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1. Introduction 

Autonomous systems are able to move from one point to another in a given environment 
because they can solve two basic problems: the localization problem and the navigation 
problem. The localization purpose is to determine the current pose of the autonomous robot 
or system and the navigation purpose is to find out a feasible path from the current pose to 
the goal point that avoids any obstacle present in the environment. Obviously, without a 
reliable localization system it is not possible to solve the navigation problem. Both problems 
are among the oldest problems in human travels and have motivated a considerable amount 
of technological advances in human history. They are also present in robot motion around 
the environment and have also motivated a considerable research effort to solve them in an 
efficient way. 
The localization problem can be addressed in two main ways: on one hand, we have 
positioning systems and, on the other hand, we have self-localization systems. The positioning 
systems use external emitters (beacons) that are detected by on-board systems or an emitter 
located on board and several external receivers together with a communication system to send 
the robot the estimated pose. They use different variants of triangulation methods to estimate 
the robot pose at a given time. Different positioning systems can be found. The best known is 
the Global Positioning Systems (GPS) based on satellites around Earth and able to provide a 
localization in outdoor environments. For indoor environments the problem is more complex 
due to a high number of emitters and/or receivers required to obtain a complete coverage of 
the working area. Radio (Wifi and Zigbee), vision, and ultrasound-based systems are active 
research fields and have achieved an interesting development level, but these technologies 
depend strongly on the emitters and/or receivers distribution in the building. The positioning 
systems require to know the location of the emitters but they do not require to have an explicit 
map of the environment. Obviously, an implicit map is required at least to determine the 
distribution of the emitters or receivers along the environment. The global complexity of these 
indoor positioning systems is their weakest point, but it can be very interesting when the 
number of robots working in a given area is high. The self-localization systems use sensing 
systems located on board the vehicle and do not require any external system. Typical 
examples are ultrasound, laser, or vision-based localization systems where the emitter and the 
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receiver are located on the robot. This approach requires a map of the environment 
(predefined or learned) in order to estimate the robot pose. This chapter will focus on self-
location systems, which are a little more autonomous than positioning systems, particularly in 
indoor environments linked to a mapping learning system. 
The self-localization systems solve the pose estimation problem from two different initial 
situations: 

• Re-localization systems (also called tracking systems): they try to keep tracking the 
mobile robot’s pose, assuming the robot knows its initial position (at least approximately). 
Therefore, the self-localization system has to maintain the robot localized along the given 
mission. The majority of existing algorithms address only the re-localization problem 
because its mathematical treatment is less complex and, from a practical point of view, it is 
relatively simple to provide to the robot an initial pose. In this case, the small incremental 
errors produced along the robot motion and the initial knowledge of the robot’s pose make 
classical approaches such as Kalman filters applicable. The Kalman filter for robot re-
localization was introduced in the Eighties (Crowley, 1989; Cox, 1991; Leonard & Durrant-
White, 1992; Jensfelt & Krinstensen, 1999) and has been extensively used. This type of filter 
constitutes a very efficient solution to the re-localization problem. However, the 
assumptions nature of the uncertainty representation makes Kalman filters not robust in 
global localization problems. 

• Global localization systems: they do not assume any a priori knowledge about the 
robot’s initial pose and therefore, they have to estimate the robot’s pose globally. This 
problem has proven to be much more difficult to solve because the search space requires to 
use global techniques to explore or to integrate the received information until the pose 
converge to a unique solution.  
From a mathematical point of view, the global localization problem can be solved using two 
different approaches: Bayesian-based estimation methods and optimization-based methods. In the 
first approach, Bayesian methods integrate all existent probabilistic information (sensor and 
motion information) into the posterior probability density at each motion-perception cycle, 
and the point estimate is posteriorly obtained as the state with bigger posterior probability 
density. Thus, these methods concentrate on the accurate modeling of the posterior probability 
density as a way to represent the most feasible hypothetical areas and their probabilities. At 
the convergence point the probability distribution is concentrated in a small area. This group 
of solutions has been extensively studied and the vast majority of current methods can be 
included here. Monte Carlo localization methods (Jensfelt et al., 2000) are purely Bayesian 
methods where the posterior probability distribution is modeled explicitly through the density 
obtained  by the spatial distributions of particles (points with a given probability) along the 
search space. Other methods can be considered quasi-Bayesian, such as multi-hypotheses 
Kalman filters (Arras et al., 2002; Austin & Jensfelt, 2000; Jensfelt & Krinstensen, 1999; Cox & 
Leonard, 1994; Roumeliotis & Bekey, 2000), grid-based probabilistic filters (Fox et al., 1999; 
Burgard et al., 1996; Reuter, 2000) and, other hybrid solutions where the posterior probability 
distribution is modeled implicitly (Dellaert et al., 1999; Thrun et al., 2001). Multi-hypotheses 
Kalman filters are not completely Bayesian because, even if they maintain a set of multi-
hypotheses, each of them with an associated Gaussian probability whose aggregated 
probability distribution can model the posterior, they do not operate on a pure Bayesian way 
since they use a decision tree search mechanism based on geometrical constraints together 
with probabilistic attributes to manage the global data association problem. 

 

In the second approach, the optimization-based methods use also all existent probabilistic 
information to obtain a loss function that is minimized at each motion-perception cycle, and 
the point estimate is the point with lowest value of the loss function. Among the 
optimization-based approaches we can find differential evolution filters (Moreno et al., 
2006) and particle swarm optimization filters (Vahdat et al., 2007). These groups of methods 
have been more recently used and, only in the last years, have been able to give efficient 
solutions to the problem. This chapter presents a solution to the global localization problem 
based on a modified version of the Evolutionary Localization Filter able to deal with the 
problems introduced by observation and motion noise in the optimization process. The 
method takes advantage of the capability of the Differential Evolution method to find the 
minima in complex global optimization problems by using a stochastic search approach. 

 
2. Localization problem formulation 

The robot’s pose T(x y )   at time t  will be denoted by tx , and the data up to time t  by tY . 
The posterior probability distribution according to this notation can be written as 

t tp(x Y M)  , where M  is the environment model which is known. To alleviate the notation, 
the term M  is not included in the following expressions, t tp(x Y ) . The sensor data 
typically comes from two different sources: motion sensors which provide data related to 
change of the situation (e.g., odometer readings) and perception sensors which provide data 
related to environment (e.g., camera images, laser range scans, ultrasound measures). We 
refer to the former as motions iu  and to the latter as observations iz . Motion u(t 1)  refers 
to the robot displacement in the time interval [t 1 t]   as a consequence of the control 
command given at time t 1 . We will consider that both types of data arrives alternatively, 

t 0 0 t 1 t 1 tY {z u … z u z }       . These sensor data can be divided in two groups of data 

t t t 1Y {Z U }   where t 0 tZ {z … z }    contains the perception sensor measurements and 

t 1 0 t 1U {u … u }     contains the odometric information. To estimate the posterior 
distribution t tp(x Y ) , probabilistic approaches resort to the Markov assumption, which states 
that future states only depend of the knowledge of the current state and not on how the 
robot got there, that is, they are independent of past states.  
From a Bayesian point of view, the global localization problem seeks to estimate the pose which 
maximizes the a posteriori probability density. This problem consists of two linked problems. On 
one hand, the integration of the probabilistic information available into the a posteriori 
probability density function of each state, given the set of motions, the set of measures and the a 
priori environment map of the environment. On the other hand an optimization problem to 
determine the point MAP

tx̂  with maximum a posteriori probability density at a given time.  
 
                                  MAP

t t tx
arg maxp(x Y )x̂    

   t t t 1 t 1 t t 1 t 1 t 1x
arg maxp(z x u Y )p(x x u Y )            

                                         t t t t 1 t 1 t 1 t 1x
arg maxp(z x )p(x x u )p(x Y )          

                 
t t

i i i i 1 t 1 0x i 1 i 1
arg max p(z x ) p(x x u )p(x ) 

 

                                     (1) 
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The self-localization systems solve the pose estimation problem from two different initial 
situations: 

• Re-localization systems (also called tracking systems): they try to keep tracking the 
mobile robot’s pose, assuming the robot knows its initial position (at least approximately). 
Therefore, the self-localization system has to maintain the robot localized along the given 
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probability distribution can model the posterior, they do not operate on a pure Bayesian way 
since they use a decision tree search mechanism based on geometrical constraints together 
with probabilistic attributes to manage the global data association problem. 
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information to obtain a loss function that is minimized at each motion-perception cycle, and 
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have been more recently used and, only in the last years, have been able to give efficient 
solutions to the problem. This chapter presents a solution to the global localization problem 
based on a modified version of the Evolutionary Localization Filter able to deal with the 
problems introduced by observation and motion noise in the optimization process. The 
method takes advantage of the capability of the Differential Evolution method to find the 
minima in complex global optimization problems by using a stochastic search approach. 

 
2. Localization problem formulation 

The robot’s pose T(x y )   at time t  will be denoted by tx , and the data up to time t  by tY . 
The posterior probability distribution according to this notation can be written as 

t tp(x Y M)  , where M  is the environment model which is known. To alleviate the notation, 
the term M  is not included in the following expressions, t tp(x Y ) . The sensor data 
typically comes from two different sources: motion sensors which provide data related to 
change of the situation (e.g., odometer readings) and perception sensors which provide data 
related to environment (e.g., camera images, laser range scans, ultrasound measures). We 
refer to the former as motions iu  and to the latter as observations iz . Motion u(t 1)  refers 
to the robot displacement in the time interval [t 1 t]   as a consequence of the control 
command given at time t 1 . We will consider that both types of data arrives alternatively, 

t 0 0 t 1 t 1 tY {z u … z u z }       . These sensor data can be divided in two groups of data 

t t t 1Y {Z U }   where t 0 tZ {z … z }    contains the perception sensor measurements and 

t 1 0 t 1U {u … u }     contains the odometric information. To estimate the posterior 
distribution t tp(x Y ) , probabilistic approaches resort to the Markov assumption, which states 
that future states only depend of the knowledge of the current state and not on how the 
robot got there, that is, they are independent of past states.  
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 

                                     (1) 
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This expression requires to specify t t 1 t 1p(x x u )    and t tp(z x ) . Where t tp(z x )  expresses 
the probability density function for the observation tz , given the state tx  and an 
observation noise e, and t t 1 t 1p(x x u )    indicates the probability density function for the 
motion noise  . The expression (1) can be reformulated in an equivalent and more 
convenient form by taking logarithms:  
 

      
t t

e i i i i 1 i 1 0x i 1 i 1
max[ log p (z x ) log p (x x u ) log p(x )]  

 

                          (2) 
 

In general, the calculation of estimates for this optimization problem have no explicit 
analytical solutions for nonlinear and non-Gaussian models, and have to be iteratively 
solved to avoid the difficulties included in the optimization problem. These difficulties 
derive from the following aspects:  

1. It is highly non-linear. Non-linearities due to motion and perception functions 
are propagated through the a posteriori robot pose probability density function.  

2. Environment symmetries make the objective function to maximize multi-modal. 
At initial stages the objective function admits a high number of solutions, even with the 
same maximum value. That happens in highly symmetric environments, such as typical 
offices buildings. The reason can be noticed in (2), where the second term p  is a constant in 
absence of robot’s motion and the third term 0p(x )  is also constant in absence of initial pose 

information. This leads to an objective function t
x e i ii 1

max log p (z x )


  which only depends 
on observations and has potentially multiple maxima in highly regular environments.  

3. Another source of symmetries is originated by sensor limitations. The range and 
angular resolution of the sensor adds observational symmetries. Besides, some specific 
robot’s poses can originate observational limitations which adds symmetries (e.g., a robot 
closes to a corner and looking at the corner).  
In order to solve (2), a set of candidate estimates have to be initially generated, maintained 
or pruned according to the new observation and motion information included in the 
objective function. The problem is simplified in case the initial probability distribution is 
Gaussian, because the problem becomes uni-modal and then, it is possible to obtain, even 
analytically, an estimate (due to the problem can be converted into a quadratic minimization 
problem, if non linear motion and observation models can be approximated by a linear 
Taylor series expansion about the current estimate tx̂ ). This situation leads us to the well 
known Extended Kalman Filter solution of the position tracking problem.  
We will use the notation 0f (x)  to refer the objective function to maximize. The problem of 
finding an x  that maximizes 0f (x)  among all x  that satisfy the conditions 

t 1 t t tx f(x u ) v     and t t tz h(x ) e   is limited to finding the optimal value within the set of 
all feasible points. A pose is feasible if it satisfies the constraints f()  and h() . In the problem 
under consideration, there exist, at least at initial stages, multiple optimal values. Thus, the 
methods to solve the problem require to be able to manage a set of solutions. The Bayesian 
methods use the a posteriori probability density function to do that, as was previously 
commented. The method proposed here uses a different approach. The idea is to maintain a 
set of feasible solutions to the localization problem, and let this set evolve towards optimal 
values according to the observed motion and perception data.  

 

2.1 Recursive formulation 
The MAP estimate formulated as an optimization problem subject to conditions, in equation 
(2), is not practical from a computational point of view. To implement a global localization 
algorithm in a robot, a recursive formulation is required. The objective function 0 tf (x )  can 
be expressed recursively in the following way:  
 

t t

0 t e i i i i 1 t 0
i 1 i 1

f (x ) log p (z x ) log p (x x u ) log p(x ) 
 

        

                                        
t 1

e t t e i i
i 1

log p (z x ) log p (z x )




      

                    
t 1

t t 1 t 1 i i 1 t 1 0
i 1

log p (x x u m) log p (x x u ) log p(x )


     


         

                     e t t t t 1 t 1 0 t 1log p (z x ) log p (x x u ) f (x )                                     (3) 
 
If we are able to solve the optimization problem at time t 1 , and we have a set of sub-
optimal solutions which satisfy the optimization problem up to time t 1 , the MAP 
optimization problem can be reformulated as 
   

                          t 1 t t e t t 1 t 1x
maxlog p (z x ) log p (x x u )x̂                                        (4) 

 
where t 1x̂   is the x which maximize the MAP optimization problem at time t 1 , and t 1x

  
is the population set of sub-optimal solutions at the end of iteration t 1 . Then solving (4) 
we will obtain a recursive version of the MAP estimate.  

 
3. Evolutionary Localization Filter algorithm 

3.1 Differential Evolution: basic concepts 
The algorithm proposed to implement the adaptive evolutive filter is based on the 
differential evolution method proposed by Storn and Price (Storn & Price, 1995) for global 
optimization problems over continuous spaces. The Adaptive Evolutionary Localization 
Filter uses as a basic solution search method, the classical DE/rand/1/bin version with some 
modifications to improve its characteristics in presence of a noisy fitness function.  
The DE/rand/1/bin uses a parallel direct search method which utilizes n dimensional 
parameter vectors k k k T

i i 1 i nx (x … x )     to point each candidate solution i  to the optimization 
problem at iteration k  for a given time step t . This method utilizes N parameter vectors 

k
i{x i 1 … N}     as a sub-optimal feasible solutions set (population) for each generation t of 

the optimization process.  
The initial population is chosen randomly to cover the entire parameter space uniformly. In 
absence of a priori information, the entire parameter space has the same probability of 
containing the optimum parameter vector, and a uniform probability distribution is 
assumed. The differential evolution filter generates new parameter vectors by adding the 
weighted difference vector between two population members to a third member. If the 
resulting vector yields a lower objective function value than a predetermined population 
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
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Filter uses as a basic solution search method, the classical DE/rand/1/bin version with some 
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k
i{x i 1 … N}     as a sub-optimal feasible solutions set (population) for each generation t of 

the optimization process.  
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member, the newly generated vector replaces the vector with which it was compared; 
otherwise, the old vector is retained. This basic idea is extended by perturbing an existing 
vector through the addition of one or more weighted difference vectors to it (see fig. 2).  
 
3.1.1 Differential Perturbation Operation 
The perturbation scheme generates a variation k

i  according to the following expression,  
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different from running index i , and mutually different. F  is a real constant factor which 
controls the amplification of the differential variation 
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3.1.2 Crossover Operation 
In order to increase the diversity of the new generation of parameter vectors, a crossover is 
introduced. The new parameter vector is denoted by k k k k T

i i 1 i 2 i nu (u u … u )       with  
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where k
i jp   is a randomly chosen value from the interval (0,1) for each parameter j of the 

population member i at step k, and  is the crossover probability and constitutes the 
crossover control variable. The random values k

i jp    are made anew for each trial vector i. 

 
Fig. 1. New population member generation. 

 
3.1.3 Selection Operation 
To decide whether or not vector k

iu  should become a member of generation i 1 , the new 
vector is compared to k

ix . If vector k
iu  yields a value for the objective fitness function better 

than k
ix , then is replaced by k

iu  for the new generation; otherwise , the old value k
ix  is 

retained for the new generation.  

 

3.1.4 Shift Operation 
After the DE algorithm has completed its iterations, the points included in the population 
set tx  are moved according to the robot motion model i i

t 1 t tx f(x u )   , the candidate pose 
and the observed odometric data.  

 
3.1.5 Fitness function 
According to the optimization problem under consideration, x t tmax (log p (z x )   
 e t t 1 t 1log p (x x u ))   , the natural choice for fitness function is   
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This expression contains two probability densities associated to errors in the motion and 
observation models (the perception error probability density distribution t tp(z x )  and the 
robot’s  motion error probability density distribution t t 1 t 1p(x x u )   ). A third probability 
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robot’s pose 0p(x ) . This initial probability pose distribution is used at the initial phase to 
distribute the population set of the ELF algorithm. In case of global localization problem, the 
initial pose information is null. Then, the population set is distributed according to a 
uniform probability distribution along the space state.  
To compute t tp(z x ) , it is necessary to predict the value to be observed by the sensor, 
assuming that the robot’s pose estimate is known. Let assume the pose estimate is tx̂ , the 
sensor relative angle with respect to the robot axis is i  and a given environment model m . 
According to the observation model, the noise-free predicted measurement will be 

t i t ih( m)ˆẑ x     (in our case, t iẑ   is computed using a ray tracing method). Assuming that 
the measurement error is Gaussian with zero mean and known covariance ( t i ee N(0 )   ), 
the predicted measurement will be the center of the Gaussian probability distribution of the 
expected distance measured by the i  sensor when robot is located at tx . Then the 
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The integration of all individual sensor beam probabilities into a joint probability value, 
assuming conditional independence between the individual measurements, is expressed as   
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where sN  is the number of sensor observations.  
The second probability required to calculate the objective function is i i 1 t 1p(x x u )   . To 
compute i i 1 t 1p(x x u )   , we have to predict the robot’s pose tx̂  assuming that the robot’s 
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2( z )ẑt i t is s

2
e

N N 1 2

t tt t i 2 1 2
i 0 i 0 e

1p(z ) p(z ) eˆ ˆx x (2 )

 


 

 
 

   
                           (9) 

 
where sN  is the number of sensor observations.  
The second probability required to calculate the objective function is i i 1 t 1p(x x u )   . To 
compute i i 1 t 1p(x x u )   , we have to predict the robot’s pose tx̂  assuming that the robot’s 
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pose estimate is t 1x̂   and taking into account the motion command t 1u   at that cycle. Let 

t t 1 t 1f( u )ˆ ˆx x     denote this ideal predicted state. Assuming the motion error is a zero mean 
with known variance Gaussian probability distribution (that is N(0 P)   ), this predicted 
measure will be the center of the Gaussian probability distribution of the expected distance 
when the robot is located at tx̂ . Then, the i i 1 t 1p(x x u )    probability can be expressed as  
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Introducing the expressions of t t 1 t 1p(x x u )    and t tp(z x )  in (7)  
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which can be reduced to find the robot’s pose to minimize the following function   
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The differential evolutive localization filter will minimize iteratively the fitness function (12) 
and then, the displacement is evaluated according to the odometric information. The 
objective fitness function let us notice that the optimization considers the quadratic 
observation error and the quadratic pose error between the predicted pose and the pose 
under consideration weighted according its covariance matrix.  

 
4. Difficulties to achieve a robust method 
 
Different problems need to be solved in optimization methods to achieve a reasonable 
robustness level. Some of this problems are general and related to the global localization 
problem, and others are related to the nature of the basic algorithm adopted. Among the 
general problems, we can remark the following ones:  

• The lack of a method to determine the significance of a new point apart from the 
fitness function value. This originates two classes of problems: premature convergence to a 
local minima and, in case of multiple hypotheses situations, the premature elimination of 
feasible hypotheses. Both situations originate a fail in the convergence to the true global pose. 
This second situation can be observed in figure 2, where the red points are the pose hypotheses 
at population set. In this case, the robot is localized at an office exactly equal to others in 
dimensions and furniture. Due to the fact that the robot’s orientation is 270  degrees, it can not 

 

distinguish between offices and the hypothesis should be maintained trough iterations. But, if 
we let the algorithm iterate, it can be observed how some of the hypotheses are removed. This 
process can end in one hypothesis. Obviously, this algorithm behavior is not robust. 

 
Fig. 2. Premature hypothesis elimination, initial pose (105, 30, 270), 200 elements in 
population and   of 3%  of the measured signal. 
 
A traditional solution is to increase the population number to make more difficult the 
premature elimination of feasible hypotheses and to limit the number of iterations to control 
the algorithm progress.  
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• A second important problem is how to determine the stopping criteria. 
Traditional methods are: to fix a predefined iteration number or to stop the algorithm when 
the fitness function does not improve for a number of iterations. However the use of a 
predefined iteration number can also lead to premature elimination of hypotheses, as can be 
observed in the example of figure 3, where, after three motions the algorithm, it has 
converged prematurely to an incorrect pose. In the figure, the blue cross indicates the best 
fitness pose of the population set and the magenta points show the observed laser 
measurements projected over the environment map according to the best pose estimate. 
The second idea for the stopping criteria consists on stopping the algorithm if after a predefined 
number of iterations the best hypothesis is not modified. This stopping criteria is not easy to 
establish. If the number of iterations without improvement is low, the algorithm can not 
converge or converge very slowly. This problem can be observed in the example of figure 4 that 
shows a stopping criteria of 20  cycles without best fitness improvement. In the figure can be 
notice that the algorithm can not converge properly. This problem can be partially eliminated by 
using a bigger number of default cycles. In that case, the algorithm does more iterations at each 
perception-motion cycle but then, we move to the previous case situations where the algorithm 
converges prematurely to an improper pose. Obviously, we can try to adjust the parameter to 
each situation, but this adjust depends on the observation and motion noises, on the shape 
and size of the environment observed at initial pose and, consequently, it is not robust.  

 

 
Fig. 3. Premature hypothesis elimination, starting pose (305, 30, 270), 200 elements in 
population and  of 3%  of the measured signal, motion +2.5 cells per cycle in y  direction. 

 

• A third problem is the population dispersion. The problem can be perceived in 
the last image of figure 4, where the population set is dispersed considerably when the robot 
goes out of the office and passes to the corridor. Since Differential Evolution is a stochastic 
search method, the pose set spreads along the best fitness areas contained in the stochastic 
search ball (defined by the possible combinations of three elements stochastically taken from 
the population set). If the population has not converged, it spreads when the robot moves to 
an area where many possible poses has a similar fitness value. This problem is originated by 
the lack of memory of each individual pose of the population set in the algorithm. 

 

 
Fig. 4. Convergence failure, starting pose (305, 30, 270), 200 elements in population and   of 
1%  of the measured signal, motion +2.5 cells per cycle in y direction. 

 
4.1 Solutions to deal with noisy fitness function problems 
The two first problems are originated when a superior candidate solution may be 
erroneously considered as an inferior solution due to the noise and eliminated from the set 
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of solutions by the algorithm. Different solutions has been proposed in literature to 
compensate the noise problem in evolutive algorithms:  

• Increasing the population size. It is the most simple way to deal with the noise 
problem. This technique reduces the probability of eliminating correct hypothesis 
prematurely, but increases the computational cost of the algorithm. This solution does not 
solve the dispersion problem.  

• Resampling and averaging the fitness function from several samples reduces the 
error in the fitness. This method assumes as estimate to evaluate the fitness function the 
sampling mean that has its standard error reduced by n , where n  is the number of 
samples used to estimate the mean. This technique is frequently used by the optimization 
researchers, but it requires to sample the fitness function repeatedly. This technique can not 
be used for dynamical systems because these systems do not remain in the same state and 
consequently, they can not be used for the global localization system problem.  

• Thresholding was proposed by Markon (Markon et al., 2001). The idea is to replace 
an existing candidate solution only when the fitness difference is larger than a given threshold 
 . This method requires to calculate the threshold value, which depends on the variance of the 
noise and the fitness distance to optimal fitness value. This mechanism requires to increase the 
number of iterations,  since the level of candidate solutions rejected increases.  

• Estimation of the true fitness. This idea was suggested by Branke (Branke et al., 
2001). He proposes to estimate an individual fitness using a local regression of the fitness of 
the neighboring individuals. The underlying assumptions of this method are: that the true 
fitness function can be locally approximated by a low polynomial function, that the variance 
in a local neighborhood is constant, and the noise is normally distributed.  
The third problem (dispersion) requires a different approach and has not be widely studied 
in literature (perhaps because it appears mostly in dynamical system subject to noise).  

 
5. Rejection Differential Evolution Filter 

The solution adopted in this work use three main mechanisms to improve the robustness 
and efficiency of the basic DE algorithm to solve the global localization problem. These 
mechanisms are:  

1. A threshold rejection band to avoid the premature elimination of solutions. This 
mechanism decreases the eagerness of the algorithm, allowing it to eliminate a candidate 
solution from the set only when the offspring candidate is significatively better from a 
statistical point of view.  

2. An stopping criteria based on the expected fitness value to stop the algorithm 
iterations in a statistically equivalent point. This idea will let the algorithm iterate as much as 
possible to obtain a fast convergence towards the solution if there is a statistical improvement 
between iterations or to stop very fast if no statistical improvement is obtained.  

3. Adjustment of the perturbation amplification factor F . This mechanism tries to 
maintain a high amplification factor while the population evolves in the first perception 
cycle to the most the promising areas (a wide scope search is required) and then to limit the 
algorithm search scope when the population set is distributed in the most feasible areas.  
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where t iz   is the measure given by the range scan sensor at angle i  at cycle t , j
t iẑ   is the 

estimated observation for the candidate robot’s pose j
tx , and tx  is the pose estimate (if it exists 

at cycle t). The second term of the expression depends on the robot pose estimate tx̂  that is not 
known at initial step, and it is neglected until a unique pose estimate is obtained (that happens 
when all population has converged to a limited area around the best pose estimate). The 
fitness function before the convergence point information takes the following form:  
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where j
t it i t i(z )ẑ      represents the discrepancy between the observed and the predicted 

value of the sensor data. To estimate the expected noise band for the fitness function, we 
need to calculate the expected value for 0E[f ]  when the pose under evaluation is the true 

one. The term sN 2 2
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chi-square distribution with sN  degrees of freedom. This distribution is well known and it 
has mean sN  and variance s2N . Then, the expected minimum fitness value will be  
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That means that, even if the pose we are considering was the true robot’s pose, the expected 
fitness function value would be sN 2  due to observation errors produced at the perception 
time. If two candidate poses 1x  and 1x'  are compared at a given iteration time, the question 
is: when can we consider there exists a reasonably evidence that candidate pose 1x  is better 
than 1x' ?. In the tests, different values for the threshold rejection level have been simulated. 
To maintain the elitism in the method, one exception has been introduced (a pose candidate 
with a fitness better than the best pose existent up to that moment will always pass to the 
following iteration). That exception consists of selecting the best pose obtained for the next 
iteration population, independently of the rejection threshold.  

 
5.2 Stopping condition 
A classical problem in optimization methods is how to determine a stopping condition. This 
problem can be considered in different ways: limiting the number of iterations, iterating 
until a pre-specified accuracy is obtained or iterating until no additional improvement is 
obtained. But in case of noisy fitness problems, those conditions are not appropriate.  
Assuming that the fitness function is a chi-square with sN  degrees of freedom, it is possible 
to obtain the p-quantile function value with a pre-specified p  value of probability, or in 
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of solutions by the algorithm. Different solutions has been proposed in literature to 
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other words, the fitness function value 1 pf   that has 1 p  probability of being inferior to the 
fitness function value at any perception cycle. Quantile values for some pre-specified 
probability values and degrees of freedom can be found in statistics literature.  

 
5.3 Amplification factor 
The previous mechanisms improve greatly the robustness but they do not exploit the local 
convergence. This effect is clearly evident in office buildings where many offices have the 
same dimensions, which originates a multiple convergence areas. Once the robot gets out of 
the office to a corridor, if factor F is maintained high, the population spreads along the 
corridor areas.  
To avoid this problem, the amplification factor is initialized at F 0 99   in the first iteration 
of the observation cycle and, after the first perception cycle, F  is decreased to a low value,  
F 0 05  . This tends to keep the search area of the algorithm at initial perception cycle as 
wide as possible and, once the algorithm has localized the most feasible areas, the 
amplification factor is decreased to a low value to concentrate the exploration in the 
surroundings of the previous areas avoiding an unnecessary dispersion of the population.  

 
6. Convergence results 

To test the algorithm characteristics, a simulated environment has been considered (figure 
5). This environment is similar to many office indoor areas. All offices are localized along 
the central corridor. The offices localized on the upper part of the figure have the same 
length in y  dimension and an x  length progressively decreasing (in one cell) from offices 
localized on the left side of the figure to those located on the right side. On the contrary, 
offices localized on the lower part of the figure are of exactly the same dimensions and 
appearance. The offices localized on the upper and lower corners of the environment have 
similar dimensions but doors are localized on different sides.  

 
6.1 Test 1 
The first test tries to determine the capability of the algorithm to localize the robot when it is 
localized at a distinguishable pose. The true robot’s position is T T(x y ) (60 60 0)      and the 
variance considered for each measurement in the simulation is of 3%  of the measured signal, 
which is relatively noisy compared with real laser scanners. The population set used in the 
test is of 100  elements.  
In the test example of figure 5, the stopping condition happens at iteration 334 . At that 
point the estimated pose is (60 232 60 098 359 839)      (units are in cells and degrees). The size 
of the cell considered for the map is of 12  cm, which corresponds to an estimation error of 
2 79  cm in x dimension, 1 182  cm in y and 0 16  degrees in orientation, which is quite 
accurate for the noise level and for one perception cycle. In figure 5, the red points indicate 
the candidate poses position, the magenta points represent the points observed in the 
environment according to the best pose obtained, and the blue cross represents the best pose 
obtained. If we increase the noise level, the number of feasible points at the end of the first 
perception cycle tends to increase, since to the noise level tends to make the disambiguation 
capability of the method more difficult.  

 

 

 

 
Fig. 5. Convergence process along different iterations (50, 100, 150, 200, 250, 334) of the first 
perception cycle. 
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6.2. Test 2 
The second test tries to determine the capability of the algorithm to identify all possible 
feasible areas in case the robot is located in a non-distinguishable pose. The true robot 
position is T T(x y ) (60 60 0)      and the variance considered for each measurement in the 
simulation is of 3%  of the measured signal,  which is relatively noisy compared with real 
laser scanners. The population set used in the test is of 100 elements. Figure 6 shows the 
convergence population process along the iterations of the first perception cycle. It can be 
noticed how the algorithm is able to concentrate the population in the most feasible areas (in 
this case, in offices not localized in front of a laboratory door). The most interesting aspect of 
this second test is that the algorithm does not eliminate any potential hypothesis.  
After the first perception cycle the robot is moved upward (y direction) in the map: 2 5  cells 
at each motion plus a Gaussian error. After the motion, the whole population set is moved 
according to the odometry information and a new localization cycle is started, this time with 
an amplification factor F 0 05  . Figure 7 shows the successive population convergence 
toward an only hypothesis.  
In the test example of figure 7, the stopping condition changes following the next sequence: 
314, 24, 13, 11, 68 and 9. It can be noticed how the algorithm is heavier in the first perception 
cycle since it needs to eliminate infeasible areas which require a high number of pose trails. 
After that iteration, the stopping criteria is reached faster, requiring a number of iterations of 
two orders of magnitude to converge. It can also be noticed that the number of iterations 
increases when the robot goes out of the office and perceives the corridor. In that case, the 
algorithm requires 68  iterations before reaching the stopping criteria. Once the robot 
observes the corridor, it is able to converge to only one feasible pose area, since the 
observations that let the algorithm disambiguate between the offices.  

 
6.3. Test 3 
The third test tries to determine the capability of the algorithm to identify all possible 
feasible areas in case the robot is localized at the worst possible case. The worst case 
happens when the robot is localized at a corner and observes the corner from a short 
distance. In that case, it is a non-distinguishable pose and the number of possible feasible 
poses exploits. The true robot’s position is T T(x y ) (10 70 135)     , which corresponds to the 
upper left corner of the hall localized at the left side of the test environment. The variance 
considered for each measurement in the simulation is of 1%  of the measured signal. Due to 
the fact that the number of potential feasible poses is high, if a normal population is used 
(we understand by normal population a population able to localize the vehicle in normal 
situations), the algorithm fails because it does not have enough elements to manage the set 
of potential hypotheses. In our experimental test, a minimum number of approximately 
15 25  elements per potential pose is required. A population set of 1500  of elements has 
been used to manage properly the high number of feasible hypotheses existent at the initial 
cycle of the global localization. Figure 8 shows the high number of feasible poses existent at 
the initial robot’s pose according to the perceived information. The number of feasible poses 
at the end of the first perception cycle is of 54 . In this example, a population of  is enough, 
but at the end of the first cycle it has  feasible poses. If we decrease the population, the 
number of manageable poses decreases and the risk of incorrect convergence increases.  
 

 

 

 

 

 
Fig. 6. Convergence process along different iterations (50, 100, 150, 200, 250, 300, 314) of the 
first perception cycle.  
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Fig. 7. Convergence process along 6 successive perception-motion cycles where the robot 
moves 2.5 cells upward after each perception cycle. 
 
 

 

After the first perception cycle, the robot is turned 10 degrees clockwise at each motion (plus 
a random error added and unknown for the algorithm). After the motion, the whole 
population set is moved according to the odometry information and a new localization cycle 
is started. Figure 9 shows the successive population convergence towards an unique 
hypothesis. After the initial perception cycle, the number of possible poses is pruned very 
fast since new information about the environment is added to the algorithm.  
 

 

 
Fig. 8. Convergence process for the worst case pose ( 100, 200, 300, 400, 420) of the first 
perception cycle. 
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Fig.  9. Convergence process along 5 successive perception-motion cycles where the robot 
turns 10  clockwise after each perception cycle. 
 
From a practical point of view, the worse case situation is easy to alleviate by turning the vehicle 
up to a pose with the maximum perception information. For this same example, if we start the 
localization with an initial pose of T T(x y ) (10 70 135)     where the perceived area covered by 
robot sensors is maximum, the problem disappears and a population of  100 elements is enough, 
as can be noticed in figure 10.  

 

7. Accuracy results 

To test the accuracy of the method for the initial localization, we have selected again a 
distinguishable point (x,y,)=(60,60,0) and we have increased the variance of the error in 
sensor measurement. The variance considered in simulations is proportional to the 
measured signal and is expressed as a fraction of the total measurement. This way, a value 
of 0.01 indicates a variance of 1 % over the simulated value obtained for a given sensor. This 
situation is harder than real conditions in laser scanners. The population used in simulation 
is of 100 elements. For each case, 25 runs of the first perception cycle have been executed. 
The results are shown in table 1, where the mean and variance of the absolute errors in x, y 
and  are given.  It also shows the average number of iterations required by the algorithm 
until the stopping criteria is reached and the success ratio obtained for each noise level.  
It can be notice that, for low noise variance levels (up to 5%), the accuracy of the algorithm is 
below 0.15 cells in x and y dimensions and below 0.2 in orientation in all the cases. Since 
the cell size used is 12 cm, that means an error below 1.8 cm in x and y dimensions and 
below 0.2 in orientation at the end of the first perception cycle. For this signal error level, 
the algorithm has successfully localized the true pose in all the runs and only one 
hypothesis is maintained at the end of the first perception cycle. The stopping criteria is 
reached in a relatively constant number of iterations for low noise levels, and it tends to 
decrease slowly when the noise signal level increases.  
The algorithm degrades slowly. For a  17.5% of variance in the noise level, the algorithm is 
able to localize a position close to the true one in all simulations. We consider a localization 
as successful if the initial pose estimated is in a 10 cells area around the true one. After that 
level, the success ratio drop fast and, for a 25% of variance in the noise level, the success 
ratio value is only of a 60%.  
From this test, some conclusions can be drawn. The first one is that, if the place is 
distinguishable, the algorithm is able to localize the initial pose with high accuracy, and only 
when the noise increases considerably the algorithm starts to decrease its success ratio.  
A second aspect to consider is the capability of the algorithm to maintain bounded the pose 
estimation accuracy along a trajectory. A motion along the central corridor in the test 
environment is simulated. For the simulations, a normal error with 2.5% of variance has 
been adopted and the noise used for sensor observation is of 1% of variance. The real and 
estimated trajectories are shown in figure 11 and the x, y, and  errors are shown in figure 
12. The simulation results show that y error is very small and contained between [+0.05, -
0.05] cells ([+0.6, -0.6] cm). This is logical, since the corridor is relatively narrow and the y 
position can be accurately estimated with the available information. For x variable, errors 
are in a band between  [+0.1, -0.1] cells ([+1.2 -1.2] cm) and they punctually reach values in 
the band [+0.25, -0.25] cells. Regarding the orientation,  errors are in a band between [+0.1, 
-0.1] and they punctually reach values in the band  [+0.25, -0.25]. The error goes to -0.31 in 
one occasion. 
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localization with an initial pose of T T(x y ) (10 70 135)     where the perceived area covered by 
robot sensors is maximum, the problem disappears and a population of  100 elements is enough, 
as can be noticed in figure 10.  

 

7. Accuracy results 

To test the accuracy of the method for the initial localization, we have selected again a 
distinguishable point (x,y,)=(60,60,0) and we have increased the variance of the error in 
sensor measurement. The variance considered in simulations is proportional to the 
measured signal and is expressed as a fraction of the total measurement. This way, a value 
of 0.01 indicates a variance of 1 % over the simulated value obtained for a given sensor. This 
situation is harder than real conditions in laser scanners. The population used in simulation 
is of 100 elements. For each case, 25 runs of the first perception cycle have been executed. 
The results are shown in table 1, where the mean and variance of the absolute errors in x, y 
and  are given.  It also shows the average number of iterations required by the algorithm 
until the stopping criteria is reached and the success ratio obtained for each noise level.  
It can be notice that, for low noise variance levels (up to 5%), the accuracy of the algorithm is 
below 0.15 cells in x and y dimensions and below 0.2 in orientation in all the cases. Since 
the cell size used is 12 cm, that means an error below 1.8 cm in x and y dimensions and 
below 0.2 in orientation at the end of the first perception cycle. For this signal error level, 
the algorithm has successfully localized the true pose in all the runs and only one 
hypothesis is maintained at the end of the first perception cycle. The stopping criteria is 
reached in a relatively constant number of iterations for low noise levels, and it tends to 
decrease slowly when the noise signal level increases.  
The algorithm degrades slowly. For a  17.5% of variance in the noise level, the algorithm is 
able to localize a position close to the true one in all simulations. We consider a localization 
as successful if the initial pose estimated is in a 10 cells area around the true one. After that 
level, the success ratio drop fast and, for a 25% of variance in the noise level, the success 
ratio value is only of a 60%.  
From this test, some conclusions can be drawn. The first one is that, if the place is 
distinguishable, the algorithm is able to localize the initial pose with high accuracy, and only 
when the noise increases considerably the algorithm starts to decrease its success ratio.  
A second aspect to consider is the capability of the algorithm to maintain bounded the pose 
estimation accuracy along a trajectory. A motion along the central corridor in the test 
environment is simulated. For the simulations, a normal error with 2.5% of variance has 
been adopted and the noise used for sensor observation is of 1% of variance. The real and 
estimated trajectories are shown in figure 11 and the x, y, and  errors are shown in figure 
12. The simulation results show that y error is very small and contained between [+0.05, -
0.05] cells ([+0.6, -0.6] cm). This is logical, since the corridor is relatively narrow and the y 
position can be accurately estimated with the available information. For x variable, errors 
are in a band between  [+0.1, -0.1] cells ([+1.2 -1.2] cm) and they punctually reach values in 
the band [+0.25, -0.25] cells. Regarding the orientation,  errors are in a band between [+0.1, 
-0.1] and they punctually reach values in the band  [+0.25, -0.25]. The error goes to -0.31 in 
one occasion. 
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Table 1. Accuracy of the algorithm for different levels of noise, true location (60,60,0). 

 
7.1. Computational cost 
When analyzing the computational cost of the algorithm, two different situations have to be 
considered: 

• Initial localization cycle. In this situation, the algorithm explores the full state space 
until the stopping condition is reached. The time used to reach the stopping condition 
depends on the worst pose value considered as threshold in the stopping criteria. This time 
for the test example is around 4.5 seconds (in a T8300 duo core processor at 2.4 GHz with 
one core at execution). This time depends on the population set, the stopping criteria and 
the sensed area. The sensor perception estimation is done by ray tracing on the environment 
map and the estimation cost tends to grow with the size of the observed area since the 
algorithm concentrates its exploration in feasible areas. At the end of this first perception 
cycle, the feasible localization areas are determined. 

•Re-localization cycle. Once the algorithm detects that the whole initial population 
has converged, the population set is decreased to 30 elements. For this population set the 
stopping condition is reached very fast and the computational cost decreases to 45 
milliseconds per iteration.  
These times allow the algorithm to be used on line except at the initial cycle. 

m   xe    x   ye    y   e     theta   It   Suc   

0.01 0.051 0.052 0.021 0.017 0.046 0.044 295.8 1.0 

0.02  0.112  0.091  0.031  0.031  0.082  0.058  342.6  1.0  

0.03  0.140  0.125  0.040  0.036  0.081  0.081  362.5  1.0  

0.04  0.134  0.133  0.067  0.047  0.120  0.071  365.7  1.0  

0.05  0.139  0.098  0.132  0.147  0.180  0.188  298.5  1.0  

0.075  0.276  0.248  0.212  0.266  0.408  0.588  316.2  1.0  

0.10  0.416  0.383  0.301  0.277  0.485  0.525  298.6  1.0  

0.125  0.374  0.308  0.529  0.415  0.835  0.765  246.7  1.0  

0.15  1.255  2.478  0.816  0.506  1.420  1.275  291.9  1.0  

0.175  0.598  0.573  0.844  0.603  1.369  0.863  305.4  1.0  

0.20  1.056  0.683  0.9611  0.705  2.186  1.641  294.4  0.96  

0.225  2.242  3.426  1.5681  1.365  2.457  1.891  288.9  0.68  

0.25  3.069  2.575  1.5849  1.252  1.826  1.384  264.3  0.60  

 

 
Fig. 10. Convergence process for the worst case pose ( 100, 200, 300, 360 ) of the first 
perception cycle. 
 

 
Fig. 11. Real and estimated trajectories along the central corridor. 
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Fig. 12. Errors of the trajectory of Fig. 11 (in cells  in x and y, and in degrees in θ). 

 
8. Conclusion 

One of the most interesting properties of the RDE (Rejection Differential Evolution) filter is 
its efficiency in terms of convergence speed. The algorithm is able to exploit the perceptual 
information to converge in the initial perception cycle if, from the initial pose, the robot 
perceives any distinctive characteristic of its environment. A second characteristic is the low 
number of pose solutions required to successfully localize the robot. For the test 
environment under consideration, a population of 100-150 elements is enough, except in 
non-informative situations where the number of hypotheses can grow up very fast and a 
certain number of pose solutions is required to maintain a feasible area.  
The number of population elements required to avoid the premature elimination of feasible 
hypotheses has not been determined theoretically in the evolutive algorithms field, but in 
our experimental tests, a number between 10 and 25 poses is required to maintain all 
feasible hypothesis. In case of non informative situations where the sensors only let the 
robot perceive a small part of the environment (for instance, when a robot is in a corner) the 
potential number of hypotheses can rise very fast, which originates that the algorithm fails 
when using a normal pose set size. This problem can be addressed in two ways: turning the 
robot until a maximum environment area is perceived by the sensors or to detect the 
uninformative situation and increase the pose set size. The first approach is easier and 
requires less computational resources.  
As in the majority of the population-based optimization methods, the algorithm robustness 
increases with the population set size. If we consider the effect of the population size on the 
accuracy of the algorithm, we need to consider the explored number of poses, since the total 
number of explored poses is roughly speaking the product of the iteration number and the 
population size. But in our test, the accuracy is maintained up to a certain number of 
explored poses. This behavior differs completely from Monte Carlo method. As noticed by 
several authors (Doucet, 1998; Liu & Chen, 1998), the basic Monte Carlo filter performs 
poorly if the proposal distribution, which is used to generate samples, places not enough 
samples in regions where the desired posterior probability distribution is large. This 
problem has practical importance because of time limitations existing in on-line 
applications.  
The use of a rejection threshold and a stopping criteria adjusted to the statistical 
characteristics of the objective function allows us to decrease considerably the population 
size while maintaining the accuracy level of the method. In previous works, a minimum 
population set of 250 – 300 elements were required, while in the RDE version a population 

 

of 100 has proved to be sufficient for the environment under consideration. At initial stages, 
the algorithm has to evaluate the whole environment map and the initial number of samples 
is related to the environment area and the area perceived with sensors. If the perceived area 
is big, the possible number of hypotheses required for the environment can be reduced and, 
consequently, the population required. 
A significant characteristic of the method is the possibility of stopping the algorithm 
convergence to avoid the premature elimination of feasible hypotheses until posterior 
motion-perception cycles can add a significant statistical evidence to achieve the 
convergence to one pose. This characteristic is critical when the initial robot’s pose is 
localized in a repetitive place, such as an office, without singular characteristics and the 
algorithm needs to detect the feasible hypotheses and to maintain them until distinctive 
characteristics are perceived in posterior perception cycles.  
Due to the stochastic nature of the algorithm search of the best robot’s pose estimate, the 
algorithm is able to cope with a high level of sensor noise with low degradation of the 
estimation results. The algorithm is easy to implement and the computational cost makes it 
able to operate on line even in relatively big areas.  
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