatial multiplexing scheme is used at the transmitter and MIMO sig-
nal detection is based on soft parallel interference cancellation (Soft-PIC) Sellathurai & Haykin
(2002); Lee et al. (2006). Results shown in Fig. 3 correspond to the eighth iteration of the re-
ceiver. We notice that the performance of the semi-blind Th-HD and EM-based estimator are
very close to each other and they outperform the pilot-only-based method. Yet, their per-
formance is about 2 dB away from the perfect-CSIR case that is due to the relatively high
co-antenna interference, as we have MT = 8. We can approach further the perfect-CSIR case
by increasing Np.

3. Superimposed Pilots and Data

The main drawback of the PSAM approach is that, for finite-length blocks, if channel estima-
tion is to be done on each block of symbols, the periodic insertion of pilot symbols can result
in a considerable reduction of the achievable data rate. This loss in the data rate becomes
important, specially for large number of transmit antennas, at low SNR, and when the chan-
nel undergoes relatively fast variations Hassibi & Hochwald (2003). As an alternative, we can
use overlay pilots (OP), also called superimposed or embedded pilots, for channel estimation
Hoeher & Tufvesson (1999); Zhu et al. (2003). In this approach, a pilot sequence is superim-
posed on the data sequence before transmission, as shown in Fig. 4; thus, no separate time
slot is dedicated to pilot transmission.

3.1 Channel estimation using OP
By using OP, we prevent the loss in the data throughput but we experience degradation in the
quality of the channel estimate due to the unknown data symbols Hoeher & Tufvesson (1999).
As a matter of fact, here also there is a trade-off between high quality channel estimation
and the information throughput: To obtain a better channel estimate, we should increase the
percentage of the power dedicated to pilot symbols; this, however, reduces the SNR for the
detection of data symbols Tapio & Bohlin (2004). In general, OP may be preferred to PSAM for
high SNR, not too short channel coherence times, and larger number of receive than transmit
antennas Khalighi et al. (2005).
Consider again the block fading channel model. Assuming uncorrelated data and pilot se-
quences, we can estimate channel coefficients by calculating the cross-correlation between
the received sequences on each antenna and the transmitted pilot sequences, known to the

www.intechopen.com
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Fig. 3. Comparison of different estimation methods based on PSAM, iterative Soft-PIC de-
tection, 8th iteration of the receiver (almost full convergence); (8 × 8) and (8 × 6) systems,
i.i.d. Rayleigh quasi-static fading, QPSK modulation, (5,7)8 NRNSC rate 1/2 channel code,
orthogonal pilot sequences with Np = 10, Ns = 64 channel-uses. Eb/N0 takes into account the
receiver antenna gain MR.

receiver. As the pilot sequences transmitted from different antennas are orthogonal, the esti-
mation errors arise from noise and the data sequences. Indeed, the main problem in the esti-
mation of channel coefficients concerns the latter interference component, i.e., the unknown
data symbols. In fact, although data and pilot sequences are statistically uncorrelated, the
cross-correlation is calculated over a block of symbols of limited length, over which the chan-
nel coefficients are supposed to remain unchanged. The smaller is the block length (i.e., the
faster the channel fading), the more important this cross-correlation is. This can result in an
error floor in the receiver BER performance Jungnickel et al. (2001), especially at high SNR,
and make the OP scheme lose its interest.

pilot symbols,

data symbols, σ
2
d

σ
2
p

Fig. 4. Overlay pilot scheme

3.2 Iterative channel estimation for OP

3.2.1 Pilot-only-based decision-directed estimator

3.2.2 EM-based semi-blind estimator

3.2.3 Data-dependent overlay pilots

3.2.4 Case study
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3.2 Iterative channel estimation for OP
Iterative data detection and channel estimation can be a solution to the problem of error floor
Zhu et al. (2003); Khalighi et al. (2005); Cui & Tellambura (2005). We consider in the follow-
ing, two such iterative schemes; a pilot-only-based decision-directed estimator Khalighi et al.
(2005) and an EM-based semi-blind estimator Khalighi & Bourennane (2007).
Let us denote by xxxd and xxxp the vectors of data and pilot symbols, respectively, corresponding

to the transmitted (MT × 1) vector xxx: xxx = xxxd + xxxp. We denote by σ
2
d and σ

2
p the power allocated

to the entries of xxxd and xxxp, respectively.

3.2.1 Pilot-only-based decision-directed estimator
Consider the estimation of the entry Hij of the channel matrix H. As explained above, this
estimate can be obtained by calculating the cross-correlation Γij between the sequence re-
ceived on the antenna #i, yyyi, and the pilot sequence transmitted on the antenna #j, xxxp,j. By the
decision-directed method that we denote by DD, we use in each iteration, the soft-estimates
x̃d of transmitted data symbols using a posteriori LLRs at the SISO decoder output, and cancel
their effect in Γij.

3.2.2 EM-based semi-blind estimator
To obtain a better performance, similar to the case of PSAM, we can employ semi-blind estima-
tion methods Khalighi & Bourennane (2008); Bohlin & Tapio (2004); Meng & Tugnait (2004) at
the price of increased Rx complexity. For instance, a semi-blind estimator based on the EM
algorithm may be used. Its formulation is analogous to the case of PSAM and can be found in
Khalighi & Bourennane (2007).

3.2.3 Data-dependent overlay pilots
A solution for getting rid of the interference from data symbols in channel estimation is to use
data-dependent overlay pilot sequences such that the corresponding pilot and data sequences
are orthogonal Ghogho et al. (2005). The drawback of this method is that it results in nulls in
the equivalent channel impulse response (seen by data symbols), and hence, in a performance
degradation. This degradation could be reduced by performing iterative channel equalization
Lam et al. (2008). On the other hand, such a scheme leads to increased envelope fluctuations
of the transmitted signal. We do not consider this scheme here.

3.2.4 Case study
Let us denote by α the ratio of the power of pilot symbols to the total transmit power at a
symbol time, i.e., α = σ2

p/(σ2
p + σ2

d ). For a (2 × 4) MIMO system, we have presented in Fig.
5, BER curves versus SNR for DD, EM-based, and perfect channel estimation, and different
values of α. Pilot sequences for MT antennas can be QPSK modulated and chosen according
to the Walsh-Hadamard series to ensure their orthogonality. Results correspond to the fifth it-
eration of the Rx where almost full convergence is attained. SNR in Fig. 5 stands for the actual
average received SNR, i.e., MR(σ

2
d + σ2

p)/σ2
n , in contrast to Eb/N0 that takes into account only

σ2
d . In this way, we can directly see the compromise between the channel estimation quality

and the data detection performance, e.g. by increasing α. Again, Soft-PIC MIMO detection is
performed. For both estimation methods, we notice an error floor at high SNR for α < 15%
which is especially visible for α = 2% and α = 5%. On the other hand, by increasing α, better
channel estimates are obtained, but at the same time, less power is dedicated to data symbols.
So, increasing α too much, will result in an overall performance degradation. Comparing
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Fig. 5. Overlay Pilot scheme: BER after five receiver iterations for EM-based semi-blind, DD,
and perfect channel estimation ; (2 × 4) MIMO system, i.i.d. Rayleigh quasi-static fading,
QPSK-modulated pilot and data, (133,171)8 NRNSC rate 1/2 channel code, Ns = 100. SNR
takes into account MR.

the performance curves of the EM-based and DD estimators, we see that the performance
improvement by semi-blind estimation is quite considerable. This improvement is more im-
portant for smaller α values. For increased α, more power is dedicated to pilot symbols, and
hence, the performance of the pilot-only-based estimator approaches that of the semi-blind
estimator.

4. Impact of Space-Time Scheme

An important aspect is the the impact of channel estimation errors on the receiver performance
for different ST schemes. We would like to compare the two general classes of ST schemes,
i.e., orthogonal and non-orthogonal schemes. In the case of perfect channel knowledge, a
comparison is made between these two categories in Khalighi et al. (2009), where iterative
signal detection based on Soft-PIC is proposed for the case of non-orthogonal schemes. Note
that optimal signal detection is too computationally complex for these schemes. Conditioned
to the presence of sufficient (time or frequency) diversity, it is shown that a substantial gain
is obtained by using the appropriate non-orthogonal schemes for moderate-to-high spectral
efficiency MIMO systems, as compared to orthogonal schemes, which justifies the increased
complexity of the receiver Khalighi et al. (2009).
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4. Impact of Space-Time Scheme
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Fig. 6. Sensitivity to channel estimation errors; (2×2) MIMO channel, η = 2 bps/Hz,
(133,171)8 NRNSC rate 1/2 channel code, i.i.d. Rayleigh flat block fading channel with 32
independent fades per frame of 768 channel-uses. Iterative Soft-PIC used for MUX and GLD.

Concerning the practical case of imperfect channel estimate, in fact, lower-rate orthogonal
schemes could be more sensitive to channel estimation errors as, in general, they have to use
a larger signal constellation to attain a desired spectral efficiency. Concerning non-orthogonal
schemes, we need, in general, smaller constellation sizes as compared to orthogonal ones.
However, the iterative detector for the non-orthogonal schemes could be more sensitive to
channel estimation errors because its convergence, and hence, its performance is affected by
these errors.
To study the effect of channel estimation errors, let us consider pilot-only-based channel esti-
mation using time-multiplexed pilots. For each fading block, we devote Np channel-uses to
the transmission of power-normalized mutually orthogonal QPSK pilot sequences from MT

transmit antennas Khalighi & Boutros (2006). For a (2 × 2) MIMO system, we have shown
in Fig. 6 the average BER after four detector iterations versus Np for a spectral efficiency of
η = 2 bps/Hz. We have considered the Alamouti code Alamouti (1998) as the orthogonal
scheme, and two cases of spatial multiplexing (denoted here by MUX) and Golden coding
Belfiore et al. (2005) (denoted by GLD) as non-orthogonal schemes. The Eb/N0 for each ST
scheme is set to what results in BER ≈ 10−4 in the case of perfect channel knowledge. From
Fig. 6 we notice an almost equivalent sensitivity to the channel estimation errors for MUX and
GLD schemes. This comparison makes sense as the SNRs for these schemes are close to each
other. On the other hand, we see that the Alamouti scheme has the lowest sensitivity. This
is due to the orthogonal structure of the code, and the fact that the SNR is higher, compared
to those for MUX and GLD schemes, and as a result, the quality of channel estimate is much
better.
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5. Improved Signal Detection in the Presence of Channel Estimation Errors

For the case of time-multiplexed pilot and data, as we explained previously, in order to ob-
tain a good channel estimate, we should increase Np, which in turn, results in a larger loss
in the spectral efficiency, specially for relatively fast time-varying communication channels
Hassibi & Hochwald (2003). One solution is to use semi-blind channel estimation in or-
der to reduce the number of channel-uses devoted to pilot transmission, as seen in Section
2.2. The disadvantage of semi-blind approaches is the increased receiver complexity. For a
reduced-complexity semi-blind joint channel estimator and data detector the reader is refered
to Sadough, Ichir, Duhamel & Jaffrot (2009).
An alternative to this solution is to modify the detector so as to take into account channel
estimation errors. As a matter of fact, the classical approach is to use the channel estimate in
the detection part in the same way as if it was a perfect estimate, what is known as mismatched
signal detection. Obviously, this approach is suboptimal and can degrade considerably the
receiver performance in the presence of channel estimation errors.
In this section we provide the general formulation of a detection rule that takes into ac-
count the available imperfect CSIR and refer to it as the improved detector. To this end, we
consider the model (1) and denote by JJJ(yyy, xxx,H) the quantity (cost function) that would let
us to decide in favor of a particular xxx at the receiver if the channel was perfectly known.
Note that depending on the detection criteria, the quantity JJJ(yyy, xxx, H) can be the posterior
pdf p(xxx|yyy, H), the logarithm of the likelihood function p(yyy|H, xxx), the mean square error (as
in Sadough, Khalighi & Duhamel (2009); Sadough & Khalighi (2007)), etc. Assume a channel
estimator in which the statistics of the estimation errors are known. Such a scenario occurs
for instance in pilot-only-based PSAM channel estimation studied in Subsection 2.1 where we
saw that the estimation process can be characterized by the posterior pdf of the channel (12).
In this case, we propose a detector based on the minimization of a new cost function defined
as

JJJ(yyy, xxx, Ĥ) =
∫

H

JJJ(yyy, xxx, H) p(H|Ĥ)dH = E
H|Ĥ

[

JJJ(yyy, xxx, H)
∣

∣Ĥ
]

(19)

where by using the posterior distribution (12), we have averaged the cost function JJJ over all
realizations of the unknown channel H conditioned on its available estimate Ĥ. Note that the
mismatched detector is based on the minimization of the cost function JJJ(yyy, xxx, Ĥ). This latter
cost function is obtained by using the estimated channel Ĥ in the same metric that would be
used if the channel was perfectly known, i.e., JJJ(yyy, xxx, H). Using the metric of (19) differs from
the mismatched detection on the conditional expectation E

H|Ĥ[.] which provides a robust de-

sign by averaging the cost function JJJ(yyy, xxx,H) over all (true) channel realizations which could
correspond to the available estimate.
Consider the problem of detecting symbol vector xxx from the observation model (1) in the ML
sense, i.e., so as to maximize the likelihood function p(yyy|H, xxx).
It is well known that under perfect channel knowledge and i.i.d. Gaussian noise, detecting xxx
by maximizing the likelihood p(yyy|xxx, H) is equivalent to minimizing the Euclidean distance
DML as

x̂xxML(H) = argmin
s0, ..., sM−1∈C

{

DML(xxx,yyy, H)
}

, (20)

with DML(xxx, yyy, H) � − log p(yyy|H, xxx) ∝ ‖yyy − H xxx‖2, where ∝ means “is proportional to” and
C denotes the set of constellation symbols of size M. Assuming B bits per symbol, we have
M = 2B.
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5. Improved Signal Detection in the Presence of Channel Estimation Errors The detection rule (20) requires the knowledge of the perfect channel matrix H. The sub-
optimal mismatched ML detector consists in replacing the exact channel by its estimate Ĥ

in the receiver metric as

x̂xxMM(Ĥ) = argmin
s0, ..., sM−1∈C

{

DMM(xxx, yyy, Ĥ)
}

= argmin
s0,...,sM−1∈C

{

‖yyy − Ĥ xxx‖2
}

,

where
DMM(xxx,yyy,H)�DML(xxx, yyy,H)∣

∣

H=Ĥ

, (21)

and the subscript .MM denotes mismatched. Obviously, the sub-optimality of this detection
technique is due to the mismatch introduced by the channel estimation errors; while the deci-
sion metric is derived from the likelihood function p(yyy|H, xxx) conditioned on the perfect chan-
nel H, the receiver uses an estimate Ĥ different from H in the detection process.
As an alternative to this mismatched detection, an improved ML detection metric is proposed
in Tarokh et al. (1999); Taricco & Biglieri (2005). This metric is based on modified likelihood
p(yyy|Ĥ, xxx) which is conditioned on the imperfect channel Ĥ. The pdf p(yyy|Ĥ, xxx) can be derived
as follows:

p(yyy|Ĥ, xxx) =
∫

H∈C

p(yyy,H|Ĥ, xxx) dH =
∫

H∈C

p(yyy|H, xxx) p(H|Ĥ) dH = E
H|Ĥ

[

p(yyy|H, xxx)
∣

∣ Ĥ

]

,

(22)

where p(H|Ĥ) is the channel posterior distribution of equation (12) and C denotes the set of
complex matrices of size (MR × MT). In fact, equation (22) shows that p(yyy|Ĥ, xxx) can be simply
derived from the general formulation in (19). It is shown in Sadough & Duhamel (2008) that
the averaged likelihood in (22) is shown to be a complex Gaussian distributed vector given by

p(yyy|Ĥ, xxx) = CN
(

mM ,ΣM

)

, (23)

where mM = δ Ĥ xxx, and ΣM = Σz + δ Σe ‖xxx‖2. Finally, the estimate of the symbol xxx is

x̂xxM (Ĥ) = argmin
s0, ..., sM−1∈C

{

DM (xxx, yyy,Ĥ)
}

, (24)

where

DM (xxx,yyy, Ĥ)�− log p(yyy|xxx, Ĥ) = MR log π
(

σ2
z + δ σ2

e ‖xxx‖2
)

+

∥

∥yyy − δ Ĥ xxx
∥

∥

2

σ2
z + δ σ2

e ‖xxx‖2
(25)

is referred to as the improved ML decision metric under imperfect CSIR.
Note that when CSIR tends to the exact value, which is obtained when the number of pilot
symbols tends to infinity, we have δ → 1, σ2

e → 0, and the improved metric (25) tends to the
mismatched metric:

lim
N→∞

DM

(

xxx,yyy, Ĥ
)

DMM

(

xxx, yyy, Ĥ
) = 1. (26)

In the following two sections, we apply the proposed receiver design method of equation (19)
for improving the performance of two usually-used MIMO receivers working under imperfect
channel estimation: one based on the maximum a posteriori (MAP) criterion, and the other on
Soft-PIC. For both cases, we consider the simple spatial multiplexing as the space-time scheme
at the transmitter, and iterative MIMO detection and channel decoding at the receiver.
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6. Reception Scheme I: Iterative MAP Detection

Here, we consider MIMO signal detection based on the MAP algorithm. In the following,
we make use of the improved ML metric derived in the previous section to modify the MAP
detector part for the case of imperfect CSIR Sadough et al. (2007). Let us denote by xxx[k] and
yyy[k], the transmitted and received symbol vectors corresponding to the the time slot k, simply
by xxxk and yyyk, respectively. Also, let dk,j denote the j-th (j = 1, ..., BMT) coded and interleaved
bit corresponding to xxxk. We denote by L(dk,j) the coded log-likelihood ratio (LLR) of the bit

dk,j at the output of the detector. Conditioned on the imperfect CSIR Ĥk, L(dk,j) is given by:

L(dk,j) = log
Pdem

(

dk,j = 1
∣

∣yyyk, Ĥk

)

Pdem

(

dk,j = 0
∣

∣yyyk, Ĥk

) , (27)

where Pdem(dk,j

∣

∣yyyk, Ĥk) is the probability of transmission of dk,j at the detector output. We
partition the set C that contains all possibly-transmitted symbol vectors xxxk into two sets Cm

0
and Cm

1 , for which the j-th bit of xxxk equals “0” or “1”, respectively. We have:

L(dk,j) = log

∑
xxxk ∈Cm

1

e−DM(xxxk, yyyk , Ĥk)
BMT

∏
i=1

i �=j

P1
dec

(

dk,i

)

∑
xxxk ∈Cm

0

e−DM(xxxk, yyyk , Ĥk)
BMT

∏
i=1

i �=j

P0
dec

(

dk,j

)

, (28)

where P1
dec(dk,j) and P0

dec(dk,j) are prior probabilities on the bit dk,j coming from the SISO
decoder.
Note that using the metric DM(xxxk, yyyk, Ĥk) for the evaluation of the LLRs in (28) is an alter-
native to using the mismatched ML metric DMM(xxxk, yyyk, Ĥk) which replaces at each iteration,
the exact channel Hk by its estimate Ĥk in DML(xxxk,yyyk, Hk). By doing so, the LLRs are adapted
to the imperfect channel knowledge available at the receiver and consequently the impact
of channel uncertainty on the SISO decoder performance is reduced. We refer to the latter
approach as improved MAP detector Sadough et al. (2007).
The summations in (28) are taken over the product of the likelihood p(yyyk|xxxk, Ĥk) =

e−DM(xxxk,yyyk ,Ĥk) given a symbol xxxk and the estimated channel coefficient Ĥk, and of the a priori
probability on xxxk (the term ∏ Pdec), fed back from the SISO decoder at the previous iteration.
In this latter term, the a priori probability of the bit dk,j itself has been excluded, so as to let the
exchange of extrinsic informations between the channel decoder and the soft detector. Also,
note that this term assumes independent coded bits dk,j, which is a reasonable approximation
for random interleaving of large size. At the first iteration, no a priori information is available
on bits dk,j, therefore the probabilities P0

dec(dk,j) and P1
dec(dk,j) are set to 1/2. The decoder ac-

cepts the LLRs of all coded bits and computes the LLRs of information bits, which are used
for decision, at the last iteration.

6.1 Case study
We now present some numerical results. First, the BER performance of the improved and
mismatched detectors are compared. Let us first address the case of BICM iterative decoding
with 16-QAM and Gray labeling for a 2 × 2 MIMO channel. It can be seen from Fig. 7 that for
Np = 2 (the shortest possible training sequence), the improvement in terms of required Eb/N0

2 4 6 8 10 12
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

B
E

R

Np=2

Np=4

Np=8
perfect CSIR

Dashed line: mismatched
plain line: improved

7. Reception Scheme II: Iterative Soft-PIC Detection
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6. Reception Scheme I: Iterative MAP Detection

6.1 Case study

in order to attain a BER of 10−5 is about 1 dB, compared to the mismatched solution, while
staying still 3 dB away from the perfect channel knowledge case. We also notice that, logically,
these quantities are reduced when increasing the length of the training sequence, that is, the
performances of mismatched and improved detectors get closer to the case of perfect channel
knowledge.
Similar plots are shown in Fig. 8 for the case of 16-QAM and set-partition (SP) labeling on
the (2 × 2) MIMO channel. These show the behavior of the detectors with respect to the type
of bit-symbol labeling. At a BER of 2 × 10−4 with Np = 2, we obtain an SNR gain of about
1.4 dB by using the improved detector. In other words, iterative decoding with SP labeling
benefits more from the improved metric than the one with Gray labeling. Otherwise, similar
conclusions hold between the SP-labeling curves.
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Fig. 7. BER performance improvement over (2× 2) MIMO channel with i.i.d. Rayleigh fading
for various training sequence lengths. 16-QAM modulation with Gray labeling, iterative MAP
detection after four receiver iterations.

7. Reception Scheme II: Iterative Soft-PIC Detection

MAP detection is the optimal solution under perfect CSIR in the sense of bit error rate but
its complexity grows exponentially with the number of transmit antennas and the signal con-
stellation size. For this reason, suboptimal detection techniques are usually preferred. One
interesting solution is that based on Soft-PIC and linear minimum mean-square error (MMSE)
filtering Wang & Poor (1999); Sellathurai & Haykin (2002); Lee et al. (2006), what we consid-
ered in Sections 2 to 4. In fact, in these parts, we considered in the iterative detector a sim-
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Fig. 8. BER performance improvement over (2 × 2) MIMO channel with i.i.d. Rayleigh fad-
ing for various training sequence lengths. 16-QAM modulation with set-partition labeling,
iterative MAP detection after four receiver iterations.

plified formulation of Soft-PIC, which assumes perfect interference cancellation after the first
iteration. In this section, however, we consider the exact formulation of Soft-PIC. In order
to better understand the formulation of the improved detector, we present in the following
the formulation of (exact) Soft-PIC under perfect channel knowledge at the receiver. Then,
we present the improved Soft-PIC detector in the presence of channel estimation errors in
Subsection 7.2.

7.1 Soft-PIC detection under perfect channel knowledge
Consider the general block diagram of Fig. 2. Here, to detect a symbol transmitted from
a given antenna, we first make use of the soft information available from the SISO channel
decoder to reduce and hopefully to cancel the interfering signals arising from other transmit
antennas. At the first iteration where this information is not available, we perform a classical
MMSE filtering.

Let us consider the transmitted vector xxxk = [x1
k , ..., xMT

k ]T at time k and assume that we are

interested in the detection of its i-th symbol xi
k. We start by evaluating the parameters x̂

j
k and
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7.1 Soft-PIC detection under perfect channel knowledge

σ
2
x

j
k

for the interfering symbols x
j
k, j �= i, from the SISO decoder as follows:

x̂
j
k = E

[
x

j
k

]
=

2B

∑
j=1

x
j
k P[x

j
k] (29)

σ
2
x

j
k

= E
[
|x

j
k|

2
]
=

2B

∑
j=1

|x
j
k|

2 P[x
j
k] (30)

where P[x
j
k] is the probability of the transmission of x

j
k and is evaluated using the probabilities

Pdec(d
j,n
k ) at the decoder output:

P[x
j
k] = K

B

∏
n=1

Pdec(d
j,n
k ),

where K is a normalization factor. We further introduce the following definitions.
Hi is the (MR × (MT − 1)) matrix constructed from H by discarding its i-th column, namely
hi. We also define the ((MT − 1)× 1) vectors

xxxi
k �

[
x1

k , x2
k , ..., xi−1

k , xi+1
k , ..., xMT

k

]T

and
x̂xxi

k �
[
x̂1

k , x̂2
k , ..., x̂i−1

k , x̂i+1
k , ..., x̂MT

k

]T
,

where x̂
j
k are estimated in (29).

Now, given the received signal vector yyyk, a soft interference cancellation is performed on yyyk

for detecting the symbol xi
k by subtracting to yyyk the estimated signals of the other transmit

antennas as Sadough, Khalighi & Duhamel (2009):

yyyi
k
= yyyk − Hi x̂xxi

k = hix
i
k + Hi xxxi

k − Hi x̂xxi
k + zzzk, for i = 1, ..., MT. (31)

Except under perfect prior information on the symbols which leads to x̂
j
k = x

j
k, there remains a

residual interference in yyyi
k
. In order to reduce further this interference, an instantaneous linear

MMSE filter w
i
k is applied to yyyi

k
to minimize the mean square value of the error ei

k defined as

ei
k = xi

k − ri
k (32)

where the filter output ri
k is equal to

ri
k = w

i
k yyyi

k
. (33)

Here, w
i
k is obtained as

w
i
k = argmin

w
i
k∈CMR

Exxxk,zzzk

[∣∣xi
k − w

i
k yyyi

k

∣∣2
]

. (34)

By invoking the orthogonality principle Scharf (1991), the coefficients of the MMSE filter w
i
k

are given by

w
i
k = h

†
i

[
hih

†
i +

Hi

(
Λk,i − Λ̃k,i

)
H

†
i

σ2
xi

k

+
σ

2
z

σ2
xi

k

IMR

]−1

(35)
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where

Λk,i = E
[
xxxi

k xxxi
k

†]
≈ diag

(
E
[
|x1

k |
2
]
, ...,E

[
|xi−1

k |2
]
,E

[
|xi+1

k |2
]
, ...,E

[
|xMT

k |2
])

, and

Λ̃k,i = x̂xxi
k x̂xxi

k

†
≈ diag

(
|x̂1

k |
2, ..., |x̂i−1

k |2, |x̂i+1
k |2, ..., |x̂MT

k |2
)

.

Note that the off-diagonal entries in Λk,i and Λ̃k,i have been neglected to reduce the complexity
without causing significant performance loss Lee et al. (2006).
At the first decoding iteration, we have no prior information available on the transmitted data,
i.e., Λk,i = σ

2
xi

k

IMT−1 and Λ̃k,i = 0MT−1. Consequently, (35) reduces to

w
i
k = h

†
i

[
HH

† +
σ

2
z

σ2
xi

k

IMR

]−1

(36)

which is no more than the linear MMSE detector for xi
k.

Before passing the detected symbols rk to the SISO decoder, we convert them to LLR. This is
done assuming a Gaussian distribution for the residual interference after Soft-PIC detection
(see Wang & Poor (1999) for details on the LLR conversion).

7.2 Improved Soft-PIC Detection Under Imperfect Channel Estimation
As we see from (31) and (35), we need the channel H for both interference canceling and
MMSE filtering. As the receiver has only an imperfect channel estimate Ĥ, the suboptimal
mismatched solution consists in replacing Hi and hi in (31) and (35) by their estimates Ĥi and
ĥi, respectively. As a first step toward a realistic design, we make use of the available channel
estimate Ĥ for interference cancellation. That is, equation (31) is rewritten as

yyyi
k
= yyyk − Ĥi x̂xxi

k = hix
i
k + Hi xxxi

k − Ĥi x̂xxi
k + zzzk, for i = 1, ..., MT (37)

where Ĥi is the (MR × (MT − 1)) matrix constructed from Ĥ by discarding its i-th column,
namely ĥi. We note that (37) naturally depends on the unknown channel matrix H of which
the receiver has only an imperfect estimate available. Instead of replacing the unknown
channel by its estimate (i.e., the mismatched approach), we use the posterior distribution
(12) and make two modifications to the detector described in Subsection 7.1, as follows (see
Sadough, Khalighi & Duhamel (2009) and Sadough & Khalighi (2007) for more details).
The first modification concerns the design of the filter wi

k in (34). The modified filter w̃i
k should

minimize the average of the mean square error over all realizations of channel estimation
errors. In other words,

w̃
i
k = argmin

w̃i
k∈CMR

EH,xxxk ,zzzk

[∣∣xi
k − w̃

i
k yyyi

k

∣∣2
∣∣∣∣Ĥ

]
= argmin

w̃∈CMR

E
H|Ĥ

[
Exxxk ,zzzk

[∣∣xi
k − w̃

i
k yyyi

k

∣∣2
]]

(38)

where we have assumed the independence between H, xxxk, and zzzk. After some simple alge-
braic manipulations Sadough, Khalighi & Duhamel (2009); Scharf (1991), we obtain:

w̃
i
k = Rxi

kyyyi
k

R
−1
yyyi

k
(39)

7.2.1 Case study
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7.2 Improved Soft-PIC Detection Under Imperfect Channel Estimation

where
Rxi

kyyyi
k

= δ σ2
xi

k
ĥ

†
i + (δ − 1)mk,i Ĥ

†
i (40)

with mk,i = x̂i
k x̂xxi

k

†
and δ is given by (15), and

Ryyyi
k
= δ2σ2

xi
k
ĥiĥ

†
i + δ2

Ĥi Λk,i Ĥ
†
i + (δ2 − δ) ĥi mk,i H

†
i + (δ2 − δ) Ĥi m

†
k,i ĥ

†
i

+ (1 − 2δ) Ĥi Λ̃k,i Ĥ
†
i +

(
σ2

z + (1 − δ)σ2
xi

k
+ (1 − δ) tr(Λk,i)

)
IMR

. (41)

To get more insight on the proposed detector, let us consider the ideal case where perfect
channel knowledge is available at the receiver, i.e., Ĥ = H and σ2

e = 0. We note that in this case,
δ = 1 and the posterior pdf (12) reduces to a Dirac delta function; consequently the two filters
w̃

i
k and w

i
k coincide. Similarly, under near-perfect CSIR, obtained either when σ2

e → 0 or when

Np → ∞, we have δ → 1, and the filter w̃
i
k gives a similar expression as w

i
k in (35). However, in

the presence of estimation errors, the proposed improved and mismatched detectors become
different due to the inherent averaging in (38), which provides a robust design that adapts
itself to the channel estimate available at the receiver.
The second modification concerns the application of the derived filter w̃

i
k to the received signal

yyyi
k
. As this latter depends on H (see (37)), we average the filter output ri

k as follows:

r̃i
k = E

H|Ĥ[ ri
k ] =δ w̃

i
k ĥi︸ ︷︷ ︸

µk,i

xi
k + δ w̃

i
k Ĥi xxxi

k − w̃
i
k Ĥi x̂xxi

k + w̃
i
k zzzk︸ ︷︷ ︸

ηk,i

= µk,i xi
k + ηk,i, (42)

where ηk,i contains interference and noise. From (42) it is clear that the output of the im-

proved MMSE filter can be viewed as an equivalent AWGN channel having xi
k at its input.

The parameters µk,i and σ2
ηk,i

are calculated at each time-slot by using the symbols statistics.
In order to transform the detected symbols at the output of the MMSE filter to LLRs on the cor-
responding bits, we approximate ηk,i by a zero-mean Gaussian random variable with variance

σ2
ηk,i

(see Sadough, Khalighi & Duhamel (2009) for details on the calculation of this variance).

Let di,m
k denote the m-th (m = 1, ..., B) bit corresponding to xi

k. The LLR on di,m
k is given by:

L(di,m
k ) = log

Pdem

(
di,m

k = 1| r̃i
k, µk,i

)

Pdem

(
di,m

k = 0| r̃i
k, µk,i
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−
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−
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k |
2
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}
B
∏
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n �=m

P0
dec(d

i,n
k )

. (43)

Note that here the cardinality of the sets Sm
1 and Sm

0 equals 2B−1.

7.2.1 Case study
Figure 9 shows BER curves of the mismatched and improved receivers for the case of QPSK
modulation and a (2 × 2) MIMO system. The number of channel uses for pilot transmission
is Np ∈ {2,4,8}. As a reference, we have also presented the BER curve for the case of perfect

CSIR. We observe that the gain in SNR of the improved detector to attain the BER of 10−5 is
about 1.4 dB, 0.5 dB, and 0.2 dB, respectively for Np = 2, 4, and 8.
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The interesting point is that the two detectors have almost the same convergence trend
and the major improvement is obtained after the second iteration for both detectors
Sadough, Khalighi & Duhamel (2009). So, if for the reasons of complexity reduction, we only
process two receiver iterations, we still have a considerable performance gain by using the
improved detector.
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Fig. 9. BER performance of improved and mismatched iterative Soft-PIC; (2 × 2) MIMO with
MUX ST scheme, i.i.d. Rayleigh block-fading channel with 4 fades per frame, QPSK modula-
tion, training sequence length Np ∈ {2,4,8}.

8. Conclusions

We studied in this chapter the interaction between iterative data detection and channel es-
timation in realistic wireless communication systems where the receiver disposes only of an
imperfect estimate of the unknown channel parameters. To obtain the CSIR, we considered
different recent and classically-used techniques. First, we presented pilot-only based channel
estimation and showed that an accurate estimate of the channel through this method would
require a large number of pilots per frame, which can result in a considerable loss in the sys-
tem data throughput. Overlay pilots may be preferred to time-multiplexed solution from this
point of view, however, the quality of channel estimate is, in general, worse, as compared to
PSAM. We also presented semi-blind channel estimation methods that, in addition to pilot
symbols, make use of the data symbols in the estimation process. Although iterative semi-
blind channel estimation outperforms pilot-only assisted channel estimation, it has a higher
complexity, which may be of critical concern for practical implementations.

9. References
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8. Conclusions

Regardless of the channel estimation technique, an important point is the impact of estimation
errors on the receiver performance. The usually-used approach is to consider the (imperfect)
channel estimate as perfect and to use it in data detection. We called this the mismatched
approach. In such case, we saw that, the impact of estimation errors is somehow similar for
orthogonal and non-orthogonal space-time schemes. We then considered the improved ap-
proach by which we take into account the channel estimation inaccuracies in data detection.
More precisely, by using the statistics of the channel estimation errors, we use a new detection
rule instead of the sub-optimal mismatched detector. Applying this detection design rule to
MAP and Soft-PIC detectors, we showed that a significant improvement can be obtained as
compared to the mismatched detector. Finally, it is worth mentioning that adopting the im-
proved reception scheme does not increase considerably the complexity. In fact, the improved
detectors require just a few more matrix additions and multiplications, which does not have
an important impact on the receiver complexity.
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