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1. Introduction 
 

Scheduling involves the allocation of resources over a period of time to perform a collection 
of tasks (Baker, 1974). It is a decision-making process that plays an important role in most 
manufacturing and service industries (Pinedo, 2005). Scheduling in the context of 
manufacturing systems refers to the determination of the sequence in which jobs are to be 
processed over the production stages, followed by the determination of the start-time and 
finish-time of processing of jobs (Conway et al., 1967). An effective schedule enables the 
industry to utilize its resources effectively and attain the strategic objectives as reflected in 
its production plan.  
The most common manufacturing system worldwide is the job shop. Job shops are 
associated with the production of small volumes/large variety products and operate in a 
make-to-order environment (Groover, 2003). Hoitomt et al. (1993) mentions that 
approximately 50 to 75 % of all manufactured components fall into this category of low 
volume/high variety and due to the market trends this percentage is likely to increase. Even 
though flexible manufacturing systems are today’s keywords that frequently appear in 
many research agendas, scheduling of job shops still receive ample attention from both 
researchers and practitioners due to the reason that job shop scheduling problems exist in 
many forms in most of the advanced manufacturing systems (Kutanoglu & Sabuncuoglu, 
1999). Besides, analysis of job shop scheduling problems provides important insights into 
the solution of the scheduling problems encountered in more realistic and complicated 
systems (Pinedo 2005). In this context, this chapter focuses on scheduling job shops which is 
an important task for manufacturing industry in terms of improving machine utilization or 
reducing lead time. 

 
1.1 Classical Job shop scheduling problem 
The classical job shop scheduling problem (JSP) is the most popular scheduling model in 
practice (French, 1982; Brucker, 1995; Pinedo, 1995). It has attracted many researchers due to 
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its wide applicability and inherent difficulty (Jain & Meeran, 1999). The formulation of the 
JSP is based on the assumption that for each part type or production order (job) there is only 
one processing plan, which prescribes the sequence of operations and the machine on which 
each operation has to be performed. The n x m classical JSP involves n jobs and m machines. 
Each job is to be processed on each machine in a predefined sequence and each machine 
processing only one job at a time. It is also well known that JSP is NP-hard (Garey et al., 
1976).  

 
1.2 Scheduling Job shops associated with multiple routings 
In practice, the shop-floor setup in a job shop typically consists of multiple copies of the 
most critical machines so that bottlenecks due to long operations or busy machines can be 
reduced (Ho et al., 2007). Therefore, an operation may be performed on more than one 
machine. Job shops also consists of multipurpose machines such as numerically controlled 
(NC) machines that are loaded with tool magazines and are capable of performing several 
different types of operations (Vairaktarakis & Cai, 2003). Due to the overlapping capabilities 
of these machines, a given operation can be performed by more than one machine. 
However, in real life it has been a practice that machining operations are assigned to a 
certain machine tool during the process planning stage and the assignment of machine tools 
over time to different operations is performed during the scheduling stage. Recently, 
researchers considered the integration of process planning with scheduling by allowing 
alternative machine tool routings for operations at the scheduling stage.  
Hankins et al. (1984) discussed the advantages of using alternative machine tool routings to 
improve the productivity. They showed, through an example, that using alternative 
machine results in reduced lead-time and improves overall machine utilization. 
Chryssolouris and Chan (1985) discussed the integration of process planning and the 
decision making process for production resource assignment. They discussed the issue of 
generating alternative machines/resources based on the process planning information. 
Wilhelm and Shin (1985) investigated the effectiveness of alternative operations in flexible 
manufacturing systems. They showed via computational experiments that alternative 
operations could reduce flow time while increasing machine utilization. However, the 
consideration of alternative routing option in job shop adds an additional decision of 
machine allocation during scheduling that increases the complexity of the problem. 
Therefore, scheduling of job shops that are associated with multiple routings is a much more 
complex problem than the JSP. Even though the practical applications and advantages of 
using multiple routings in job shop scheduling are more when compared with fixed routing, 
still the research focus in this area is very limited. On the above considerations, this chapter 
addresses a scheduling model of the job shop problem associated with multiple routings. 
Two different scheduling models of job shop associated with multiple routings are 
addressed in the literature. The first model is referred as job shop scheduling with 
alternative machine tool routings, which was first addressed by Iwata et al. (1978). The same 
model was later addressed by Brandimarte (1993) as flexible job shop scheduling problem 
(FJSP). The second model is usually referred as job shop scheduling with multi-purpose 
machines (MPM-JSP), which was first addressed by Brucker and Schlie (1990). Dauzere-
Peres and Paulli (1997) addressed the MPM-JSP as multiprocessor job shop scheduling 
problem (MJS). The difference between the two models (FJSP and MPM-JSP/MJS) is that, in 
the first model the processing time for each operation on its alternative routes differs with 

 

machine features, whereas in the second model the processing time is same for all the 
alternative machines of a particular operation. Since the FJSP can be represented as a 
generalized model of MPM-JSP/MJS, therefore, many recently published research articles 
refer both the models as FJSP. This chapter, therefore, considers FJSP as the scheduling 
model of the multiple routing job shop problem and proposes an Ant Colony Optimization 
based heuristic to solve the problem. 

 
1.3 Review of solution methodologies  
Since FJSP belongs to the category of NP-hard problems, therefore, heuristic methods had 
been a predominant choice for the researchers over the traditional mathematical techniques. 
The heuristic approaches for solving FJSP are generally classified as hierarchical and 
integrated approaches. In hierarchical approaches, assignment of operations to machines 
and the sequencing of operations on the machines are treated separately, i.e. assignment and 
sequencing are considered independently. In integrated approaches assignment and 
sequencing are not differentiated and considered together. 
Iwata et al. (1980) presented two dispatching rules for the FJSP. The first rule is based on 
EFT (Earliest Finishing Time) rule in which the activity with the earliest finishing time from 
a set of competing activities is assigned first to a machine tool. The EFT rule is extended to 
EFTA (Earliest Finishing Time with Alternative Operations) rule to solve the job shop 
problem with alternative operations. Nasr and Elsayed (1990) investigated the problem of 
minimizing the mean flow time in a general job shop type machining system with 
alternative machine tool routings. They developed a Mixed-Integer Linear Programming 
(MILP) formulation for the problem and proposed two hierarchical approaches to solve the 
problem. The first heuristic solves the problem by decomposing the problem into sub-
problems that are easier to solve. The second heuristic called Shortest Finish Time (SFT) rule 
is an extension of the first heuristic and is based on the Shortest Processing Time (SPT) rule. 
During the past two decades there has been much research on the application of 
metaheuristics to solve the FJSP. The early research on FJSP was focused on development of 
neighborhood based metaheuristics like Tabu Search (TS) and Simulated Annealing (SA) 
algorithms. Brandimarte (1993) proposed a hierarchical approach based on TS to solve the 
FJSP with the objective of minimizing the makespan time. Hurink et al. (1994) represented 
the FJSP as a disjunctive graph model and proposed a hierarchical approach based on TS to 
solve the problem. Dauzere-Peres and Paulli (1997) presented a new disjunctive graph 
model to represent the MJS problem and proposed an integrated approach to solve FJSP. 
Mastrolilli and Gamberdella (2000) improved the TS approach proposed by Dauzere-Peres 
and Paulli (1997) and presented two new neighbourhood functions to solve FJSP instances. 
Najid et al. (2002) proposed a modified SA method for solving FJSP for minimum makespan 
time criterion. They represented their problem as a disjunctive graph and used the 
neighbourhood functions developed by Mastrolilli and Gamberdella (2000). Recently, 
Mehrabad and Fattahi (2005) presented a tabu search algorithm that solves the FJSP with 
sequence dependent setups to minimize the makespan time. They compared the 
performance of the algorithm with the optimal solution obtained using a MILP model 
solved by lingo software. Fattahi et al. (2007) developed a MILP model for the FJSP for 
minimum makespan time criterion and solved using Lingo software. They showed that 
solving FJSP using Lingo (Branch and Bound method) is very time consuming and are 
suitable for solving only smaller size problems. They also proposed two set of heuristics to 
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its wide applicability and inherent difficulty (Jain & Meeran, 1999). The formulation of the 
JSP is based on the assumption that for each part type or production order (job) there is only 
one processing plan, which prescribes the sequence of operations and the machine on which 
each operation has to be performed. The n x m classical JSP involves n jobs and m machines. 
Each job is to be processed on each machine in a predefined sequence and each machine 
processing only one job at a time. It is also well known that JSP is NP-hard (Garey et al., 
1976).  

 
1.2 Scheduling Job shops associated with multiple routings 
In practice, the shop-floor setup in a job shop typically consists of multiple copies of the 
most critical machines so that bottlenecks due to long operations or busy machines can be 
reduced (Ho et al., 2007). Therefore, an operation may be performed on more than one 
machine. Job shops also consists of multipurpose machines such as numerically controlled 
(NC) machines that are loaded with tool magazines and are capable of performing several 
different types of operations (Vairaktarakis & Cai, 2003). Due to the overlapping capabilities 
of these machines, a given operation can be performed by more than one machine. 
However, in real life it has been a practice that machining operations are assigned to a 
certain machine tool during the process planning stage and the assignment of machine tools 
over time to different operations is performed during the scheduling stage. Recently, 
researchers considered the integration of process planning with scheduling by allowing 
alternative machine tool routings for operations at the scheduling stage.  
Hankins et al. (1984) discussed the advantages of using alternative machine tool routings to 
improve the productivity. They showed, through an example, that using alternative 
machine results in reduced lead-time and improves overall machine utilization. 
Chryssolouris and Chan (1985) discussed the integration of process planning and the 
decision making process for production resource assignment. They discussed the issue of 
generating alternative machines/resources based on the process planning information. 
Wilhelm and Shin (1985) investigated the effectiveness of alternative operations in flexible 
manufacturing systems. They showed via computational experiments that alternative 
operations could reduce flow time while increasing machine utilization. However, the 
consideration of alternative routing option in job shop adds an additional decision of 
machine allocation during scheduling that increases the complexity of the problem. 
Therefore, scheduling of job shops that are associated with multiple routings is a much more 
complex problem than the JSP. Even though the practical applications and advantages of 
using multiple routings in job shop scheduling are more when compared with fixed routing, 
still the research focus in this area is very limited. On the above considerations, this chapter 
addresses a scheduling model of the job shop problem associated with multiple routings. 
Two different scheduling models of job shop associated with multiple routings are 
addressed in the literature. The first model is referred as job shop scheduling with 
alternative machine tool routings, which was first addressed by Iwata et al. (1978). The same 
model was later addressed by Brandimarte (1993) as flexible job shop scheduling problem 
(FJSP). The second model is usually referred as job shop scheduling with multi-purpose 
machines (MPM-JSP), which was first addressed by Brucker and Schlie (1990). Dauzere-
Peres and Paulli (1997) addressed the MPM-JSP as multiprocessor job shop scheduling 
problem (MJS). The difference between the two models (FJSP and MPM-JSP/MJS) is that, in 
the first model the processing time for each operation on its alternative routes differs with 

 

machine features, whereas in the second model the processing time is same for all the 
alternative machines of a particular operation. Since the FJSP can be represented as a 
generalized model of MPM-JSP/MJS, therefore, many recently published research articles 
refer both the models as FJSP. This chapter, therefore, considers FJSP as the scheduling 
model of the multiple routing job shop problem and proposes an Ant Colony Optimization 
based heuristic to solve the problem. 

 
1.3 Review of solution methodologies  
Since FJSP belongs to the category of NP-hard problems, therefore, heuristic methods had 
been a predominant choice for the researchers over the traditional mathematical techniques. 
The heuristic approaches for solving FJSP are generally classified as hierarchical and 
integrated approaches. In hierarchical approaches, assignment of operations to machines 
and the sequencing of operations on the machines are treated separately, i.e. assignment and 
sequencing are considered independently. In integrated approaches assignment and 
sequencing are not differentiated and considered together. 
Iwata et al. (1980) presented two dispatching rules for the FJSP. The first rule is based on 
EFT (Earliest Finishing Time) rule in which the activity with the earliest finishing time from 
a set of competing activities is assigned first to a machine tool. The EFT rule is extended to 
EFTA (Earliest Finishing Time with Alternative Operations) rule to solve the job shop 
problem with alternative operations. Nasr and Elsayed (1990) investigated the problem of 
minimizing the mean flow time in a general job shop type machining system with 
alternative machine tool routings. They developed a Mixed-Integer Linear Programming 
(MILP) formulation for the problem and proposed two hierarchical approaches to solve the 
problem. The first heuristic solves the problem by decomposing the problem into sub-
problems that are easier to solve. The second heuristic called Shortest Finish Time (SFT) rule 
is an extension of the first heuristic and is based on the Shortest Processing Time (SPT) rule. 
During the past two decades there has been much research on the application of 
metaheuristics to solve the FJSP. The early research on FJSP was focused on development of 
neighborhood based metaheuristics like Tabu Search (TS) and Simulated Annealing (SA) 
algorithms. Brandimarte (1993) proposed a hierarchical approach based on TS to solve the 
FJSP with the objective of minimizing the makespan time. Hurink et al. (1994) represented 
the FJSP as a disjunctive graph model and proposed a hierarchical approach based on TS to 
solve the problem. Dauzere-Peres and Paulli (1997) presented a new disjunctive graph 
model to represent the MJS problem and proposed an integrated approach to solve FJSP. 
Mastrolilli and Gamberdella (2000) improved the TS approach proposed by Dauzere-Peres 
and Paulli (1997) and presented two new neighbourhood functions to solve FJSP instances. 
Najid et al. (2002) proposed a modified SA method for solving FJSP for minimum makespan 
time criterion. They represented their problem as a disjunctive graph and used the 
neighbourhood functions developed by Mastrolilli and Gamberdella (2000). Recently, 
Mehrabad and Fattahi (2005) presented a tabu search algorithm that solves the FJSP with 
sequence dependent setups to minimize the makespan time. They compared the 
performance of the algorithm with the optimal solution obtained using a MILP model 
solved by lingo software. Fattahi et al. (2007) developed a MILP model for the FJSP for 
minimum makespan time criterion and solved using Lingo software. They showed that 
solving FJSP using Lingo (Branch and Bound method) is very time consuming and are 
suitable for solving only smaller size problems. They also proposed two set of heuristics to 
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solve the real size problems in which one set of heuristics is based on integrated approach 
and the other set is based on hierarchical approach. In integrated approach, they used Tabu 
Search (TS) and Simulated Annealing (SA) heuristics and presented two algorithms. In 
hierarchical approach, they used TS and SA and proposed four algorithms. Though 
neighborhood based metaheuristics have been successfully applied to solve FJSP, still the 
performance of these heuristics depend upon the initial solution and are more susceptible of 
getting stuck in local optimum. Therefore, most of the recently published research articles 
on FJSP are focused on developing Population based metaheuristics like Genetic Algorithm 
(GA), Ant Colony Optimization (ACO), etc. that are useful for any hard optimization problem. 
Mesghouni et al. (1998) were the first to model GA for FJSP. They proposed a chromosomal 
representation known as parallel job representation in which a chromosome is represented 
by a matrix where each row consists of a set of ordered operations of each job. Due to the 
complexity of decoding the representation, their algorithm incurs significant computational 
cost. Hussain and Joshi (1998) proposed a two pass GA to solve job shop problem with 
alternative routing with the objective of minimizing the sum of squared weighted due date 
deviation for every job. The first pass picks the alternatives using a genetic algorithm and 
the second pass provides the order and start time of jobs on the selected alternatives by 
solving a non-linear program. Chen et al. (1999) proposed a GA that uses an A-B string 
representation to solve FJSP for minimum makespan time criterion. A string contains a list 
of all operations of all jobs and the machines selected for the corresponding operations while 
B string contains a list of operations that are processed on each machine. Moon and Lee 
(2000) developed a mixed integer linear programming (MILP) model and proposed a GA for 
the job shop scheduling problem with alternative routings. The objective they considered is 
to minimize the mean flow time. The chromosome representation in their proposed GA 
consists of two strings, one for machine assignment and the other for schedule generation. 
Ho and Tay (2004) proposed a GA based tool, namely GENACE, for solving the FJSP for 
minimum makespan time criterion. The chromosome representation consists of two 
components, one component for machine selection and the other for operation sequence. 
Their methodology first generates an initial population using composite dispatching rules. 
A cultural evolution is then applied to preserve knowledge of schemata and resource 
allocations learned over each generation. The knowledge or belief spaces in turn influence 
mutation and selection of individuals. Ho et al. (2007) proposed an architecture for learning 
and evolving of flexible job shop schedules for minimum makespan criterion called 
learnable genetic architecture (LEGA), a generalization of their previous approach GENACE 
(Ho and Tay, 2004). Their proposed LEGA architecture is functionally divided into three 
modules: namely, a population generator module, Evolutionary algorithm (EA) module and 
a Schemata Learning (SL) module. The chromosome representation consists of two 
components, one component for machine selection and the other for operation sequence. 
The population generator module generates a set of feasible schedules equal to the 
population size using Composite Dispatching Rules and then encodes it into chromosomes 
of initial population for subsequent evolution in the EA module. During genetic evolution, 
the SL module modifies the offspring schedules to improve solution quality and to preserve 
feasibility based on a memory of conserved schemas resolved from sampled schedules sent 
dynamically from EA module. Tay and Ho (2008) proposed a genetic programming (GP) 
based approach for evolving effective composite dispatching rules for solving the multi-
objective FJSP. The objective they considered is to minimize the weighted sum of makespan 

 

time, mean flow time and mean tardiness. They proposed a GP framework in which an 
individual is composed of terminals (like job release dates, due date, processing time, 
current time, remaining time, etc.) and algebraic functions. Their GP solves a specific 
problem by carefully selecting the terminals and functions and generating a composite 
dispatching rule that satisfies the requirements of that particular problem. They generated 
five composite dispatching rules using a large training set and compared the results with 
other popular rules like FIFO, SPT, etc.  
In recent years, researchers have shown that ACO, which is a kind of metaheuristic search 
approach, is competitive with other approaches in terms of performance and CPU 
requirements in several applications of general and combinatorial optimisation problems. 
Ant algorithms were first proposed by Dorigo et al. (1992) as a multi-agent heuristic search 
approach to solve the traveling salesman problem (TSP). Dorigo and Stutzle (1999) 
suggested various ACO approaches to quadratic assignment problems (QAP), e.g. ant 
system (AS), ACS, ANTS–QAP, MAX–MIN ant system (MMAS), FANT, and HAS–QAP and 
compared the results. There is currently considerable activity in the scientific community 
devoted to extending/applying ant-based algorithms to many different discrete 
optimisation problems. Recent applications cover problems such as vehicle routing, 
sequential ordering, graph colouring, routing in communications networks, etc. In the field 
of scheduling, ACO has been successfully applied to the single machine weighted tardiness 
problem (den Besten et al., 2000; Liao & Juan, 2007), flow shop scheduling problem 
(Rajendran & Ziegler, 2004; Gajpal & Rajendran, 2006) and the resource constrained project 
scheduling problem (Merkle et al., 2002). Colorni et al. (1994) were the first to apply ACO to 
tackle the job shop scheduling problem (JSP). Blum (2002) proposed an MMAS algorithm for 
the Group shop scheduling problem which is a generalization of the JSP and the open shop 
scheduling problem. However, the performances of these algorithms for JSP were far from 
reaching the state-of-the-art performance. Blum and Sampels (2004) proposed MMAS 
algorithm with hyper cubic framework for the group shop scheduling problem. They 
performed experiments with different visibility functions and ranked them based on their 
performance. They used non-delay schedule generation mechanism for constructing 
solutions and employed a local search procedure to improve the solutions. Their algorithm 
performs particularly well for open shop scheduling problems. Heinonen and Pettersson 
(2007) proposed a hybrid ACO-local search algorithm for solving JSP. They performed 
experiments with different visibility functions on four different ACO variants and showed 
that MMAS algorithm performs better than AS, Rank based–AS and ACS. Huang and Liao 
(2008) presented a hybrid algorithm combining ACO algorithm with a taboo search 
algorithm for the JSP. Their proposed ACO algorithm employs a decomposition method 
inspired by the shifting bottleneck procedure, and a mechanism of occasional re-
optimizations of partial schedules. The taboo search algorithm is embedded in the ACO 
algorithm to improve the solution quality. Rossi and Dini (2007) proposed an ACO based 
software system for solving flexible job shop problem (FJSP) with routing flexibility, 
sequence-dependent set up and transportation time. They showed the effectiveness of their 
system by comparing with other alternative approaches (including GA) for various 
benchmark instances. Girish and Jawahar (2008) proposed MMAS based heuristic for the 
FJSP for minimum makespan time criterion. Their proposed algorithm outperformed a GA 
and a constraint programming model solved using ILOG Solver for various benchmark 
problem instances. 

www.intechopen.com



An Ant Colony Optimization algorithm for Flexible Job shop scheduling problem 77

 

solve the real size problems in which one set of heuristics is based on integrated approach 
and the other set is based on hierarchical approach. In integrated approach, they used Tabu 
Search (TS) and Simulated Annealing (SA) heuristics and presented two algorithms. In 
hierarchical approach, they used TS and SA and proposed four algorithms. Though 
neighborhood based metaheuristics have been successfully applied to solve FJSP, still the 
performance of these heuristics depend upon the initial solution and are more susceptible of 
getting stuck in local optimum. Therefore, most of the recently published research articles 
on FJSP are focused on developing Population based metaheuristics like Genetic Algorithm 
(GA), Ant Colony Optimization (ACO), etc. that are useful for any hard optimization problem. 
Mesghouni et al. (1998) were the first to model GA for FJSP. They proposed a chromosomal 
representation known as parallel job representation in which a chromosome is represented 
by a matrix where each row consists of a set of ordered operations of each job. Due to the 
complexity of decoding the representation, their algorithm incurs significant computational 
cost. Hussain and Joshi (1998) proposed a two pass GA to solve job shop problem with 
alternative routing with the objective of minimizing the sum of squared weighted due date 
deviation for every job. The first pass picks the alternatives using a genetic algorithm and 
the second pass provides the order and start time of jobs on the selected alternatives by 
solving a non-linear program. Chen et al. (1999) proposed a GA that uses an A-B string 
representation to solve FJSP for minimum makespan time criterion. A string contains a list 
of all operations of all jobs and the machines selected for the corresponding operations while 
B string contains a list of operations that are processed on each machine. Moon and Lee 
(2000) developed a mixed integer linear programming (MILP) model and proposed a GA for 
the job shop scheduling problem with alternative routings. The objective they considered is 
to minimize the mean flow time. The chromosome representation in their proposed GA 
consists of two strings, one for machine assignment and the other for schedule generation. 
Ho and Tay (2004) proposed a GA based tool, namely GENACE, for solving the FJSP for 
minimum makespan time criterion. The chromosome representation consists of two 
components, one component for machine selection and the other for operation sequence. 
Their methodology first generates an initial population using composite dispatching rules. 
A cultural evolution is then applied to preserve knowledge of schemata and resource 
allocations learned over each generation. The knowledge or belief spaces in turn influence 
mutation and selection of individuals. Ho et al. (2007) proposed an architecture for learning 
and evolving of flexible job shop schedules for minimum makespan criterion called 
learnable genetic architecture (LEGA), a generalization of their previous approach GENACE 
(Ho and Tay, 2004). Their proposed LEGA architecture is functionally divided into three 
modules: namely, a population generator module, Evolutionary algorithm (EA) module and 
a Schemata Learning (SL) module. The chromosome representation consists of two 
components, one component for machine selection and the other for operation sequence. 
The population generator module generates a set of feasible schedules equal to the 
population size using Composite Dispatching Rules and then encodes it into chromosomes 
of initial population for subsequent evolution in the EA module. During genetic evolution, 
the SL module modifies the offspring schedules to improve solution quality and to preserve 
feasibility based on a memory of conserved schemas resolved from sampled schedules sent 
dynamically from EA module. Tay and Ho (2008) proposed a genetic programming (GP) 
based approach for evolving effective composite dispatching rules for solving the multi-
objective FJSP. The objective they considered is to minimize the weighted sum of makespan 

 

time, mean flow time and mean tardiness. They proposed a GP framework in which an 
individual is composed of terminals (like job release dates, due date, processing time, 
current time, remaining time, etc.) and algebraic functions. Their GP solves a specific 
problem by carefully selecting the terminals and functions and generating a composite 
dispatching rule that satisfies the requirements of that particular problem. They generated 
five composite dispatching rules using a large training set and compared the results with 
other popular rules like FIFO, SPT, etc.  
In recent years, researchers have shown that ACO, which is a kind of metaheuristic search 
approach, is competitive with other approaches in terms of performance and CPU 
requirements in several applications of general and combinatorial optimisation problems. 
Ant algorithms were first proposed by Dorigo et al. (1992) as a multi-agent heuristic search 
approach to solve the traveling salesman problem (TSP). Dorigo and Stutzle (1999) 
suggested various ACO approaches to quadratic assignment problems (QAP), e.g. ant 
system (AS), ACS, ANTS–QAP, MAX–MIN ant system (MMAS), FANT, and HAS–QAP and 
compared the results. There is currently considerable activity in the scientific community 
devoted to extending/applying ant-based algorithms to many different discrete 
optimisation problems. Recent applications cover problems such as vehicle routing, 
sequential ordering, graph colouring, routing in communications networks, etc. In the field 
of scheduling, ACO has been successfully applied to the single machine weighted tardiness 
problem (den Besten et al., 2000; Liao & Juan, 2007), flow shop scheduling problem 
(Rajendran & Ziegler, 2004; Gajpal & Rajendran, 2006) and the resource constrained project 
scheduling problem (Merkle et al., 2002). Colorni et al. (1994) were the first to apply ACO to 
tackle the job shop scheduling problem (JSP). Blum (2002) proposed an MMAS algorithm for 
the Group shop scheduling problem which is a generalization of the JSP and the open shop 
scheduling problem. However, the performances of these algorithms for JSP were far from 
reaching the state-of-the-art performance. Blum and Sampels (2004) proposed MMAS 
algorithm with hyper cubic framework for the group shop scheduling problem. They 
performed experiments with different visibility functions and ranked them based on their 
performance. They used non-delay schedule generation mechanism for constructing 
solutions and employed a local search procedure to improve the solutions. Their algorithm 
performs particularly well for open shop scheduling problems. Heinonen and Pettersson 
(2007) proposed a hybrid ACO-local search algorithm for solving JSP. They performed 
experiments with different visibility functions on four different ACO variants and showed 
that MMAS algorithm performs better than AS, Rank based–AS and ACS. Huang and Liao 
(2008) presented a hybrid algorithm combining ACO algorithm with a taboo search 
algorithm for the JSP. Their proposed ACO algorithm employs a decomposition method 
inspired by the shifting bottleneck procedure, and a mechanism of occasional re-
optimizations of partial schedules. The taboo search algorithm is embedded in the ACO 
algorithm to improve the solution quality. Rossi and Dini (2007) proposed an ACO based 
software system for solving flexible job shop problem (FJSP) with routing flexibility, 
sequence-dependent set up and transportation time. They showed the effectiveness of their 
system by comparing with other alternative approaches (including GA) for various 
benchmark instances. Girish and Jawahar (2008) proposed MMAS based heuristic for the 
FJSP for minimum makespan time criterion. Their proposed algorithm outperformed a GA 
and a constraint programming model solved using ILOG Solver for various benchmark 
problem instances. 
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1.4 Summary  
The literature review on FJSP reveals that population-based search heuristics such as GA 
and ACO have emerged as powerful tools for solving FJSP in the recent years. The coding 
schemes adopted in most of the proposed GAs for FJSP requires repair mechanisms to 
maintain solution feasibility. A few researchers have incorporated certain schemes to 
maintain the feasibility of solution which restricts the search to a smaller solution space. 
Most of the GAs proposed, therefore, have chances of missing the best optimal solution even 
under extensive searches for larger size problems. The literature review on ACO for 
scheduling applications reveals that ACO is competitive with other metaheuristic 
approaches including GA in terms of computational time and solution quality.  
In light of the above, this chapter proposes an ACO algorithm to solve the problem under 
discussion for minimization of makespan time criterion. The proposed ACO algorithm is 
based on the MMAS algorithm proposed by Stützle and Hoos (2000). The proposed ACO 
incorporates pheromone trails for both route choice option and active feasible schedule 
generation and is capable to provide all possible instances that an enumerative search can. 
The proposed ACO is structured and coded in such a way that it can be easily adapted to 
generate schedules for any scheduling objective of FJSP. 
The rest of the chapter is organized as follows: Section 2 describes the problem; the 
proposed ACO is explained and illustrated in section 3; Section 4 presents a numerical 
illustration for the proposed ACO; Section 5 presents the performance study of the proposed 
ACO for various benchmark instances and Section 6 concludes with scope for future work  
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 Each job i requires Ji precedence-constrained operations to be performed. 
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k. This addresses the multiple routings for jobs. An alternative routing could be 
used if one machine tool is temporarily overloaded while another is idle. The 
alternative routing is useful where capacity problem arises. 
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 Jobs are independent and no priorities are assigned to any job type. 
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makespan time for planning another set of jobs of the next planning horizon. 
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where, Sij and Cij is the start time and completion time of job i, H is a very large positive 
integer, Nk is the set of operations {Oij} that can be loaded on machine k, Xijk is a decision 
variable for machine selection for operation Oij and Yiji’j’k is a decision variable that generates 
a sequence between the operations Oij and Oi’j’ for loading on machine k. The constraints set 
(2) imposes that the difference between the completion time and the starting time of an 
operation is equal to its processing time on the machine to which it is assigned. This 
constraint satisfies the assumption that once an operation has started, it cannot be pre-
empted until its completion. Constraints set (3) and (4) ensure that no two operations can be 
processed simultaneously on the same machine. This disjunctive constraints set (3) becomes 
inactive when Yiji’j’k=0 and the disjunctive constraints set (4) becomes inactive when Yiji’j’k=1. 
Constraints set (5) ensure that the start time of an operation is always positive. Constraints 
set (6) represent the precedence relationship among various operations of a job. Constraints 
set (7) impose that an operation can only be assigned to one machine. 

 
3. Description of the proposed ACO 
 

The different modules of the proposed ACO for the flexible job shop problem are outlined 
as flowchart in Figure 1. The different modules are described below. 
Input module: The following data pertaining to the problem are given as input: Number of 
Jobs (n), number of machines in the shop (m), number of operations Ji of each job i (i), 
number of alternative machines (routes) Rij for operation j of job i (i, j), the machine 
number Kijr corresponding to the route r of operation j of job i along with its processing time 
Tijr (i, j, r).  
Initialization module: The number of ants (no_ant) is defined, and the pheromone trails used 
by them for constructing solutions are initialized. This problem uses two pheromone trails: 
pheromone trail intensity for route selection ijr(tn) gives information about the desirability 
of choosing route r for operation Oij at iteration tn and pheromone trail intensity εkiji’j’(tn), 
which indicates the desirability of choosing operation Oij directly after the operation Oi’j’ is 
loaded on machine k, is used for job conflict resolution while generating feasible schedule 
using Giffler and Thompson procedure. Thus, εkiji’j’(tn) indicates the pheromone trail 
between the operations. The pheromone trails ijr(1) and εkiji’j’(1) are initialized to the upper 
trail limit to max(1) and max(1), respectively, which causes a higher exploration at the start of 
the algorithm. 
 

 

     
Fig. 1. Procedure of the proposed ACO for FJSP 
 
Solution construction and Evaluation module: Each ant constructs a solution in two stages. In 
the Ist stage, an ant, at each construction step, allocates an operation of a particular job to one 
of its available resources. The ants use a probabilistic choice rule which is a function of the 
pheromone trail τijr(tn) and a heuristic information based on processing time. Ant z chooses 
to allocate operation Oij to the route r with a probability given by 
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where α and β are two parameters that control the relative importance of the pheromone 
trail and the heuristic information (visibility of ant). ηijr represents the heuristic information 
which is a function of the processing time of operation Oij on route r and is given by 
ηijr=1/Tijr. Therefore the probability is a trade-off between visibility (which says that 
operations requiring lower processing time will have a higher probability to be loaded on 
the machines, thus implementing a greedy constructive heuristic) and trail intensity at 
iteration tn.  
In the IInd stage, on allocation of all operations to the machines, each ant generates a 
schedule based on Giffler and Thompson (1960) algorithm. Ants, at each construction step s, 
chooses an operation Oij to allocate to its machine that has the minimum earliest finishing 
time (EFTi(s)) among the unassigned operations, provided the chosen operation has no 
conflict with other operations on the same machine. Ants store the operations that are 
assigned to its resources in Qkz (s) at each step s. Any conflict, if arises in the process of 
schedule generation is resolved using a probabilistic choice rule which is a function of 
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where, Sij and Cij is the start time and completion time of job i, H is a very large positive 
integer, Nk is the set of operations {Oij} that can be loaded on machine k, Xijk is a decision 
variable for machine selection for operation Oij and Yiji’j’k is a decision variable that generates 
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which indicates the desirability of choosing operation Oij directly after the operation Oi’j’ is 
loaded on machine k, is used for job conflict resolution while generating feasible schedule 
using Giffler and Thompson procedure. Thus, εkiji’j’(tn) indicates the pheromone trail 
between the operations. The pheromone trails ijr(1) and εkiji’j’(1) are initialized to the upper 
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where α and β are two parameters that control the relative importance of the pheromone 
trail and the heuristic information (visibility of ant). ηijr represents the heuristic information 
which is a function of the processing time of operation Oij on route r and is given by 
ηijr=1/Tijr. Therefore the probability is a trade-off between visibility (which says that 
operations requiring lower processing time will have a higher probability to be loaded on 
the machines, thus implementing a greedy constructive heuristic) and trail intensity at 
iteration tn.  
In the IInd stage, on allocation of all operations to the machines, each ant generates a 
schedule based on Giffler and Thompson (1960) algorithm. Ants, at each construction step s, 
chooses an operation Oij to allocate to its machine that has the minimum earliest finishing 
time (EFTi(s)) among the unassigned operations, provided the chosen operation has no 
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pheromone trail intensity and a heuristic function. If a conflict arises in the construction step 
s of an ant z, then it resolves the conflict by finding the probability of loading operation Oij 
to its resource k directly after operation Oi’j’ loaded on the same machine. If Oij is the first 
operation in the sequence, then Oi’j’=0. The probabilistic rule is given by 
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where ψi(s) represents a heuristic information and is equal to the sum of the processing time 
of all unassigned operations of job i at step s,  and ω are the scaling parameters that control 
the relative importance of the pheromone trail and the heuristic information and Gk is the set 
of contending operations to be loaded on machine k. The higher the pheromone intensity 
εkiji’j’(tn) and the higher the heuristic information ψi(s), the higher will be the probability that 
operation Oij may precede other contending jobs on machine k. Each ant generates one 
feasible schedule and the evaluation parameter makespan time is found from the feasible 
schedule generated by the ant. This procedure is repeated for all ants. 
Sorting module: The best solution of the current iteration (ibest) and the global best (gbest) are 
sorted and stored separately. 
Termination Check module: A specified number of iterations (no_iter) is estimated to terminate 
the algorithm depending on the size of the problem. Termination directs to the output 
module; otherwise, continue to the pheromone updating module. 
Pheromone updating module: At the end of iteration, the pheromone trails corresponding to 
only one single ant is updated. This ant may be the one which found the best solution in the 
current iteration (ibest) or the one which found the best solution from the beginning of the 
trial (gbest). This pheromone trail update rule is similar to the rule used in Max-Min Ant 
System proposed by Stützle and Hoos (2000). The pheromone trail update rule 
corresponding to pheromone trails ijr(tn) and εkiji’j’(tn) is given as 
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where  is the evaporation factor in the range [0, 1]. In Equation (16) and Equation (17), 
f(sbest) denotes the makespan time of either the iteration best (ibest) or the global best 
solution (gbest). When using gbest alone, the search concentrates too fast around this 
solution, thus getting trapped in poor quality solutions and this danger is reduced when 
ibest is chosen for the pheromone trail update as ibest solutions may differ from iteration to 
iteration and a large number of solution components may receive occasional reinforcement. 
A dynamically mixed strategy of pheromone updating is used where ibest is chosen as 
default for updating the pheromones and using gbest only every fixed number of iterations. 
The frequency of using gbest for the pheromone update is increased during the search. 
To avoid stagnation of the search the range of possible pheromone trails on each solution 
component is limited to an interval [max(tn), min(tn)] and [max(tn), min(tn)] corresponding to 
pheromone trails ijr(tn) and εkiji’j’(tn) respectively. The pheromone trails are deliberately 
initialized to max(1) and max(1) in order to achieve higher exploration of solutions at the start 
of the algorithm. In every iteration, it is ensured that pheromone trail respects the limits, i.e., 
in case of  ijr(tn)>max(tn), or ijr(tn)<min(tn), then trail intensities are set to ijr(tn)=max(tn) 
and ijr(tn)=min(tn), respectively. The values are determined as follows: 
 

max(tn+1)=1/(1-ρ).f(gbest) (18) 
 

max(tn+1)=1/(1-ρ).f(gbest) (19) 
 

min(tn+1)=max(tn+1)/y (20) 
 

min(tn+1)=max(tn+1)/y (21) 
 
where y is a parameter that defines the space of the region between the limits [max(tn), 
min(tn)] and [max(tn), min(tn)]. Hence, each time a new best solution is found, max(tn) and 
max(tn) are updated. 
Output Module:  This module prints the global best solution of the optimal route choices of 
all operations and schedule for minimum makespan time criterion. 

 
4. Numerical Illustration for the proposed ACO 
 

Table 1 provides the process data of 3 jobs - 5 machines problem that is used for illustrating 
the proposed ACO. 
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where ψi(s) represents a heuristic information and is equal to the sum of the processing time 
of all unassigned operations of job i at step s,  and ω are the scaling parameters that control 
the relative importance of the pheromone trail and the heuristic information and Gk is the set 
of contending operations to be loaded on machine k. The higher the pheromone intensity 
εkiji’j’(tn) and the higher the heuristic information ψi(s), the higher will be the probability that 
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where  is the evaporation factor in the range [0, 1]. In Equation (16) and Equation (17), 
f(sbest) denotes the makespan time of either the iteration best (ibest) or the global best 
solution (gbest). When using gbest alone, the search concentrates too fast around this 
solution, thus getting trapped in poor quality solutions and this danger is reduced when 
ibest is chosen for the pheromone trail update as ibest solutions may differ from iteration to 
iteration and a large number of solution components may receive occasional reinforcement. 
A dynamically mixed strategy of pheromone updating is used where ibest is chosen as 
default for updating the pheromones and using gbest only every fixed number of iterations. 
The frequency of using gbest for the pheromone update is increased during the search. 
To avoid stagnation of the search the range of possible pheromone trails on each solution 
component is limited to an interval [max(tn), min(tn)] and [max(tn), min(tn)] corresponding to 
pheromone trails ijr(tn) and εkiji’j’(tn) respectively. The pheromone trails are deliberately 
initialized to max(1) and max(1) in order to achieve higher exploration of solutions at the start 
of the algorithm. In every iteration, it is ensured that pheromone trail respects the limits, i.e., 
in case of  ijr(tn)>max(tn), or ijr(tn)<min(tn), then trail intensities are set to ijr(tn)=max(tn) 
and ijr(tn)=min(tn), respectively. The values are determined as follows: 
 

max(tn+1)=1/(1-ρ).f(gbest) (18) 
 

max(tn+1)=1/(1-ρ).f(gbest) (19) 
 

min(tn+1)=max(tn+1)/y (20) 
 

min(tn+1)=max(tn+1)/y (21) 
 
where y is a parameter that defines the space of the region between the limits [max(tn), 
min(tn)] and [max(tn), min(tn)]. Hence, each time a new best solution is found, max(tn) and 
max(tn) are updated. 
Output Module:  This module prints the global best solution of the optimal route choices of 
all operations and schedule for minimum makespan time criterion. 

 
4. Numerical Illustration for the proposed ACO 
 

Table 1 provides the process data of 3 jobs - 5 machines problem that is used for illustrating 
the proposed ACO. 
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Job 
i 

Operation 
j 

Number of 
route choices 

Rij 

Machine No. with Processing time 
Kijr (Tijr) 

corresponding to each route r 

r =1 r =2 
1 1 2 2 (3) 3 (7) 

2 2 1 (4) 4 (2) 
3 2 1 (1) 2 (2) 

2 1 2 2 (5) 5 (2) 
2 2 2 (3) 3 (6) 
3 2 1 (3) 5 (7) 

3 1 2 2 (4) 3 (5) 
2 2 1 (2) 4 (3) 
3 2 1 (2) 3 (3) 

Table 1. Process data of the illustration problem 
 
The above data is given as input in the input module. The number of ants used in this 
problem is 10. The pheromone trails, ijr(1) and εkiji’j’(1) are initialized as max(1)=max(1)=0.1. 
In the Ist Stage of solution construction ants reduce the alternate route choice problem into a 
fixed route problem by allocating operations to the routes using the probabilistic rule given 
in Equation (10). The parameters used for solution construction are: α=1, β=2. The Ist stage of 
solution construction for Ant-1 is shown in Table 2. After allocating all the operations to the 
routes, the ants generate feasible schedules using Giffler and Thompson procedure (1960) in 
the IInd stage. The active feasible schedule formed by ant z=1 is shown in Table 3. Conflicts 
resolved during schedule generation are shown in Table 4. The parameters set for the 
probabilistic rule for schedule generation is:  =1, ω=2.  
 

Jobs 
i 

Operations 
j 

Route 
r 

Machine 
k τijr(1) Tijr P’1ijr(1) Cumulative 

P’1ijr(1) rand() Assigned 
route 

1 

1 1 2 0.1 3 0.84 0.84 0.041 1 2 3 0.1 7 0.16 1.0 

2 1 1 0.1 4 0.2 0.2 0.467 2 2 4 0.1 2 0.8 1.0 

3 1 1 0.1 1 0.8 0.8 0.334 1 2 2 0.1 2 0.2 1.0 

2 

1 1 2 0.1 5 0.13 0.13 0.5 2 2 5 0.1 2 0.87 1.0 

2 1 2 0.1 3 0.8 0.8 0.169 1 2 3 0.1 6 0.2 1.0 

3 1 1 0.1 3 0.84 0.84 0.724 1 2 5 0.1 7 0.16 1.0 

3 

1 1 2 0.1 4 0.61 0.61 0.478 1 2 3 0.1 5 0.39 1.0 

2 1 1 0.1 2 0.69 0.69 0.358 1 2 4 0.1 3 0.31 1.0 

3 1 1 0.1 1 0.9 0.9 0.962 2 2 3 0.1 3 0.1 1.0 
Table 2. Solution construction of ant z=1 in stage-I 

 

Machine 
k 

Job 
i 

Steps of schedule generation s 
1 2 3 4 5 6 7 8 9 

1 1        15 15* 
2   8*       
3     11     

2 1 3 3 8 8 12 12    
2  5        
3 4 4 9 9      

3 1          
2          
3      14 14 14*  

4 1       14   
2          
3          

5 1          
2 2         
3          

Datum Time 2 3 8 8 11 12 14 14 15** 
Conflict -- I -- II -- -- -- -- -- 

Sequence of operations Qkz(s) O21 O22 O23 O31 O32 O11 O12 O33 O13 
*Flow time of jobs          **Makespan time 
Table 3. Active feasible schedule generation for solution generated by ant z=1  
 

Conflict 
No. k 

Contending 
Jobs 

i 
kiji’j’(1) ψi(s) P”1kiji’j’(1) 

 
Cumulative 

P”1kiji’j’(1) rand() Assigned 
Job 

I 2 
1 0.1 6 0.235 0.235 

0.464 2 2 0.1 6 0.235 0.470 
3 0.1 9 0.530 1.000 

II 2 1 0.1 6 0.308 0.308 0.705 3 3 0.1 9 0.692 1.000 
Table 4. Conflict resolved during solution generation by ant z=1  
 
After all the ants have generated a feasible schedule, the makespan time is determined and 
is shown in Table 5. The best solution found in the current iteration (tn=1) is f(ibest) = 12 
corresponding to the solution generated by ant z=2. The current ibest solution is compared 
with the gbest solution and if f(ibest)<f(gbest), then the global best solution is updated with 
the iteration best solution.  
 

Ant  z 1 2* 3 4 5 6 7 8 9 10 
Makespan 

time 15 12** 17 13 17 13 21 12 13 13 

*ibest ant    **f(ibest) solution 
Table 5. Solution generated by all ants in first iteration   
 
The dynamic mixed strategy between ibest and gbest for pheromone updating is given 
below:  
fqgbest is the number of iterations for which the ibest solution is used for pheromone updating. A  
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3 1          
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3      14 14 14*  
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2          
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Conflict 
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Contending 
Jobs 
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Cumulative 
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3 0.1 9 0.530 1.000 

II 2 1 0.1 6 0.308 0.308 0.705 3 3 0.1 9 0.692 1.000 
Table 4. Conflict resolved during solution generation by ant z=1  
 
After all the ants have generated a feasible schedule, the makespan time is determined and 
is shown in Table 5. The best solution found in the current iteration (tn=1) is f(ibest) = 12 
corresponding to the solution generated by ant z=2. The current ibest solution is compared 
with the gbest solution and if f(ibest)<f(gbest), then the global best solution is updated with 
the iteration best solution.  
 

Ant  z 1 2* 3 4 5 6 7 8 9 10 
Makespan 

time 15 12** 17 13 17 13 21 12 13 13 

*ibest ant    **f(ibest) solution 
Table 5. Solution generated by all ants in first iteration   
 
The dynamic mixed strategy between ibest and gbest for pheromone updating is given 
below:  
fqgbest is the number of iterations for which the ibest solution is used for pheromone updating. A  
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gbest solution is used for pheromone updating after fqgbest no. of iterations. This procedure of 
pheromone updating is repeated until fqgbest value changes according to iteration number tn. In 
the first 15 iterations (tn<=15), only ibest solution is used to update the pheromone trails. The 
value of fqgbest is set at a higher value of 3 for iterations 15<tn<=30 due to which more number 
of ibest solutions are subjected to pheromone updating. This leads to more exploration of the 
solution space. The value of fqgbest is set at 2 for 30<tn<=50 and fqgbest=1 for tn>50. The 
parameters set for pheromone update rule are: ρ=0.9 and y=10. The values of max(1), min(1), 
max(1) and min(1) are updated and the pheromone intensities are limited to the interval 
[max(2), min(2)] and [max(2), min(2)]. The updated values are max(2)=max(2)=0.833 and 
min(2)=min(2)=0.083. The pheromone trail intensities for τijr(tn) are updated and is shown in 
Table 6. The updated pheromone trail intensities for εkiji’j’(2) obtained with machines 1 to 5 are 
shown in Tables 7 to 11 respectively. The process of solution construction, evaluation, sorting 
and pheromone updating is repeated till the termination criterion is reached. 
 

Route 
r 

Operation Oij 
O11 O12 O13 O21 O22 O23 O31 O32 O33 

1 0.173 0.090 0.090 0.090 0.173 0.090 0.090 0.090 0.173 
2 0.090 0.173 0.173 0.173 0.090 0.173 0.173 0.173 0.090 

Table 6. Updated pheromone trail intensities for  τijr(2) 
 

Operation 
Oi’j’ 

Operation Oij 
O12 O13 O23 O32 O33 

0 0.090 0.173 0.090 0.090 0.090 
O12 --- 0.090 0.090 0.090 0.090 
O13 --- --- 0.090 0.173 0.090 
O23 0.090 0.090 --- 0.090 0.090 
O32 0.090 0.090 0.090 --- 0.090 
O33 0.090 0.090 0.090 --- --- 

Table 7. Updated pheromone trail intensities for  εkiji’j’(2) for machine  k =1 
 

Operation 
Oi’j’ 

Operation Oij 
O11 O13 O21 O22 O31 

0 0.173 0.090 0.090 0.090 0.090 
O11 --- 0.090 0.090 0.173 0.090 
O13 --- --- 0.090 0.090 0.090 
O21 0.090 0.090 --- 0.090 0.090 
O22 0.090 0.090 --- 0.090 0.090 
O31 0.090 0.090 0.090 0.090 --- 

Table 8. Updated pheromone trail intensities for  εkiji’j’(2) for machine  k =2 
 

Operation 
Oi’j’ 

Operation Oij 
O11 O22 O31 O33 

0 0.090 0.090 0.173 0.090 
O11 --- 0.090 0.090 0.090 
O22 0.090 --- 0.090 0.090 
O31 0.090 0.090 --- 0.173 
O33 0.090 0.090 --- --- 

Table 9. Updated pheromone trail intensities for  εkiji’j’(2) for machine  k =3 

 

Operation 
Oi’j’ 

Operation 
Oij 

O12 O32 
0 0.173 0.090 

O12 --- 0.090 
O32 0.090 --- 

Table 10. Updated pheromone trail intensities for  εkiji’j’(2) for machine  k =4 
 

Operation 
Oi’j’ 

Operation  
Oij 

O21 O23 
0 0.173 0.090 

O21 --- 0.173 
O23 0.090 --- 

Table 11. Updated pheromone trail intensities for  εkiji’j’(2) for machine  k =5 

 
5. Performance comparison and results  
 

The performance of the proposed ACO algorithm is evaluated by comparing its solutions 
with the Best Known Solutions (BKS) from literature (Mastrolilli and Gamberdella, 2000). A 
set of benchmark problems is used for the performance evaluation. The first set of 
benchmark instances are from Thomalla (2001), in which all the problems are flexible job 
shop instances with total flexibility, i.e., all the operations in each of the problem instances 
can be performed on all the machines. The second set of benchmark instances are from 
Brandimarte (1993), in which all the problems are flexible job shop instances with partial 
flexibility. The results of the proposed ACO algorithm are evolved with the program coded 
in C language.  
Researchers and practitioners are nowadays using constraint programming (CP) techniques, 
which is a relatively new methodology for solving combinatorial optimization problems 
(Bockmayr & Kasper, 1998). Constraint programming can solve an optimization problem by 
solving a series of decision (or constraint satisfaction) problems resulting from a dichotomy 
to locate the optimal objective value (Pan & Shi, 2008). More precisely, each problem is 
solved through an enumerative search that resembles the tree search of branch-and-bound, 
except that it involves no bounding and only seeks a feasible solution. However, the overall 
optimum seeking can be computation-intensive. ILOG Solver, a constraint programming 
tool marketed by ILOG, has proven to solve scheduling problems in reasonable 
computational time (Heisig & Minner, 1999; Pinedo, 2005). Weil et al. (1995) demonstrated 
the efficiency of ILOG Solver as a modeling and resolution tool for nurse scheduling 
problem. Quiroga et al. (2005) developed a CP model for a FMS scheduling problem using 
ILOG OPL and presented its computational efficiency for benchmark problems. In this 
chapter, a CP model is developed for the FJSP using ILOG OPL language and solved using 
ILOG OPL Studio. The results of ILOG OPL Studio are used to test the performance of the 
proposed ACO for the benchmark instances. 
The parameters set for the proposed ACO are: α=1, β=2, γ=1, =2 εmax(1)=τmax(1)=0.1, ρ=0.9 
and y=10. In the first 100 iterations, only ibest solution is used to update the pheromone 
trails; fqgbest=4, for 100<tn<=200; fqgbest=3 for 200<tn<=300; fqgbest=2 for 300<tn<=400; fqgbest=1 
for 400<tn<=500; fqgbest=0 for tn>500. The number of ants (no_ant) used in the proposed ACO 
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Table 6. The updated pheromone trail intensities for εkiji’j’(2) obtained with machines 1 to 5 are 
shown in Tables 7 to 11 respectively. The process of solution construction, evaluation, sorting 
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which is a relatively new methodology for solving combinatorial optimization problems 
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solving a series of decision (or constraint satisfaction) problems resulting from a dichotomy 
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except that it involves no bounding and only seeks a feasible solution. However, the overall 
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computational time (Heisig & Minner, 1999; Pinedo, 2005). Weil et al. (1995) demonstrated 
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for solution construction is equal to twice the total number of operations. The termination 
criterion used for ACO is the total number of iterations which is equal to 100 times the total 
number of operations of all jobs. The parameters for the proposed ACO are obtained by fine 
tuning through trials. The proposed algorithm is run five times for each problem and the 
best solution obtained has been taken for comparison. The proposed model in ILOG OPL is 
run for a pre-specified period of time which is set as the total time required for the proposed 
ACO to find a solution for a particular problem. Table 12 shows the results of ACO and 
ILOG OPL Studio that are obtained with a Pentium-IV 2.4GHz processor. 
The comparison between the proposed ACO algorithm and the BKS in the literature for the 
above benchmark problems reveals that the best solution obtained with ACO for seven out 
of 13 problems is the same as the best known solutions in the literature. For one problem 
(MK07) the proposed ACO has given a better result than the best known solution. For three 
problems (MK04, MK05 & MK06) the results of the proposed ACO is closer to the best 
known solutions. The proposed algorithm has outperformed ILOG OPL Studio for almost 
all the Benchmark instances. Therefore, it is inferred from the computational results that the 
proposed ACO provides better performance than ILOG OPL Studio and is competent with 
the existing methodologies for FJSP. 
 

Reference Problem 
Name 

Problem 
Size 

n × m 
BKS 

Makespan time 
Proposed ACO ILOG 

OPL 
Studio Test runs Best 

Thomalla 
(2001) 

EX1 3×3 117 117,117,117,117,117 117 117 
EX2 4×3 109 109,109,109,109,109 109 109 
EX3 6×10  316 316,316,316,316,316 316 674 

Brandimarte 
(1993) 

MK01 10×6 40 40,40,40,40,40 40 52 
MK02 10×6 26 27,27,27,26,27 26 49 
MK03 15×8 204 204,204,204,204,204 204 319 
MK04 15×8 60 67,66,67,67,67 66 67 
MK05 15×4 173 178,178,174,174,178 174 293 
MK06 10×15 58 77,77,80,77,81 77 230 
MK07 20×5 144 143,144,144,144,144 143 223 
MK08 20×10 523 523,523,523,523,523 523 595 
MK09 20×10 307 328,349,346,340,343 328 534 
MK10 20×15 198 247,258,267,248,254 247 385 

Table 12. Result obtained with the proposed ACO and ILOG OPL Studio for the set of data 
from literature 

 
6. Conclusion 
 

In this Chapter, we proposed an ACO based heuristic to solve the FJSP for minimum 
makespan time criterion. The solution construction method used in the proposed ACO 
makes it capable to rummage through the entire solution space and provide all possible 
instances that an enumerative search can and is therefore capable of finding the optimal or 
near-optimal solutions. Since the proposed ACO uses Giffler and Thompson schedule 
generation procedure for generating active feasible schedules, therefore, the proposed ACO 
can be easily adapted to generate schedules for any scheduling objective of FJSP. The 

 

performance of the proposed ACO is analyzed with various benchmark instances, which 
reveals that the proposed ACO is competent with the existing approaches. The proposed 
ACO has outperformed the CP model solved using ILOG OPL Studio. A future research 
issue would be to develop hybrid heuristics by incorporating local search techniques such as 
Tabu search, Simulated Annealing, etc. to the proposed ACO algorithm. 
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for solution construction is equal to twice the total number of operations. The termination 
criterion used for ACO is the total number of iterations which is equal to 100 times the total 
number of operations of all jobs. The parameters for the proposed ACO are obtained by fine 
tuning through trials. The proposed algorithm is run five times for each problem and the 
best solution obtained has been taken for comparison. The proposed model in ILOG OPL is 
run for a pre-specified period of time which is set as the total time required for the proposed 
ACO to find a solution for a particular problem. Table 12 shows the results of ACO and 
ILOG OPL Studio that are obtained with a Pentium-IV 2.4GHz processor. 
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all the Benchmark instances. Therefore, it is inferred from the computational results that the 
proposed ACO provides better performance than ILOG OPL Studio and is competent with 
the existing methodologies for FJSP. 
 

Reference Problem 
Name 

Problem 
Size 

n × m 
BKS 

Makespan time 
Proposed ACO ILOG 

OPL 
Studio Test runs Best 

Thomalla 
(2001) 

EX1 3×3 117 117,117,117,117,117 117 117 
EX2 4×3 109 109,109,109,109,109 109 109 
EX3 6×10  316 316,316,316,316,316 316 674 

Brandimarte 
(1993) 

MK01 10×6 40 40,40,40,40,40 40 52 
MK02 10×6 26 27,27,27,26,27 26 49 
MK03 15×8 204 204,204,204,204,204 204 319 
MK04 15×8 60 67,66,67,67,67 66 67 
MK05 15×4 173 178,178,174,174,178 174 293 
MK06 10×15 58 77,77,80,77,81 77 230 
MK07 20×5 144 143,144,144,144,144 143 223 
MK08 20×10 523 523,523,523,523,523 523 595 
MK09 20×10 307 328,349,346,340,343 328 534 
MK10 20×15 198 247,258,267,248,254 247 385 

Table 12. Result obtained with the proposed ACO and ILOG OPL Studio for the set of data 
from literature 

 
6. Conclusion 
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generation procedure for generating active feasible schedules, therefore, the proposed ACO 
can be easily adapted to generate schedules for any scheduling objective of FJSP. The 

 

performance of the proposed ACO is analyzed with various benchmark instances, which 
reveals that the proposed ACO is competent with the existing approaches. The proposed 
ACO has outperformed the CP model solved using ILOG OPL Studio. A future research 
issue would be to develop hybrid heuristics by incorporating local search techniques such as 
Tabu search, Simulated Annealing, etc. to the proposed ACO algorithm. 
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